1
|
Zhou X, Cheng W, Chen X, Wang K. UPLC-quadrupole time-of-flight-tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt. Biomed Chromatogr 2024; 38:e5797. [PMID: 38084786 DOI: 10.1002/bmc.5797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
Coreopsis tinctoria Nutt. (C. tinctoria) is a traditional medicinal plant, primarily found in plateau areas with altitudes exceeding 3000 m. The efficacy of C. tinctoria appears to be intricately tied to its quality. However, there is a scarcity of studies focused on evaluating the quality of C. tinctoria from diverse geographical locations. In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry to analyze and identify the prevalent chemical components in 12 batches of C. tinctoria sourced from Xinjiang, Qinghai, Tibet, and Yunnan provinces in China. By using cluster analysis and discriminant analysis of partial least squares, we assessed the similarity and identified varying components in the 12 batches of C. tinctoria. Subsequently, their quality was further evaluated. Utilizing network pharmacology, we identified potential active components for the treatment of diabetes mellitus. The findings revealed the presence of 16 flavonoids, 3 phenylpropanes, 2 sugars, 2 amino acids, and 7 hydrocarbons in the analyzed samples. Through variable importance screening, 17 constituents were identified as quality difference markers. Marein and flavanomarein emerged as pivotal markers, crucial for distinguishing variations in C. tinctoria. In addition, network pharmacology predicted 187 targets for 9 common active components, including marein and flavanomarein. Simultaneously, 1747 targets related to diabetes mellitus were identified. The drug-component-disease target network comprised 91 nodes and 179 edges, encompassing 1 drug node, 9 component nodes, and 81 target nodes. In summary, marein and flavanomarein stand out as key biomarkers for assessing the quality of C. tinctoria, offering a scientific foundation for the quality evaluation of C. tinctoria Nutt.
Collapse
Affiliation(s)
- Xinyu Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaixuan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Yang WQ, Huang Q, Wu MQ, Mei QX, Zou YS, Qian ZM, Tang D. Rapid screening and evaluation of natural antioxidants from leaf, stem, and root of Artemisia argyi by online liquid microextraction combined with HPLC-based antioxidant assay system coupled with calibration quantitative analysis. J Sep Sci 2024; 47:e2300616. [PMID: 38095533 DOI: 10.1002/jssc.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024]
Abstract
To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.
Collapse
Affiliation(s)
- Wei-Qi Yang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Qi Huang
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Meng-Qi Wu
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | - Quan-Xi Mei
- Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Yuan-Sheng Zou
- Dongguan HEC Cordyceps R&D Co. Ltd., Dongguan, P. R. China
| | | | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Online Microextraction Coupled with HPLC-ABTS for Rapid Analysis of Antioxidants from the Root of Polygonum bistorta. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7496848. [PMID: 36704212 PMCID: PMC9873428 DOI: 10.1155/2023/7496848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
The root of Polygonum bistorta (PB) is a traditional Chinese medicinal plant material widely used in China. It has been commonly used for the treatment of hemostasis, detumescence, diarrhea, snake bite, and acute gastroenteritis. However, the research on the antioxidant properties and bioactive compounds from PB is inadequate. In the current research, an online microextraction (OLME) coupled with a high-performance liquid chromatography coupled with the 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay (HPLC-ABTS) system for rapid analysis of antioxidants from PB was proposed. The PB sample (0.17 mg) was online extracted by mobile phase (acetonitrile and 0.2% acetic acid); a Poroshell 120 SB-Aq column was used for separation; then, an online ABTS assay system was used for screening the antioxidants. Finally, ten components were found in PB, and among them, eight components possessed antioxidant activities. Furthermore, five components (gallic acid, neochlorogenic acid, caffeic acid, chlorogenic acid, and an unknown compound) were proved as major antioxidants when compared with rutin as an antioxidant marker. The results showed that the developed OLME-HPLC-ABTS system was a simple, rapid, green, and efficient instrument for the screening of antioxidants from PB, which provides a powerful tool for the discovery of natural antioxidants in Chinese medicines.
Collapse
|
4
|
Chen L, Sun J, Pan Z, Lu Y, Wang Z, Yang L, Sun G. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules 2023; 28:579. [PMID: 36677639 PMCID: PMC9866508 DOI: 10.3390/molecules28020579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Chrysanthemum extract possesses antioxidant potential and carbohydrate and fat digestive enzyme inhibitory in vitro. However, no evidence supporting chrysanthemum in modulation of postprandial lipemia and antioxidant status in humans presently exists. This study was to analyze the composition of Imperial Chrysanthemum (IC) extract and determine the effect on changes in postprandial glycemic and lipemic response and antioxidant status in adults after consumption of a high-fat (HF) meal. UHPLC-MS method was used to analyze the components of two kinds of IC extracts (IC-P/IC-E) and in vitro antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydraxyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and Hydroxyl radical (HR) radical scavenging assays. Following a randomized design, 37 healthy adults (age, 25.2 ± 2.6 years, and BMI, 20.9 ± 1.5 kg/m2) were assigned to two groups that consumed the HF meal, or HF meal supplemented by IC extract. Blood samples were collected at fasting state and then at 0.5, 1, 2, 4, 6 and 8 h after the meal consumption. There were 12 compounds with relative content of more than 1% of the extracts, of which amino acid and derivatives, flavonoids, carboxylic acids and derivatives were the main components. Compared with IC-E, the contents of flavonoids in IC-P increased significantly (p < 0.05), and the cynaroside content exceeded 30%. In addition, IC-P showed strong free radical scavenging activity against DPPH, ABTS and HR radicals. Furthermore, according to repeated−measures ANOVA, significant differences were observed in the maximal changes for postprandial glucose, TG, T-AOC and MDA among the two groups. Postprandial glucose has significant difference between the two groups at 1 h after meal and the level in IC group was significantly lower than that in control group. No significant differences were observed in the incremental area under the curve (iAUC) among the two groups. IC significantly improved the serum antioxidant status, as characterized by increased postprandial serum T-AOC, SOD, GSH and decreased MDA. This finding suggests that IC can be used as a natural ingredient for reducing postprandial lipemia and improving the antioxidant status after consuming a HF meal.
Collapse
Affiliation(s)
- Lin Chen
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Jihan Sun
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhengyu Pan
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Yifei Lu
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Zhaodan Wang
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| | - Ligang Yang
- Department of Nutrition and Food Hygiene, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Healthy, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing 404000, China
| |
Collapse
|
5
|
Han H, Ma R, Xie A, Gao J, Wang Z, Zhao Y, Pang H, Zhang W. Development of an LC/MS/MS Method for Simultaneous Detection of 11 Polyphenols in Rat Plasma and Its Pharmacokinetic Application after Oral Administration of Coreopsis tinctoria Extract. Chem Biodivers 2023; 20:e202200574. [PMID: 36382445 DOI: 10.1002/cbdv.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Eleven polyphenols, classified as flavonoid glycosides, flavonoid aglycones, and phenolic acids, are important bioactive components in the capitula of Coreopsis tinctoria (CCT). Nevertheless, their full pharmacokinetic profiles have not been demonstrated simultaneously. Therefore, a liquid chromatography - tandem mass spectrometry (LC/MS/MS) method was developed in the present work and used it to study the pharmacokinetics of these 11 compounds. We performed LC/MS/MS with a gradient mobile phase composed of water containing 0.1 % formic acid and acetonitrile containing 0.1 % formic acid on a Proshell 120 SB C18 column (2.1 mm×100 mm, 2.7 μm). We achieved a good chromatographic peak shape, resolution, and mass signal response, and multiple reaction monitoring facilitated the simultaneous detection of 11 analytes. In addition, we validated the selectivity, correlation coefficient, precision, extraction recovery, matrix effects, and stability of the LC/MS/MS method to be acceptable for 11 analytes in rat plasma. Subsequently, rats were orally administered with 50 % ethanol eluent of CCT (ECCT). Nine of 11 polyphenols were absorbed quickly (except for QCD and TCA), and their plasma levels peaked within 40 min. The exposure and Cmax values of flavonoid glycosides and phenolic acids were lower than those of flavonoid aglycones. This is the first report to demonstrate the pharmacokinetics of 11 polyphenols in ECCT, which may play an important role in future studies of the bioactive components of ECCT and their bioactive mechanisms.
Collapse
Affiliation(s)
- Haixia Han
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Rui Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Aidi Xie
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Juanjuan Gao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Zhen Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Yi Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Huanming Pang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Xinjiang, 830052, China
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
6
|
Zhang M, Zhao N, Xie M, Dong D, Chen W, He Y, Yan D, Fu H, Liang X, Zhou L. Antioxidant properties of polyphenols from snow chrysanthemum ( Coreopsis tinctoria) and the modulation on intestinal microflora in vitro. PHARMACEUTICAL BIOLOGY 2022; 60:1771-1780. [PMID: 36093612 PMCID: PMC9467560 DOI: 10.1080/13880209.2022.2117386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/07/2022] [Accepted: 08/14/2022] [Indexed: 06/07/2023]
Abstract
CONTEXT Coreopsis tinctoria Nutt (Asteraceae), named snow chrysanthemum, is known to have a high level of polyphenols. However, the potential prebiotic effect on modulating intestinal microflora is still unclear. OBJECTIVE The chemical composition, antioxidant properties of snow chrysanthemum polyphenols (SCPs) and their effects on human intestinal microbiota were investigated. MATERIALS AND METHODS SCPs were extracted using ultrasonic-assisted extraction, and further determined using UPLC-QE Orbitrap/MS. Five assays were used to investigate the antioxidant activities of SCPs. Subsequently, the effects of SCPs on intestinal microbiota in vitro were determined by high throughput sequencing and bioinformatics analysis. RESULTS Marein, isookanin and cymaroside were the major phenolic compounds, which accounted for 42.17%, 19.53% and 12.25%, respectively. Marein exhibited higher scavenging capacities in DPPH (EC50 = 8.84 µg/mL) and super anion radical assay (EC50 = 282.1 µg/mL) compared to cymaroside and isookanin. The antioxidant capacity of cymaroside was weakest among the three phenolic compounds due to the highest EC50 values, especially for superoxide anion radical assay, EC50 > 800 µg/mL. The result of in vitro fermentation showed that the three phenolic compounds increased the relative abundances of Escherichia/Shigella, Enterococcus, Klebsiella, etc., and isookanin notably increased the relative abundance of Bifidobacterium and Lactobacillus. DISCUSSION AND CONCLUSIONS SCPs exhibited antioxidant properties and potential prebiotic effects on modulating the gut microbiota composition. The findings indicated that SCPs consumption could exert prebiotic activity that is beneficial for human health.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Naiyu Zhao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, P. R. China
| | - Deqiao Dong
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Weilin Chen
- Medscience-Tech Institute for Non-communicable Diseases at Optics Valley, Wuhan, P. R. China
| | - Yuanpeng He
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Dalin Yan
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Haiyan Fu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Xinlin Liang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, P. R. China
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Wang L, Cui T, Wang Y, Chen J, Li W. On-line screening of natural antioxidants and the antioxidant activity prediction for the extracts from flowers of Chrysanthemum morifolium ramat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115336. [PMID: 35568113 DOI: 10.1016/j.jep.2022.115336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Chrysanthemum morifolium Ramat. (Flos Chrysanthemi, FC) the most economically significant "food and drug dual-use" plants, with positive effects on relieving eye fatigue, and reduce internal heat, shows significant activities, such as anti-inflammatory, antioxidant, and neuroprotective, as well as alleviating diabetes effects. AIM OF THE STUDY This study was undertaken to a screening of natural antioxidants in five kinds of medicinal FC and development of an integrated quality control method based on the antioxidant activity. MATERIALS AND METHODS A novel quality control method for FC was established by combining the on-line HPLC-DPPH, ESI-MS, and NIR spectra analysis. Firstly, the on-line HPLC-DPPH-MS system was employed to identify the antioxidants in FC extracts. Then, the relationship between the NIR spectra and antioxidant activities of FC samples was calibrated to evaluate the total antioxidant capacity of FC rapidly. RESULTS The established antioxidant activity-fingerprints contain both chemical information and antioxidant activity characteristics of FC. A total of 16 antioxidants were identified by on-line HPLC-ESI-MS analysis. The results of heat map analysis and cluster analysis showed that the classification method based on antioxidants in FC can be used to identify different cultivars of FC. The optimal pretreatment of the NIR spectra was determined to be row center (RC) 1st der + multiple-scatter correction (MSC) with an optimal LV value of 11. The developed spectral-antioxidant activity model had the excellent predictive ability and was successfully used to evaluate new batches of FC samples, where Rcal = 0.9445 and Rval = 0.8821. CONCLUSIONS This comprehensive strategy may prove to be a powerful technique for the rapid screening, identification, and activity prediction of antioxidants, which could be used for the quality control of FC, and can serve as reference for design of quality control of other herbs and foods samples.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei, 230051, China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuxin Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Qingdao Key Lab on Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Zhang J, Wang YL, Liu YT, Yuan M, Jin JG. Effects of Modified Sang ju-Yin Decoction Combined with IFN αlb Nebulization on IL-1 β and HBD2 in Children with Asthmatic Bronchitis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2802636. [PMID: 35785143 PMCID: PMC9242817 DOI: 10.1155/2022/2802636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 11/27/2022]
Abstract
Background Breathing disease swelling of the lung tubes caused by viral infection is more and more likely to develop into related to the lung tubes breathing disease, especially repeating breathing loudly. Objective To investigate the effect of modified Sang ju-Yin Decoction combined with Interferon (IFN)αlb nebulization on children with asthmatic bronchitis and the effects of IL-1β and β-defensin 2 (HBD2). Materials and Methods The clinical data of 80 children with asthmatic bronchitis who were diagnosed and treated in our hospital from May 2019 to May 2021 were selected as the research objects and divided into the control group and the observation group with 40 cases in each group according to different treatment methods. Among them, the control group was nebulized with IFNαlb, and the observation group was given addition and subtraction of Sang ju-Yin Decoction based on the control group. The clinical symptoms, pulmonary function indexes, adverse reactions, and effects on serum inflammatory indexes were observed and compared between the two groups. Results There was no significant difference in the scores of symptoms and signs between the two groups before treatment (P > 0.05), while the scores of shortness of breath, cough, stridor, lung rales, and signs after treatment of observation group were better than those of the control group (P < 0.05). There was no significant difference in serum inflammatory indexes and pulmonary function indexes between the two groups before treatment (P > 0.05), while the differences in IL-6, IL-10, TNF-α, IL-1β, and HBD2 after treatment were significant between the two groups (P < 0.05). After treatment, the RR, TV, and PEF indexes of the two groups of children were significantly improved (P < 0.05). After treatment, the adverse reaction rate of liver function damage, dry throat discomfort, rash, nausea, and vomiting in the observation group was 7.5%, which was significantly lower than 27.5% in the control group (P < 0.05). Conclusion Modified Sang ju-Yin Decoction combined with IFNαlb nebulization can improve symptoms and promote the recovery of patients in the treatment of acute bronchitis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Child Healthcare, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, China
| | - You lan Wang
- Pediatrics Department, Wuhan Yaxin General Hospital, China
| | - Ying ting Liu
- Pediatrics Department, Wuhan Yaxin General Hospital, China
| | - Min Yuan
- Department of Child Healthcare, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, China
| | - Jian guo Jin
- Pediatrics Department of Xiantao First People's Hospital Affiliated to Yangtze University, China
| |
Collapse
|
9
|
Liu J, Cheng X, Zheng X, Shi Y, Li C, He Q, Li Y, Chen X. Integrated UPLC-Q-TOF-MS/MS and Network Pharmacology Approach to Investigating the Metabolic Profile of Marein of Coreopsis tinctoria Nutt. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6707811. [PMID: 35656459 PMCID: PMC9152369 DOI: 10.1155/2022/6707811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Marein is the main active compound of Coreopsis tinctoria Nutt., and its main activities include antioxidant, hypoglycemic, and hypotensive. After oral administration of marein, the blood concentration of marein is low. The metabolites of marein have not been reported systematically. In this study, a rapid and systematic method based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was established to detect metabolites of marein in vivo (plasma and urine) after oral administration and injection. Sixty-one metabolites were identified. The metabolites are formed through a wide range of metabolic reactions, including hydroxylation, glucuronidation, methylation, hydrolysis, and desorption of hydrogen. The liver microsome incubation was further used to investigate the metabolic rate of marein. Network pharmacology was applied to study the targets and pathways of marein and its metabolites. Marein and its metabolites act on the same targets to enhance the therapeutic effect. This research illuminates the metabolites and metabolic reaction of marein and establishes a basis for the development and rational utilization of C. tinctoria. Meanwhile, the analysis of prototype and metabolites together by network pharmacology techniques could provide a methodology for the study of component activity.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuejing Cheng
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Zheng
- Beijing Analytical Center-SSL Shimadzu (China) Co., LTD, Beijing 100020, China
| | - Yumeng Shi
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiaoyu He
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
He X, Han X, Yu J, Feng Y, Chu G. Rapid prediction method of α-Glycosidase inhibitory activity of Coreopsis tinctoria extract from different habitats by near infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120601. [PMID: 34876345 DOI: 10.1016/j.saa.2021.120601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
α-Glucosidase is one of the main enzymes causing elevated blood glucose, and Coreopsis tinctoria extract can be used as a natural inhibitor of α-Glucosidase. Therefore, a new method was proposed for predicting the inhibitory activity on α-Glucosidase of Coreopsis tinctoria extract based on near infrared spectroscopy. The absorbance of the inhibitory system was measured by ultraviolet spectroscopy, which was used to study the inhibitory activity on a-glucosidase of Coreopsis tinctoria extract. The near infrared spectra of the solid samples were collected. By selecting spectral preprocessing and optimizing spectral bands, a rapid prediction model of the inhibitory activity was established by partial least squares regression. The root mean square error of cross-validation (RMSECV), correlation coefficient (R) value and the ratio of prediction to deviation (RPD) value were used as indicators of the evaluation model. The near infrared spectrum model was established by combining the best spectral preprocessing of the continuous wavelet transform (CWT) and the best spectral band. The root mean square error of cross-validation (RMSECV) of this model was 0.815%, the correlation coefficient (R) value was 0.942, and the ratio of prediction to deviation (RPD) was 3.0. The root mean square error of prediction (RMSEP) of the model by prediction set was 0.819%, the correlation coefficient (R) value was 0.950, and the RPD was 3.2. The model shows that the fitting relationship between the predicted inhibition value and the reference inhibition value of the near infrared spectral model is good. The results showed that there was a good correlation between near infrared spectroscopy and the inhibitory activity of Coreopsis tinctoria extract. Thus, the established model was robust and effective and could be used for rapid quantification of α-Glucosidase inhibitory activity. The prediction method is simple and rapid, and can be extended to study the inhibition of other medicinal plants.
Collapse
Affiliation(s)
- Xiaogang He
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Xiang Han
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Jiaping Yu
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Yulong Feng
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Ganghui Chu
- Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China.
| |
Collapse
|
11
|
Pires EDO, Di Gioia F, Rouphael Y, Ferreira ICFR, Caleja C, Barros L, Petropoulos SA. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021; 26:6940. [PMID: 34834031 PMCID: PMC8619536 DOI: 10.3390/molecules26226940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38446 Volos, Greece
| |
Collapse
|
12
|
Ai P, Liu X, Li Z, Kang D, Khan MA, Li H, Shi M, Wang Z. Comparison of chrysanthemum flowers grown under hydroponic and soil-based systems: yield and transcriptome analysis. BMC PLANT BIOLOGY 2021; 21:517. [PMID: 34749661 PMCID: PMC8574001 DOI: 10.1186/s12870-021-03255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. However, with increasing population and urbanization, water and land availability have become limiting for chrysanthemum tea production. Hydroponic culture enables effective, rapid nutrient exchange, while requiring no soil and less water than soil cultivation. Hydroponic culture can reduce pesticide residues in food and improve the quantity or size of fruits, flowers, and leaves, and the levels of active compounds important for nutrition and health. To date, studies to improve the yield and active compounds of chrysanthemum have focused on soil culture. Moreover, the molecular effects of hydroponic and soil culture on chrysanthemum tea development remain understudied. RESULTS Here, we studied the effects of soil and hydroponic culture on yield and total flavonoid and chlorogenic acid contents in chrysanthemum flowers (C. morifolium 'wuyuanhuang'). Yield and the total flavonoids and chlorogenic acid contents of chrysanthemum flowers were higher in the hydroponic culture system than in the soil system. Transcriptome profiling using RNA-seq revealed 3858 differentially expressed genes (DEGs) between chrysanthemum flowers grown in soil and hydroponic conditions. Gene Ontology (GO) enrichment annotation revealed that these differentially transcribed genes are mainly involved in "cytoplasmic part", "biosynthetic process", "organic substance biosynthetic process", "cell wall organization or biogenesis" and other processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment in "metabolic pathways", "biosynthesis of secondary metabolites", "ribosome", "carbon metabolism", "plant hormone signal transduction" and other metabolic processes. In functional annotations, pathways related to yield and formation of the main active compounds included phytohormone signaling, secondary metabolism, and cell wall metabolism. Enrichment analysis of transcription factors also showed that under the hydroponic system, bHLH, MYB, NAC, and ERF protein families were involved in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. CONCLUSIONS Hydroponic culture is a simple and effective way to cultivate chrysanthemum for tea production. A transcriptome analysis of chrysanthemum flowers grown in soil and hydroponic conditions. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Xiaoqi Liu
- Zhengzhou A Boluo Fertilizer Company, Zhiji Road, Zhengzhou, 450121, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Han Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Mengkang Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
13
|
Li Z, Jiang H, Qin Y, Yan H, Jiang X, Qin Y. Nitrogen deficiency maintains the yield and improves the antioxidant activity of Coreopsis tinctoria Nutt. Biosci Biotechnol Biochem 2021; 85:1492-1505. [PMID: 33851999 DOI: 10.1093/bbb/zbab048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Nitrogen (N) deficiency levels were investigated for their potential to maintain the yield and improve antioxidant activity of Coreopsis tinctoria. Inflorescences and leaves at 0, 10, 20, 30, 40, and 50 d after flowering were frozen at -80 °C and plant growth, antioxidant activity, bioactive substance, enzyme activity, and gene expression were evaluated. N deficiency maintained the total number of flowers, promoted phenol and flavonoid accumulation, and enhanced antioxidant activity. Moreover, N deficiency stimulated activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate:coenzyme A ligase (4CL), and induced CtPAL, CtC4H and Ct4CL gene expression. The data also suggest that N-deficiency-induced phenolic and flavonoid accumulation occurs due to the activation of biosynthetic pathways in C. tinctoria. We characterize the unique features of C. tinctoria under N-deficiency conditions and provide valuable information for the cultivation of high-N use efficiency varieties with low input and high output.
Collapse
Affiliation(s)
- Zhiyuan Li
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hong Jiang
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yanan Qin
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Huizhuan Yan
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiumei Jiang
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yong Qin
- College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
14
|
|
15
|
Wu X, Liu Y, Guo J, Wang J, Li M, Tan Y, Zheng Q, Feng Y. Differentiating Pu-erh raw tea from different geographical origins by 1 H-NMR and U-HPLC/Q-TOF-MS combined with chemometrics. J Food Sci 2021; 86:779-791. [PMID: 33598925 DOI: 10.1111/1750-3841.15624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Pu-erh tea is believed to be a beneficial beverage for health due to its many kinds of pharmacological effects. Nevertheless, detailed information related to differences in metabolites of Pu-erh raw tea from different geographical origins remains scarce. In this study, 43 elements were found in water-soluble components of Pu-erh raw tea by highly sensitive ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS). The characteristic groups of 29 metabolites from nondestructive proton nuclear magnetic resonance (1 H-NMR) spectroscopy were assigned. The variables contributed largely to the origin classification, mainly including valine, threonine, chlorogenic acid, quinic acid, epiafzelechin, and gallic acid ester, were screened out by sparse partial least squares discriminant analysis (sPLS-DA) method. This study provided a feasible and rapid technique for distinguishing Pu-erh tea from different areas by 1 H-NMR combined with sPLS-DA.
Collapse
Affiliation(s)
- Xia Wu
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Ying Liu
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Jieqing Guo
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Juanxia Wang
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Meizhen Li
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Youzhen Tan
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Qifan Zheng
- Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yifan Feng
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
16
|
Li SP, Zhao J, Chen LX, Hu DJ, Xu WF. Identification and determination of fructooligosaccharides in snow chrysanthemum ( Coreopsis tinctoria nutt.). WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_64_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Kabanda MM, Gbashi S, Madala NE. Proportional coexistence of okanin chalcone glycoside and okanin flavanone glycoside in Bidens pilosa leaves and theoretical investigation on the antioxidant properties of their aglycones. Free Radic Res 2020; 55:53-70. [PMID: 33267705 DOI: 10.1080/10715762.2020.1859107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bidens pilosa plant has been shown to produce okanin flavanone glycoside and its chalcone derivative. In most other plants, due to chalcone isomerase enzyme, the flavanone tends to exist in higher proportions than their chalcone precursors. Herein we have utilized liquid chromatography-mass spectrometry approach and shown that within the leaves of Bidens pilosa plant the two okanin glycosides exist in unusual equal proportional distribution, which indicates that Bidens pilosa plant is an alternative rich source of these highly sought-after antioxidant molecules. The aglycone okanin chalcone (ONC) and okanin flavanone (ONF) have experimentally been shown to exhibit antioxidant activity. However, experimental findings have not conclusively determined which of the two compounds is a more potent antiradical than the other. Herein, the density functional theory (DFT) method is utilized to establish, from structural and thermodynamic energetic considerations, the preferred antioxidant molecule between the two aglycone okanins. A theoretical study on the antioxidant properties of ONC and ONF has been performed by considering their radical scavenging and metal cation (Mn+, where M = Cu(II) or Fe (III)) chelation ability. The study has been performed using B3LYP/6-31 + G(d,p) method. In the case of the metal chelation mechanism, the LANL2DZ pseudo-potential was selected to describe the selected Mn+ cations. The results of the study suggest that ONC is a better radical scavenger than ONF because of the extended electron delocalization on its neutral radical, which is due to the presence of conjugation within the ONC neutral radical after hydrogen atom abstraction. In the metal chelation mechanism, it is noted that the binding energies depend on the media, the nature of the ligand and the cation and the cation coordination site on the ligand. The charge and the spin density on Mn+ decrease on coordination to the ligand. The ability of the ligands to reduce Mn+ cations, coupled with the strong Mn+ binding properties, has significant implication on the antioxidant ability of both okanins. However, since ONC⋅⋅⋅M+n interaction results in higher binding energy than ONF⋅⋅⋅M+n interaction, the implication is that ONC is a preferred free metal ion chelator than ONF.
Collapse
Affiliation(s)
- Mwadham M Kabanda
- Department of Chemistry, University of Venda, Thohoyandou, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, University of Johannesburg, Auckland Park, South Africa
| | | |
Collapse
|
18
|
Cao-Ngoc P, Leclercq L, Rossi JC, Hertzog J, Tixier AS, Chemat F, Nasreddine R, Al Hamoui Dit Banni G, Nehmé R, Schmitt-Kopplin P, Cottet H. Water-Based Extraction of Bioactive Principles from Blackcurrant Leaves and Chrysanthellum americanum: A Comparative Study. Foods 2020; 9:E1478. [PMID: 33081198 PMCID: PMC7602794 DOI: 10.3390/foods9101478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
The water-based extraction of bioactive components from flavonoid-rich medicinal plants is a key step that should be better investigated. This is especially true when dealing with easy-to-use home-made conditions of extractions, which are known to be a bottleneck in the course for a better control and optimization of the daily uptake of active components from medicinal plants. In this work, the water-based extraction of Blackcurrant (Ribes nigrum) leaves (BC) and Chrysanthellum americanum (CA), known to have complementary pharmacological properties, was studied and compared with a previous work performed on the extraction of Hawthorn (Crataegus, HAW). Various extraction modes in water (infusion, percolation, maceration, ultrasounds, microwaves) were compared for the extraction of bioactive principles contained in BC and CA in terms of extraction yield, of amount of flavonoids, phenolic compounds, and proanthocyanidin oligomers, and of UHPLC profiles of the extracted compounds. The qualitative and quantitative aspects of the extraction, in addition to the kinetic of extraction, were studied. The optimized easy-to-use-at-home extraction protocol developed for HAW was found very efficient to easily extract bioactive components from BC and CA plants. UHPLC-ESI-MS and high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were also implemented to get more qualitative information on the specific and common chemical compositions of the three plants (including HAW). Their antihyaluronidase, antioxidant, and antihypertensive activities were also determined and compared, demonstrating similar activities as the reference compound for some of these plants.
Collapse
Affiliation(s)
- Phu Cao-Ngoc
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Jean-Christophe Rossi
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| | - Jasmine Hertzog
- Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (J.H.); (P.S.-K.)
- Analytical Food Chemistry, Technische Universität Muenchen, 85354 Freising, Germany
| | - Anne-Sylvie Tixier
- GREEN Extraction Team, INRA, University of Avignon, 84916 Avignon, France; (A.-S.T.); (F.C.)
| | - Farid Chemat
- GREEN Extraction Team, INRA, University of Avignon, 84916 Avignon, France; (A.-S.T.); (F.C.)
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Ghassan Al Hamoui Dit Banni
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry (ICOA), CNRS, University of Orléans, 45067 Orléans, France; (R.N.); (G.A.H.D.B.); (R.N.)
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (J.H.); (P.S.-K.)
- Analytical Food Chemistry, Technische Universität Muenchen, 85354 Freising, Germany
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (P.C.-N.); (J.-C.R.)
| |
Collapse
|
19
|
Protective effects of Coreopsis tinctoria buds extract against cognitive impairment and brain aging induced by d-galactose. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
20
|
Yang X, Bai Z, Zhang D, Zhang Y, Cui H, Zhou H. Enrichment of flavonoid‐rich extract from
Bidens bipinnata
L. by macroporous resin using response surface methodology, UHPLC–Q‐TOF MS/MS‐assisted characterization and comprehensive evaluation of its bioactivities by analytical hierarchy process. Biomed Chromatogr 2020; 34:e4933. [DOI: 10.1002/bmc.4933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Xiudong Yang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence Jilin Institute of Chemical Technology Jilin China
| | - Zi‐Fan Bai
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
| | - Da‐Wei Zhang
- Department of General Surgery Changchun City People's Hospital Changchun China
| | - Yan Zhang
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
| | - Hao Cui
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
| | - Hong‐Li Zhou
- School of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence Jilin Institute of Chemical Technology Jilin China
| |
Collapse
|
21
|
Cao X, Xiong X, Xu Z, Zeng Q, He S, Yuan Y, Wang Y, Yang X, Su D. Comparison of phenolic substances and antioxidant activities in different varieties of chrysanthemum flower under simulated tea making conditions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Li Y, Huang C, Fu W, Zhang H, Lao Y, Zhou H, Tan H, Xu H. Screening of the active fractions from the Coreopsis tinctoria Nutt. Flower on diabetic endothelial protection and determination of the underlying mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112645. [PMID: 32045684 DOI: 10.1016/j.jep.2020.112645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Coreopsis tinctoria Nutt. flower (CTF) has been used traditionally in China for treating hypertension and diabetes as well as reducing body weight and blood fat. However, the vascular protection effect of the CTF has not been studied to date. AIM OF THE STUDY This study aimed to screen and identify bioactive fractions from the CTF with a diabetic endothelial protection effect and to clarify the underlying mechanism. MATERIALS AND METHODS The vascular protection effect of Fraction A was studied in high-fat diet and streptozocin-induced diabetic models. The endothelial protection effect of Fraction A-2 was further studied in an in vitro vascular endothelial dysfunction model induced by high glucose. In a high glucose-induced human umbilical vein endothelial cell (HUVEC) model, Fractions A-2-2 and A-2-3 were screened, and their detailed mechanisms of endothelial protection were studied. Liquid chromatography mass spectrometry (LC-MS) was used to identify the main components in Fractions A-2-2 and A-2-3. RESULTS Fraction A treatment significantly improved the endothelium-dependent vasodilation of the mesenteric artery induced by acetylcholine in diabetic rats. The maximum relaxation was 79.82 ± 2.45% in the control group, 64.36 ± 9.81% in the model group, and 91.87 ± 7.38% in the Fraction A treatment group (P < 0.01). Fraction A treatment also decreased rat tail pressure compared with the model group at the 12th week. The systolic blood pressure was 152.7 5 ± 16.99 mmHg in the control group, 188.50 ± 5.94 mmHg in the model group, and 172.60 ± 14.31 mmHg in the Fraction A treatment group (P < 0.05). The mean blood pressure was 128.50 ± 13.79 mmHg in the control group, 157.00 ± 6.06 mmHg in the model group, and 144.80 ± 11.97 mmHg in the Fraction A treatment group (P < 0.05). In an in vitro vascular endothelium-dependent vasodilation dysfunction model induced by high glucose, Fraction A-2 improved the vasodilation of the mesenteric artery. The maximum relaxation was 82.15 ± 16.24% in the control group, 73.29 ± 14.25% in the model group, and 79.62 ± 13.89% in the Fraction A-2 treatment group (P < 0.05). In a high glucose-induced HUVEC model, Fraction A-2-2 and Fraction A-2-3 upregulated the expression of IRS-1, Akt, and eNOS and increased the levels of p-IRS-1Ser307, p-Akt Ser473, and p-eNOSSer1177 and also decreased the expression of NOX4, TNF-α, IL-6, sVCAM, sICAM, and NF-κB (P < 0.01). With the intervention of AG490 and LY294002, the above effects of Fraction A-2-2 and Fraction A-2-3 were inhibited (P < 0.01). LC-MS data showed that in Fraction A-2-2 and Fraction A-2-3, there were 10 main components: flavanocorepsin; polyphenolic; flavanomarein; isochlorogenic acid A; dicaffeoylquinic acid; coreopsin; marein; coreopsin; luteolin-7-O-glucoside; and 3',5,5',7-tetrahydroxyflavanone-O-hexoside. CONCLUSION The protective effect of the CTF on diabetic endothelial dysfunction may be due to its effect on the JAK2/IRS-1/PI3K/Akt/eNOS pathway and the related oxidative stress and inflammation. The results strongly suggested that Fraction A-2-2 and Fraction A-2-3 were the active fractions from the CTF, and the CTF might be a potential option for the prevention of vascular complications in diabetes.
Collapse
Affiliation(s)
- Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chaoran Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
23
|
Shi Y, Chen R, Xie J, Li L, Liu G, Zheng M, Zhang N. Determination and Pharmacokinetics of Okanin in Rat Plasma by UltraHigh Performance Liquid Chromatography Coupled with Triple-Quadrupole Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:4247128. [PMID: 32908778 PMCID: PMC7474779 DOI: 10.1155/2020/4247128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Okanin is a major flavonoid found in Coreopsis tinctoria Nutt., arousing huge interest recently for its considerable biological characteristics including antioxidant, antineurotoxic, and antidiabetic activities. An ultrahigh performance liquid chromatography triple-quadrupole tandem mass spectrometry (UPLC-MS) was successfully used to determine okanin in rat plasma after oral administration of okanin. Bavachalcone acted as an internal standard (IS). By gradient elution, IS and analyte were separated on a C18 column for 7 min at a flow rate of 0.25 mL/min with acetonitrile-0.1% acetic acid mobile phase. The stability, matrix effect, extraction recovery, accuracy, precision, linearity, and selectivity of the method were firstly demonstrated. The major pharmacokinetic parameters of okanin in rat plasma were then measured using the developed UPLC-MS method. An UPLC-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was finally established to obtain the specific and accurate mass of okanin in rat plasma after oral administration, and its proposed fragmentation was further elaborated.
Collapse
Affiliation(s)
- Yurui Shi
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jing Xie
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Meizhu Zheng
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ning Zhang
- The College of Jiamusi, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
24
|
Cao Y, Chai C, Chang A, Xu X, Song Q, Liu W, Li J, Song Y, Tu P. Optimal collision energy is an eligible molecular descriptor to boost structural annotation: An application for chlorogenic acid derivatives-focused chemical profiling. J Chromatogr A 2020; 1609:460515. [DOI: 10.1016/j.chroma.2019.460515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
25
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
26
|
Zhang Y, Luo L, Li Z, Li H, Yao X, Luo R. Anti‐Lipid Peroxidation,
α
‐Glucosidase and
α
‐Amylase Inhibitory Effects of the Extract of Capitula of
Coreopsis tinctoria
N
utt. and Protection Effects on High‐Fat/High‐Sugar and Streptozotocin‐Induced Type 2 Diabetes in Mice. Chem Biodivers 2019; 16:e1900514. [DOI: 10.1002/cbdv.201900514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Yushan Zhang
- School of PharmacyShihezi University North 4 Road Shihezi 832000 P. R. China
| | - Li Luo
- School of PharmacyShihezi University North 4 Road Shihezi 832000 P. R. China
| | - Zuoming Li
- School of PharmacyShihezi University North 4 Road Shihezi 832000 P. R. China
| | - Huifang Li
- School of PharmacyShihezi University North 4 Road Shihezi 832000 P. R. China
- Ministry of Education Key Laboratory of Utilization of Plant Resources in XinjiangShihezi University Shihezi 832000 P. R. China
| | - Xincheng Yao
- School of PharmacyShihezi University North 4 Road Shihezi 832000 P. R. China
- Ministry of Education Key Laboratory of Utilization of Plant Resources in XinjiangShihezi University Shihezi 832000 P. R. China
| | - Ruiling Luo
- School of Information Science and TechnologyShihezi University Shihezi 832003 P. R. China
| |
Collapse
|
27
|
Tian Y, Wen Z, Lei L, Li F, Zhao J, Zhi Q, Li F, Yin R, Ming J. Coreopsis tinctoria flowers extract ameliorates D-galactose induced aging in mice via regulation of Sirt1-Nrf2 signaling pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Kim HG, Oh HJ, Ko JH, Joo SW, Lee YG, Baek YS, Lee DY, Baek NI. A New Neolignan Glucoside from the Stems of “Baekma” Cultivar, Chrysanthemum morifolium. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Le L, Fu H, Lv Q, Bai X, Zhao Y, Xiang J, Jiang B, Hu K, Chen S. The protective effects of the native flavanone flavanomarein on neuronal cells damaged by 6-OHDA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:193-204. [PMID: 30668399 DOI: 10.1016/j.phymed.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Flavanomarein is the main component of Coreopsis tinctoria Nutt. (C. tinctoria), which is a globally well-known flower tea that has a distinct flavor and many beneficial health effects, such as antioxidant activities. We aimed to explore the effect of flavanomarein on a 6-hydroxydopamine (6-OHDA)-lesioned cell model of oxidative stress. METHODS In this study, we used 6-OHDA-lesioned PC12 cells and primary cortical neurons to investigate the protective effects of flavanomarein and its potential mechanism. RESULTS The results indicated that pretreatment with flavanomarein (25, 50, or 100 µM for 24 h) significantly increased the cell viability, reduced the lactate dehydrogenase (LDH) release and improved the mitochondrial membrane potential (∆Ψm) and mitochondrial impairment. Additionally, flavanomarein markedly reduced the gene expression of tumor necrosis factor (TNF)-α and protein kinase C ζ (PKC-ζ), the nuclear translocation of p65, and the levels of p-AMPK-α and acetyl-p53. Flavanomarein also elevated the gene expression of P85α, PKC-β1, and Bcl-2, the protein expression of Sirt1 and ICAD, and the phosphorylation level of AKT. CONCLUSIONS Together, these results suggest that flavanomarein protects PC12 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by upregulating the PI3K/AKT signaling pathway and attenuating the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, our study provides evidence that may aid in the development of a potential compound against 6-OHDA toxicity.
Collapse
Affiliation(s)
- Liang Le
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Post-doctoral Scientific Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Fu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qiuyue Lv
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue Bai
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Zhao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jiamei Xiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baoping Jiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Keping Hu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
30
|
Guo H, Yuan Q, Fu Y, Liu W, Su YH, Liu H, Wu CY, Zhao L, Zhang Q, Lin DR, Chen H, Qin W, Wu DT. Extraction Optimization and Effects of Extraction Methods on the Chemical Structures and Antioxidant Activities of Polysaccharides from Snow Chrysanthemum ( Coreopsis Tinctoria). Polymers (Basel) 2019; 11:E215. [PMID: 30960199 PMCID: PMC6419038 DOI: 10.3390/polym11020215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
In order to explore snow chrysanthemum polysaccharides (SCPs) as functional food ingredients and natural antioxidants for industrial applications, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were firstly optimized for the extraction of SCPs. Furthermore, the effects of conventional hot water extraction, UAE, and MAE on the chemical structures and antioxidant activities of SCPs were investigated. The maximum extraction yields of SCPs extracted by UAE (4.13 ± 0.24%) and MAE (4.26 ± 0.21%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (68%) and microwave power (500 W), ultrasound extraction time (21 min) and microwave extraction time (6.5 min), and ratio of liquid to raw material (42.0 mL/g for UAE and 59.0 mL/g for MAE). In addition, different extraction methods significantly affected the contents of uronic acids, the molecular weights, the molar ratio of constituent monosaccharides, and the degree of esterification of SCPs. SCPs exhibited remarkable DPPH (IC50 ≤ 1.702 mg/mL), ABTS (IC50 ≤ 1.121 mg/mL), and nitric oxide (IC50 ≤ 0.277 mg/mL) radical scavenging activities, as well as reducing power (≥ 80.17 ± 4.8 μg Trolox/mg), which suggested that SCPs might be one of the major contributors toward the antioxidant activities of snow chrysanthemum tea. The high antioxidant activities (DPPH, IC50 = 0.693 mg/mL; ABTS, IC50 = 0.299 mg/mL; nitric oxide, IC50 = 0.105 mg/mL; and reducing power, 127.79 ± 2.57 μg Trolox/mg) observed in SCP-M extracted by the MAE method might be partially attributed to its low molecular weight and high content of unmethylated galacturonic acids. Results suggested that the MAE method could be an efficient technique for the extraction of SCPs with high antioxidant activity, and SCPs could be further explored as natural antioxidants for industrial application.
Collapse
Affiliation(s)
- Huan Guo
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yuan Fu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ya-Hong Su
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hui Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Chao-Yi Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Li Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - De-Rong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
31
|
Yao L, Li J, Li L, Li X, Zhang R, Zhang Y, Mao X. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:14. [PMID: 30630477 PMCID: PMC6327481 DOI: 10.1186/s12906-018-2410-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coreopsis tinctoria Nutt is an ethnomedicine widely used in Xinjiang, China. It is consumed as a herbal tea by local Uyghur people to treat high blood pressure and diarrhea. Our previous study confirmed that the ethyl acetate extract of Coreopsis tinctoria (AC) had a protective effect on diabetic nephropathy (DN) in an in vivo experiment. Here we aim to elucidate the protective mechanism of AC and marein, the main ingredient in Coreopsis tinctoria on renal fibrosis and inflammation in vitro under high glucose (HG) conditions. METHODS A HG-induced barrier dysfunction model in rat mesangial cells (HBZY-1) was established. The cells were exposed to AC and marein and/or HG for 24 h. Then, the renal protective effects of AC and marein via transforming growth factor-β1 (TGF-β1)/Smads, AMP-activated kinase protein (AMPK), and nuclear factor kappa beta (NF-κB) signaling were assessed. RESULTS Both AC and marein suppressed rat mesangial cell hyperplasia and significantly attenuated the expression of HG-disrupted fibrotic and inflammatory proteins in HBZY-1 cells. It was also confirmed that AC and marein remarkably attenuated HG-induced renal inflammation and fibrosis by regulating the AMPK, TGF-β1/Smads, and NF-κB signaling pathways. CONCLUSION These results indicated that AC and marein may delay the progression of DN, at least in part, by suppressing HG-induced renal inflammation and fibrosis. Marein may be one of the bioactive compounds in AC.
Collapse
Affiliation(s)
- Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| | - Jie Li
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 88 Yuquan Road, Nankai District, Tianjing, 300000 China
| | - Linlin Li
- College of Basic Medicine, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Xinxia Li
- Center of Analysis and Test, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Rui Zhang
- College of Basic Medicine, Xinjiang Medical University, No. 393 Xinyi Street, Urumuqi, 830011 China
| | - Yujie Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| | - Xinmin Mao
- College of Traditional Chinese Medicine, Xinjiang Medical University, No. 4 Liyushan Park, Urumuqi, 830011 China
| |
Collapse
|
32
|
Begmatov N, Li J, Bobakulov K, Numonov S, Aisa HA. The chemical components of Coreopsis tinctoria Nutt. and their antioxidant, antidiabetic and antibacterial activities. Nat Prod Res 2018; 34:1772-1776. [DOI: 10.1080/14786419.2018.1525377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nurmirza Begmatov
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China
- Department of Chemistry, Faculty of Natural Sciences, Namangan State University, Namangan, Republic of Uzbekistan
| | - Jun Li
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China
| | - Khayrulla Bobakulov
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences, Tashkent, Republic of Uzbekistan
| | - Sodik Numonov
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China
| | - Haji Akber Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, P. R. China
| |
Collapse
|
33
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
34
|
Ji S, Liu ZZ, Wu J, Du Y, Su ZY, Wang TY, Han J, Yang DZ, Guo MZ, Tang DQ. Chemical Profiling and Comparison of Sangju Ganmao Tablet and Its Component Herbs Using Two-Dimensional Liquid Chromatography to Explore Compatibility Mechanism of Herbs. Front Pharmacol 2018; 9:1167. [PMID: 30386241 PMCID: PMC6198175 DOI: 10.3389/fphar.2018.01167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
Sangju Ganmao tablet (SGT), a well-known Chinese patent medicine used to treat cold symptoms, is made from eight herbal medicines. In this study, an off-line hydrophilic interaction × reversed-phase two-dimensional liquid chromatography (HILIC × RP 2D-LC) method was developed to comprehensively separate the chemical constituents of SGT. Through optimization of the experimental conditions, a total of 465 peaks were finally detected in SGT, and the structures of 54 selected compounds were fully identified or tentatively characterized by quadrupole time-of-flight mass spectrometry (qTOF-MS) analysis. The established 2D-LC analysis showed high orthogonality (63.62%) and approximate 11-fold improvement in peak capacity (2399 and 1099, obtained by two calculation methods), in contrast to conventional one-dimensional RPLC separation. The eight component herbs of SGT were also respectively separated by using the 2D-LC system, and we found that a total of 12 peaks detected in SGT were not discovered in any component herbs. These newly generated chemical constituents would benefit better understanding of the compatibility mechanism of the component herbs. The strategy established in this study could be used for systematic chemical comparison of SGT and its component herbs, which contributes to exploration of herbal compatibility mechanism.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhan-Zhong Liu
- Department of Pharmacy, Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Jing Wu
- Department of Pharmaceutical Analysis, Jiangsu College of Nursing, Huai'an, China
| | - Yan Du
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Zhen-Yu Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tian-Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jie Han
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Zhi Yang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
35
|
Zhou SD, Xu X, Lin YF, Xia HY, Huang L, Dong MS. On-line screening and identification of free radical scavenging compounds in Angelica dahurica fermented with Eurotium cristatum using an HPLC-PDA-Triple-TOF-MS/MS-ABTS system. Food Chem 2018; 272:670-678. [PMID: 30309597 DOI: 10.1016/j.foodchem.2018.07.173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/21/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Eurotium cristatum, a beneficial fungus isolated from Fuzhuan tea, was used to ferment Angelica dahurica for the first time. The antioxidant capacities of the extracts before and after fermentation were compared using ABTS, DPPH and FRAP assays. The results showed that the antioxidant capacities of the extracts acquired using organic solvents were greater after fermentation. Moreover, based on a comparison of the HPLC chromatograms, the chemical composition of Angelica dahurica changed substantially during fermentation. To further understand the changes in its antioxidant constituents, an on-line HPLC-PDA-Triple-TOF-MS/MS-ABTS system was employed. Twelve antioxidants belonging to three different classes were detected and identified, and their antioxidant capacities were preliminarily evaluated. The results indicated that the substances produced during the fermentation of Eurotium cristatum played important roles in enhancing the antioxidant capacity.
Collapse
Affiliation(s)
- Si-Duo Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Fei Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yan Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Sheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Yuan S, Liu M, Yang Y, He JM, Wang YN, Kong JQ. Transcriptome-Wide Identification of an Aurone Glycosyltransferase with Glycosidase Activity from Ornithogalum saundersiae. Genes (Basel) 2018; 9:E327. [PMID: 29958449 PMCID: PMC6071076 DOI: 10.3390/genes9070327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was isolated from the plant Ornithogalum saundersiae based on transcriptome mining. Conserved domain (CD)-search speculated OsUGT1 as a flavonoid GT. Phylogenetically, OsUGT1 is clustered as the same phylogenetic group with a putative 5,6-dihydroxyindoline-2-carboxylic acid (cyclo-DOPA) 5-O-glucosyltransferase, suggesting OsUGT1 may be an aurone glycosyltransferase. The purified OsUGT1 was therefore used as a biocatalyst to incubate with the representative aurone sulfuretin. In vitro enzymatic analyses showed that OsUGT1 was able to catalyze sulfuretin to form corresponding monoglycosides, suggesting OsUGT1 was indeed an aurone glycosyltransferase. OsUGT1 was observed to be a flavonoid GT, specific for flavonoid substrates. Moreover, OsUGT1 was demonstrated to display transglucosylation activity, transferring glucosyl group to sulfuretin via o-Nitrophenyl-β-d-glucopyranoside (oNP-β-Glc)-dependent fashion. In addition, OsUGT1-catalyzed hydrolysis was observed. This multifunctionality of OcUGT1 will broaden the application of OcUGT1 in glycosylation of aurones and other flavonoids.
Collapse
Affiliation(s)
- Shuai Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Ming Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Yan Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Jiu-Ming He
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Ya-Nan Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
| |
Collapse
|
37
|
Du D, Yao L, Zhang R, Shi N, Shen Y, Yang X, Zhang X, Jin T, Liu T, Hu L, Xing Z, Criddle DN, Xia Q, Huang W, Sutton R. Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:261-272. [PMID: 29870787 DOI: 10.1016/j.jep.2018.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxidative stress is a prominent feature of clinical acute pancreatitis (AP). Coreopsis tinctoria has been used traditionally to treat pancreas disorders like diabetes mellitus in China and Portugal and its flavonoid-rich fraction contain the main phytochemicals that have antioxidant and anti-inflammatory activities. AIM OF THE STUDY To investigate the effects of flavonoids isolated from C. tinctoria on experimental AP and explore the potential mechanism. MATERIALS AND METHODS LC-MS based online technique was used to analyse and isolate targeted flavonoids from C. tinctoria. Freshly isolated mouse pancreatic acinar cells were treated with taurocholic acid sodium salt hydrate (NaT, 5 mM) with or without flavonoids. Fluorescence microscopy and a plate reader were used to determine necrotic cell death pathway activation (propidium iodide), reactive oxygen species (ROS) production (H2-DCFDA) and ATP depletion (luminescence) where appropriate. AP was induced by 7 repeated intraperitoneal caerulein injections (50 μg/kg) at hourly interval in mice or retrograde infusion of taurolithocholic acid 3-sulfate disodium salt (TLCS; 5 mM, 50 μL) into the pancreatic duct in mice or infusion of NaT (3.5%, 1 mL/kg) in rats. A flavonoid was intraperitoneally administered at 0, 4, and 8 h after the first caerulein injection or post-operation. Disease severity, oxidative stress and antioxidant markers were determined. RESULTS Total flavonoids extract and flavonoids 1-6 (C1-C6) exhibited different capacities in reducing necrotic cell death pathway activation with 0.5 mM C1, (2 R,3 R)-taxifolin 7-O-β-D-glucopyranoside, having the best effect. C1 also significantly reduced NaT-induced ROS production and ATP depletion. C1 at 12.5 mg/kg and 8.7 mg/kg (equivalent to 12.5 mg/kg for mice) significantly reduced histopathological, biochemical and immunological parameters in the caerulein-, TLCS- and NaT-induced AP models, respectively. C1 administration increased pancreatic nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-medicated haeme oxygenase-1 expression and elevated pancreatic antioxidant enzymes superoxide dismutase and glutathione peroxidase levels. CONCLUSIONS Flavonoid C1 from C. tinctoria was protective in experimental AP and this effect may at least in part be attributed to its antioxidant effects by activation of Nrf2-mediated pathways. These results suggest the potential utilisation of C. tinctoria to treat AP.
Collapse
Affiliation(s)
- Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yan Shen
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; Liverpool Pancreatitis Study Group, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
38
|
Structural analysis and antioxidant activity of the glycoside from Imperial Chrysanthemum. Bioorg Med Chem Lett 2018; 28:1581-1590. [DOI: 10.1016/j.bmcl.2018.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
|
39
|
Chen BY, Liao JH, Hsu AW, Tsai PW, Hsueh CC. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 256:95-101. [PMID: 29433051 DOI: 10.1016/j.biortech.2018.01.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts.
Collapse
Affiliation(s)
- Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan.
| | - Jia-Hui Liao
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - An-Wei Hsu
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Po-Wei Tsai
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan City 71101, Taiwan
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
40
|
A powerful on line ABTS +-CE-DAD method to screen and quantify major antioxidants for quality control of Shuxuening Injection. Sci Rep 2018; 8:5441. [PMID: 29615669 PMCID: PMC5883040 DOI: 10.1038/s41598-018-23748-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
A novel method of on-line 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)-Capillary Electrophoresis-Diode Array Detector (on-line ABTS+-CE-DAD) was developed to screen the major antioxidants from complex herbal medicines. ABTS+, one of well-known oxygen free radicals was firstly integrated into the capillary. For simultaneously detecting and separating ABTS+ and chemical components of herb medicines, some conditions were optimized. The on-line ABTS+-CE-DAD method has successfully been used to screen the main antioxidants from Shuxuening injection (SI), an herbal medicines injection. Under the optimum conditions, nine ingredients of SI including clitorin, rutin, isoquercitrin, Quercetin-3-O-D-glucosyl]-(1-2)-L-rhamnoside, kaempferol-3-O-rutinoside, kaempferol-7-O-β-D-glucopyranoside, apigenin-7-O-Glucoside, quercetin-3-O-[2-O-(6-O-p-hydroxyl-E-coumaroyl)-D-glucosyl]-(1-2)-L-rhamnoside, 3-O-{2-O-[6-O-(p-hydroxyl-E-coumaroyl)-glucosyl]}-(1-2) rhamnosyl kaempfero were separated and identified as the major antioxidants. There is a linear relationship between the total amount of major antioxidants and total antioxidative activity of SI with a linear correlation coefficient of 0.9456. All the Relative standard deviations of recovery, precision and stability were below 7.5%. Based on these results, these nine ingredients could be selected as combinatorial markers to evaluate quality control of SI. It was concluded that on-line ABTS+-CE-DAD method was a simple, reliable and powerful tool to screen and quantify active ingredients for evaluating quality of herbal medicines.
Collapse
|
41
|
Shen W, Sun J, Seah JYH, Shi L, Tang S, Lee HK. Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of d -glucose levels with time in bananas. Anal Chim Acta 2018; 1001:32-39. [DOI: 10.1016/j.aca.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 11/15/2022]
|
42
|
Lam SC, Liu X, Chen XQ, Hu DJ, Zhao J, Long ZR, Fan B, Li SP. Chemical characteristics of different parts of Coreopsis tinctoria in China using microwave-assisted extraction and high-performance liquid chromatography followed by chemometric analysis. J Sep Sci 2018; 39:2919-27. [PMID: 27291468 DOI: 10.1002/jssc.201600365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/26/2022]
Abstract
Coreopsis tinctoria, also called "snow chrysanthemum" in China, is a flower tea material that has been reported to possess excellent pharmacological properties such as antioxidant and antidiabetic activities. The chemical characteristics of different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were investigated based on microwave-assisted extraction and the simultaneous determination of 13 major active compounds by high-performance liquid chromatography, including taxifolin-7-O-glucoside, chlorogenic acid, (R/S)-flavanomarein, isocoreopsin, quercetagetin-7-O-glucoside, isookanin, 5,7,3',5'-tetrahydroxyflavanone-7-O-glucoside, marein, 3,5-dicaffeoylquinic acid, coreopsin, okanin, 5,7,3',5'-tetrahydroxyflavanone, and N(1) ,N(5) ,N(10) ,N(14) -tetra-p-coumaroylspermine. Chemometric analysis based on the contents of investigated compounds from 13 samples showed that C. tinctoria and the related flower tea materials, Chrysanthemum morifolium cv "Hangju" and "Gongju," were in different clusters, and different parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria were obviously different. This study is helpful for the quality control and pharmacological evaluation of different parts from C. tinctoria and its related products.
Collapse
Affiliation(s)
- Shing-Chung Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xian-Qiang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ze-Rong Long
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, China
| | - Bing Fan
- Urumqi Jiangqi Agriculture Development Co. Ltd, Urumqi, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
43
|
Comparison of the Chemical Profiles and Antioxidant Activities of Different Parts of Cultivated Cistanche deserticola Using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Molecules 2017; 22:molecules22112011. [PMID: 29156652 PMCID: PMC6150175 DOI: 10.3390/molecules22112011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, a sensitive ultra-performance liquid chromatography-photodiode array coupled to quadruple time-of-flight mass (UPLC-PDA-Q/TOF-MS) method and a 1,1-diphenyl-2-picrylhydrazyl (DPPH)-based assay were used to determine the chemical constituents and screen the antioxidant activity profiles of the methanol extracts of different parts of cultivated Cistanche deserticola (C. deserticola). First, qualitative and quantitative chemical composition analyses of the different parts of cultivated C. deserticola were conducted. Obvious differences were observed between the chemical profiles and content distribution of phenylethanoid glycosides (PhGs) from the different cultivated C. deserticola parts. The average contents of the six PhGs parts varied from 4.91 to 72.56 mg/g DW (milligrams of extract per gram of plant dry weight) in the six different parts of Cistanche deserticola, displaying a significant decreasing trend from the bottom to the top of cultivated C. deserticola and the highest content in the stems. From the bottom to the top of the plant, the echinacoside and cistanoside A content decreased and the 2′-acetylacteoside content increased. Second, an offline DPPH assay revealed that the total scavenging activities of all parts within the range of 20–500 µg/mL increased in a concentration-dependent manner and that good antioxidant activities were found in all plant parts, particularly in the stems, which could be related to their higher PhG content. Additionally, a DPPH-UPLC-PDA method was successfully applied to rapidly screen the antioxidant profiles and antioxidant components of the different cultivated C. deserticola parts. According to the antioxidant profiles before and after the DPPH reaction, there were wide variations in the antioxidant activities of different cultivated C. deserticola parts. Moreover, the antioxidant profiles revealed the presence of major free radical scavengers identified as PhGs using UPLC-Q/TOF-MS. Finally, the established DPPH-UPLC-PDA method was reagent saving, rapid and feasible for correlating the chemical profile of traditional chinese medicines (TCMs) with their bioactivities without isolation and purification and may be used for multicomponent analysis of active substances in other foods and herbs. Therefore, to better harness C. deserticola resources, using this method to evaluate cultivated C. deserticola, a promising herb material with obvious antioxidant activity, is crucial.
Collapse
|
44
|
Pires TCSP, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira MBPP, Santos-Buelga C, Ferreira ICFR. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res Int 2017; 105:580-588. [PMID: 29433250 DOI: 10.1016/j.foodres.2017.11.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
The edible flowers are widely used, but there is still a lot to be done in relation to its bioactive potential and its correlation with the presence of phenolic compounds. The aim of this study was determined the individual phenolic profile in the hydromethanolic extracts and infusion preparations of four different flower samples (Dahlia mignon, Rosa damascena 'Alexandria' and R. gallica 'Francesa' draft in R. canina, Calendula officinalis L., and Centaurea cyanus L.) and their bioactive potential (antioxidant, antiproliferative, and antibacterial capacity). All the studied flowers presented different profiles regarding their phenolic composition and revealed biological potential. The bioactive potential of the studied flowers was moderate, the hydromethanolic extracts of rose petals showed the best results for antioxidant and antibacterial assays, while the antiproliferative properties were only present in some of the tested cell lines, for the hydromethanolic extracts, in which dahlia and rose showed the best results. These results demonstrate that edible flowers can be used as a source of phenolic compounds with bioactive potential, which can be applied in the food sector, as foods and as sources natural ingredients.
Collapse
Affiliation(s)
- Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; REQUIMTE/LAQV, Science Chemical Department, Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; School of Health, Polytechnic Institute of Bragança, Av. D. Afonso V, 5300-121 Bragança, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Science Chemical Department, Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
45
|
Xiao X, Xu L, Hu H, Yang Y, Zhang X, Peng Y, Xiao P. DPPH Radical Scavenging and Postprandial Hyperglycemia Inhibition Activities and Flavonoid Composition Analysis of Hawk Tea by UPLC-DAD and UPLC-Q/TOF MS E. Molecules 2017; 22:E1622. [PMID: 29027933 PMCID: PMC6151479 DOI: 10.3390/molecules22101622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023] Open
Abstract
Hawk tea (Litsea coreana Lévl. var. Lanuginosa (Migo) Yen C. Yang & P.H. Huang), a very popular herbal tea material, has attracted more and more attention due to its high antioxidant properties and possible therapeutic effect on type II diabetes mellitus. The raw materials of Hawk tea are usually divided into three kinds: bud tea (BT), primary leaf tea (PLT) and mature leaf tea (MLT). In this study, the DPPH radical scavenging activity and the antimicrobial properties of these three kinds of Hawk tea from different regions were comparatively investigated, and a ultra-high performance liquid chromatographic coupled with a photodiode array detector (UPLC-DAD) method was employed for comparison of the three major flavonoid constituents, including hyperoside, isoquercitrin and astragalin, in different samples of Hawk tea. At the same time, the effect of methanol extract (ME) of PLT on the mouse postprandial blood glucose and the effect of ME and its different fractions (petroleum ether fraction (PE), ethyl acetate fraction (EA), n-butanol fraction (n-BuOH), and water fraction (WF)) on the activity of α-glucosidase were studied. The results showed that Hawk BT and Hawk PLT possessed the higher radicals scavenging activity than Hawk MLT, while the antibacterial activity against P. vulgaris of PLT and MLT was higher than Hawk BT. The contents of the three major flavonoid constituents in samples of Hawk PLT are higher than Hawk BT and Hawk MLT. The mouse postprandial blood glucose levels of the middle dose (0.5 g/kg) group and the high dose (1 g/kg) group with oral administration of the ME of PLT were significantly lower than the control group. What's more, the inhibitory effect of ME of PLT and its EA and n-BuOH fractions on α-glucosidase was significantly higher than that of acarbose. Rapid ultra-high performance liquid chromatography/quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was used to identify the flavonoids in Hawk PLT, and a total of 20 flavonoids were identified or tentatively identified by comparing their retention times and accurate mass measurements with reference compounds or literature data. The bioactive flavonoid composition and DPPH radical scavenging activities present in different Hawk tea raw materials are quite different due to the different ontogenesis of these raw materials. Further studies on PLT showed that the substances in PLT ME could reduce the level of mouse postprandial blood glucose through inhibiting the activity of α-glucosidase.
Collapse
Affiliation(s)
- Xuan Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Lijia Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Huagang Hu
- Beijing Xiaotangshan Hospital, Xiaotangshan town, Beijing 102211, China.
| | - Yinjun Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xinyao Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yong Peng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
46
|
Deng Y, Lam SC, Zhao J, Li SP. Quantitative analysis of flavonoids and phenolic acid in Coreopsis tinctoria Nutt. by capillary zone electrophoresis. Electrophoresis 2017; 38:2654-2661. [PMID: 28681383 DOI: 10.1002/elps.201700129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022]
Abstract
Capillary zone electrophoresis was developed for the simultaneous determination of five flavonoids and one phenolic acid, including taxifolin-7-O-glucoside, flavanomarein, quercetagetin-7-O-glucoside, okanin 4'-O-glucoside, okanin, and chlorogenic acid, in different parts and origins of Coreopsis tinctoria and its related species. Effects of acidity, running-buffer concentration, and modifier concentration were investigated to determine the optimum conditions for analyte determination. Analysis was performed within 18 min by using 50 mM borax buffer containing 15% acetonitrile as a modifier (pH 9.0) at 25 kV and 25°C. Hyperoside was used as internal standard for quantification. The method was accurate, simple, and repeatable, and was successfully applied to the analysis in 13 samples with satisfactory assay results. Results showed that C. tinctoria obviously differed from the related flower tea materials, "Hangju" and "Gongju". The parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria also varied among one another. This study can serve as a foundation for the quality control and pharmacological evaluation of different parts of C. tinctoria and its related species.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Shing-Chung Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| |
Collapse
|
47
|
Yang Y, Sun X, Liu J, Kang L, Chen S, Ma B, Guo B. Quantitative and Qualitative Analysis of Flavonoids and Phenolic Acids in Snow Chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules 2016; 21:molecules21101307. [PMID: 27706037 PMCID: PMC6272912 DOI: 10.3390/molecules21101307] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 11/16/2022] Open
Abstract
A simple, accurate and reliable high performance liquid chromatography coupled with photodiode array detection (HPLC-DAD) method was developed and then successfully applied for simultaneous quantitative analysis of eight compounds, including chlorogenic acid (1), (R/S)-flavanomarein (2), butin-7-O-β-d-glucopyranoside (3), isookanin (4), taxifolin (5), 5,7,3′,5′-tetrahydroxyflavanone-7-O-β-d-glucopyranoside (6), marein (7) and okanin (8), in 23 batches of snow chrysanthemum of different seed provenance and from various habitats. The results showed total contents of the eight compounds in the samples with seed provenance from Keliyang (Xinjiang, China), are higher than in samples from the other five provenances by 52.47%, 15.53%, 19.78%, 21.17% and 5.06%, respectively, which demonstrated that provenance has a great influence on the constituents in snow chrysanthemum. Meanwhile, an ultra performance liquid chromatography coupled with electrospray ionization and quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was also employed to rapidly separate and identify flavonoids and phenolic acids in snow chrysanthemum from Keliyang. As a result, a total of 30 constituents, including 26 flavonoids and four phenolic acids, were identified or tentatively identified based on the exact mass information, the fragmentation characteristics, and retention times of eight reference standards. This work may provide an efficient approach to comprehensively evaluate the quality of snow chrysanthemum.
Collapse
Affiliation(s)
- Yinjun Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- Department of Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xinguang Sun
- Department of Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jinjun Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Liping Kang
- Department of Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Sibao Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Baiping Ma
- Department of Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
48
|
Lam SC, Lam SF, Zhao J, Li SP. Rapid Identification and Comparison of Compounds with Antioxidant Activity in Coreopsis tinctoria Herbal Tea by High-Performance Thin-Layer Chromatography Coupled with DPPH Bioautography and Densitometry. J Food Sci 2016; 81:C2218-23. [PMID: 27516219 DOI: 10.1111/1750-3841.13402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
A simple and efficient method based on high-performance thin-layer chromatography coupled with 2,2-diphenyl-1-picrylhydrazyl (DPPH) bioautography (HPTLC-DPPH) was established for the screening and comparison of antioxidants in different parts of Coreopsis tinctoria herbal tea from different origins and other related herbal tea materials, which used Chrysanthemum morifolium cv. "Gongju" and "Hangju" in this study. Scanning densitometry after DPPH derivatization was applied for the determination of antioxidant capacities of isolated compounds in each sample. It is considered that ethanol extracts of C. tinctoria had stronger antioxidant activity and more characteristic bands than those of 2 compared samples, C. morifolium cv. "Gongju" and "Hangju." Chemometric analysis results showed that the combination of hierarchical clustering analysis and principal component analysis based on determined antioxidant capacities could be used for the discrimination of different parts of C. tinctoria and C. morifolium. Results showed that 7 compounds made up the major contributions of antioxidant activity in C. tinctoria, including okanin, isookanin, marein, flavanomarein, 5,7,3',5'-tetrahydroxyflavanone-7-O-glucoside, 3,5-dicaffeoylquinic acid, and chlorogenic acid. Therefore, 7 compounds were identified as major antioxidant biomarkers for quality control of C. tinctoria. Results demonstrated that the established method could be applied for the identification of C. tinctoria, and were beneficial for the bioactivity-based quality control of C. tinctoria.
Collapse
Affiliation(s)
- Shing-Chung Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Inst. of Chinese Medical Sciences, Univ. of Macau, Macao, China
| | - Sio-Fong Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Inst. of Chinese Medical Sciences, Univ. of Macau, Macao, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Inst. of Chinese Medical Sciences, Univ. of Macau, Macao, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Inst. of Chinese Medical Sciences, Univ. of Macau, Macao, China
| |
Collapse
|
49
|
Kwon SB, Kim MJ, Yang JM, Lee HP, Hong JT, Jeong HS, Kim ES, Yoon DY. Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells. PLoS One 2016; 11:e0150235. [PMID: 26960190 PMCID: PMC4784787 DOI: 10.1371/journal.pone.0150235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023] Open
Abstract
The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic effect of CTS on HaCaT keratinocytes at concentrations of 0.125-0.5 mg/mL. Based on this cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6 and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical cancer cells. The mRNA expression levels of extrinsic pathway molecules such as Fas, death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly (ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cytochrome C were not modulated by CTS. Taken together, these results indicate that CTS induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa cervical cancer cells. These results suggest that CTS can be used as a modulating agent in cervical cancer.
Collapse
Affiliation(s)
- Sae-Bom Kwon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Min-Je Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Jin Mo Yang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States of America
| | - Hee-Pom Lee
- College of Pharmacy, Medical Research Center, Chungbuk National University, Osong, Chungbuk, Korea
| | - Jin Tae Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, Osong, Chungbuk, Korea
| | - Heon-Sang Jeong
- Agriculture, Life and Environments Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Eun Suk Kim
- Chungcheongbukdo Bio CS, Osong, Chungbuk, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
- * E-mail:
| |
Collapse
|