1
|
Du Z, Wei X, Hu X, Zhao Y, Chen G, Du X, Li J, Zhan M, Zheng W. Organophosphate esters in human serum: a relatively simple and efficient liquid chromatography-mass spectrometry method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4291-4300. [PMID: 38887095 DOI: 10.1039/d4ay00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, which are of growing concern due to their endocrine-disrupting effects, developmental toxicity, and potential carcinogenicity. However, data on human exposure to OPEs is still scarce. In this study, a relatively simple and efficient method with less serum consumption for the detection of OPEs in human serum was developed and validated. Nine OPEs in 200 μL of human serum were extracted by an acetonitrile-formic acid system and analyzed using ultra-high-performance liquid chromatography-quadrupole tandem time-of-flight high-resolution mass spectrometry. Several experiments were conducted to optimize the chromatographic and mass spectrometric conditions as well as sample preparation to obtain a more sensitive and efficient analytical protocol. The proposed method was examined in terms of its linearity, accuracy, precision, detection limit, and matrix effect. The matrix-spiked recoveries of the target OPEs ranged from 83.3% to 111.1%, with relative standard deviations between 2.7% and 16.6%. The detection limits were within (0.002 to 0.029) ng mL-1, while the quantification limits were within (0.007 to 0.098) ng mL-1. The internal standard-corrected matrix effects varied from 82.7% to 113.9%. Finally, the method was applied to detect OPEs in actual human serum samples. All nine OPEs were detected in 269 serum samples to varying degrees, with the average concentrations ranging from (0.08 to 1.77) ng mL-1. After validation, the method was found to be simple in pretreatment, high in sensitivity, good in practicality, and suitable for exposure evaluation of OPEs in populations.
Collapse
Affiliation(s)
- Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Xiaoyi Wei
- Department of Food Science, College of Hospitality of Management, Shanghai Business School, Shanghai 200235, PR China
| | - Xiaohua Hu
- Digital Innovation Laboratory, Information Department, The First Affiliated Hospital of Naval Military Medical University, Changhai Road 168, Shanghai, 200433, P. R. China
| | - Yijing Zhao
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, PR China.
| | - Guanghua Chen
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Jialing Li
- Health Supervision Institute of Health Commission, Songjiang District, Shanghai 201620, PR China.
| | - Ming Zhan
- Shanghai Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai 200136, PR China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, PR China.
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Wang S, Jin J, Ma Y, Stubbings WA, Gbadamosi MR, Abou-Elwafa Abdallah M, Harrad S. Organophosphate triesters and their diester degradation products in the atmosphere-A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123653. [PMID: 38402940 DOI: 10.1016/j.envpol.2024.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Organophosphate triesters (tri-OPEs) have found substantial use as plasticizers and flame retardants in commercial and industrial products. Despite upcoming potential restrictions on use of OPEs, widespread environmental contamination is likely for the foreseeable future. Organophosphate diesters (di-OPEs) are known biotic or abiotic degradation products of tri-OPEs. In addition, direct use of di-OPEs as commercial products also contributes to their presence in the atmosphere. We review the available data on contamination with tri-OPEs and di-OPEs in both indoor and outdoor air. Concentrations of tri-OPEs in indoor air exceed those in outdoor air. The widespread discovery of tri-OPE traces in polar regions and oceans is noteworthy and is evidence that they undergo long-range transport. There are only two studies on di-OPEs in outdoor air and no studies on di-OPEs in indoor air until now. Current research on di-OPEs in indoor and outdoor air is urgently needed, especially in countries with potentially high exposure to di-OPEs such as the UK and the US. Di-OPE concentrations are higher at e-waste dismantling areas than at surrounding area. We also summarise the methods employed for sampling and analysis of OPEs in the atmosphere and assess the relative contribution to atmospheric concentrations of di-OPEs made by environmental degradation of triesters, compared to the presence of diesters as by-products in commercial triester products. Finally, we identify shortcomings of current research and provide suggestions for future research.
Collapse
Affiliation(s)
- Shijie Wang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Yulong Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Muideen Remilekun Gbadamosi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, B15 2TT, United Kingdom.
| |
Collapse
|
3
|
Liang C, Zeng MX, Yuan XZ, Liu LY. An overview of current knowledge on organophosphate di-esters in environment: Analytical methods, sources, occurrence, and behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167656. [PMID: 37813257 DOI: 10.1016/j.scitotenv.2023.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Organophosphate di-esters (di-OPEs) are highly related to tri-OPEs. The presence of di-OPEs in the environment has gained global concerns, as some di-OPEs are more toxic than their respective tri-OPE compounds. In this study, current knowledge on the analytical methods, sources, environmental occurrence, and behavior of di-OPEs were symmetrically reviewed by compiling data published till March 2023. The determination of di-OPEs in environmental samples was exclusively achieved with liquid chromatography mass spectrometry operated in negative mode. There are several sources of di-OPEs, including industrial production, biotic and abiotic degradation from tri-OPEs under environmental conditions. A total of 14 di-OPE compounds were determined in various environments, including dust, sediment, sludge, water, and atmosphere. The widespread occurrence of di-OPEs suggested that human and ecology are generally exposed to di-OPEs. Among all environmental matrixes, more data were recorded for dust, with the highest concentration of di-OPEs up to 32,300 ng g-1. Sorption behavior, phase distribution, gas-particle partitioning behavior was investigated for certain di-OPEs. Suggestions on future studies in the perspective of human exposure to and environmental behavior of di-OPEs were proposed.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
4
|
Herczegh SM, Chu S, Letcher RJ. Biotransformation of bisphenol-A bis(diphenyl phosphate): In vitro, in silico, and (non-) target analysis for metabolites in rat and bird liver microsomal models. CHEMOSPHERE 2023; 310:136796. [PMID: 36228722 DOI: 10.1016/j.chemosphere.2022.136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Increased production and usage of organophosphate esters (OPEs) as flame retardants and plasticizers has trended towards larger and 'novel' (oligomeric) OPEs, although there is a dearth of understanding of the environmental fate, stability, toxicokinetics, biotransformation and bioaccumulation of novel OPEs in exposed biota. The present study characterized in vitro biotransformation of the novel OPE bisphenol-A bis(diphenyl phosphate) (BPADP) using Wistar-Han rat and herring gull liver based microsomal assays. Hypothesized target metabolites bisphenol-A (BPA) and diphenyl phosphate (DPHP) and other metabolites were investigated by applying a lines of evidence approach. In silico modelling predicted both BPA and DPHP as rat metabolites of BPADP, these metabolites were quantified via UHPLC-QQQ-MS/MS. Additional non-target metabolites were determined by UHPLC-Q-Exactive-Orbitrap-HRMS/MS and identified by Compound Discoverer software. Mean BPADP depletion of 44 ± 10% was quantified with 3.9% and 2.6% conversion to BPA and DPHP, respectively, in the rat assay. BPADP metabolism was much slower when compared to the well-studied OPE, triphenyl phosphate (TPHP). BPADP depletion in gull liver assays was far slower relative to the rat. Additional non-target metabolites identified included two Phase I, O-dealkylation products, five Phase I oxidation products and one Phase II glutathione adduct, demonstrating agreement between lines of in vitro and in silico evidence. Lines of evidence suggest that BPADP is biologically persistent in exposed mammals or birds. These findings add to the understanding of BPADP stability and biotransformation, and perhaps of other novel OPEs, which are factors highly applicable to hazard assessments of exposure, persistence and bioaccumulation in biota.
Collapse
Affiliation(s)
- Sofia M Herczegh
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Lu Q, Lin N, Cheng X, Yuan T, Zhang Y, Gao Y, Xia Y, Ma Y, Tian Y. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. CHEMOSPHERE 2022; 300:134585. [PMID: 35427657 DOI: 10.1016/j.chemosphere.2022.134585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) and organophosphate pesticides (OPPs), pertaining to organophosphate esters, are ubiquitous in environment and have been verified to pose noticeable risks to human health. To evaluate human exposures to OPFRs and OPPs, a fast and sensitive approach based on a solid phase extraction (SPE) followed by the ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the simultaneous analysis of multiple organophosphorus metabolites in urine. The method allows the identification and quantification of ten metabolites of the most common OPFRs and all six dialkylphosphates (DAPs) of OPPs concerning the population exposure characteristics. The method provided good linearities (R2 = 0.998-0.999), satisfactory method detection limits (MDLs) (0.030-1.129 ng/mL) and only needed a small volume (200 μL) of urine. Recovery rates ranged 73.4-127.1% at three spiking levels (2, 10 and 25 ng/mL urine), with both intra- and inter-day precision less than 14%. The good correlations for DAPs in a cross-validation test with a previous gas chromatography-mass spectrometry (GC-MS) method and a good inter-laboratory agreement for several OPFR metabolites in a standard reference material (SRM 3673) re-enforced the precision and validity of our method. Finally, the established method was successfully applied to analyze 16 organophosphorus metabolites in 35 Chinese children's urine samples. Overall, by validating the method's sensitivity, accuracy, precision, reproducibility, etc., data reliability and robustness were ensured; and the satisfactory pilot application on real urine samples demonstrated feasibility and acceptability of this method for being implemented in large population-based studies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Cheng
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuning Ma
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Development of magnetic molecularly imprinted solid-phase extraction and ultra-high performance liquid chromatography tandem mass spectrometry for rapid and selective determination of urinary diphenyl phosphate of college students. J Chromatogr A 2022; 1678:463344. [PMID: 35872539 DOI: 10.1016/j.chroma.2022.463344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Organophosphate esters (OPEs), known as novel alternative flame retardants, are a class of environmental endocrine disruptors. Long-term exposure to OPEs may bring a non-negligible health risk to human. Urinary OPE metabolites (mOPEs) are generally used as biomarkers to evaluate the internal exposure to OPEs. Diphenyl phosphate (DPHP), the main metabolite of aryl-OPEs, exhibited high detection rates and concentrations in urine samples. To establish a selective and simple analytical method for biomonitoring urinary DPHP, a specific magnetic molecular imprinted polymer (MMIP) was fabricated via a sol-gel method. Under optimum magnetic solid-phase extraction (MSPE) conditions, the resultant MMIP exhibited selective recognition ability, ideal adsorption capacity and good reusability on urinary DPHP enrichment. The developed MSPE method coupled with ultra-high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) exhibited good precision and accuracy (spiked recoveries of 85.8%-109% with relative standard deviations (RSDs) ranged from 5.1%-13%), low detection limit of 0.035 ng/mL, and negligible matrix inhibition. Then we used this proposed method to detect urinary DPHP levels of recruited 30 college students and investigate the time variability and potential determinants. All urine samples revealed the presence of DPHP at a median concentration of 0.56 μg/g Creatinine (Cr). Moderate reproducibility of DPHP level was observed in first morning urine samples (ICC>0.40). Significant correlations were found between urinary DPHP levels and gender (β=0.72; 95% CI: 0.48∼0.96), sampling time (β=0.36; 95% CI: 0.08∼0.65) as well as the frequency for take-out food (β=0.45; 95% CI: 0.07∼0.74) (p< 0.05). Hence, a fast and sensitive MSPE-U-HPLC-MS/MS method was successfully built to quantify urinary DPHP.
Collapse
|
7
|
Zhang L, Meng L, Wang H, Lu D, Luo X. Development and validation of a liquid chromatography-tandem mass spectrometry method for comprehensive detection of organophosphate esters and their degradation products in sediment. J Chromatogr A 2022; 1665:462826. [DOI: 10.1016/j.chroma.2022.462826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
|
8
|
Yu S, Cai C, Wang Y, Sheng C, Jiang K. Quantification of phytic acid in baby foods by derivatization with (trimethylsilyl)diazomethane and liquid chromatography-mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9194. [PMID: 34498325 DOI: 10.1002/rcm.9194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Phytic acid (PA) is both a naturally occurring nutrient and a widely used food additive for conferring antioxidant properties to food. PA can be found in baby foods and it is essential to monitor PA content due to its anti-nutritional properties when present in excess. Current methods for determining PA content are unsatisfactory because interference from inositol phosphates and inorganic phosphates complicates PA quantification. METHODS Baby foods were extracted using aqueous HCl, and the extractant was subjected to derivatization with (trimethylsilyl)diazomethane after de-metalation using a cation exchange resin. The PA derivative was quantified using liquid chromatography-mass spectrometry (LC/MS/MS) with a multi-response monitoring mode (m/z 829 to 451). RESULTS The linearity of the developed analytical method ranged from 10 to 1000 ng/mL for PA with R2 > 0.999. Reasonable reproducibility was obtained with an intraday relative standard deviation (RSD; N = 5) of 4.5% and an interday RSD (N = 5) of 5.7% at a concentration of 10 ng/mL. The developed method was successfully applied to determine PA content in various baby foods, with PA recovery between 90.6% and 119.8%. CONCLUSIONS A robust and sensitive method for the determination of PA in baby foods has been developed by methyl esterification with (trimethylsilyl)diazomethane and using LC/MS/MS analysis. The established method showed good anti-interference and precision, and it has been applied for the determination of PA in various baby foods.
Collapse
Affiliation(s)
- Saisai Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Chenggang Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Chunqi Sheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Kezhi Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Yu S, Cai C, Zhang X, Sheng C, Jiang K. Method for the accurate determination of phytic acid in beverages by liquid chromatography-mass spectrometry after methylation with (trimethylsilyl) diazomethane. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Liu Y, Gong S, Ye L, Li J, Liu C, Chen D, Fang M, Letcher RJ, Su G. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. ENVIRONMENT INTERNATIONAL 2021; 155:106691. [PMID: 34146766 DOI: 10.1016/j.envint.2021.106691] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Over the course of the continual phase-outs of toxic halogenated flame retardants (HFRs), there has been an increasing demand for organophosphate esters (OPEs) in global FR markets. OPE-FRs have largely been identified as OP triesters, which have a basic chemical structure of O = P(OR)3. In addition to OP triesters, OPEs can refer to another class of related substances, namely, OP diesters that have a typical chemical structure of O = P(OR)2(OH)). OP diesters are known as biotic or abiotic degradation products of OP triesters. In recent years, environmental scientists have proven that OP diesters widely exist in a variety of environmental matrices and biotic samples around the world, implying the potential risks from OP diester exposure to biota and humans in the environment. Here, we have reviewed the scientific literature for studies involving OP diesters and up to the end of 2020. The aim of the present review is to assess the present understanding of the physicochemical properties, sources (industrial production and degradation), environmental occurrence of OP diesters, and adverse effects to exposed organisms. Based on the literature in the Web of Science core collection, we found that at least 23 OP diesters have been reported as contaminants in various environments or as degradation products of OP triesters. The physicochemical properties of OP diesters vary depending on their specific chemical structures. OP diesters containing halogen atoms and aryl groups seem to be more persistent (with greater estimated half-life (t1/2) values) in environmental matrices. There were multiple sources of OP diesters, including industrial production and biotic or abiotic degradation from OP triesters. Specifically, we found that ten OP diesters are produced somewhere in the world, and the total annual output was estimated to be 17,050 metric tons (this number is underestimated due to the limitation of the available information). In addition, the wide application of OP triesters worldwide makes the degradation of OP triesters another critical source of OP diesters to the environment and to organisms. Current monitoring studies have demonstrated that some OP diesters were detectable in the human body (via both blood and urine samples), indoor dust, wastewater, or sewage sludge worldwide. The highest concentrations of diphenyl phosphate (DPHP) in human urine have been reported as high as 727 ng/mL (children (aged 0-5 years) urine samples from Australia). In addition, adverse effects following direct or indirect exposure to 11 OP diesters in organisms (including animals, bacteria, and algae) have been reported, and the recorded adverse outcomes following exposure to OP diesters included developmental toxicity, alteration of gene expression, and disturbance of nuclear receptor activity. Biomonitoring studies regarding human samples have frequently reported statistically significant associations between the concentrations of OP diesters and markers of human health (mainly related to reproductive toxicity). Finally, on the basis of current knowledge on OP diesters, we propose prospects for related research directions in future studies.
Collapse
Affiliation(s)
- Yaxin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
Yu S, Chen Z, Wang Y, Sheng C, Zhang H, Jiang K. Determination of phytic acid in wheat products by complete methyl esterification and liquid chromatography-mass spectrometry analysis. J Sep Sci 2021; 44:2856-2861. [PMID: 33973713 DOI: 10.1002/jssc.202100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/06/2022]
Abstract
Phytic acid, the principal storage form of phosphorus in wheat, plays both beneficial and antinutrient functions for human being, and its analytical method still needs further development. In this work, we have developed a new method for the determination of phytic acid in wheat products based on derivatization with (trimethylsilyl)diazomethane in combination with liquid chromatography-mass spectrometry analysis. Methyl esterification greatly decreased the polarity and the acidity of phytic acid, and thus the corresponding derivative can be easily analyzed by liquid chromatography-mass spectrometry under common conditions. Furthermore, treatment with cation exchange resin removed the polyvalent metal ions in the solutions, and thus derivatization of phytic acid can be achieved efficiently and completely. The standard curve for phytic acid has been well established in the linear range of 0.5-100 ng/mL with squared correlation coefficient more than 0.999 and the quantification limit of 0.25 ng/mL. The phytic acid content varies greatly in different wheat products, ranging from 153.5 to 17299.0 μg/g.
Collapse
Affiliation(s)
- Saisai Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| | - Zhiwei Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| | - Yan Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| | - Chunqi Sheng
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| | - Huarong Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
12
|
Meng W, Li J, Shen J, Deng Y, Letcher RJ, Su G. Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4455-4464. [PMID: 32100996 DOI: 10.1021/acs.est.9b07412] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is increasing scientific interest in environmental pollution and the effect on public health caused by organophosphate esters (OPEs). Using liquid chromatography coupled to a hybrid quadrupole Orbitrap high-resolution mass spectrometer, a novel, robust, and untargeted screening strategy for the identification of novel OPEs in indoor dust samples was presently developed based on the characteristic molecular fragmentation pathways, and 12 previously reported OPEs and six previously unrecognized OPEs were detected in the combined extracts of indoor dust samples, collected in Nanjing, eastern China. One of the six detected OPEs, bis-(2-ethylhexyl)-phenyl phosphate (BEHPP), was identified by comparison of unique LC and MS characteristics with a synthesized pure standard. Accurate concentrations of BEHPP were determined in n = 50 individual indoor dust samples with 100% detection frequency with a median concentration range of 50-1530 ng/g dry weight, which were generally greater or at least comparable to traditional OPEs, that is, triphenyl phosphate and 2-ethylhexyl diphenyl phosphate (EHDPP), in the same dust samples. Statistically significant, positive correlations were found for log-transformed concentrations of BEHPP versus EHDPP (r2 = 0.7884, p < 0.0001), and BEHPP versus tris(2-ethylhexyl)phosphate (r2 = 0.4054, p < 0.0001), suggesting their similar commercial applications and sources in the environment.
Collapse
Affiliation(s)
- Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, P. R. China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
13
|
Bastiaensen M, Van den Eede N, Su G, Letcher RJ, Stapleton HM, Covaci A. Towards establishing indicative values for metabolites of organophosphate ester contaminants in human urine. CHEMOSPHERE 2019; 236:124348. [PMID: 31326757 DOI: 10.1016/j.chemosphere.2019.124348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
In 2015, nine laboratories from Belgium, USA, Canada, China, and Australia participated in an interlaboratory exercise to quantify metabolites of organophosphate ester (OPE) contaminants in pooled human urine. Pooled human urine available as SRM 3673 (Organic contaminants in non-smokers' urine) was obtained from the U.S. National Institute of Standards and Technology and was analyzed for its content of OPE metabolites. Each participating laboratory received 10 mL sample and used its own validated method and standards to report the concentrations of the OPE metabolites of its choice. Four OPE metabolites were consistently measured by most laboratories and they were the following diesters: bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1-chloro-2-propyl) phosphate (BCIPP). Concentrations of other OPE metabolites in SRM 3673 were also reported but are only considered as informative values since they were measured by three laboratories at most. All laboratories used liquid chromatography with tandem mass spectrometry (LC-MS/MS) with or without solid-phase extraction (SPE). This is the first study to report indicative values for OPE metabolites in a human urine Standard Reference Material. It is expected that these indicative values obtained for these four metabolites will be used as quality control to ensure compatibility of results in biomonitoring studies and by other researchers who validate their own methods for the quantification of OPE metabolites in human urine.
Collapse
Affiliation(s)
- Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario, Canada
| | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
14
|
Ya M, Yu N, Zhang Y, Su H, Tang S, Su G. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites. ENVIRONMENT INTERNATIONAL 2019; 131:105056. [PMID: 31369981 DOI: 10.1016/j.envint.2019.105056] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Since organophosphate (OP) triesters are ubiquitous in environmental matrices, there is an increasing concern regarding human exposure to OP triesters or their metabolites. In this study, we measured levels of 16 OP triesters and 4 OP diesters in n = 99 human blood samples of non-occupationally exposed adults (aged 18-87) from Jiangsu Province, eastern China. Based on the measured concentrations, statistical difference and correlativity were calculated to characterize the population diversity and potential sources of OP triester and diester. Di (2-ethylhexyl) phosphate (DEHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) were found in many participants' blood, with median concentrations of 1.2 (range: n.d. - 44.7, detection frequency: 99%) and 0.85 (n.d. - 28.8, 68%) ng mL-1, respectively. Blood samples of older participants contained significantly lower concentrations of OP diesters or triesters than their younger counterparts (p < 0.01). Regional- and age-specific differences in the blood concentrations of OP triesters and diesters were attributed to disparities in environmental exposure intensity. EHDPP and tris (phenyl) phosphate (TPHP), the predominant OP triesters, exhibited significant positive correlation (p < 0.01, r = 0.84) suggestive of analogous transport behavior from similar exposure sources to humans. The increased correlations between diphenyl phosphate (DPHP) and TPHP as well as with EHDPP as observed from the multivariate regression suggests that DPHP could be derived from the metabolism of both TPHP (the crucial precursor) and EHDPP. When the blood samples were subsequently screened using high-resolution spectrometry, we detected five novel OP metabolites: glucuronide conjugates of hydroxylated DEHP (OH-DEHP glucuronide conjugate), 2-ethylhexyl monophenyl phosphate (EHMPP), hydroxylated EHMPP (OH-EHMPP), dihydroxylated bis(2-butoxyethyl) phosphate (di-OH-BBOEP), and dihydroxylated tris(butyl) phosphate (di-OH-TNBP). Overall, this study provides novel information regarding the occurrence of OP triesters and diesters, and further suggested several novel OP metabolites in human blood.
Collapse
Affiliation(s)
- Miaolei Ya
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yayun Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Huijun Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Castro V, Rodil R, Quintana JB, Cela R, Sánchez-Fernández L, González-Mariño I. Determination of human metabolites of chlorinated phosphorous flame retardants in wastewater by N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide-derivatization and gas chromatography-high resolution mass spectrometry. J Chromatogr A 2019; 1602:450-457. [DOI: 10.1016/j.chroma.2019.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
16
|
Stir bar sorptive-dispersive microextraction for trace determination of triphenyl and diphenyl phosphate in urine of nail polish users. J Chromatogr A 2019; 1593:9-16. [DOI: 10.1016/j.chroma.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 11/21/2022]
|
17
|
Collins BJ, Slade D, Ryan K, Mathias R, Shan A, Algaier J, Aillon K, Waidyanatha S. Development and Validation of an Analytical Method to Quantitate Tris(chloroisopropyl)phosphate in Rat and Mouse Plasma using Gas Chromatography with Flame Photometric Detection. J Anal Toxicol 2019; 43:36-44. [PMID: 30060005 DOI: 10.1093/jat/bky048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 11/14/2022] Open
Abstract
Tris(chloropropyl)phosphate (TCPP) is an organophosphorus flame retardant (OPFR) and plasticizer increasingly used in consumer products and as a replacement for brominated flame retardants. Commercially available TCPP is a mixture of four structural isomers the most abundant of which is tris(1-chloro-2-propyl)phosphate (TCPP-1). Although there is a widespread use of TCPP and potential for human exposure, there is limited data on the safety or toxicity of TCPP. The National Toxicology Program is conducting long-term studies to examine the toxicity of the TCPP in rats after lifetime exposure, including perinatal oral exposure. Quantitative estimates of internal dose are essential to interpret toxicological findings in rodents. To aid in this, a method was fully validated to quantitate the most abundant isomer, TCPP-1, in female Harlan Sprague Dawley (HSD) rat and B6C3F1 mouse plasma with partial validation in male rat plasma, and male and female mouse plasma. The method used protein precipitation using trichloroacetic acid followed by the extraction with toluene, and analysis by gas chromatography with flame photometric detection. The performance of the method was evaluated over 5-70 ng TCPP-1/mL plasma. The method was linear (r ≥ 0.99), accurate (inter-day relative error: ≤ ± -7.2) and precise (inter-batch relative standard deviation: ≤27.5%). The validated method has lower limits of quantitation and detection of ~5 and 0.9 ng/mL, respectively, in female HSD rat plasma and can be used on samples as small as 50 μL demonstrating the applicability to plasma samples from toxicology studies.
Collapse
Affiliation(s)
- B J Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Dr., Research Triangle Park, NC, USA
| | - D Slade
- MRIGlobal, 425 Volker Boulevard, Kansas City, MO, USA
| | - K Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Dr., Research Triangle Park, NC, USA
| | - R Mathias
- MRIGlobal, 425 Volker Boulevard, Kansas City, MO, USA
| | - A Shan
- MRIGlobal, 425 Volker Boulevard, Kansas City, MO, USA
| | - J Algaier
- MRIGlobal, 425 Volker Boulevard, Kansas City, MO, USA
| | - K Aillon
- MRIGlobal, 425 Volker Boulevard, Kansas City, MO, USA
| | - S Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Shen J, Zhang Y, Yu N, Crump D, Li J, Su H, Letcher RJ, Su G. Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2151-2160. [PMID: 30652482 DOI: 10.1021/acs.est.8b06246] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The effects of 2-ethylhexyl diphenyl phosphate (EHDPP) on cytotoxicity and mRNA expression, as well as its metabolism, were investigated using a chicken embryonic hepatocyte (CEH) assay. After incubation for 36 h, the lethal concentration 50 (LC50) was 50 ± 11 μM, suggesting that EHDPP is one of a small cohort of highly toxic organophosphate esters (OPEs). By use of a ToxChip polymerase chain reaction (PCR) array, we report modulation of 6, 11, or 16/43 genes in CEH following exposure to 0.1, 1, or 10 μM EHDPP, respectively. The altered genes were from all nine biological pathways represented on the ToxChip including bile acids/cholesterol regulation, glucose metabolism, lipid homeostasis, and the thyroid hormone pathway. After incubation for 36 h, 92.5% of EHDPP was transformed, and one of its presumed metabolites, diphenyl phosphate (DPHP), only accounted for 12% of the original EHDPP concentration. Further screening by use of high-resolution mass spectrometry revealed a novel EHDPP metabolite, hydroxylated 2-ethylhexyl monophenyl phosphate (OH-EHMPP), which was also detected in a human blood pool. Additional EHDPP metabolites detected in the human blood pool included EHMPP and DPHP. Overall, this study provided novel information regarding the toxicity of EHDPP and identified a potential EHDPP metabolite, OH-EHMPP, in both avian species and humans.
Collapse
Affiliation(s)
- Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , Onatrio K1A 0H3 , Canada
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , Onatrio K1A 0H3 , Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , People's Republic of China
| |
Collapse
|
19
|
Yang C, Harris SA, Jantunen LM, Siddique S, Kubwabo C, Tsirlin D, Latifovic L, Fraser B, St-Jean M, De La Campa R, You H, Kulka R, Diamond ML. Are cell phones an indicator of personal exposure to organophosphate flame retardants and plasticizers? ENVIRONMENT INTERNATIONAL 2019; 122:104-116. [PMID: 30522823 DOI: 10.1016/j.envint.2018.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Exposure to organophosphate ester (OPE) flame retardants and plasticizers is widespread and is of concern due to their toxicity. OBJECTIVES To investigate relationships between and within OPE concentrations in air, dust, hands, electronic product wipes and urinary metabolites with the goal of identifying product sources and exposure pathways. METHODS Women in Toronto and Ottawa, Canada, provided a urine sample, two sets of hand wipes, access to their homes for air and dust sampling, and completed a questionnaire. OPE concentrations were obtained for air and floor dust in the bedroom (n = 51) and most used room (n = 26), hand wipes (n = 204), and surface wipes of handheld (n = 74) and non-handheld electronic devices (n = 125). All air, dust and wipe samples were analyzed for 23 OPE compounds; urine samples (n = 44) were analyzed for 8 OPE metabolites. RESULTS Five-8 OPEs were detected in >80% of samples depending on the sample type. OPE median concentrations in hand wipes taken 3 weeks apart were not significantly different. Palms had higher concentrations than the back of hands; both were significantly correlated. Concentrations of 9 OPEs were significantly higher in surface wipes of handheld than non-handheld electronic devices. Six OPEs in hand wipes were significantly correlated with cell phone wipes, with two to four OPEs significantly correlated with tablet, laptop and television wipes. Multiple regression models using hand wipes, cell phone wipes and dust explained 8-33% of the variation in creatinine-adjusted urinary metabolites; air concentrations did not have explanatory power. OPEs in cell phone wipes explained the greatest variation in urinary metabolites. CONCLUSIONS Handheld electronic devices, notably cell phones, may either be sources or indicators of OPE exposure through hand-to-mouth and/or dermal uptake.
Collapse
Affiliation(s)
- Congqiao Yang
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Shelley A Harris
- Population Health and Prevention, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Liisa M Jantunen
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada; Air Quality Processes Research Section, Environment and Climate Change Canada, Egbert, Ontario, Canada
| | - Shabana Siddique
- Exposure and Biomonitoring Division, Health Canada, Ottawa, Ontario, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Health Canada, Ottawa, Ontario, Canada
| | - Dina Tsirlin
- Population Health and Prevention, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Lidija Latifovic
- Population Health and Prevention, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Bruce Fraser
- Exposure Assessment Section, Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Melissa St-Jean
- Exposure Assessment Section, Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Regina De La Campa
- Exposure Assessment Section, Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Hongyu You
- Exposure Assessment Section, Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ryan Kulka
- Exposure Assessment Section, Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Rattanaselanon P, Lormphongs S, Chanvaivit S, Morioka I, Sanprakhon P. An Occupational Health Education Program for Thai Farmers Exposed to Chlorpyrifos. Asia Pac J Public Health 2018; 30:666-672. [PMID: 30306796 DOI: 10.1177/1010539518806042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The majority of the farmers in this sample of Thai farmers did not use sufficient self-protective behaviors when using the organophosphate insecticide chlorpyrifos. Most were directly exposed to chlorpyrifos, potentially leading to illnesses. The aim of this study was to improve safety behaviors when using chlorpyrifos by an occupational health education program. A controlled trial (n = 70) of an occupational health education program was undertaken in rural Thailand prior to the occupational health education program. There were no differences in behavior between experimental and control groups. Completion of the program led to a significant improvement in safe working practices and in the amount of the metabolite. However, significant differences were noticed after participating in the occupational health education program on both safety behaviors and the amount of the metabolite 3,5,6-trichloro-2-pyridinol present in urine.
Collapse
|
21
|
Saillenfait AM, Ndaw S, Robert A, Sabaté JP. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol 2018; 92:2749-2778. [PMID: 30097699 DOI: 10.1007/s00204-018-2275-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a variety of applications, such as building materials, textiles, and electric and electronic equipment. They have been proposed as alternatives to brominated flame retardants. This updated review shows that biomonitoring has gained incrementally greater importance in evaluating human exposure to PEFRs, and it holds the advantage of taking into account the multiple potential sources and various intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs have been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable and are highly dependent on individual and environmental factors, including age, country regulation of flame retardants, and types and quantities of emissions in microenvironments, as well as analytical procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine assessments of human exposure to PEFRs.
Collapse
Affiliation(s)
- Anne-Marie Saillenfait
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France.
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Alain Robert
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Jean-Philippe Sabaté
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|
22
|
Sun Y, Gong X, Lin W, Liu Y, Wang Y, Wu M, Kannan K, Ma J. Metabolites of organophosphate ester flame retardants in urine from Shanghai, China. ENVIRONMENTAL RESEARCH 2018; 164:507-515. [PMID: 29604578 DOI: 10.1016/j.envres.2018.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 05/22/2023]
Abstract
The metabolites of nine organophosphate ester (OPE) flame retardants were measured in 180 urine samples collected from a population (including adults and children) in western Shanghai, China, using liquid chromatography-tandem spectrometry (LC-MS/MS). The total urinary concentrations of nine OPE metabolites ranged 100-23800 pg/mL, with a geometric mean (GM) value of 1450 pg/mL. The concentrations of alkyl-OPE metabolites (879 pg/mL) were approximately an order of magnitude higher than those of aryl-OPE (53.7 pg/mL) and chlorinated-OPE metabolites (52.7 pg/mL). Diphenyl phosphate (DPHP), diethyl phosphate (DEP), di-n-butyl phosphate (DNBP), bis(2-ethylhexyl) phosphate (BEHP), and bis(2-butoxyethyl) phosphate (BBOEP) were the dominant OPE metabolites found in urine. The results showed that an increase in age was associated with a significant decrease in urinary DPHP (r = -0.278, p < 0.01) and DNBP (r = -0.314, p < 0.01) concentrations. The highest concentrations of DPHP (GM = 80.7 pg/mL) and DNBP (GM = 16.9 pg/mL) were found in urine from people living in homes that were less than 10 years old. The urinary DNBP concentration was significantly associated with self-reported symptoms of allergy. Our result establishes baseline value for OPE exposure in a population in China for comparison in future studies.
Collapse
Affiliation(s)
- Yan Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xia Gong
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Wanlong Lin
- Shanghai No.3 Rehabilitation Hospital, Shanghai 200436, China
| | - Ye Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yujie Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, United States.
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Fang Y, Kim E, Strathmann TJ. Mineral- and Base-Catalyzed Hydrolysis of Organophosphate Flame Retardants: Potential Major Fate-Controlling Sink in Soil and Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1997-2006. [PMID: 29333858 DOI: 10.1021/acs.est.7b05911] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ubiquitous occurrence of organophosphate flame retardants (OPFRs) in aquatic and soil environments poses significant risks to human health and ecosystems. Here, we report on the hydrolysis of six OPFRs and three structural analogues in the absence and presence of metal (hydr)oxide minerals. Eight of the target compounds showed marked degradation in alkaline solutions (pH 9-12) with half-lives ranging from 0.02-170 days. Kinetics follow a second-order rate law with apparent rate constants for base-catalyzed hydrolysis (kB) ranging from 0.69-42 000 M-1 d-1. Although hydrolysis in homogeneous solution at circumneutral pH is exceedingly slow (t1/2 > 2 years, except for tris(2,2,2-trichloroethy) phosphate), rapid degradation is observed in the presence of metal (hydr)oxide minerals, with half-lives reduced to <10 days for most of the target OPFRs in mineral suspensions (15 m2/L mineral surface area loading). LC-qToF-MS analysis of transformation products confirmed ester hydrolysis as the active degradation pathway. Values of kB for individual OPFRs are highly variable and correlate with acid dissociation constants (pKa) of the corresponding alcohol leaving groups. In contrast, kinetic parameters for mineral-catalyzed reactions are much less sensitive to OPFR structure, indicating that other factors like mineral-OPFR interactions are rate controlling. Given the documented recalcitrance of OPFRs to biodegradation and photodegradation, these results suggest that mineral-catalyzed hydrolysis may be a major fate-controlling sink in natural environments.
Collapse
Affiliation(s)
- Yida Fang
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Erin Kim
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| |
Collapse
|
24
|
He C, Toms LML, Thai P, Van den Eede N, Wang X, Li Y, Baduel C, Harden FA, Heffernan AL, Hobson P, Covaci A, Mueller JF. Urinary metabolites of organophosphate esters: Concentrations and age trends in Australian children. ENVIRONMENT INTERNATIONAL 2018; 111:124-130. [PMID: 29195135 DOI: 10.1016/j.envint.2017.11.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 05/24/2023]
Abstract
There is growing concern around the use of organophosphate esters (OPEs) due to their suspected reproductive toxicity, carcinogenicity, and neurotoxicity. OPEs are used as flame retardants and plasticizers, and due to their extensive application in consumer products, are found globally in the indoor environment. Early life exposure to OPEs is an important risk factor for children's health, but poorly understood. To study age and sex trends of OPE exposures in infants and young children, we collected, pooled, and analysed urine samples from children aged 0-5years from Queensland, Australia for 9 parent OPEs and 11 metabolites. Individual urine samples (n=400) were stratified by age and sex, and combined into 20 pools. Three individual breast milk samples were also analysed to provide a preliminary estimate on the contribution of breast milk to the intake of OPEs. Bis(1-chloroisopropyl) phosphate (BCIPP), 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP), bis(1,3-dichloroisopropyl) phosphate (BDCIPP), dibutyl phosphate (DBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate (3OH-TBOEP), and bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were detected in all urine samples, followed by bis(methylphenyl) phosphate (80%), and bis(2-ethylhexyl) phosphate (BEHP, 20%), and bis(2-chloroethyl) phosphate (BCEP, 15%). Concentrations of tris(2-chloroethyl) phosphate (TCEP), BCEP, tris(2-ethylhexyl) phosphate (TEHP), and DBP decreased with age, while bis(methylphenyl) phosphate (BMPP) increased with age. Significantly higher concentrations of DPHP (p=0.039), and significantly lower concentrations of TEHP (p=0.006) were found in female samples compared to males. The estimated daily intakes (EDIs) via breastfeeding, were 4.6, 26 and 76ng/kg/day for TCEP, TBP and TEHP, respectively, and were higher than that via air and dust, suggesting higher exposure through consumption of breast milk.
Collapse
Affiliation(s)
- Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia.
| | - Leisa-Maree L Toms
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, 4000 Brisbane, QLD, Australia
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, 4000 Brisbane, Australia
| | - Nele Van den Eede
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Yan Li
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | - Christine Baduel
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France; QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| | | | - Amy L Heffernan
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 3000 Melbourne, VIC, Australia
| | - Peter Hobson
- Sullivan Nicolaides Pathology, Taringa, Brisbane, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4108 Brisbane, Australia
| |
Collapse
|
25
|
A mixed-mode chromatographic separation method for the analysis of dialkyl phosphates. J Chromatogr A 2018; 1535:63-71. [DOI: 10.1016/j.chroma.2017.12.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
|
26
|
Wei B, Goniewicz ML, O'Connor RJ, Travers MJ, Hyland AJ. Urinary Metabolite Levels of Flame Retardants in Electronic Cigarette Users: A Study Using the Data from NHANES 2013-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020201. [PMID: 29370113 PMCID: PMC5858270 DOI: 10.3390/ijerph15020201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/16/2022]
Abstract
Evaluating the safety of e-cigarettes and making informed judgement about developing potential standards require sufficient scientific evidence. Since e-cigarettes are highly engineered products containing plastic, glass and metal parts, and e-liquids are largely different matrices, many toxic compounds which are not typical hazards for the users of combustible tobacco products (e.g., cigarettes), could exist in e-liquids, and consequently, posing potential health risk to e-cigarette users. We combined the measurements of urinary metabolites of organophosphate flame retardants (OPFRs) with questionnaire data collected in the National Health and Nutrition Examination Surveys (NHANES) from 2013 to 2014, and we compared adjusted geometric means (GM) for each biomarker in e-cigarette users with levels in non-users and users of various tobacco products using multiple regression analyses to adjust for potential confounders. We found diphenyl phosphate (DPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) were detected in all e-cigarette users. The adjusted GM of BCEP, the metabolite of tris(2-chloroethyl) phosphate (TCEP), was 81% higher than nonusers (p = 0.0124) and significantly higher than those for both cigarette and cigar users (p < 0.05). The findings in this pilot study suggest that certain OPFRs may present in e-cigarettes as contaminants, and consequently, resulting in higher exposure levels in e-cigarette users compared to nonusers. As we only identified 14 e-cigarette users in the survey, the findings in this study need to be confirmed in future study at a larger scale. A better examination of the types and levels of FRs and their potential contamination sources in e-cigarettes is also needed.
Collapse
Affiliation(s)
- Binnian Wei
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Maciej L Goniewicz
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Richard J O'Connor
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Mark J Travers
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Andrew J Hyland
- Roswell Park Comprehensive Cancer Center, Department of Health Behavior, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
27
|
Hill KL, Hamers T, Kamstra JH, Willmore WG, Letcher RJ. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol Lett 2018; 285:87-93. [PMID: 29306024 DOI: 10.1016/j.toxlet.2017.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
The toxicological properties of organophosphate (OP) triesters that are used as flame retardants and plasticizers are currently not well understood, though increasing evidence suggests they can affect the thyroid system. Perturbation of thyroid hormone (TH) transport is one mechanism of action that may affect thyroid function. The present study applied an in vitro competitive protein binding assay with thyroxine (T4) and human transthyretin (hTTR) transport protein to determine the potential for the OP triesters, TDCIPP (tris(1,3-dichloro-2-propyl) phosphate), TBOEP (tris(butoxyethyl) phosphate), TEP (triethyl phosphate), TPHP (triphenyl phosphate), p-OH-TPHP (para-hydroxy triphenyl phosphate), and the OP diester DPHP (diphenyl phosphate), to competitively displace T4 from hTTR. Enhancement of T4 binding to hTTR, rather than the hypothesized competition, was observed for the six OP esters and in a concentration-dependent manner. For example, T4-hTTR binding was significantly increased at concentrations of TBOEP as low as 64 nM, and up to 184% of controls at 5000 nM. A plausible explanation of these results, which to our knowledge has not been previously reported, may be allosteric interactions of the OP esters with hTTR allowing T4 to access the second site of the TH binding pocket. These in vitro results suggest a novel mechanism of OP ester toxicity via T4 binding enhancement, and possible dysregulation of T4-hTTR interactions.
Collapse
Affiliation(s)
- Katie L Hill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada; Intrinsik Corp., Ottawa, Canada
| | - Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, The Netherlands
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Science and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, Oslo, 0033, Norway
| | | | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada.
| |
Collapse
|
28
|
Fu L, Du B, Wang F, Lam JCW, Zeng L, Zeng EY. Organophosphate Triesters and Diester Degradation Products in Municipal Sludge from Wastewater Treatment Plants in China: Spatial Patterns and Ecological Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13614-13623. [PMID: 29083881 DOI: 10.1021/acs.est.7b04106] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Little is known about the occurrences, distributions, sources, and potential risks of organophosphate (OP) triesters and diester degradation products in municipal sludge from wastewater treatment plants (WWTPs). In this study, we conducted the first nationwide survey to simultaneously determine a suite of 11 OP triesters and six diester degradation products in sludge from WWTPs across China. All OP triesters were detected and three diesters were identified for the first time in sludge samples. Total concentrations of OP triesters and diester degradation products were in the ranges of 43.9-2160 and 17.0-1300 ng (g of dry weight)-1, respectively, indicating relatively low pollution levels in China compared with those of several developed countries. A distinct geographical variation of higher concentrations of OP triesters and diesters in East China than in Central and West China was observed, suggesting that regional levels of organophosphate esters are associated with the magnitudes of regional economic development. Source analysis revealed nonchlorinated OP diesters are mainly derived from degradation in WWTPs, while chlorinated OP diesters were largely sourced from outside WWTPs. The estimated total emission fluxes of OP triesters and diesters via land-application sludge in China were approximately 330 and 134 kg/year, respectively. Further risk assessment based on risk quotient values in sludge-applied soils indicated low to medium risks for most OP triesters and diesters except tris(methylphenyl) phosphate. The significant accumulation of OP triesters and widespread occurrence of diester degradation products in sludge raise environmental concerns about these contaminants.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Bibai Du
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Fei Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong , Hong Kong SAR, China
| | - Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| |
Collapse
|
29
|
Determination of Seven Urinary Metabolites of Organophosphate Esters using Liquid Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61048-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hoffman K, Butt CM, Webster TF, Preston EV, Hammel SC, Makey C, Lorenzo AM, Cooper EM, Carignan C, Meeker JD, Hauser R, Soubry A, Murphy SK, Price TM, Hoyo C, Mendelsohn E, Congleton J, Daniels JL, Stapleton HM. Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:112-118. [PMID: 28317001 PMCID: PMC5352975 DOI: 10.1021/acs.estlett.6b00475] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
During the past decade, use of organophosphate compounds as flame retardants and plasticizers has increased. Numerous studies investigating biomarkers (i.e., urinary metabolites) demonstrate ubiquitous human exposure and suggest that human exposure may be increasing. To formally assess temporal trends, we combined data from 14 U.S. epidemiologic studies for which our laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP). Using individual-level data and samples collected between 2002 and 2015, we assessed temporal and seasonal trends in urinary bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), the metabolites of TDCIPP and TPHP, respectively. Data suggest that BDCIPP concentrations have increased dramatically since 2002. Samples collected in 2014 and 2015 had BDCIPP concentrations that were more than 15 times higher than those collected in 2002 and 2003 (10β = 16.5; 95% confidence interval from 9.64 to 28.3). Our results also demonstrate significant increases in DPHP levels; however, increases were much smaller than for BDCIPP. Additionally, results suggest that exposure varies seasonally, with significantly higher levels of exposure in summer for both TDCIPP and TPHP. Given these increases, more research is needed to determine whether the levels of exposure experienced by the general population are related to adverse health outcomes.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Craig M. Butt
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Thomas F. Webster
- Boston
University School of Public Heath, Boston, Massachusetts 02118, United States
| | - Emma V. Preston
- Boston
University School of Public Heath, Boston, Massachusetts 02118, United States
| | - Stephanie C. Hammel
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Colleen Makey
- Boston
University School of Public Heath, Boston, Massachusetts 02118, United States
| | - Amelia M. Lorenzo
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Ellen M. Cooper
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Courtney Carignan
- Harvard
T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - John D. Meeker
- University
of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Russ Hauser
- Harvard
T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Adelheid Soubry
- Epidemiology
Research Group, Department of Public Health and Primary Care, KU Leuven-University, B-3000 Leuven, Belgium
| | - Susan K. Murphy
- Department
of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department
of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Thomas M. Price
- Department
of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Cathrine Hoyo
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - Emma Mendelsohn
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | | | - Julie L. Daniels
- Department
of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heather M. Stapleton
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Nicholas School of the Environment,
Duke University, LSRC Box 90328, Durham, NC 27708. E-mail: . Phone: (919) 613-8717. Fax: (919) 684-8741
| |
Collapse
|
31
|
Hoffman K, Lorenzo A, Butt CM, Adair L, Herring AH, Stapleton HM, Daniels JL. Predictors of urinary flame retardant concentration among pregnant women. ENVIRONMENT INTERNATIONAL 2017; 98:96-101. [PMID: 27745946 PMCID: PMC5127734 DOI: 10.1016/j.envint.2016.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Organophosphate compounds are commonly used in residential furniture, electronics, and baby products as flame retardants and are also used in other consumer products as plasticizers. Although the levels of exposure biomarkers are generally higher among children and decrease with age, relatively little is known about the individual characteristics associated with higher levels of exposure. Here, we investigate urinary metabolites of several organophosphate flame retardants (PFRs) in a cohort of pregnant women to evaluate patterns of exposure. METHODS Pregnant North Carolina women (n=349) provided information on their individual characteristics (e.g. age and body mass index (BMI)) as a part of the Pregnancy Infection and Nutrition Study (2002-2005). Women also provided second trimester urine samples in which six PFR metabolites were measured using mass spectrometry methods. RESULTS PFR metabolites were detected in every urine sample, with BDCIPP, DHPH, ip-PPP and BCIPHIPP detected in >80% of samples. Geometric mean concentrations were higher than what has been reported previously for similarly-timed cohorts. Women with higher pre-pregnancy BMI tended to have higher levels of urinary metabolites. For example, those classified as obese at the start of pregnancy had ip-PPP levels that were 1.52 times as high as normal weight range women (95% confidence interval: 1.23, 1.89). Women without previous children also tended to have higher urinary levels of DPHP, but lower levels of ip-PPP. In addition, we saw strong evidence of seasonal trends in metabolite concentrations (e.g. higher DPHP, BDCIPP, and BCIPHIPP in summer, and evidence of increasing ip-PPP between 2002 and 2005). CONCLUSIONS Our results indicate ubiquitous exposure to PFRs among NC women in the early 2000s. Additionally, our work suggests that individual characteristics are related to exposure and that temporal variation, both seasonal and annual, may exist.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Amelia Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Linda Adair
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy H Herring
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julie L Daniels
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Yu L, Jia Y, Su G, Sun Y, Letcher RJ, Giesy JP, Yu H, Han Z, Liu C. Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:196-203. [PMID: 27646168 DOI: 10.1016/j.envpol.2016.09.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a re-emerging environmental contaminant that has been frequently detected at sub-ppb (<μg/L) concentrations in natural waters. The objective of this study was to evaluate effects of TDCIPP on growth in initial generation (F0) zebrafish after chronic exposure to environmentally relevant concentrations, and to examine possible parental transfer of TDCIPP and transgenerational effects on growth of first generation (F1) larvae. When zebrafish (1-month old) were exposed to 580 or 7500 ng TDCIPP/L for 240 days, bioconcentration resulted in significantly less growth as measured by body length, body mass, brain-somatic index (BSI) and hepatic-somatic index (HSI) in F0 females but not F0 males. These effects were possibly due to down-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, residues of TDCIPP were detected in F1 eggs after exposure of parents, which resulted in less survival, body length and heart rate in F1 individuals. Down-regulation of genes in the GH/IGF axis (e.g., gh, igf1) might be responsible for transgenerational toxicity. This study provides the first known evidence that exposure of zebrafish to environmentally relevant concentrations of TDCIPP during development can inhibit growth of offspring, which were not exposed directly to TDCIPP.
Collapse
Affiliation(s)
- Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yali Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyong Su
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Yongkai Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210089, China
| | - Hongxia Yu
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China.
| |
Collapse
|
33
|
Hoffman K, Sosa JA, Stapleton HM. Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer? Curr Opin Oncol 2017; 29:7-13. [PMID: 27755165 PMCID: PMC10037316 DOI: 10.1097/cco.0000000000000335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Flame retardant chemicals are added to consumer products to reduce fire incidence and severity; approximately 1.5 million tons of these chemicals are used annually. However, their widespread use has led to their ubiquitous presence in the environment and chronic accumulation in human tissues. We summarize current trends in human flame retardant chemical exposure, and review recent data highlighting concerns for thyroid dysregulation and cancer risk in human populations. RECENT FINDINGS Polybrominated diphenyl ethers were once commonly used as flame retardant chemicals, but recently were phased out. Exposure is associated with thyroid dysregulation (mainly T4 reductions) in animals, with new work focusing on specific mechanisms of action. Polybrominated diphenyl ethers also impact human thyroid regulation and are related to clinical thyroid disease, but associations appear both dose and life-stage dependent. Emerging data suggest that common alternate flame retardant chemicals may be more potent thyroid disruptors than their predecessors, which is particularly concerning given increasing levels of exposure. SUMMARY Potential health impacts of flame retardant chemicals are only beginning to be understood for 'legacy flame retardant chemicals' (i.e., polybrominated diphenyl ethers), and are largely unevaluated for newer-use chemicals. Cumulatively, current data suggest impact on thyroid regulation is likely, potentially implicating flame retardant chemicals in thyroid disease and cancers for which thyroid dysregulation impacts risk or prognosis.
Collapse
Affiliation(s)
- Kate Hoffman
- aNicholas School of the Environment, Duke University bDepartments of Surgery and Medicine cDuke Cancer Institute and Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
34
|
Greaves AK, Su G, Letcher RJ. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. Toxicol Appl Pharmacol 2016; 308:59-65. [DOI: 10.1016/j.taap.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
|
35
|
Butt CM, Hoffman K, Chen A, Lorenzo A, Congleton J, Stapleton HM. Regional comparison of organophosphate flame retardant (PFR) urinary metabolites and tetrabromobenzoic acid (TBBA) in mother-toddler pairs from California and New Jersey. ENVIRONMENT INTERNATIONAL 2016; 94:627-634. [PMID: 27397928 PMCID: PMC4980246 DOI: 10.1016/j.envint.2016.06.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 05/19/2023]
Abstract
The use of alternative chemical flame retardants in consumer products is increasing as the result of the phase-out of polybrominated diphenyl ethers. Today, the most commonly detected alternatives in residential furniture include the organophosphate flame retardants (PFRs) and the Firemaster (R) 550 mixture (FM550). Urinary levels of dialkyl and diaryl phosphate esters, and 2-ethylhexyl tetrabromobenzoate (EH-TBB) have been used as biomarkers of human exposure to PFRs and FM550, respectively. In a previous study, we demonstrated that toddlers had significantly higher levels of PFRs relative to their mothers in a cohort from New Jersey; however, it is unclear if there are regional differences in exposure. It is possible that exposure to PFRs may be higher in California relative to other US States due to the California flammability standard, as was seen previously observed for PBDEs. In the current study, we examined urinary levels of PFR metabolites and TBBA in 28 mother-child pairs from California, USA, collected in 2015, and compared them with levels measured in our previous study from New Jersey. Urine samples were extracted using solid-phase extraction and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Diphenyl phosphate (DPHP), isopropyl-phenyl phenyl phosphate (ip-PPP), bis(1,3-dichloro-2propyl) phosphate (BDCIPP) and BCIPHIPP conjugates were detected in 100% of mother and child urine samples, while bis(1-chloro-2-propyl) phosphate (BCIPP), tert-butyl-phenyl phenyl phosphate (tb-PPP) and TBBA were detected in < 50% of samples. Interestingly, BCIPHIPP conjugates were detected in 100% of the urine samples, suggesting ubiquitous exposure to the parent compound, tris(1-chloro-2-propyl) phosphate (TCIPP). The current study found significantly higher BDCIPP levels in California toddlers and higher and ip-PPP levels in mothers as compared to the New Jersey cohort, which may be reflective of California's furniture flammability standard. For example, BDCIPP levels in California children were 2.4 times higher than those in New Jersey children. Consistent with our previous work, the current study showed higher PFR and EH-TBB exposure in children, likely due to increased hand-mouth behavior. Children's DPHP and BDCIPP levels, on average, were 5.9 times and 15 times those of their mothers. Positive correlations between paired mothers and their children were shown for DPHP and BCIPHIPP conjugates but not BDCIPP or ip-PPP. In the children, several predictors of hand-mouth behavior were associated with BDCIPP, DPHP and ip-PPP urine levels, but no associations were observed with BCIPHIPP conjugates.
Collapse
Affiliation(s)
- Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Amelia Lorenzo
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | | | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
36
|
Su G, Letcher RJ, Yu H. Organophosphate Flame Retardants and Plasticizers in Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8103-11. [PMID: 27347783 DOI: 10.1021/acs.est.6b02187] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite the growing ubiquity of organophosphate (OP) triesters as environmental contaminants, parameters affecting their aquatic chemical stabilities are currently unknown. The present study examined the pH-dependent (7, 9, 11, or 13) hydrolysis of 16 OP triesters in mixtures of 80 ng/mL for each OP triester over a period of 35 days at 20 °C. For the pH = 7, 9, and 11 solutions, 10 of the 16 OP triesters were stable and with no significant (p > 0.05) degradation. For the remaining 6 OP triesters, significant degradation occurred progressing from the pH = 7 to 11 solutions. At pH = 13, except for tributyl phosphate and tris(2-ethylhexyl) phosphate, 14 OP triesters were degraded with half-lives ranging from 0.0053 days (triphenyl phosphate) to 47 days (tripropyl phosphate). With increasingly basic pH the order of OP triester stability was group A (with alkyl moieties) > group B (chlorinated alkyl) > group C (aryl). Numerous OP diesters were identified depending on the pH level of the solution, whereas OP monoesters were not detectable. This is consistent with no significant (p > 0.05) depletion observed for 5 OP diesters in the same 4 solutions and over same 35 day period, suggesting OP diesters are end products of base-catalyzed hydrolysis of OP triesters. Our results demonstrated that pH-dependent hydrolysis of OP triesters does occur, and such instability would likely affect the fate of OP triesters in aqueous environments where the pH can be variable and basic.
Collapse
Affiliation(s)
- Guanyong Su
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University , Ottawa, Ontario K1A 0H3, Canada
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| |
Collapse
|
37
|
Su G, Letcher RJ, Yu H, Gooden DM, Stapleton HM. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. CHEMOSPHERE 2016; 149:314-319. [PMID: 26874059 DOI: 10.1016/j.chemosphere.2016.01.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
In vitro studies using avian hepatocytes or human liver microsomes suggest that hydroxylation is an important pathway in the metabolism of triphenyl phosphate (TPHP), a chemical used as a flame retardant and plasticizer. TPHP metabolism can lead to the formation of para(p)- and meta(m)-hydroxyl-(OH-)TPHP products as well as their glucuronide conjugates. To determine whether the TPHP hydroxylation and depuration pathway also occurs in vivo in humans, the present study developed a sensitive method for quantification of p- and m-OH-TPHP glucuronides in human urine samples. In n = 1 pooled urine sample and n = 12 individual urine samples collected from four human volunteers from Ottawa (ON, Canada), p- and m-OH-TPHP glucuronides were detectable in 13 and 9 of the 13 analyzed samples and at concentrations ranging from <MLOQ-25 pg/mL and nd-4 pg/mL, respectively. A strong, positive correlation (p = 0.02, r = 0.6569) was observed between p-OH-TPHP glucuronide and diphenyl phosphate concentrations (DPHP, a known dealkylated metabolite of TPHP). To our knowledge, this is the first report demonstrating that TPHP hydroxylation and conjugation occurs in vivo in humans, and further suggests that p-OH-TPHP glucuronide can be used as a specific biomarker of TPHP exposure in humans.
Collapse
Affiliation(s)
- Guanyong Su
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada.
| | - Robert J Letcher
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada; Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment, Nanjing University, Nanjing, China
| | - David M Gooden
- Duke University, Department of Chemistry, P.O. Box 90354, Durham, NC, 27708, USA
| | | |
Collapse
|
38
|
Petropoulou SSE, Petreas M, Park JS. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine. J Chromatogr A 2016; 1434:70-80. [PMID: 26818234 DOI: 10.1016/j.chroma.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
Alkyl- and aryl-esters of phosphoric acid (both halogenated and non-halogenated) are mainly used as flame retardants (FRs), among other applications, in furniture and consumer products and they are collectively known as organophosphate flame retardants (OPFRs). The absorption, biotransformation or elimination of many of these chemicals in humans and their possible health effects are not yet well known. A major reason for the limited information is the nature of these compounds, which causes several technical difficulties in their isolation and sensitive determination. A novel analytical liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the accurate and sensitive determination of four urinary OPFR metabolites: bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPhP), using mixed-mode solid phase extraction and isotope. For the first time all four analytes can be identified in one chromatographic run. An extensive investigation of method development parameters (enzymatic hydrolysis, matrix effects, process efficiency, sources of background interferences, linearity, accuracy, precision, stabilities and limits of detection and quantification) was performed in order to address previously reported method inconsistencies and select a process with the highest accuracy and sensitivity. Chromatographic separation was achieved on a Luna C18 (2) (2.00 mm × 150 mm, 3 μm) with mobile phase 80:20 v/v water: MeOH and MeOH: water 95:5 v/v, both containing 1mM tributylamine and 1mM acetic acid. Limits of detection were 0.025 ng mL(-1) for BDCIPP and BCIPP and 0.1 ng mL(-1) for DPhP and BCEP. Absolute recoveries of all four analytes and their labeled compounds were in the range of 88-107%. The method was tested on 13 adult California urine samples. BCEP was detected at 0.4-15 ng mL(-1) with a geometric mean (GM): 1.9 ng mL(-1); BDCIPP at 0.5-7.3 ng mL(-1), (GM: 2.5 ng mL(-1)) and DPhP at <MDL-5.6 ng mL(-1), (GM: 1.7 ng mL(-1)). BCIPP was detected for the first time in US samples in 92.3% of the samples with two to three times lower values (range <MDL-3.5 ng mL(-1) and GM: 0.4 ng mL(-1)) than the other OPFRs.
Collapse
Affiliation(s)
- Syrago-Styliani E Petropoulou
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States.
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| |
Collapse
|