1
|
Makwakwa TA, Moema ED, Makudali Msagati TA. Method development and optimization for dispersive liquid-liquid microextraction factors using the response surface methodology with desirability function for the ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry determination of organic contaminants in water samples: risk and greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39382484 DOI: 10.1039/d4ay01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A simple, cost effective, and efficient dispersive liquid-liquid microextraction method was developed and optimized for the determination of organic contaminants in different environmental water matrices followed by UHPLC-QTOF-MS analysis. In the preliminary experiments, the univariate optimization approach was used to select tetrachloroethylene and acetonitrile as extraction and disperser solvents, respectively. The significant factors influencing DLLME were screened using full factorial design, and the optimal values for each variable were then derived through further optimization using central composite design with desirability function. The optimal conditions were achieved with 195 μL of tetrachloroethylene as the extraction solvent, 1439 μL of acetonitrile as the disperser solvent, and a sample pH of 5.8. Under these conditions, the method provided detection limits ranging from 0.11-0.48 μg L-1 and recoveries ranging from 23.32-145.43% across all samples. The enrichment factors obtained ranged from 11.66-72.72. The proposed method was then successfully applied in real water samples. Only benzophenone was detected in the concentration range of 0.79-0.88 μg L-1 across all the water samples. The calculated risk quotient resulting from benzophenone exposure in water samples showed a low potential risk to human health and the aquatic ecosystem. The method was also evaluated for its environmental friendliness using various metrics tools such as Analytical Eco-Scale (AES), Green Analytical Procedure Index (GAPI), Analytical GREEnness (AGREE), Analytical Greenness for Sample Preparation (AGREEprep), and Sample Preparation Metric of Sustainability (SPMS). Only AES qualified the method as green while it was considered acceptable and sustainable when assessed using SPMS.
Collapse
Affiliation(s)
- Tlou Auguston Makwakwa
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| | - Elsie Dineo Moema
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, Florida, 1709, South Africa.
| |
Collapse
|
2
|
Das T, Patel DK. Efficient removal of cationic dyes using lemon peel-chitosan hydrogel composite: RSM-CCD optimization and adsorption studies. Int J Biol Macromol 2024; 275:133561. [PMID: 38960260 DOI: 10.1016/j.ijbiomac.2024.133561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The most prominent and easily identifiable factor of water purity is its colour, which may be both physically undesirable, and act as an alert towards potential environmental contamination. The current study describes the optimum synthesis technique for Lemon Peel-Chitosan hydrogel using the Response Surface Methodology integrated Central composite Design (RSM-CCD). This adsorbent is both environmentally friendly and cost-effective. The hydrogel exhibited a maximal dye removal capacity of 24.984, 24.788, 24.862, 23.483, 24.409, and 24.726 mg g-1, for 10 mg L-1 aqueous medium of Safranin O, Methylene blue, Basic fuchsin, Toluidine blue, Brilliant green and Crystal violet, respectively. The adsorption kinetics and isotherm data suggest that the Pseudo second-order kinetic and Freundlich adsorption isotherm models precisely represent the respective behaviour of all the dyes. The thermodynamic viability of the process is determined by the values of ΔG, ΔH, and ΔS. The probable mechanism of adsorption was the electrostatic interaction between the dye molecules and the hydrogel. The regenerated hydrogel had removal efficiencies of over 80 % even after enduring six cycles. Hence, the exceptional recyclability and utility of the adsorbent show their sustainability for wastewater treatment in textile factories.
Collapse
Affiliation(s)
- Triparna Das
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra K Patel
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Liu YJ, Zhang Y, Bian Y, Sang Q, Ma J, Li PY, Zhang JH, Feng XS. The environmental sources of benzophenones: Distribution, pretreatment, analysis and removal techniques. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115650. [PMID: 37939555 DOI: 10.1016/j.ecoenv.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Benzophenones (BPs) have wide practical applications in real human life due to its presence in personal care products, UV-filters, drugs, food packaging bags, etc. It enters the wastewater by daily routine activities such as showering, impacting the whole aquatic system, then posing a threat to human health. Due to this fact, the monitoring and removal of BPs in the environment is quite important. In the past decade, various novel analytical and removal techniques have been developed for the determination of BPs in environmental samples including wastewater, municipal landfill leachate, sewage sludge, and aquatic plants. This review provides a critical summary and comparison of the available cutting-edge pretreatment, determination and removal techniques of BPs in environment. It also focuses on novel materials and techniques in keeping with the concept of "green chemistry", and describes on challenges associated with the analysis of BPs, removal technologies, suggesting future development strategies.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qi Sang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jing Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng-Yun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing 100850, China
| | - Ji-Hong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Hernández F, Fabregat-Safont D, Campos-Mañas M, Quintana JB. Efficient Validation Strategies in Environmental Analytical Chemistry: A Focus on Organic Micropollutants in Water Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:401-428. [PMID: 37068748 DOI: 10.1146/annurev-anchem-091222-112115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.
Collapse
Affiliation(s)
- Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
- Applied Metabolomics Research Laboratory, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Gupta N, Thakur RS, Patel DK. Detection, quantification and degradation kinetic for five benzodiazepines using VAUS-ME-SFO/LC-MS/MS method for water, alcoholic and non-alcoholic beverages. Talanta 2023; 260:124572. [PMID: 37121139 DOI: 10.1016/j.talanta.2023.124572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Benzodiazepines can make victims more docile, they are frequently used in drug-facilitated crimes, such as robberies and sexual assaults. Therefore, it is essential to develop techniques for determining whether these chemicals are present in relation with illegal activity is crucial. Therefore, to determine the presence of five benzodiazepines (alprazolam, clonazepam, diazepam, lorazepam, and oxazepam) in water, alcoholic beverages, and non-alcoholic beverages, a simple and direct, miniaturized, and effective vortex assisted ultrasound based microextraction using solidification of floating organic droplets (VAUS-ME-SFO) in combination with LC-MS/MS was developed. 1-Undecanol and acetonitrile, respectively, served as the extractant and disperser solvents. Many other parameters affect the efficiency of the developed analytical procedure VAUS-ME-SFO/LC-MS/MS. These parameters were optimized using Plackett Burman Design and Central Composite Design to obtain reliable results. The optimum conditions for the extraction were: 10.0 mL of sample; 180 μL acetonitrile, as a dispersive solvent; 200 μL of 1-undecanol, as an extraction solvent; pH 7; 105 s of vortex agitation; 120 s of ultrasonication application and 3 min of centrifugation at 7000 rpm. The benzodiazepines were separated by a chromatographic separation technique carried out by a UPLC system consisting of a binary mobile phase. The solvent system comprises of 0.1% Formic acid in Milli-Q (Solvent A) and 0.1% Formic acid in ACN (Solvent B) with a gradient flow of 3.5 min total analysis time. Under the optimized conditions, the calibration curve was studied in the range of 0.124-7.810 ng mL-1. The regression correlation coefficient (R2) value of all targeted analytes ranges from 0.993 to 0.999. The LOD and LOQ of VAUS-ME-SFO methods using LC-MS/MS analysis range from 0.316 to 0.968 ng mL-1 and 1.055-3.277 ng mL-1 respectively. The repeatability within a day varied from 0.6 to 3.5%, and the reproducibility across days varied from 2.2 to 6.3%. The recoveries ranges for water, alcoholic and non-alcoholic beverages from 70.77 to 114.53%, 63.20-102.21% and 66.23-113.28% respectively. Further, the degradation kinetics was studied to establish the half-life of each targeted analyte in the matrix undertaken in the study. The water samples were classified based on their BDZs residues. This implies that the more health care and anthropogenic activity, the more the BDZs residue will be in water samples.
Collapse
Affiliation(s)
- Neha Gupta
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
C.O.L. Martins F, Melchert WR. Environmentally friendly and novel solid-liquid phase microextraction of maneb fungicide in fruits and vegetables. Food Res Int 2023; 169:112800. [DOI: 10.1016/j.foodres.2023.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
|
7
|
Cunha SC, Ferreira R, Marmelo I, Vieira LR, Anacleto P, Maulvault A, Marques A, Guilhermino L, Fernandes JO. Occurrence and seasonal variation of several endocrine disruptor compounds (pesticides, bisphenols, musks and UV-filters) in water and sediments from the estuaries of Tagus and Douro Rivers (NE Atlantic Ocean coast). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155814. [PMID: 35588845 DOI: 10.1016/j.scitotenv.2022.155814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure of aquatic environments to emerging contaminants is a global issue, special relevant in many estuaries due to impacts from anthropogenic activity. The aim of this work was to evaluate thirty-seven endocrine disruptor chemicals (EDCs) from four different classes (pesticides, bisphenols, polycyclic musks and UV-filters) in water and sediment samples collected during one-year in the estuaries of Tagus and Douro Rivers located into the NE Atlantic Ocean coast. EDCs analysis was achieved afterward validation of a gas-chromatography mass spectrometry (GC-MS) method using Dispersive Liquid-Liquid Microextraction (DLLME) as extraction procedure for water samples, and Quick, Easy, Cheap, Efficient, Rugged and Safe (QuEChERS) combined with DLLME for sediments. Tagus estuary presented higher levels of contamination with pesticide residues and bisphenols (BPs) than the Douro estuary in both water and sediment samples. Contrariwise, levels and frequency of polycyclic musks (PCMs) and UV-filters (UVF) were slightly higher in Douro estuary. Levels of pesticide residues in both sediment and water samples, and levels of PCMs and UVF in water samples were higher in warmer seasons (summer and spring) than in colder ones (winter and autumn). The opposite was found in what respect levels of BPs in water and sediment samples, and PCMs and UVF levels in sediment samples. Although the levels found for each contaminant are low, usually in the order of a few ng/mL(g), the presence of a high number of toxic compounds is a source of concern and requires constant monitoring.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ricardo Ferreira
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isa Marmelo
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luís R Vieira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrícia Anacleto
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences of the University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Ana Maulvault
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lúcia Guilhermino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
de Araújo EP, Caldas ED, Oliveira-Filho EC. Pesticides in surface freshwater: a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:452. [PMID: 35608712 DOI: 10.1007/s10661-022-10005-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
The objective of this study was to critically review studies published up to November 2021 that investigated the presence of pesticides in surface freshwater to answer three questions: (1) in which countries were the studies conducted? (2) which pesticides are most evaluated and detected? and (3) which pesticides have the highest concentrations? Using the Prisma protocol, 146 articles published from 1976 to November 2021 were included in this analysis: 127 studies used grab sampling, 10 used passive sampling, and 9 used both sampling techniques. In the 45-year historical series, the USA, China, and Spain were the countries that conducted the highest number of studies. Atrazine was the most evaluated pesticide (56% of the studies), detected in 43% of the studies using grab sampling, and the most detected in passive sampling studies (68%). The compounds with the highest maximum and mean concentrations in the grab sampling were molinate (211.38 µg/L) and bentazone (53 µg/L), respectively, and in passive sampling, they were oxyfluorfen (16.8 µg/L) and atrazine (4.8 μg/L), respectively. The levels found for atrazine, p,p'-DDD, and heptachlor in Brazil were higher than the regulatory levels for superficial water in the country. The concentrations exceeded the toxicological endpoint for at least 11 pesticides, including atrazine (Daphnia LC50 and fish NOAEC), cypermethrin (algae EC50, Daphnia and fish LC50; fish NOAEC), and chlorpyrifos (Daphnia and fish LC50; fish NOAEC). These results can be used for planning pesticide monitoring programs in surface freshwater, at regional and global levels, and for establishing or updating water quality regulations.
Collapse
Affiliation(s)
| | - Eloisa Dutra Caldas
- Toxicology Laboratory, Faculty of Health Sciences, University of Brasília - UnB, Brasília, Federal District, Brazil
| | | |
Collapse
|
9
|
Konda S, Asati A, Williams M, Mudiam MKR. Development and evaluation of a multi‐class analytical method based on solid‐phase extraction combined with liquid chromatography‐tandem mass spectrometry for the analysis of pharmaceuticals and personal care products in urban wastewater samples. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Satyanand Konda
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Analytical and Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Ankita Asati
- Analytical and Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Mike Williams
- CSIRO Land and Water Adelaide South Australia Australia
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Analytical and Structural Chemistry Department CSIR‐Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
10
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
11
|
Martins FCOL, Batista AD, Melchert WR. Current overview and perspectives in environmentally friendly microextractions of carbamates and dithiocarbamates. Compr Rev Food Sci Food Saf 2021; 20:6116-6145. [PMID: 34564942 DOI: 10.1111/1541-4337.12821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Carbamates and dithiocarbamates are two classes of pesticides widely employed in the agriculture practice to control and avoid pests and weeds, hence, the monitoring of the residue of those pesticides in different foodstuff samples is important. Thus, this review presents the classification, chemical structure, use, and toxicology of them. Moreover, it was shown the evolution of liquid- and solid-phase microextractions employed in the extraction of carbamates and dithiocarbamates in water and foodstuff samples. The classification, operation mode, and application of the microextractions of liquid-phase and solid-phase used in their extraction were discussed and related to the analytical parameters and guidelines of green analytical chemistry.
Collapse
Affiliation(s)
| | - Alex D Batista
- Institute of Chemistry, University of Uberlândia, Uberlândia, Brazil
| | - Wanessa R Melchert
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
12
|
Alam S, Srivastava N, Iqbal N, Saini MK, Kumar J. Magnetic Solid-Phase Extraction (MSPE) Using Magnetite-Based Core-Shell Nanoparticles with Silica Network (SiO2) Coupled with GC-MS/MS Analysis for Determination of Multiclass Pesticides in Water. J AOAC Int 2021; 104:633-644. [PMID: 33201225 DOI: 10.1093/jaoacint/qsaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND For the analysis of pesticide residues in water samples, various extraction techniques are available. However, liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are most commonly used. LLE and SPE extraction techniques each have their own disadvantages. OBJECTIVE The aim of the study was to develop an environment-friendly multi-residue method for determination of multiclass pesticides in environmental water samples (ground water, agricultural field/irrigation run-off water, etc.). METHODS The magnetic solid-phase extraction (MSPE) technique using surface-fabricated magnetic nano-particles was used for extraction of water samples, followed by quantification by gas chromatography tandem mass spectrometry. The developed multi-residue method was validated in terms of linearity, LOD, LOQ, recovery, and repeatability. RESULTS Recovery data were obtained at the spiking concentration level of 1, 5, and 10 µg/L, yielding recoveries in the range of 70-120%. Overall, non-polar pesticides from all the groups, i.e., synthetic pyrethroid, organophosphorus, organochlorine, herbicides, and fungicides, show acceptable recovery percentages. Good linearity (r2 value ≥ 0.99) was observed at the concentration range of 0.5-100 µg/L. RSD values were found ≤ 18.8. CONCLUSIONS The study shows that the method is specific, rapid, and low cost, as well as having a good linearity and recovery; thus, this method is applied in routine purposes for the analysis of pesticide residue in real water samples. HIGHLIGHTS Due to better adsorption ability, permeability, and magnetic separability, the functionalized nano-particles were found effective in the enrichment of 22 multiclass pesticides including organo-phosphorus, organo-chlorine, synthetic pyrethroid, herbicides, and fungicides.
Collapse
Affiliation(s)
- Samsul Alam
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Neha Srivastava
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Nusrat Iqbal
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Mahesh Kumar Saini
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| | - Jitendra Kumar
- Analytical Division, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurgaon, Haryana, India
| |
Collapse
|
13
|
Iqbal M, Ezzeldin E, Haq N, Alam P. An Ultraperformance Liquid Chromatography Tandem-Mass Spectrometry Method for Determination of Multiclass Pharmaceuticals in Water Sample by Dispersive Liquid-Liquid Microextraction Combined with Ultrasound Assisted Reverse Extraction from Solidified Floating Organic Droplets. ACS OMEGA 2021; 6:7524-7532. [PMID: 33778264 PMCID: PMC7992067 DOI: 10.1021/acsomega.0c06047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
A novel, simple, and reliable ultraperformance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS ) assay based on dispersive liquid-liquid microextraction followed by ultrasound-assisted reverse extraction from solidified floating organic droplets was established for determination of multiclass pharmaceuticals in the water sample. Six commonly used drugs of various therapeutic classes: ibuprofen, ketorolac, lamotrigine, propranolol, pantoprazole, and losartan were extracted from water samples by using 50 μL 1-undecanol as extracting solvent and 400 μL acetonitrile as dispersive solvent. After collecting the floating organic droplets by cold centrifugation, an ultrasound-assisted back extraction procedure was performed to make the sample compatible for UPLC-MS/MS analysis. Acquity BEH C18 column (2.1 × 100; 1.7 μm) was used for separation of target analytes that were eluted by a gradient mobile phase composition of 15 mM ammonium acetate and acetonitrile at a flow rate of 0.25 mL/min. The sample ionization was performed by using electrospray ionization in positive mode, and multiple reaction monitoring was used for quantification of target analytes. After optimizing the assay conditions, all calibration curves were found to be linear with limit of detection and limit of quantification were ranged in between 0.06-0.15 and 0.16-0.41 ng/mL, respectively. The enrichment factor was found to be 172-192-fold and the relative recovery was ranged between 93.1 and 109.4% between target analytes. These satisfactory results confirmed that the proposed method is specific and reliable for application of trace analysis of target analytes in waste water samples.
Collapse
Affiliation(s)
- Muzaffar Iqbal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Bioavailability
Unit, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam Ezzeldin
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Bioavailability
Unit, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
14
|
de Araujo FG, Bauerfeldt GF, Marques M, Martins EM. Development and validation of an analytical method for detection and quantification of benzophenone, bisphenol A, diethyl phthalate and 4-nonylphenol by UPLC-MS/MS in surface water. PEERJ ANALYTICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-achem.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Guandu River is the main water source for 9 million inhabitants in Rio de Janeiro city and some others included in the metropolitan region of the Rio de Janeiro State, Brazil. Here, the development of a chromatographic method and its application to assess the occurrence of 4-nonylphenol (4NP), benzophenone (BP), bisphenol A (BPA) and diethyl-phthalate (DEP), known as endocrine disruptors (EDs), is reported. Sample were prepared by solid phase extraction (SPE) with C18 cartridge and methanol as elution solvent. Validation of analytical method followed the United States Environmental Protection Agency protocol (USEPA 8000D guide) and selectivity, matrix effect, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantification (LOQ) were evaluated. The recovery was greater than 90%, accuracy was found between 80% and 115% and relative standard deviation (RSD) below 11.03%. LOQ ranged from 10.0 to 50.0 ng L−1, while the LOD ranged from 0.87 to 5.72 ng L−1. The coefficients of determination (R2) were greater than 0.99 for all compounds within a linear ranges of 10.0 to 500 ng L−1 for 4NP and BP and 50.0 to 500 ng L−1 for BPA and DEP. The method was therefore considered selective and robust for all micropollutants. Matrix effect was observed for BP, 4NP and DEP. The developed method was applied to analyze five samples collected monthly during 2018 at a selected sampling point of a river in Rio de Janeiro State. The maximum concentrations found for BPA, BP, DEP and 4NP were 182.04, 286.20, 2.56×103 and 13.48 ng L−1 respectively. These values are high enough to justify an investigation on the presence of these micropollutants in drinking water as well as to extend the monitoring for the search of similar pollutants and their metabolites.
Collapse
Affiliation(s)
- Frederico Goytacazes de Araujo
- Post-Graduation Program in Chemistry (PPGQ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Industrial Chemistry Department, Federal Institute of Espirito Santo (IFES), Aracruz, Espírito Santo, Brazil
| | - Glauco F. Bauerfeldt
- Chemistry Institute, Rural Federal University of Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Monteiro Martins
- Post-Graduation Program in Chemistry (PPGQ), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
de Oliveira LL, Kudo MV, Lopes CT, Tarley CR. Development and multivariate optimization of nanostructured supramolecular liquid-liquid microextraction validated method for highly sensitive determination of methyl parathion in water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Deep eutectic solvent-based liquid-liquid microextraction for the HPLC-DAD analysis of bisphenol A in edible oils. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Xie Q, Cao J, Sun D, Lu H, Xia M, Hou B, Li D, Jia L. Determination of aqueous bisphenol A and tetrabromobisphenol A using molecular-complex-based liquid-liquid microextraction. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Beldean-Galea MS, Vial J, Thiébaut D, Coman MV. Analysis of multiclass organic pollutant in municipal landfill leachate by dispersive liquid-liquid microextraction and comprehensive two-dimensional gas chromatography coupled with mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9535-9546. [PMID: 31919823 DOI: 10.1007/s11356-019-07064-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
We propose a simple, fast, and inexpensive method for the analyses of 72 organic compounds in municipal landfill leachate, based on dispersive liquid-liquid microextraction and comprehensive two-dimensional gas chromatography coupled with mass spectrometry. Forty-one organic compounds belonging to several classes including hydrocarbons, mono- and polyaromatic hydrocarbons, carbonyl compounds, terpenes, terpenoids, phenols, amines, and phthalates, covering a wide range of physicochemical properties and linked to municipal landfill leachate, were quantitatively determined. Another 31 organic compounds such as indoles, pyrroles, glycols, organophosphate flame retardants, aromatic amines and amides, pharmaceuticals, and bisphenol A have been identified based on their mass spectra. The developed method provides good performances in terms of extraction recovery (63.8-127%), intra-day and inter-day precisions (< 7.7 and < 13.9 respectively), linearity (R2 between 0.9669 and 0.9999), detection limit (1.01-69.30 μg L-1), quantification limit (1.87-138.6 μg L-1), and enrichment factor (69.6-138.5). Detailed information on the organic pollutants contained in municipal landfill leachate could be obtained with this method during a 40-min analysis of a 4-mL leachate sample, using only 75 μL of extraction solvent.
Collapse
Affiliation(s)
- Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Street, RO-400294, Cluj-Napoca, Romania.
| | - Jerôme Vial
- UMR CNRS CBI, PSL Research Institute, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, Cedex 05, 75231, Paris, France
| | - Didier Thiébaut
- UMR CNRS CBI, PSL Research Institute, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, Cedex 05, 75231, Paris, France
| | - Maria-Virginia Coman
- "Raluca Ripan" Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, RO-400294, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Ultrasonic-Assisted Magnetic Solid-Phase Dispersive Extraction for Determination of Chlorpyrifos and Triclosan in Wastewater Samples prior to Liquid Chromatography Tandem Mass Spectrometry Detection. Chromatographia 2020. [DOI: 10.1007/s10337-019-03848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Synthesized carbon nanodots for simultaneous extraction of personal care products and organophosphorus pesticides in wastewater samples prior to LC-MS/MS determination. Anal Bioanal Chem 2019; 411:6173-6187. [DOI: 10.1007/s00216-019-02009-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
21
|
Mohammadi V, Jafari MT, Saraji M. Flexible/self-supported zeolitic imidazolate framework-67 film as an adsorbent for thin-film microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Iqbal M, Ezzeldin E, Khalil NY, Alam P, Al-Rashood KA. UPLC-MS/MS determination of suvorexant in urine by a simplified dispersive liquid-liquid micro-extraction followed by ultrasound assisted back extraction from solidified floating organic droplets. J Pharm Biomed Anal 2019; 164:1-8. [DOI: 10.1016/j.jpba.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
23
|
Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method – A review. Talanta 2018; 190:335-356. [DOI: 10.1016/j.talanta.2018.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
|
24
|
Zhong Z, Li G, Luo Z, Zhu B. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography. Talanta 2018; 194:46-54. [PMID: 30609558 DOI: 10.1016/j.talanta.2018.09.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023]
Abstract
A convenient and rapid method was developed for determination of fourteen colorants in selected cosmetics based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) using solidification of the floating organic droplet (SFOD) as a clean-up step followed by high-performance liquid chromatography diode array detection (HPLC-DAD). DLLME was performed in a microwave device for reducing manual operations and facilitating rapid extraction equilibrium, resulting in high sample throughput and good extraction efficiency. Matrix effects could be effectively eliminated by SFOD technique. Various parameters affecting the extraction efficiency were optimized by multi-response surface methodology. The limits of detection and quantification were 0.25-3.2 mg kg-1 and 0.85-11.0 mg kg-1, respectively. The recoveries ranged from 90.2% to 106.1% with relative standard deviations of 0.30-3.1%. The method was successfully applied to the analysis of cosmetics, in which all the colorants could be quantified, and their median values ranged from 4.94 to 591 mg kg-1 for seventy-two lipsticks, and from 7.70 to 1.73 × 103 mg kg-1 for fifty eye shadows, respectively. The proposed protocol could achieve batch preparation of samples and avoid measurement errors from the obvious volume reduction of the recovered extract, and it could serve as a powerful tool for high-throughput analysis of multiple colorants in complex samples.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510300, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhibin Luo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510300, China
| | - Binghui Zhu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510300, China
| |
Collapse
|
25
|
Gao F, Lu W, Liu H, Li J, Chen L. Dispersive liquid-liquid microextraction of five chlorophenols in water samples followed by determination using capillary electrophoresis. Electrophoresis 2018; 39:2431-2438. [PMID: 30004131 DOI: 10.1002/elps.201800205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Dispersive liquid-liquid microextraction (DLLME) coupled with CE was developed for simultaneous determination of five types of chlorophenols (CPs), namely 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) in water samples. Several parameters affecting DLLME and CE conditions were systematically investigated. Under the optimized DLLME-CE conditions, the five CPs were separated completely within 7.5 min and good enrichment factors were obtained of 40, 193, 102, 15, and 107 for 4-CP, 2,4,6-TCP, 2,4-DCP, 2-CP, and 2,6-DCP, respectively. Good linearity was attained in the range of 1-200 μg/L for 2,4,6-TCP, 2,4-DCP, 2-300 μg/L for 4-CP and 2-CP, and 1-300 μg/L for 2,6-DCP, with correlation coefficients (r) over 0.99. The LOD (S/N = 3) and the LOQ (S/N = 10) were 0.31-0.75 μg/L and 1.01-2.43 μg/L, respectively. Recoveries ranging from 60.85 to 112.36% were obtained with tap, lake, and river water spiked at three concentration levels and the RSDs (for n = 3) were 1.31-11.38%. With the characteristics of simplicity, cost-saving, and environmental friendliness, the developed DLLME-CE method proved to be potentially applicable for the rapid, sensitive, and simultaneous determination of trace CPs in complicated water samples.
Collapse
Affiliation(s)
- Fangfang Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Wenhui Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Lingxin Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, P. R. China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| |
Collapse
|
26
|
Hollow-Fibre-Supported Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Triclosan in Aqueous Samples. Int J Anal Chem 2017; 2017:1451476. [PMID: 29158736 PMCID: PMC5660808 DOI: 10.1155/2017/1451476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 01/26/2023] Open
Abstract
We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques.
Collapse
|