1
|
Wattley L, Chae R, Nguyen C, Schuster R, Lentsch A, Caldwell C, Goodman M, Pritts TA. Amitriptyline Decreases Mouse Lung Endothelial Cell Inflammatory Responses to Packed Red Blood Cell Microparticles. J Surg Res 2024; 303:429-438. [PMID: 39423737 DOI: 10.1016/j.jss.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Large-volume packed red blood cell (pRBC) transfusion is associated with lung injury and worsened outcomes. Amitriptyline reduces lung injury and inflammation in a murine sepsis model. We hypothesized that red cell microparticles (MP) activate endothelial cells, leading to lung injury and that treatment with amitriptyline would blunt the inflammatory response MPs through inhibition of acid sphingomyelinase (ASM). METHODS Murine pRBCs were obtained from C57Bl/6 mice and stored in AS3 for 14 d. The MPs were isolated from pRBCs by serial centrifugation. Mouse lung endothelial cells (MLECs) were pretreated with amitriptyline (0, 2.5, 25, 27 μM, n = 5) for 30 min prior to MP treatment. Chemokine secretion and adhesion molecule shedding was assessed. ASM activity was measured from cell lysates. RESULTS MPs increased the secretion of chemokines and shedding of adhesion molecules in MLECs at both four and 24 h. Amitriptyline treatment of MLECs decreased ASM activity in the setting of MPs. Amitriptyline pretreatment decreased the secretion of chemokines and shedding of adhesion molecules in response to MPs at 4 h but did not decrease adhesion molecule shedding at 24 h CONCLUSIONS: Endothelial cell treatment with MPs induces secretion of chemokines responsible for chemotaxis (keratinocyte chemoattractant, regulated upon activation normal T cell expressed and presumably secreted, and G-granulocyte colony-stimulating factor) as well as many downstream proinflammatory effects (interleukin-6). Additionally, MPs induce adhesion molecule shedding (vascular cell adhesion molecule-1, intracellular adhesion molecule-1, P-selectin, and E-selectin), which has been shown to be associated with endothelial cell activation. Amitriptyline pretreatment decreases MLEC inflammatory response and ASM activity is decreased. These data suggest that ASM inhibition in MLECs is a potential strategy to blunt the inflammatory response to the red blood cell storage lesion.
Collapse
Affiliation(s)
- Lindsey Wattley
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Ryan Chae
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Rebecca Schuster
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Alex Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Charles Caldwell
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Michael Goodman
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
2
|
Rühling M, Kersting L, Wagner F, Schumacher F, Wigger D, Helmerich DA, Pfeuffer T, Elflein R, Kappe C, Sauer M, Arenz C, Kleuser B, Rudel T, Fraunholz M, Seibel J. Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nat Commun 2024; 15:7456. [PMID: 39198435 PMCID: PMC11358447 DOI: 10.1038/s41467-024-51874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.
Collapse
Affiliation(s)
- Marcel Rühling
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Louise Kersting
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Fabienne Wagner
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominic A Helmerich
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tom Pfeuffer
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Robin Elflein
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christian Kappe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Markus Sauer
- Chair of Biotechnology & Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str 2, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Thomas Rudel
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Brazdis RM, Zoicas I, Kornhuber J, Mühle C. Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-Like Behavior and Locomotor Activity in the Absence of Genotypic Variation. Int J Mol Sci 2024; 25:8685. [PMID: 39201372 PMCID: PMC11354454 DOI: 10.3390/ijms25168685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, β-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with β-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (I.Z.); (J.K.)
| |
Collapse
|
4
|
Wank I, Mittmann C, Kreitz S, Chestnykh D, Mühle C, Kornhuber J, Ludwig A, Kalinichenko LS, Müller CP, Hess A. Neutral sphingomyelinase controls acute and chronic alcohol effects on brain activity. Neuropharmacology 2024; 253:109948. [PMID: 38636728 DOI: 10.1016/j.neuropharm.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Alcohol consumption is a widespread phenomenon throughout the world. However, how recreational alcohol use evolves into alcohol use disorder (AUD) remains poorly understood. The Smpd3 gene and its coded protein neutral sphingomyelinase (NSM) are associated with alcohol consumption in humans and alcohol-related behaviors in mice, suggesting a potential role in this transition. Using multiparametric magnetic resonance imaging, we characterized the role of NSM in acute and chronic effects of alcohol on brain anatomy and function in female mice. Chronic voluntary alcohol consumption (16 vol% for at least 6 days) affected brain anatomy in WT mice, reducing regional structure volume predominantly in cortical regions. Attenuated NSM activity prevented these anatomical changes. Functional MRI linked these anatomical adaptations to functional changes: Chronic alcohol consumption in mice significantly modulated resting state functional connectivity (RS FC) in response to an acute ethanol challenge (i.p. bolus of 2 g kg-1) in heterozygous NSM knockout (Fro), but not in WT mice. Acute ethanol administration in alcohol-naïve WT mice significantly decreased RS FC in cortical and brainstem regions, a key finding that was amplified in Fro mice. Regarding direct pharmacological effects, acute ethanol administration increased the regional cerebral blood volume (rCBV) in many brain areas. Here, chronic alcohol consumption otherwise attenuated the acute rCBV response in WT mice but enhanced it in Fro mice. Altogether, these findings suggest a differential role for NSM in acute and chronic functional brain responses to alcohol. Therefore, targeting NSM may be useful in the prevention or treatment of AUD.
Collapse
Affiliation(s)
- Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Claire Mittmann
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany; Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91045, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia; Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159, Heidelberg, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany; Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; FAU NeW - Research Center for New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
5
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
6
|
Mandasari P, Hollmann C, Zaidi RH, Löw S, Schrama J, Wigger D, Schumacher F, Kleuser B, Beyersdorf N. Acid ceramidase expression reduces IFNγ secretion by mouse CD4 + T cells and is crucial for maintaining B-cell numbers in mice. Front Immunol 2024; 15:1309846. [PMID: 38919612 PMCID: PMC11196608 DOI: 10.3389/fimmu.2024.1309846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Acid ceramidase (Ac) is a lysosomal enzyme catalyzing the generation of sphingosine from ceramide, and Ac inhibitors are currently being investigated as potential cancer therapeutics. Yet, the role of the Ac in immune responses, particularly anti-viral immunity, is not fully understood. To investigate the impact of Ac expression on various leukocyte populations, we generated a tamoxifen-inducible global knockout mouse model for the Ac (iAc-KO). Following tamoxifen administration to healthy mice, we extracted primary and secondary lymphoid organs from iAc-KO and wild-type (wt) littermates and subsequently performed extensive flow cytometric marker analysis. In addition, we isolated CD4+ T cells from the spleen and lymph nodes for sphingolipid profiling and restimulated them in vitro with Dynabeads™ Mouse T-activator CD3/CD28. Intracellular cytokine expression (FACS staining) was analyzed and secreted cytokines detected in supernatants. To study cell-intrinsic effects, we established an in vitro model for iAc-KO in isolated CD4+ T and B cells. For CD4+ T cells of iAc-KO versus wt mice, we observed reduced Ac activity, an increased ceramide level, and enhanced secretion of IFNγ upon CD3/CD28 costimulation. Moreover, there was a marked reduction in B cell and plasma cell and blast numbers in iAc-KO compared to wt mice. To study cell-intrinsic effects and in line with the 3R principles, we established in vitro cell culture systems for iAc-KO in isolated B and CD4+ T cells. Our findings pinpoint to a key role of the Ac in mature B and antibody-secreting cells and in IFNγ secretion by CD4+ T cells.
Collapse
Affiliation(s)
- Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Rehan-Haider Zaidi
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Samira Löw
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jann Schrama
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Behzad A, Feldmann-Schulz C, Lenz B, Clarkson L, Ludwig C, Luttenberger K, Völkl S, Kornhuber J, Mühle C, von Zimmermann C. TaKeTiNa Music Therapy for Outpatient Treatment of Depression: Study Protocol for a Randomized Clinical Trial. J Clin Med 2024; 13:2494. [PMID: 38731019 PMCID: PMC11084329 DOI: 10.3390/jcm13092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND/OBJECTIVES Depression is a prevalent and debilitating illness that significantly affects psychological and physical well-being. Apart from conventional therapies such as psychotherapy and medication, individuals with depression often lack opportunities for activities that are generally perceived as enjoyable, such as music, meditation, and arts, which have demonstrated therapeutic effectiveness. TaKeTiNa music therapy has been employed as a therapeutic intervention for more than two decades. However, there is a notable absence of well-designed clinical trials investigating its antidepressant effects, a gap we aim to address in our current study. Furthermore, shifts in the progression of depression may manifest both psychologically, by influencing emotional states, and physiologically, by leading to alterations in lipid and sphingolipid metabolism, cortisol levels, and immune system function. Our study seeks to analyze the impact of TaKeTiNa music therapy on both levels. METHODS This is a prospective monocentric randomized waitlist-controlled clinical trial. It investigates the influence of TaKeTiNa music therapy on patients with major depression in an outpatient setting. Therefore, interested persons are randomly assigned to two groups, an intervention group or a control group, after completing a screening procedure. The intervention group starts with an eight-week TaKeTiNa music therapy intervention. The waiting group receives the same therapy program after completing the follow-up period. Blood and saliva sampling as well as responses to questionnaires are obtained at specific time points. DISCUSSION Our study investigates the effects of TaKeTiNa music therapy, a non-pharmacological antidepressant treatment option, on depressive symptoms. We also address functional and causal immunological changes; hormonal changes, such as changes in cortisol levels; and metabolic changes, such as changes in serum lipids and sphingolipids, during the course of depression. We expect that this study will provide evidence to expand the range of treatment options available for depression.
Collapse
Affiliation(s)
- Ali Behzad
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (A.B.)
| | - Christoph Feldmann-Schulz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Lucy Clarkson
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Celine Ludwig
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Katharina Luttenberger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (A.B.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany (K.L.); (C.M.)
| |
Collapse
|
8
|
Schempp R, Eilts J, Schöl M, Grijalva Yépez MF, Fekete A, Wigger D, Schumacher F, Kleuser B, van Ham M, Jänsch L, Sauer M, Avota E. The Role of Neutral Sphingomyelinase-2 (NSM2) in the Control of Neutral Lipid Storage in T Cells. Int J Mol Sci 2024; 25:3247. [PMID: 38542220 PMCID: PMC10970209 DOI: 10.3390/ijms25063247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.
Collapse
Affiliation(s)
- Rebekka Schempp
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany; (R.S.); (M.S.); (M.F.G.Y.)
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany; (J.E.); (M.S.)
| | - Marie Schöl
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany; (R.S.); (M.S.); (M.F.G.Y.)
| | - Maria Fernanda Grijalva Yépez
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany; (R.S.); (M.S.); (M.F.G.Y.)
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany;
| | - Dominik Wigger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.W.); (F.S.); (B.K.)
| | - Fabian Schumacher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.W.); (F.S.); (B.K.)
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.W.); (F.S.); (B.K.)
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.v.H.); (L.J.)
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.v.H.); (L.J.)
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany; (J.E.); (M.S.)
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Wuerzburg, Germany; (R.S.); (M.S.); (M.F.G.Y.)
| |
Collapse
|
9
|
Kalinichenko LS, Kohl Z, Mühle C, Hassan Z, Hahn A, Schmitt EM, Macht K, Stoyanov L, Moghaddami S, Bilbao R, Eulenburg V, Winkler J, Kornhuber J, Müller CP. Sex-specific pleiotropic changes in emotional behavior and alcohol consumption in human α-synuclein A53T transgenic mice during early adulthood. J Neurochem 2024; 168:269-287. [PMID: 38284431 DOI: 10.1111/jnc.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns. In this study, we investigated whether the familial PD point mutation A53T is associated with changes in alcohol consumption behavior and emotional states at ages not yet characterized by α-synuclein accumulation. The affective and alcohol-drinking phenotypes remained unaltered in female PDGF-hA53T-synuclein-transgenic (A53T) mice during both early and late adulthood. Brain region-specific activation of ceramide-producing enzymes, acid sphingomyelinase (ASM), and neutral sphingomyelinase (NSM), known for their neuroprotective properties, was observed during early adulthood but not in late adulthood. In males, the A53T mutation was linked to a reduction in alcohol consumption in both early and late adulthood. However, male A53T mice displayed increased anxiety- and depression-like behaviors during both early and late adulthood. Enhanced ASM activity in the dorsal mesencephalon and ventral hippocampus may potentially contribute to these adverse behavioral effects of the mutation in males during late adulthood. In summary, the A53T gene mutation was associated with diverse changes in emotional states and alcohol consumption behavior long before the onset of PD, and these effects varied by sex. These alterations in behavior may be linked to changes in brain ceramide metabolism.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kohl
- Division of Molecular Neurology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Agnes Hahn
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Schmitt
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Macht
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lyubomir Stoyanov
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Schayan Moghaddami
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roberto Bilbao
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Kind L, Luttenberger K, Leßmann V, Dorscht L, Mühle C, Müller CP, Siegmann EM, Schneider S, Kornhuber J. New ways to cope with depression-study protocol for a randomized controlled mixed methods trial of bouldering psychotherapy (BPT) and mental model therapy (MMT). Trials 2023; 24:602. [PMID: 37736688 PMCID: PMC10514980 DOI: 10.1186/s13063-023-07629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Due to the growing gap between the demand and supply of therapeutic services for people suffering from depression, with this study, we are investigating the effectiveness and factors of influence of new approaches in group treatments for depression. Two previous studies have already identified bouldering psychotherapy (BPT) as an effective option. It combines psychotherapeutic interventions with action- and body-oriented bouldering exercises. Mental model therapy (MMT) is a new cognitive-behavioral approach for treating depression. It focuses on identifying cognitive distortions, biases in decision making, and false assumptions and aims to correct and replace them with useful mental models. We aim to investigate the effectiveness of the interventions compared with a control group (CG) and to assess the factors of influence in a mixed methods approach. METHODS The study is being conducted as a randomized controlled intervention trial. Adult participants with unipolar depression are being randomized into three groups (BPT, MMT, or CG), and the first two groups are undergoing a 10-week treatment phase. CG follows their individual standard treatment as usual. A priori power analysis revealed that about 120 people should be included to capture a moderate effect. The primary outcome of the study is depression rated with the Montgomery and Asberg Depression Rating Scale (MADRS) before (t0), directly after (t1), and 12 months after the intervention phase (t2). Data are being collected via questionnaires, computer-assisted video interviews, and physical examinations. The primary hypotheses will be statistically analyzed by mixed model ANOVAs to compare the three groups over time. For secondary outcomes, further multivariate methods (e.g., mixed model ANOVAs and regression analyses) will be conducted. Qualitative data will be evaluated on the basis of the qualitative thematic analysis. DISCUSSION This study is investigating psychological and physical effects of BPT and MMT and its factors of influence on outpatients suffering from depression compared with a CG in a highly naturalistic design. The study could therefore provide insight into the modes of action of group therapy for depression and help to establish new short-term group treatments. Methodological limitations of the study might be the clinical heterogeneity of the sample and confounding effects due to simultaneous individual psychotherapy. TRIAL REGISTRATION ISRCTN, ISRCTN12347878. Registered 28 March 2022, https://www.isrctn.com/ISRCTN12347878 .
Collapse
Affiliation(s)
- Leona Kind
- Centre for Health Services Research in Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Katharina Luttenberger
- Centre for Health Services Research in Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Vivien Leßmann
- Centre for Health Services Research in Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Lisa Dorscht
- Centre for Health Services Research in Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Siegmann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Sophia Schneider
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
11
|
Zoicas I, Mühle C, Schumacher F, Kleuser B, Kornhuber J. Development of Comorbid Depression after Social Fear Conditioning in Mice and Its Effects on Brain Sphingolipid Metabolism. Cells 2023; 12:1355. [PMID: 37408189 DOI: 10.3390/cells12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Currently, there are no animal models for studying both specific social fear and social fear with comorbidities. Here, we investigated whether social fear conditioning (SFC), an animal model with face, predictive and construct validity for social anxiety disorder (SAD), leads to the development of comorbidities at a later stage over the course of the disease and how this affects the brain sphingolipid metabolism. SFC altered both the emotional behavior and the brain sphingolipid metabolism in a time-point-dependent manner. While social fear was not accompanied by changes in non-social anxiety-like and depressive-like behavior for at least two to three weeks, a comorbid depressive-like behavior developed five weeks after SFC. These different pathologies were accompanied by different alterations in the brain sphingolipid metabolism. Specific social fear was accompanied by increased activity of ceramidases in the ventral hippocampus and ventral mesencephalon and by small changes in sphingolipid levels in the dorsal hippocampus. Social fear with comorbid depression, however, altered the activity of sphingomyelinases and ceramidases as well as the sphingolipid levels and sphingolipid ratios in most of the investigated brain regions. This suggests that changes in the brain sphingolipid metabolism might be related to the short- and long-term pathophysiology of SAD.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Mühle C, Kornhuber J. Characterization of a Neutral Sphingomyelinase Activity in Human Serum and Plasma. Int J Mol Sci 2023; 24:ijms24032467. [PMID: 36768790 PMCID: PMC9916453 DOI: 10.3390/ijms24032467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Alterations of sphingolipids and their metabolizing enzymes play a role in various diseases. However, peripheral biomarkers for such changes are limited. Particularly, in the increasingly reported involvement of neutral sphingomyelinase (NSM) with four described isoforms in tissues or cells, a peripheral marker is lacking. We here describe the detection of an NSM activity in human serum and plasma samples which hydrolyses fluorescently labeled sphingomyelin to ceramide in a time- and volume-dependent manner. Reaction rates were linear up to 10 days, and serum volumes above 2 vol-% were inhibitory. Biochemical properties were different from acid sphingomyelinase (ASM) with respect to detergent specificity (sodium deoxycholate), pH profile (pH 7-9), and cation dependence: Serum NSM activity was inhibited by EDTA ≥ 1 µM and restored in EDTA-anticoagulated plasma with the addition of ≥ 100 µM Co2+. It was independent of Mg2+, the typical cofactor of cellular NSM species, and even inhibited by [Mg2+] ≥ 20 mM. Serum NSM activity was not correlated with ASM activity and was independent of sex and age in 24 healthy adults. Since human peripheral NSM activity is very low and activities in rodents are even lower or undetectable, future research should aim to increase the reaction rate and determine the source of this enzymatic activity. The established activity could serve as a future biomarker or therapeutic target in diseases affected by sphingolipid derangements.
Collapse
Affiliation(s)
- Christiane Mühle
- Correspondence: ; Tel.: +49-9131-85-44738; Fax: +49-9131-85-36381
| | | |
Collapse
|
13
|
Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, Eulenburg V, Granzow J, Hofer M, Hohenschild J, Huber SE, Kämpf S, Kogias G, Lacatusu L, Lugmair C, Taku SM, Meixner D, Sembritzki NK, Praetner M, Rhein C, Sauer C, Scholz J, Ulrich F, Valenta F, Weigand E, Werner M, Tay N, Mc Veigh CJ, Haase J, Wang AL, Abdel-Hafiz L, Huston JP, Smaga I, Frankowska M, Filip M, Lourdusamy A, Kirchner P, Ekici AB, Marx LM, Suresh NP, Frischknecht R, Fejtova A, Saied EM, Arenz C, Bozec A, Wank I, Kreitz S, Hess A, Bäuerle T, Ledesma MD, Mitroi DN, Miranda AM, Oliveira TG, Lenz B, Schumann G, Kornhuber J, Müller CP. Adult alcohol drinking and emotional tone are mediated by neutral sphingomyelinase during development in males. Cereb Cortex 2023; 33:844-864. [PMID: 35296883 DOI: 10.1093/cercor/bhac106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Tianye Jia
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,PONS Centre and SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Felix Anderheiden
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Maria Datz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anna-Lisa Eberle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Jonas Granzow
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Martin Hofer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Julia Hohenschild
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Sabine E Huber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stefanie Kämpf
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Laura Lacatusu
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Charlotte Lugmair
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Stephen Mbu Taku
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Doris Meixner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nina-Kristin Sembritzki
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Marc Praetner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christina Sauer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Jessica Scholz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Franziska Ulrich
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Florian Valenta
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Esther Weigand
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Markus Werner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Nicole Tay
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China
| | - Conor J Mc Veigh
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Jana Haase
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, Kraków 31-343, Poland
| | - Anbarasu Lourdusamy
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen 91054, Germany
| | - Lena M Marx
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Neeraja Puliparambil Suresh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Essa M Saied
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University, Berlin 12489, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Erlangen 91054, Germany
| | - Isabel Wank
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Silke Kreitz
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Hospital Erlangen, Erlangen 91054, Germany
| | | | - Daniel N Mitroi
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), Madrid 28040, Spain
| | - André M Miranda
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Tiago Gil Oliveira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J5, Mannheim 68159, Germany
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai 200433, China.,Department of Psychiatry and Psychotherapie, CCM, PONS Centre, Charite Mental Health, Charite Universitaetsmedizin Berlin, Berlin 10117, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.,Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
14
|
Péricat D, Leon-Icaza SA, Sanchez Rico M, Mühle C, Zoicas I, Schumacher F, Planès R, Mazars R, Gros G, Carpinteiro A, Becker KA, Izopet J, Strub-Wourgaft N, Sjö P, Neyrolles O, Kleuser B, Limosin F, Gulbins E, Kornhuber J, Meunier E, Hoertel N, Cougoule C. Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model. Int J Mol Sci 2022; 23:13623. [PMID: 36362409 PMCID: PMC9657171 DOI: 10.3390/ijms232113623] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.
Collapse
Affiliation(s)
- David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Marina Sanchez Rico
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Raoul Mazars
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Germain Gros
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Alexander Carpinteiro
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Katrin Anne Becker
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Jacques Izopet
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | | | - Peter Sjö
- Drugs for Neglected Diseases Initiative, 1202 Geneva, Switzerland
| | - Olivier Neyrolles
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Frédéric Limosin
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Erich Gulbins
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, 47057 Essen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| | - Nicolas Hoertel
- Faculté de Santé, Université Paris Cité, 75006 Paris, France
- Département de Psychiatrie et d’Addictologie de l’Adulte et du Sujet Agé, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France
- INSERM, Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR_S1266, 75014 Paris, France
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
15
|
Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe. Anal Chem 2021; 93:11775-11784. [PMID: 34412477 DOI: 10.1021/acs.analchem.1c02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingomyelinase (SMase) is closely related to diseases like Niemann-Pick disease and atherosclerosis, and the development of a simple method for the assay of SMase activity is very useful to screen new potential inhibitors or stimulators of SMase or biomarkers of disease. Fluorophore-encapsulated nanoliposomes (FENs) are emerging as a new fluorescent probe for sensing the enzymatic activity. In this work, two fluorochromes (cy7 and IR780) were encapsulated into the liposome of sphingomyelin, and therefore, a sphingomyelin-based ratiometric FEN probe for the SMase activity assay was constructed. The probe shows high selectivity and sensitivity to acid SMase with a detection limit of 4.8 × 10-4 U/mL. Sphingomyelin is the natural substrate of SMase; therefore, the probe has native ability for all kinds of SMase activity assays. Moreover, the probe has been successfully applied to the analysis of acid SMase activity in cells and urine samples. As far as we know, this is the first example of a nanoliposome fluorescence method for assaying acid SMase, and the method is biocompatible and much simpler than the existing ones, which might provide a new strategy for developing new methods for other important esterases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Krones D, Rühling M, Becker KA, Kunz TC, Sehl C, Paprotka K, Gulbins E, Fraunholz M. Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 2021; 12:694489. [PMID: 34394034 PMCID: PMC8358437 DOI: 10.3389/fmicb.2021.694489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.
Collapse
Affiliation(s)
- David Krones
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Tobias C Kunz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Rhein C, Zoicas I, Marx LM, Zeitler S, Hepp T, von Zimmermann C, Mühle C, Richter-Schmidinger T, Lenz B, Erim Y, Reichel M, Gulbins E, Kornhuber J. mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment. Int J Mol Sci 2021; 22:ijms22115700. [PMID: 34071826 PMCID: PMC8198802 DOI: 10.3390/ijms22115700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition with key symptoms of low mood and lack of motivation, joy, and pleasure. Recently, the acid sphingomyelinase (ASM)/ceramide system has been implicated in the pathogenesis of MDD. ASM is a lysosomal glycoprotein that catalyzes the hydrolysis of sphingomyelin, an abundant component of membranes, into the bioactive sphingolipid ceramide, which impacts signaling pathways. ASM activity is inhibited by several common antidepressant drugs. Human and murine studies have confirmed that increased ASM activity and ceramide levels are correlated with MDD. To define a molecular marker for treatment monitoring, we investigated the mRNA expression of SMPD1, which encodes ASM, in primary cell culture models, a mouse study, and a human study with untreated MDD patients before and after antidepressive treatment. Our cell culture study showed that a common antidepressant inhibited ASM activity at the enzymatic level and also at the transcriptional level. In a genetically modified mouse line with depressive-like behavior, Smpd1 mRNA expression in dorsal hippocampal tissue was significantly decreased after treatment with a common antidepressant. The large human study showed that SMPD1 mRNA expression in untreated MDD patients decreased significantly after antidepressive treatment. This translational study shows that SMPD1 mRNA expression could serve as a molecular marker for treatment and adherence monitoring of MDD.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Correspondence: ; Tel.: +49-9131-85-44542
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Lena M. Marx
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tobias Hepp
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany
| | - Yesim Erim
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| |
Collapse
|
18
|
Frankowska M, Jesus FM, Mühle C, Pacheco JV, Maior RS, Sadakierska‐Chudy A, Smaga I, Piechota M, Kalinichenko LS, Gulbins E, Kornhuber J, Filip M, Müller CP, Barros M. Cocaine attenuates acid sphingomyelinase activity during establishment of addiction-related behavior-A translational study in rats and monkeys. Addict Biol 2021; 26:e12955. [PMID: 32761719 DOI: 10.1111/adb.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Cocaine addiction is a severe psychiatric condition for which currently no effective pharmacotherapy is available. Brain mechanisms for the establishment of addiction-related behaviors are still not fully understood, and specific biomarkers for cocaine use are not available. Sphingolipids are major membrane lipids, which shape neuronal membrane composition and dynamics in the brain. Here, we investigated how chronic cocaine exposure during establishment of addiction-related behaviors affects the activity of the sphingolipid rheostat controlling enzymes in the brain of rats. As we detected specific effects on several enzymes in the brain, we tested whether the activity of selected enzymes in the blood may serve as potential biomarker for cocaine exposure in non-human primates (Callithrix penicillata). We found that intravenous cocaine self-administration led to a reduced mRNA expression of Cers1, Degs1 and Degs2, and Smpd1 in the prefrontal cortex of rats, as well as a reduction of Cers4 expression in the striatum. These effects reversed after 10 days of abstinence. Monkeys showed a robust cocaine-induced place preference (CPP). This coincided with a reduction in blood acid sphingomyelinase (ASM) activity after CPP establishment. This effect normalized after 15 days of abstinence. Altogether, these findings suggest that the establishment of cocaine addiction-related behaviors coincides with changes in the activity of sphingolipid controlling enzymes. In particular, blood ASM levels may serve as a translational biomarker for recent cocaine exposure.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Fernando M. Jesus
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Jéssica V.N. Pacheco
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
| | - Rafael S. Maior
- Department of Physiological Sciences University of Brasília Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| | - Anna Sadakierska‐Chudy
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Liubov S. Kalinichenko
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Erich Gulbins
- Department of Molecular Biology University of Duisburg‐Essen Essen Germany
- Department of Surgery University of Cincinnati Cincinnati Ohio USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences Maj Institute of Pharmacology Krakow Poland
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences University of Brasilia Brasilia Brazil
- Primate Center Institute of Biology, University of Brasilia Brasilia Brazil
| |
Collapse
|
19
|
Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects. Mol Psychiatry 2021; 26:7403-7416. [PMID: 34584229 PMCID: PMC8872992 DOI: 10.1038/s41380-021-01304-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.
Collapse
|
20
|
Zeitler S, Schumacher F, Monti J, Anni D, Guhathakurta D, Kleuser B, Friedland K, Fejtová A, Kornhuber J, Rhein C. Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems. Cells 2020; 9:E2502. [PMID: 33218173 PMCID: PMC7698877 DOI: 10.3390/cells9112502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
: The acid sphingomyelinase (ASM)/ceramide system exhibits a crucial role in the pathology of major depressive disorder (MDD). ASM hydrolyzes the abundant membrane lipid sphingomyelin to ceramide that regulates the clustering of membrane proteins via microdomain and lipid raft organization. Several commonly used antidepressants, such as fluoxetine, rely on the functional inhibition of ASM in terms of their antidepressive pharmacological effects. Transient receptor potential canonical 6 (TRPC6) ion channels are located in the plasma membrane of neurons and serve as receptors for hyperforin, a phytochemical constituent of the antidepressive herbal remedy St. John's wort. TRPC6 channels are involved in the regulation of neuronal plasticity, which likely contributes to their antidepressant effect. In this work, we investigated the impact of reduced ASM activity on the TRPC6 function in neurons. A lipidomic analysis of cortical brain tissue of ASM deficient mice revealed a decrease in ceramide/sphingomyelin molar ratio and an increase in sphingosine. In neurons with ASM deletion, hyperforin-mediated Ca2+-influx via TRPC6 was decreased. Consequently, downstream activation of nuclear phospho-cAMP response element-binding protein (pCREB) was changed, a transcriptional factor involved in neuronal plasticity. Our study underlines the importance of balanced ASM activity, as well as sphingolipidome composition for optimal TRPC6 function. A better understanding of the interaction of the ASM/ceramide and TRPC6 systems could help to draw conclusions about the pathology of MDD.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany;
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Burkhard Kleuser
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Kristina Friedland
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg Universität Mainz, 55128 Mainz, Germany;
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
21
|
Acid Sphingomyelinase Contributes to the Control of Mycobacterial Infection via a Signaling Cascade Leading from Reactive Oxygen Species to Cathepsin D. Cells 2020; 9:cells9112406. [PMID: 33153072 PMCID: PMC7693114 DOI: 10.3390/cells9112406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most severe diseases worldwide. The initial pulmonary localization of the pathogen often develops into systemic infection with high lethality. The present work investigated the role of sphingolipids, specifically the function of acid sphingomyelinase (Asm) and ceramide, in infection of murine macrophages in vitro and mice in vivo with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In vitro, we investigated macrophages from wild-type (wt) and Asm deficient (Asm−/−) mice to define signaling events induced by BCG infection and mediated by Asm. We demonstrate that infection of wt macrophages results in activation of Asm, which increases reactive oxygen species (ROS) via stimulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. ROS promote BCG degradation by cathepsin D. Asm deficiency in macrophages abrogates these effects. In vivo studies reveal that wt mice rapidly control BCG infection, while Asm−/− mice fail to control the infection and kill the bacteria. Transplantation of wt macrophages into Asm−/− mice reversed their susceptibility to BCG, demonstrating the importance of Asm in macrophages for defense against BCG. These findings indicate that Asm is important for the control of BCG infection.
Collapse
|
22
|
Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacol Rep 2020; 73:73-84. [PMID: 32936422 PMCID: PMC7862079 DOI: 10.1007/s43440-020-00159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Background Ceramides are lipid molecules determining cell integrity and intercellular signaling, and thus, involved in the pathogenesis of several psychiatric and neurodegenerative disorders. However, little is known about the role of particular enzymes of the ceramide metabolism in the mechanisms of normal behavioral plasticity. Here, we studied the contribution of neutral ceramidase (NC), one of the main enzymes mediating ceramide degradation, in the mechanisms of learning and memory in rats and non-human primates. Methods Naïve Wistar rats and black tufted-ear marmosets (Callithrix penicillata) were tested in several tests for short- and long-term memory and then divided into groups with various memory performance. The activities of NC and acid ceramidase (AC) were measured in these animals. Additionally, anxiety and depression-like behavior and brain levels of monoamines were assessed in the rats. Results We observed a predictive role of NC activity in the blood serum for superior performance of long-term object memory tasks in both species. A brain area analysis suggested that high NC activity in the ventral mesencephalon (VM) predicts better short-term memory performance in rats. High NC activity in the VM was also associated with worse long-term object memory, which might be mediated by an enhanced depression-like state and a monoaminergic imbalance. Conclusions Altogether, these data suggest a role for NC in short- and long-term memory of various mammalian species. Serum activity of NC may possess a predictive role in the assessing the performance of certain types of memory. Electronic supplementary material The online version of this article (10.1007/s43440-020-00159-2) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Naser E, Kadow S, Schumacher F, Mohamed ZH, Kappe C, Hessler G, Pollmeier B, Kleuser B, Arenz C, Becker KA, Gulbins E, Carpinteiro A. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J Lipid Res 2020; 61:896-910. [PMID: 32156719 PMCID: PMC7269768 DOI: 10.1194/jlr.ra120000682] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Indexed: 01/03/2023] Open
Abstract
Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.
Collapse
Affiliation(s)
- Eyad Naser
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Zainelabdeen H Mohamed
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany; Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christian Kappe
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Barbara Pollmeier
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Surgery, University of Cincinnati, Cincinnati, OH 45229
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany; Department of Hematology, University Hospital Essen, 45147 Essen, Germany. mailto:
| |
Collapse
|
24
|
Zoicas I, Schumacher F, Kleuser B, Reichel M, Gulbins E, Fejtova A, Kornhuber J, Rhein C. The Forebrain-Specific Overexpression of Acid Sphingomyelinase Induces Depressive-Like Symptoms in Mice. Cells 2020; 9:cells9051244. [PMID: 32443534 PMCID: PMC7290754 DOI: 10.3390/cells9051244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tgfb) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tgfb mice than in female Asm-tgfb mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tgfb mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44542
| |
Collapse
|
25
|
Zoicas I, Mühle C, Schmidtner AK, Gulbins E, Neumann ID, Kornhuber J. Anxiety and Depression Are Related to Higher Activity of Sphingolipid Metabolizing Enzymes in the Rat Brain. Cells 2020; 9:cells9051239. [PMID: 32429522 PMCID: PMC7290887 DOI: 10.3390/cells9051239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in sphingolipid metabolism have been suggested to contribute to the pathophysiology of major depression. In this study, we investigated the activity of acid and neutral sphingomyelinases (ASM, NSM) and ceramidases (AC, NC), respectively, in twelve brain regions of female rats selectively bred for high (HAB) versus low (LAB) anxiety-like behavior. Concomitant with their highly anxious and depressive-like phenotype, HAB rats showed increased activity of ASM and NSM as well as of AC and NC in multiple brain regions associated with anxiety- and depressive-like behavior, including the lateral septum, hypothalamus, ventral hippocampus, ventral and dorsal mesencephalon. Strong correlations between anxiety-like behavior and ASM activity were found in female HAB rats in the amygdala, ventral hippocampus and dorsal mesencephalon, whereas NSM activity correlated with anxiety levels in the dorsal mesencephalon. These results provide novel information about the sphingolipid metabolism, especially about the sphingomyelinases and ceramidases, in major depression and comorbid anxiety.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
- Correspondence: ; Tel.: +49-9131-85-46005; Fax: +49-9131-85-36381
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| | - Anna K. Schmidtner
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| |
Collapse
|
26
|
Beckmann N, Becker KA, Kadow S, Schumacher F, Kramer M, Kühn C, Schulz-Schaeffer WJ, Edwards MJ, Kleuser B, Gulbins E, Carpinteiro A. Acid Sphingomyelinase Deficiency Ameliorates Farber Disease. Int J Mol Sci 2019; 20:ijms20246253. [PMID: 31835809 PMCID: PMC6941101 DOI: 10.3390/ijms20246253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Farber disease is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments for Farber disease are clinically available, and affected patients have a severely shortened lifespan. We have recently reported a novel acid ceramidase deficiency model that mirrors the human disease closely. Acid sphingomyelinase is the enzyme that generates ceramide upstream of acid ceramidase in the lysosomes. Using our acid ceramidase deficiency model, we tested if acid sphingomyelinase could be a potential novel therapeutic target for the treatment of Farber disease. A number of functional acid sphingomyelinase inhibitors are clinically available and have been used for decades to treat major depression. Using these as a therapeutic for Farber disease, thus, has the potential to improve central nervous symptoms of the disease as well, something all other treatment options for Farber disease can’t achieve so far. As a proof-of-concept study, we first cross-bred acid ceramidase deficient mice with acid sphingomyelinase deficient mice in order to prevent ceramide accumulation. Double-deficient mice had reduced ceramide accumulation, fewer disease manifestations, and prolonged survival. We next targeted acid sphingomyelinase pharmacologically, to test if these findings would translate to a setting with clinical applicability. Surprisingly, the treatment of acid ceramidase deficient mice with the acid sphingomyelinase inhibitor amitriptyline was toxic to acid ceramidase deficient mice and killed them within a few days of treatment. In conclusion, our study provides the first proof-of-concept that acid sphingomyelinase could be a potential new therapeutic target for Farber disease to reduce disease manifestations and prolong survival. However, we also identified previously unknown toxicity of the functional acid sphingomyelinase inhibitor amitriptyline in the context of Farber disease, strongly cautioning against the use of this substance class for Farber disease patients.
Collapse
Affiliation(s)
- Nadine Beckmann
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Melanie Kramer
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | - Claudine Kühn
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
| | | | - Michael J. Edwards
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45229, USA;
| | - Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany; (N.B.); (K.A.B.); (S.K.); (F.S.); (M.K.); (C.K.); (E.G.)
- Department of Hematology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-84579; Fax: +49-201-723-5974
| |
Collapse
|
27
|
Zeitler S, Ye L, Andreyeva A, Schumacher F, Monti J, Nürnberg B, Nowak G, Kleuser B, Reichel M, Fejtová A, Kornhuber J, Rhein C, Friedland K. Acid sphingomyelinase - a regulator of canonical transient receptor potential channel 6 (TRPC6) activity. J Neurochem 2019; 150:678-690. [PMID: 31310676 DOI: 10.1111/jnc.14823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/28/2022]
Abstract
Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non-selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John's wort for treatment of depression disorders. Because of their role in the context of major depression, we investigated the crosstalk between the ASM/ceramide system and TRPC6 ion channels in a pheochromocytoma cell line 12 neuronal cell model (PC12 rat pheochromocytoma cell line). Ca2+ imaging experiments indicated that hyperforin-induced Ca2+ influx through TRPC6 channels is modulated by ASM activity. While antidepressants, known as functional inhibitors of ASM activity, reduced TRPC6-mediated Ca2+ influx, extracellular application of bacterial sphingomyelinase rebalanced TRPC6 activity in a concentration-related way. This effect was confirmed in whole-cell patch clamp electrophysiology recordings. Lipidomic analyses revealed a decrease in very long chain ceramide/sphingomyelin molar ratio after ASM inhibition, which was connected with changes in the abundance of TRPC6 channels in flotillin-1-positive lipid rafts as visualized by western blotting. Our data provide evidence that the ASM/ceramide system regulates TRPC6 channels likely by controlling their recruitment to specific lipid subdomains and thereby fine-tuning their physical properties.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lian Ye
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aksana Andreyeva
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen, Germany
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland.,Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Friedland
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute for Pharmacy and Biochemistry, Pharmacology and Toxicology, Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Kalinichenko LS, Mühle C, Eulenburg V, Praetner M, Reichel M, Gulbins E, Kornhuber J, Müller CP. Enhanced Alcohol Preference and Anxiolytic Alcohol Effects in Niemann-Pick Disease Model in Mice. Front Neurol 2019; 10:731. [PMID: 31333574 PMCID: PMC6618345 DOI: 10.3389/fneur.2019.00731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Major depression and alcohol use disorder are severe psychiatric diseases affecting the world's population with high comorbidity level. However, the pathogenesis of this comorbidity remains unclear, and no selective treatment for this condition is available. A pathogenic pathway and a possible therapeutic target for the treatment of depression-alcoholism comorbidity based on the hyperfunction of acid sphingomyelinase (Asm) were recently suggested. Here we analyzed the effects of alcohol on the depression/anxiety state of homozygous Asm-knockout mice (Asm − /−), which can be considered as a model of an early stage of Niemann-Pick disease, as well as their drinking pattern under normal and stress conditions. It was observed that forced treatment with alcohol (2 g/kg, i.p.) reduces the anxiety level of Asm−/− mice as measured in the elevated plus maze (EPM) test, but enhances the depression level in the forced swim test (FST). The analysis of drinking pattern of these animals in a free-choice alcohol drinking paradigm revealed higher alcohol intake and preference in Asm−/− mice compared to wild type (wt) littermates. However, this difference was overwritten by the stress exposure. Stronger sedating effects of alcohol were observed in Asm−/− mice compared to wt animals in the loss of righting reflex test after single and repeated alcohol injections (3 g/kg, i.p.). Altogether, the present findings might indicate an Asm involvement in the mechanisms of comorbidity between alcoholism and anxiety/depression.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Volker Eulenburg
- Institute for Biochemistry and Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Marc Praetner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
29
|
Secretory Acid Sphingomyelinase in the Serum of Medicated Patients Predicts the Prospective Course of Depression. J Clin Med 2019; 8:jcm8060846. [PMID: 31200571 PMCID: PMC6617165 DOI: 10.3390/jcm8060846] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and devastating psychiatric illness with strong individual and societal burdens. However, biomarkers to improve the limited preventive and therapeutic approaches are scarce. Multilevel evidence suggests that the pathophysiological involvement of sphingolipids particularly increases the levels of ceramides and the ceramide hydrolyzing enzyme, acid sphingomyelinase. The activity of secretory acid sphingomyelinase (S-ASM) and routine blood parameters were determined in the serum of patients with current (unmedicated n = 63, medicated n = 66) and remitted (n = 39) MDD and healthy subjects (n = 61). Depression severity and anxiety and their 3-weeks prospective course of treatment were assessed by psychometric inventories. S-ASM activity was not different between the four groups, did not decrease during treatment, and was not lower in individuals taking medication that functionally inhibited ASM. However, S-ASM correlated positively with depression severity only in remitted patients. High enzyme activity at inclusion predicted milder clinician-evaluated and self-rated depression severity (HAM-D, MADRS, BDI-II) and state anxiety at follow-up, and was related to stronger improvement in these scores in medicated patients. S-ASM was strongly and contrariwise associated with serum lipids in unmedicated and medicated females. These findings contribute to a better understanding of the pathomechanisms underlying depression and the development of clinical strategies and biomarkers.
Collapse
|
30
|
Govindarajah N, Clifford R, Bowden D, Sutton PA, Parsons JL, Vimalachandran D. Sphingolipids and acid ceramidase as therapeutic targets in cancer therapy. Crit Rev Oncol Hematol 2019; 138:104-111. [PMID: 31092365 DOI: 10.1016/j.critrevonc.2019.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sphingolipids have been shown to play a key part in cancer cell growth and death and have increasingly become the subject of novel anti-cancer therapies. Acid ceramidase, a sphingolipid enzyme, has an important role in the regulation of apoptosis. In this review we aim to assess the current evidence supporting the role of sphingolipids in cancer and the potential role that acid ceramidase may play in cancer treatment. METHODS A literature search was performed for published full text articles using the PubMed, Cochrane and Scopus databases using the search criteria string "acid ceramidase", "sphingolipid", "cancer". Additional papers were detected by scanning the references of relevant papers. A summary of the evidence for each cancer subgroup was then formed. Given the nature of the data extracted, no meta-analysis was performed. RESULTS Over expression of acid ceramidase has been demonstrated in a number of human cancers. In vitro data demonstrate that manipulation of acid ceramidase may present a useful therapeutic target. In the clinical setting, a number of drugs have been investigated with the ability to target acid ceramidase, with the most promising of those being small molecular inhibitors, such as LCL521. CONCLUSION The role of the sphingolipid pathway in cancer is becoming very clearly established by promoting ceramide accumulation in response to cancer or cellular stress. Acid ceramidase is over expressed in a variety of cancers and has a role as a potential target for inhibition by novel specific inhibitors or off-target effects of traditional anti-cancer agents. Further work is required to develop acid ceramidase inhibitors safe for progression to clinical trials.
Collapse
Affiliation(s)
- N Govindarajah
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom; Department of General Surgery, The Countess of Chester Hospital NHS Foundation Trust, Chester, United Kingdom
| | - R Clifford
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom; Department of General Surgery, The Countess of Chester Hospital NHS Foundation Trust, Chester, United Kingdom
| | - D Bowden
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom; Department of General Surgery, The Countess of Chester Hospital NHS Foundation Trust, Chester, United Kingdom
| | - P A Sutton
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom; Department of General Surgery, The Countess of Chester Hospital NHS Foundation Trust, Chester, United Kingdom
| | - J L Parsons
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - D Vimalachandran
- Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom; Department of General Surgery, The Countess of Chester Hospital NHS Foundation Trust, Chester, United Kingdom.
| |
Collapse
|
31
|
Mühle C, Weinland C, Gulbins E, Lenz B, Kornhuber J. Peripheral Acid Sphingomyelinase Activity Is Associated with Biomarkers and Phenotypes of Alcohol Use and Dependence in Patients and Healthy Controls. Int J Mol Sci 2018; 19:ijms19124028. [PMID: 30551571 PMCID: PMC6320816 DOI: 10.3390/ijms19124028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023] Open
Abstract
By catalyzing the hydrolysis of sphingomyelin into ceramide, acid sphingomyelinase (ASM) changes the local composition of the plasma membrane with effects on receptor-mediated signaling. Altered enzyme activities have been noted in common human diseases, including alcohol dependence. However, the underlying mechanisms remain largely unresolved. Blood samples were collected from early-abstinent alcohol-dependent in-patients (n[♂] = 113, n[♀] = 87) and matched healthy controls (n[♂] = 133, n[♀] = 107), and analyzed for routine blood parameters and serum ASM activity. We confirmed increased secretory ASM activities in alcohol-dependent patients compared to healthy control subjects, which decreased slightly during detoxification. ASM activity correlated positively with blood alcohol concentration, withdrawal severity, biomarkers of alcohol dependence (liver enzyme activities of gamma-glutamyl transferase, alanine aminotransferase, aspartate aminotransferase; homocysteine, carbohydrate-deficient transferrin; mean corpuscular volume, and creatine kinase). ASM activity correlated negatively with leukocyte and thrombocyte counts. ASM and gamma-glutamyl transferase were also associated in healthy subjects. Most effects were similar for males and females with different strengths. We describe previously unreported associations between ASM activity and markers of liver damage and myelosuppression. Further research should investigate whether this relationship is causal, or whether these parameters are part of a common pathway in order to gain insights into underlying mechanisms and develop clinical applications.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany.
| | - Christian Weinland
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany.
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, D-45259 Essen, Germany.
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0558, USA.
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany.
| |
Collapse
|
32
|
Mohamed ZH, Rhein C, Saied EM, Kornhuber J, Arenz C. FRET probes for measuring sphingolipid metabolizing enzyme activity. Chem Phys Lipids 2018; 216:152-161. [DOI: 10.1016/j.chemphyslip.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022]
|
33
|
Reichel M, Rhein C, Hofmann LM, Monti J, Japtok L, Langgartner D, Füchsl AM, Kleuser B, Gulbins E, Hellerbrand C, Reber SO, Kornhuber J. Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation. Front Psychiatry 2018; 9:496. [PMID: 30386262 PMCID: PMC6198178 DOI: 10.3389/fpsyt.2018.00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-α (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.
Collapse
Affiliation(s)
- Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena M Hofmann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukasz Japtok
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Andrea M Füchsl
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|