1
|
Zhang L, Li X, He Q, Chen M, Zhou M, Guo J, Li Y, Tu Z. Elastin-like polypeptide-functionalized nanobody for column-free immunoaffinity purification of aflatoxin B 1. Anal Bioanal Chem 2024; 416:6199-6208. [PMID: 39264463 DOI: 10.1007/s00216-024-05498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
A column-free immunoaffinity purification (CFIP) technique for sample preparation of aflatoxin B1 (AFB1) was developed using an AFB1-specific nanobody (named G8) and an elastin-like polypeptide (ELP). The reversible phase transition between liquid and solid in response to temperature changes was exhibited by the ELP which was derived from human elastin. The G8 was tagged with ELPs of various lengths (20, 40, 60, and 80 repeat units) at the C-terminus using recursive directional ligation (RDL). Coding sequences were then subcloned into pET30a at the multiple cloning sites. Bioactive recombinant proteins were produced by expressing them as inclusion bodies in Escherichia coli BL21 (DE3), then dissolved and refolded. Analysis by indirect competitive enzyme-linked immunosorbent assay (icELISA) and transition temperature (Tt) measurement confirmed that the refolded G8-ELPs preserved the ability to recognize AFB1 as well as phase transition when the temperature rose above Tt. To establish the optimal conditions for cleaning AFB1, the effects of various parameters on recovery were investigated. The recovery in ELISA tests was 95 ± 3.67% under the optimized CFIP workflow. Furthermore, the CFIP-prepared samples were applied for high-performance liquid chromatography (HPLC) detection. The recovery in the CFIP-HPLC test ranged from 54 ± 1.86% to 98 ± 3.58% for maize, rice, soy sauce, and vegetable oil samples. To the best of our knowledge, this is the first report combining the function of both nanobody and ELP to develop a cleanup technique for small molecules in a complex matrix. The CFIP for the sample pretreatment was easy to use and inexpensive. In contrast to conventional immunosensitivity materials, the reagent utilized in the CFIP was entirely biosynthesized without any chemical coupling reactions. This suggests that the nanobody-ELP may serve as a useful dual-functional reagent for the development of sample cleaning or purification methods.
Collapse
Affiliation(s)
- Leping Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiaojiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Qinghua He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Mengna Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Mengmeng Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- College of Food Science, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China
| | - Jiebiao Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Yanping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, 330047, China.
| | - Zhui Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Li HZ, Qian HL, Xu ST, Yang C, Yan XP. Tuning the planarity of molecularly imprinted covalent organic frameworks for selective extraction of ochratoxin A in alcohol samples. Food Chem 2024; 451:139427. [PMID: 38692237 DOI: 10.1016/j.foodchem.2024.139427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 μg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.
Collapse
Affiliation(s)
- Hao-Ze Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Li HZ, Yang C, Qian HL, Xu ST, Yan XP. Pore Size Adjustment Strategy for the Fabrication of Molecularly Imprinted Covalent Organic Framework Nanospheres at Room Temperature for Selective Extraction of Zearalenone in Cereal Samples. Anal Chem 2024; 96:3561-3568. [PMID: 38372135 DOI: 10.1021/acs.analchem.3c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Covalent organic frameworks (COFs) are attractive adsorbents for sample pretreatment due to their unique structure and properties. However, the selectivity of COFs for the extraction of hazardous compounds is still limited due to the lack of specific interactions between COFs and targets. Herein, we report a pore size adjustment strategy for room-temperature synthesis of molecularly imprinted COF (MICOF) for selective extraction of zearalenone (ZEN) in complex food samples. The three-dimensional building block tetra(4-aminophenyl) methane was used as a functional monomer, while dialdehyde monomers with different numbers of benzene ring were used to adjust the pore size of MICOF to match with the size of ZEN molecules. The prepared MICOF gave the largest adsorption capacity of 177.2 mg g-1 and the highest imprinting factor of 10.1 for ZEN so far. MICOF was used as the adsorbent for dispersed solid-phase extraction in combination with high-performance liquid chromatography for the determination of trace ZEN in cereals. The high selectivity of the developed method allows simple aqueous standard calibration for the matrix effect-free determination of ZEN in food samples. The limit of detection and the recoveries of the developed method were 0.21 μg kg-1 and 93.7-101.4%, respectively. The precision for the determination of ZEN was less than 3.8% (RSD, n = 6). The developed method is promising for the selective determination of ZEN in complex matrices.
Collapse
Affiliation(s)
- Hao-Ze Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
5
|
Qiu T, Zhu J, Zhang H, Xu B, Guo Y, Li J, Xu X, Peng F, Liu W, Zhao S, Yin Z, Mao S. B-Type Fumonisins in Post-Fermented Tea: Occurrence and Consumer Dietary Exposure in Guangxi, China. Toxins (Basel) 2023; 15:534. [PMID: 37755960 PMCID: PMC10536045 DOI: 10.3390/toxins15090534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Post-fermented tea (PFT), a commonly consumed beverage worldwide, is characterized by the rapid growth of its microbial groups and the substantial changes they undergo. Consequently, PFT may contain mycotoxins such as B-type fumonisins (FBs). This study aimed to assess the intake of FBs through the consumption of PFT among consumers in Guangxi, China. A novel quantitative method using high-performance liquid chromatography-mass spectrometry was used to determine the FB concentration in PFT products. Additionally, a PFT consumption survey was conducted using a face-to-face questionnaire, recording their body weight and PFT consumption patterns based on a three-day dietary recall method. Finally, hazard index was calculated to estimate the health risk of FBs from the consumption of PFT products in Guangxi. The results revealed that the occurrence of FBs in PFT was 20% (24/120), with a concentration ranging from 2.14 to 18.28 μg/kg. The results of the survey showed that the average daily consumption of PFT by consumers was 9.19 ± 11.14 g. The deterministic risk assessment revealed that only 0.026% of the provisional maximum tolerable daily intake of FBs was consumed through PFT, indicating that FB contamination in PFT is not a public health risk.
Collapse
Affiliation(s)
- Taotao Qiu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jialin Zhu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Huayi Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Biyun Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jingrong Li
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Xin Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Weiguo Liu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shengmei Zhao
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Zuocheng Yin
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shihong Mao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
6
|
Bian Y, Zhang Y, Zhou Y, Wei B, Feng X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins (Basel) 2023; 15:toxins15030215. [PMID: 36977106 PMCID: PMC10053610 DOI: 10.3390/toxins15030215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mycotoxins pollution is a global concern, and can pose a serious threat to human health. People and livestock eating contaminated food will encounter acute and chronic poisoning symptoms, such as carcinogenicity, acute hepatitis, and a weakened immune system. In order to prevent or reduce the exposure of human beings and livestock to mycotoxins, it is necessary to screen mycotoxins in different foods efficiently, sensitively, and selectively. Proper sample preparation is very important for the separation, purification, and enrichment of mycotoxins from complex matrices. This review provides a comprehensive summary of mycotoxins pretreatment methods since 2017, including traditionally used methods, solid-phase extraction (SPE)-based methods, liquid-liquid extraction (LLE)-based methods, matrix solid phase dispersion (MSPD), QuEChERS, and so on. The novel materials and cutting-edge technologies are systematically and comprehensively summarized. Moreover, we discuss and compare the pros and cons of different pretreatment methods and suggest a prospect.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (B.W.); (X.F.); Fax: +86-18900911582 (B.W.); +86-18240005807 (X.F.)
| |
Collapse
|
7
|
Wang Y, Hou C, Dai Y, Chu L, Geng S, Zheng S, Kang X. Determination of aflatoxin B1 by novel nanofiber-packed solid-phase extraction coupled with a high performance liquid chromatography-fluorescence detector. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:472-481. [PMID: 36602291 DOI: 10.1039/d2ay01753a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel analytical proposal based on nanofiber-packed solid-phase extraction coupled with high performance liquid chromatography-fluorescence detector (HPLC-FLD) has been successfully developed for determining aflatoxin B1 (AFB1) in foods. Four types of nanofibers, including polystyrene (PS) nanofibers, polypyrrole (PPY) nanofibers, polystyrene-acrylic resin (PS-AR) nanofibers, and polystyrene-polyvinyl pyrrolidone (PS-PVP) nanofibers, were fabricated by electrospinning and utilized to prepare a home-made extraction device. In this study, the factors of different fibers, namely, fiber dosage, pH of extraction solution, type of salt ion, concentration of salt ion, and volume of the eluent were optimized. Under optimized conditions, the method showed good linearity in the range of 0.1-40 ng mL-1 with a correlation coefficient greater than 0.999 and good inter-day accuracy (90.8-112.7% recovery) and precision (1.8-3.6% intra-day RSDs, 2.6% inter-day RSD), and the limit of detection (LOD) was 0.05 ng mL-1. Due to its cost-effective, time-saving, environmentally friendly, and simple performance, it has the potential to be utilized to determine aflatoxins in complicated matrices.
Collapse
Affiliation(s)
- Yunzheng Wang
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Hou
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqi Dai
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lanling Chu
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shiwei Geng
- Animal Products Quality Inspection and Test Center in Jiangsu Province, Nanjing 210036, China
| | - Shenglan Zheng
- Animal Products Quality Inspection and Test Center in Jiangsu Province, Nanjing 210036, China
| | - Xuejun Kang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
Affiliation(s)
- Andrea Schincaglia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 Esq. 115, La Plata 1900, Argentina
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
9
|
Ma S, Gao M, Ma S, Wang J, Sun Y, Wang H, Wang H, Wang X. Trace-level detection of sulfonamide antibiotics using quaternary ammonium polymeric ionic liquid-based effervescence-enhanced dispersive solid-phase extraction followed by LC-DAD analysis in environmental waters. RSC Adv 2022; 12:29915-29927. [PMID: 36321111 PMCID: PMC9580476 DOI: 10.1039/d2ra02488h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Conventional ionic liquids possess several disadvantages, such as high viscosity, difficult sampling/retrieval, and great loss in aqueous solution, limiting their wide applications in the pretreatment field. To solve these drawbacks, we synthesized a quaternary ammonium polymeric ionic liquid (PIL) and pressed it into an effervescent tablet for developing an effervescence-enhanced dispersive solid-phase extraction method (QAP-EDSE). The pressed effervescent tablet was composed of PIL as an extractant, tartaric acid as an acidic source, NaHCO3 as an alkaline source, and water-soluble starch as a filler, respectively. Under the CO2-driven dispersion, the QAP-EDSE method integrated rapid enrichment, extraction, and dispersion into one synchronous step. Employing the one-factor-at-a-time approach, several important variables were optimized as follows: 200 mg of P[VBTHEA]Cl as sorbent, 400 μL of acetone as elution solvent, 5 min of elution, solution pH 9.0, and 1 : 1.25 molar ratio of alkaline to acidic sources. Combining LC-DAD analysis, this proposed approach offered the limits of detection as low as 0.11–0.31 μg L−1 and satisfactory recoveries of 81.40–102.62% for five sulfonamides (SAs) in environmental waters. The lower relative standard deviations (1.9–6.7%) evidenced the higher intraday and interday experimental precision by this method. Overall, the newly developed method is environmentally benign, time-saving, and easy to operate with low detection limit and high recovery and thus shows excellent prospects in the trace-level detection of SAs in environmental waters. An effervescent tablet-assisted dispersive solid-phase extraction based on the utilization of quaternary ammonium poly ionic liquids (PIL) was proposed for the concentration/extraction of sulfonamides (SAs) in river and lake water samples.![]()
Collapse
Affiliation(s)
- Sai Ma
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Su Ma
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China,School of Chemistry and Life Sciences, Suzhou University of Science and TechnologySuzhou 215009China
| | - Jun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Hanyu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| |
Collapse
|
10
|
Universal screening of 200 mycotoxins and their variations in stored cereals in Shanghai, China by UHPLC-Q-TOF MS. Food Chem 2022; 387:132869. [DOI: 10.1016/j.foodchem.2022.132869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
|
11
|
Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins (Basel) 2022; 14:toxins14050328. [PMID: 35622576 PMCID: PMC9143482 DOI: 10.3390/toxins14050328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Natural toxins include a wide range of toxic metabolites also occurring in food and products, thus representing a risk for consumer health. In the last few decades, several robust and sensitive analytical methods able to determine their occurrence in food have been developed. Liquid chromatography mass spectrometry is the most powerful tool for the simultaneous detection of these toxins due to its advantages in terms of sensitivity and selectivity. A comprehensive review on the most relevant papers on methods based on liquid chromatography mass spectrometry for the analysis of mycotoxins, alkaloids, marine toxins, glycoalkaloids, cyanogenic glycosides and furocoumarins in food is reported herein. Specifically, a literature search from 2011 to 2021 was carried out, selecting a total of 96 papers. Different approaches to sample preparation, chromatographic separation and detection mode are discussed. Particular attention is given to the analytical performance characteristics obtained in the validation process and the relevant application to real samples.
Collapse
|
12
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Gab-Allah MA, Tahoun IF, Yamani RN, Rend EA, Shehata AB. Eco-friendly and sensitive analytical method for determination of T-2 toxin and HT-2 toxin in cereal products using UPLC-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
15
|
González-Jartín JM, Rodríguez-Cañás I, Alfonso A, Sainz MJ, Vieytes MR, Gomes A, Ramos I, Botana LM. Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC-MS/MS analysis. Food Chem 2021; 356:129647. [PMID: 33813202 DOI: 10.1016/j.foodchem.2021.129647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
A simple method for the quantification of 40 mycotoxins in milk was developed. This method is based on a QuEChERS extraction followed by the ultra-high liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection, and allows the simultaneous analysis of regulated, emerging, and modified mycotoxins. A sample treatment procedure was optimized to include a concentration step for the analysis of some compounds such as aflatoxin M1. The method was in-house validated in terms of limits of detection (LODs), limits of quantification (LOQs), linearity, recoveries, and precision. LOQs lower than 10 ng/mL were obtained, and recoveries ranged from 61% to 120% with a precision, expressed as the relative standard deviation, lower than 15%. Therefore, acceptable performance characteristics were obtained fulfilling European regulations. The method was successfully applied for the quantification of mycotoxins in raw milk. It can be highlighted high occurrence of beauvericin and enniatins were found in low amounts.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Inés Rodríguez-Cañás
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - María J Sainz
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana Gomes
- Cooperativa Agrícola de Vila do Conde, R. da Lapa 293, 4480-848 Vila do Conde, Portugal.
| | - Isabel Ramos
- Cooperativa Agrícola de Vila do Conde, R. da Lapa 293, 4480-848 Vila do Conde, Portugal.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
16
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
A polyhedral oligomeric silsesquioxanes/dual ligands-based magnetic adsorbent for effective extraction of aflatoxins in cereals via multiple interactions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Quantitative analysis and dietary risk assessment of aflatoxins in Chinese post-fermented dark tea. Food Chem Toxicol 2020; 146:111830. [DOI: 10.1016/j.fct.2020.111830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022]
|
19
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
20
|
Zhang K, Banerjee K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins (Basel) 2020; 12:E539. [PMID: 32825718 PMCID: PMC7551558 DOI: 10.3390/toxins12090539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
As a class of mycotoxins with regulatory and public health significance, aflatoxins (e.g., aflatoxin B1, B2, G1 and G2) have attracted unparalleled attention from government, academia and industry due to their chronic and acute toxicity. Aflatoxins are secondary metabolites of various Aspergillus species, which are ubiquitous in the environment and can grow on a variety of crops whereby accumulation is impacted by climate influences. Consumption of foods and feeds contaminated by aflatoxins are hazardous to human and animal health, hence the detection and quantification of aflatoxins in foods and feeds is a priority from the viewpoint of food safety. Since the first purification and identification of aflatoxins from feeds in the 1960s, there have been continuous efforts to develop sensitive and rapid methods for the determination of aflatoxins. This review aims to provide a comprehensive overview on advances in aflatoxins analysis and highlights the importance of sample pretreatments, homogenization and various cleanup strategies used in the determination of aflatoxins. The use of liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE) and immunoaffinity column clean-up (IAC) and dilute and shoot for enhancing extraction efficiency and clean-up are discussed. Furthermore, the analytical techniques such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), capillary electrophoresis (CE) and thin-layer chromatography (TLC) are compared in terms of identification, quantitation and throughput. Lastly, with the emergence of new techniques, the review culminates with prospects of promising technologies for aflatoxin analysis in the foreseeable future.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration/Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune 412307, India;
| |
Collapse
|
21
|
Wang N, Duan C, Li S, Geng X, Ding K, Guan Y. Aqueous extraction followed by dispersive solid phase extraction with in situ derivatization for the determination of aflatoxins in traditional Chinese medicines. J Chromatogr A 2020; 1618:460894. [DOI: 10.1016/j.chroma.2020.460894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/12/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
22
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020; 9:E518. [PMID: 32326063 PMCID: PMC7230321 DOI: 10.3390/foods9040518] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Collapse
Affiliation(s)
| | | | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
23
|
|
24
|
Xu J, Chi J, Lin C, Lin X, Xie Z. Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. J Chromatogr A 2020; 1620:461026. [PMID: 32178860 DOI: 10.1016/j.chroma.2020.461026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Sensitive and specific analysis of zearalenone (ZEN) mycotoxin in cereals for ensuring food safety is critical and remains challenging. Herein, a new gold nanoparticles @aptamer-functionalized hybrid affinity monolithic column was proposed and employed for online specific recognition of ZEN by HPLC. Characterization on the morphology, Brunauer-Emmett-Teller (BET) surface area mechanical stability and specific performance of the obtained affinity monolith were investigated. A super-high aptamer coverage density could reach 3636 pmol/μL, which is preferable to gain an effective analysis of ZEN with high specificity and a low interference of co-existed substances including typical α-Zearalenol (α-ZOL) and Aflatoxin B1 (AFB1). The sensitive recognition of trace ZEN was obtained with the limit of detection (LOD) as low as 0.05 ng/mL. Applied to real cereal samples, satisfactory recoveries were obtained in the range of 91.6 ± 1.4%-97.8 ± 2.6% (n = 3) in corn, 93.8 ± 3.1%-95.0 ± 3.6% (n = 3) in wheat, and 90.9 ± 4.7%-94.7 ± 3.8% (n = 3) in rice, respectively. The results on quantitative analysis were similar to that of LC-MS and better than that obtained by using immunoaffinity column (IAC) or molecularly imprinted polymer (MIP). This protocol provided an efficient access to high-efficient online specific recognition of ZEN in cereals by using such an aptamer-affinity capillary monolithic column.
Collapse
Affiliation(s)
- Jinhua Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Jinxin Chi
- Xiamen huaxia University, Xiamen, 361024, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
25
|
Song Z, Li S, Guan Y, Wang S, Wang Y, Yang G, Zhang X, Li J, Song W, Zhou C, Chen L. Facile synthesis of zirconia-coated mesoporous silica particles by hydrothermal strategy under low potential of hydrogen conditions and functionalization with dodecylphosphonic acid for high-performance liquid chromatography. J Chromatogr A 2020; 1612:460659. [PMID: 31708214 DOI: 10.1016/j.chroma.2019.460659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/01/2022]
Abstract
In this work, multilayer zirconia-coated silica (ZrO2/SiO2-n) microspheres were successfully produced by a straightforward hydrothermal procedure with a low concentration of Zr4+ (5 mM) under low potential of hydrogen (pH) conditions (pH = =2). The obtained ZrO2/SiO2-n materials exhibited favorable characteristics for high-performance liquid chromatography (HPLC) separation, including high surface area and pore volume, good pore structure, narrow particle size, and pore size distribution. In addition, the zirconia coverage in the mesopores was confirmed by soaking the material in 1 M NaOH solution, with the particles showing strong resistance to the basic solution. The obtained ZrO2/SiO2-n stationary phases were packed into a fused-silica capillary tubing for the separation of alkaloids in hydrophilic interaction chromatography (HILIC) mode, and a column efficiency of 47,800 plates/m was obtained for berberine on a ZrO2/SiO2-6 micro column. The ZrO2/SiO2-6 microspheres were further modified by dodecylphosphonic acid (C12P-2-ZrO2/SiO2-6); the C12P-2-ZrO2/SiO2-6 material showed great potential for application in reversed-phase liquid chromatography (RPLC) mode. The C12P-2-ZrO2/SiO2-6 micro column showed a column efficiency of 55,000 plates/m for naphthalene and 51,300 plates/m for benzene.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Shenghong Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Shuo Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yinghao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xiaochen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Wenhao Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Chuanming Zhou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
26
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
27
|
Jayasinghe GTM, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1609:460431. [DOI: 10.1016/j.chroma.2019.460431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
|
28
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Pellicer-Castell E, Belenguer-Sapiña C, Borràs VJ, Amorós P, El Haskouri J, Herrero-Martínez JM, Mauri-Aucejo AR. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochim Acta 2019; 186:792. [DOI: 10.1007/s00604-019-3958-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
|
30
|
Microwave-Based Technique for Fast and Reliable Extraction of Organic Contaminants from Food, with a Special Focus on Hydrocarbon Contaminants. Foods 2019; 8:foods8100503. [PMID: 31623166 PMCID: PMC6836030 DOI: 10.3390/foods8100503] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023] Open
Abstract
Due to food complexity and the low amount at which contaminants are usually present in food, their analytical determination can be particularly challenging. Conventional sample preparation methods making use of large solvent volumes and involving intensive sample manipulation can lead to sample contamination or losses of analytes. To overcome the disadvantages of conventional sample preparation, many researchers put their efforts toward the development of rapid and environmental-friendly methods, minimizing solvent consumption. In this context, microwave-assisted-extraction (MAE) has obtained, over the last years, increasing attention from analytical chemists and it has been successfully utilized for the extraction of various contaminants from different foods. In the first part of this review, an updated overview of the microwave-based extraction technique used for rapid and efficient extraction of organic contaminants from food is given. The principle of the technique, a description of available instrumentation, optimization of parameters affecting the extraction yield, as well as integrated techniques for further purification/enrichment prior to the analytical determination, are illustrated. In the second part of the review, the latest applications concerning the use of microwave energy for the determination of hydrocarbon contaminants-namely polycyclic aromatic hydrocarbons (PAHs) and mineral oil hydrocarbons (MOH)-are reported and critically overviewed and future trends are delineated.
Collapse
|
31
|
Gao S, Wu Y, Xie S, Shao Z, Bao X, Yan Y, Wu Y, Wang J, Zhang Z. Determination of aflatoxins in milk sample with ionic liquid modified magnetic zeolitic imidazolate frameworks. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121778. [PMID: 31499294 DOI: 10.1016/j.jchromb.2019.121778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The ionic liquid (IL) was introduced to the synthesis system of magnetic zeolite imidazolate framework-8 (M/ZIF-8), which was benefit to the formation of binary imidazole and the co-modification of M/ZIF-8. The morphology and textural properties of ILM/ZIF-8 were characterized by SEM, TEM, BET and BJH. The crystal structural shape and size of MZIF-8 was unvaried with the interventional of IL. The ILM/ZIF-8 was applied to the concentration and determination of aflaoxins (AFB1, AFB2, AFG1 and AFG2) in milk samples based on magnetic solid phase extraction (MSPE) coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The experimental parameters of the MSPE, including amount of ILM/ZIF-8, pH, type and amount of desorption solvent, extraction time and sample volume were investigated by a univariate method and orthogonal screening. The four AFs were concentrated from the 20 mL milk when 90 mg ILM/ZIF-8 was used as magnetic adsorbent. The extraction efficiency of AFs was higher than 80.0% within 15 min. The limits of quantitative and detection were 7.5-26.7 and 2.3-8.1 ng/L, respectively. The proposed method was applied to the determination of milk samples containing trace amounts of AFs and the recoveries ranged from 79.0% to 102.5%, with RSD below 7.7%.
Collapse
Affiliation(s)
- Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Yiqiu Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Siyuan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zichun Shao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiumin Bao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yumeng Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Youyi Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
32
|
|
33
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Tittlemier S, Cramer B, Dall’Asta C, Iha M, Lattanzio V, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J. Developments in mycotoxin analysis: an update for 2017-2018. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2398] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarises developments that have been published in the period from mid-2017 to mid-2018 on the analysis of various matrices for mycotoxins. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes, and zearalenone are covered in individual sections. Advances in sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices, and newly developed comprehensive liquid chromatographic-mass spectrometric based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 23/A, 43124 Parma, Italy
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
35
|
Appell M, Evans KO, Jackson MA, Compton DL. Determination of ochratoxin A in grape juice and wine using nanosponge solid phase extraction clean-up and liquid chromatography with fluorescence detection. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1544148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Michael Appell
- Mycotoxin Prevention and Applied Microbiology Research, United States Department of Agriculture, Agricultural Research Service, National Center of Agricultural Utilization Research, Peoria, IL, USA
| | - Kervin O. Evans
- Renewable Product Technology Research, United States Department of Agriculture, Agricultural Research Service, National Center of Agricultural Utilization Research, Peoria, IL, USA
| | - Michael A. Jackson
- Renewable Product Technology Research, United States Department of Agriculture, Agricultural Research Service, National Center of Agricultural Utilization Research, Peoria, IL, USA
| | - David L. Compton
- Renewable Product Technology Research, United States Department of Agriculture, Agricultural Research Service, National Center of Agricultural Utilization Research, Peoria, IL, USA
| |
Collapse
|
36
|
Asfaram A, Sadeghi H, Goudarzi A, Panahi Kokhdan E, Salehpour Z. Ultrasound combined with manganese-oxide nanoparticles loaded on activated carbon for extraction and pre-concentration of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica, and mentha, and water samples. Analyst 2019; 144:1923-1934. [DOI: 10.1039/c8an02338g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A dispersive micro solid-phase extraction (DMSPE) technique was developed using manganese-oxide nanoparticles loaded on activated carbon (Mn3O4-NPs-AC) as an effective sorbent combined with ultrasound for the extraction and determination of a trace amount of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica and mentha, and water samples.
Collapse
Affiliation(s)
- Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering
- Golestan University
- Gorgan 49188-88369
- Iran
| | | | - Zeinab Salehpour
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|
37
|
Moradi Z, Alipanahpour Dil E, Asfaram A. Dispersive micro-solid phase extraction based on Fe3O4@SiO2@Ti-MOF as a magnetic nanocomposite sorbent for the trace analysis of caffeic acid in the medical extracts of plants and water samples prior to HPLC-UV analysis. Analyst 2019; 144:4351-4361. [DOI: 10.1039/c9an00120d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, Fe3O4@SiO2@Ti-MOF-NCs, as an efficient sorbent, have been synthesized in a laboratory and utilized for extracting CA in the medical extracts of plants and water samples before their analysis by HPLC.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Chemistry
- Yasouj University
- Yasouj 75918-74831
- Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|