1
|
Moore G, Brooks P, Pappalardo L, Boufridi A. Phenolic profiles of Australian monofloral Eucalyptus, Corymbia, Macadamia and Lophostemon honeys via HPLC-DAD analysis. Food Chem 2025; 462:140900. [PMID: 39213973 DOI: 10.1016/j.foodchem.2024.140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.
Collapse
Affiliation(s)
- Georgia Moore
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia; Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Linda Pappalardo
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Asmaa Boufridi
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| |
Collapse
|
2
|
Zhang XH, Li MX, Li SY, Su J, Wei LY, Yuan YT, Shu PH, Tang K. A green deep eutectic solvent-based aqueous two-phase system combined with chemometrics for flavonoids extracting and detecting in honey. Food Chem X 2024; 24:101932. [PMID: 39553238 PMCID: PMC11566322 DOI: 10.1016/j.fochx.2024.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
In this study, an eco-friendly and designable aqueous two-phase system (ATPS) was developed using natural deep eutectic solvents (DES) and short-chain alcohols. The formation mechanism and influence of various factors on phase behavior were investigated. Optimal extraction parameters were determined through single-factor experiments and response surface methodology (RSM): 45 °C temperature, 45 % n-propanol, 40 % DES, and 0.06 mL quercetin working standard solution. Based on the alternating trilinear decomposition assisted multiple curve resolution (ATLD-MCR) algorithm, a calibration model was established for simultaneous and rapid quantitative analysis of flavonoids in Acacia honey, achieving 74.0-86.6 % accuracy and 0.82-2.20 % standard deviation. Moreover, the green chemistry metrics of development method was evaluated using analytical greenness (AGREE) and compared with earlier published methods in the literature. The results indicated that this novel combination strategy of DES-based ATPS with chemometrics conforms to the principles of green chemistry, and is suitable for extracting active components from plants.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Ming-Xuan Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Shi-Yu Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Jie Su
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Li-Ying Wei
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yan-Ting Yuan
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Peng-Hua Shu
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| |
Collapse
|
3
|
Yu W, Sun Q, Qu L, Liu T, Yi S, Zhang G, Chen H, Luo L. Rapid in situ identification of honey authenticity based on RP-Nano-ESI-MS using online desalting. Food Chem 2024; 458:140278. [PMID: 38964103 DOI: 10.1016/j.foodchem.2024.140278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qifang Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liangliang Qu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Huanwen Chen
- Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330013, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
4
|
Bouddine T, Kachmar MR, Akdad M, Bouymajane A, Ajebli M, Mothana RA, Alanzi AR, Hajjaj H, Khallouki F, Reybroeck W, Van Poucke C, Hajji L. Authentication of Ziziphus lotus Honey from the Middle Atlas Mountains of Morocco: Physicochemical Properties, Mineral Content, Sugar, Polyphenol Profiles, and Antioxidant Capacity. ACS OMEGA 2024; 9:44956-44973. [PMID: 39554406 PMCID: PMC11561629 DOI: 10.1021/acsomega.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
The jujube honey from the Moroccan Middle Atlas area is thoroughly described in this study, which takes into account melissopalynological, physicochemical, antioxidant, mineral, and phytochemical characteristics. Twelve samples of jujube honey underwent in-depth analyses between 2019 and 2021. The honey's unifloral origin was confirmed by pollen analysis, which revealed that Ziziphus lotus pollen predominated along with pollen from 21 other species. The honeys meet Codex Alimentarius criteria and displayed a variety of characteristics, including moisture content (13.7% to 18.6%), pH (3.9 to 6.4), electrical conductivity (406 to 713 μs/cm), ash content (0.31 to 1.21%), and the Invertase Index (7.1 to 26.4 U/kg). Hydroxymethylfurfural levels spanned from 1.1 to 40 mg/kg, indicating freshness. No significant differences were observed between honey groups for fructose and glucose profiles determined via GC-MS analysis. The honey samples, which varied in total phenolic content (TPC) from 48.3 mg of gallic acid equivalent (GAE)/100 g to 91.8 mg of GAE/100 g, showed strong antioxidant capacity, indicating possible health advantages. This study also revealed principal phenolic substances including gallic acid (1.18 to 6.36 mg/100 g), caffeic acid (0.07 to 3.25 mg/100 g), and p-coumaric acid (0.49 to 5.04 mg/100 g). Next, the bactericidal concentrations and minimum inhibitory concentrations (MBC and MIC) of each jujube honey were additionally examined and compared with two representative bacterial strains species Listeria monocytogenes and Salmonella typhimurium using broth microdilution, with MIC values ranging between 0.03 and 0.3 mg/mL for Listeria monocytogenes and 0.003 to 0.03 mg/mL for Salmonella typhimurium. There is a correlation between various parameters and the monofloral pollen content in honey, as determined by PCA analysis.
Collapse
Affiliation(s)
- Toufik Bouddine
- Bioactive
and Environmental Health Laboratory, Moulay
Ismail University, Faculty of Sciences, Meknes 50000, Morocco
- Laboratory
of Biotechnology and Bioresources Valorization, Moulay Ismail University, Faculty of Sciences, Meknes 50000, Morocco
| | - Mohamed Reda Kachmar
- High
Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco
- Valorisation
of Medicinal and Aromatic Plants and Environment Team, Moulay Ismail University, Faculty of Sciences, Meknes 50000, Morocco
| | - Mourad Akdad
- Team
of Ethnopharmacology and Pharmacognosy, Moulay Ismail University, Faculty of Sciences & Techniques, Errachidia 52000, Morocco
| | - Aziz Bouymajane
- Team of Microbiology
and Health, Laboratory of Chemistry-Biology Applied to the Environment, Moulay Ismail University, Faculty of Sciences, Meknes 50000, Morocco
- Biology,
Environment and Health Team, Moulay Ismail University, Faculty of Sciences and Technologies, Errachidia 52000, Morocco
| | - Mohamed Ajebli
- Team
of Ethnopharmacology and Pharmacognosy, Moulay Ismail University, Faculty of Sciences & Techniques, Errachidia 52000, Morocco
| | - Ramzi A. Mothana
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University Riyadh,, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University Riyadh,, Riyadh 11451, Saudi Arabia
| | - Hassan Hajjaj
- Laboratory
of Biotechnology and Bioresources Valorization, Moulay Ismail University, Faculty of Sciences, Meknes 50000, Morocco
| | - Farid Khallouki
- Team
of Ethnopharmacology and Pharmacognosy, Moulay Ismail University, Faculty of Sciences & Techniques, Errachidia 52000, Morocco
| | - Wim Reybroeck
- Flanders
Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, Melle 9090, Belgium
| | - Christof Van Poucke
- Flanders
Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, Melle 9090, Belgium
| | - Lhoussain Hajji
- Bioactive
and Environmental Health Laboratory, Moulay
Ismail University, Faculty of Sciences, Meknes 50000, Morocco
- Laboratory
of Biotechnology and Bioresources Valorization, Moulay Ismail University, Faculty of Sciences, Meknes 50000, Morocco
| |
Collapse
|
5
|
Kranjac M, Kuś PM, Prđun S, Odžak R, Tuberoso CIG. Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites 2024; 14:606. [PMID: 39590842 PMCID: PMC11596457 DOI: 10.3390/metabo14110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes of organic compounds in the metabolic profiles, among which, key metabolites such as biomarkers and bioactive compounds can be highlighted. Chromatography-based metabolomics strategies have significantly impacted different aspects of bioorganic research, including primary areas such as botanical origins, honey origin traceability, entomological origins, and honey maturity. Through the use of different tools for complex data analysis, these strategies contribute to the detection, assessment, and/or correlation of different honey parameters and attributes. Bioorganic research is mainly focused on phytochemicals and their transformation, but the chemical changes that can occur during the different stages of honey formation remain a challenge. Furthermore, the latest user- and environmentally friendly sample preparation methods and technologies as well as future perspectives and the role of chromatography-based metabolomic strategies in honey characterization are discussed. The objective of this review is to summarize the latest metabolomics strategies contributing to bioorganic research onf honey, with emphasis on the (i) metabolite analysis by gas and liquid chromatography techniques; (ii) key metabolites in the obtained metabolic profiles; (iii) formation and accumulation of biogenic volatile and non-volatile markers; (iv) sample preparation procedures; (v) data analysis, including software and databases; and (vi) conclusions and future perspectives. For the present review, the literature search strategy was based on the PRISMA guidelines and focused on studies published between 2019 and 2024. This review outlines the importance of metabolomics strategies for potential innovations in characterizing honey and unlocking its full bioorganic potential.
Collapse
Affiliation(s)
- Marina Kranjac
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland
| | - Saša Prđun
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | | |
Collapse
|
6
|
Cucu AA, Urcan AC, Bobiș O, Bonta V, Cornea-Cipcigan M, Moise AR, Dezsi Ș, Pașca C, Baci GM, Dezmirean DS. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1883. [PMID: 38999722 PMCID: PMC11244575 DOI: 10.3390/plants13131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties of FJ plants and honey. Notably, this study is the first to identify individual phenolic compounds in both FJ plant tissues and FJ honey, highlighting resveratrol as a marker of FJ honey. The study tested inhibitory activity against seven bacterial strains: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella enteritidis, and the yeast Candida albicans. Disk diffusion and microdilution methods were used to assess antimicrobial activity, while the crystal violet staining test evaluated antibiofilm activity. Results showed that FJ plant tissues and honey exhibited strong inhibition, particularly against Gram-negative bacterial strains. The most significant inhibition of biofilm formation, by both FJ plant tissues and honey, was observed against Staphylococcus aureus and Escherichia coli. A significant positive correlation was found between antimicrobial activity and individual polyphenols, especially resveratrol. The antibacterial and antibiofilm potential of FJ plant tissues and honey suggests promising applications in sustainable beekeeping. Further research is necessary to evaluate the bioactive compounds found in FJ honey and their health effects.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Victorița Bonta
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Ștefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Coatti G, Beretta G, Giorgi A. Phytochemical profiling of red raspberry (Rubus idaeus L.) honey and investigation of compounds related to its pollen occurrence. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5391-5406. [PMID: 38345434 DOI: 10.1002/jsfa.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Red raspberry (Rubus idaeus L.) is an important nectar source for honey production in some specific habitats as well as an important crop, so the definition of the features of this kind of honey is noteworthy. However, due to its rarity on the market, red raspberry honey is poorly characterized. The aim of this work was the phytochemical characterization of honey containing red raspberry from different geographical origins, through melissopalynological analyses concurrently with untargeted metabolomics achieved with different chromatographic techniques coupled to mass spectrometry: solid-phase micro-extraction/gas chromatography/mass spectrometry (SPME-GC-MS) and high-performance liquid chromatography/Orbitrap mass spectrometry (HPLC-Orbitrap). RESULTS Only 4 out of the 12 samples involved in the study contained raspberry pollen as dominant pollen, although these honeys did not group in the hierarchical cluster analysis nor in the classical multidimensional scaling analyses used for data evaluation. The first result was the detection of mislabelling in two samples, which contained raspberry pollen only as minor or important minor pollen. Of the 188 compounds identified by HPLC-Orbitrap and of the 260 identified by SPME-GC-MS, 87 and 31 compounds were present in all samples, respectively. The structurally related compounds nicotinaldehyde and nicotinamide, nicotinic acid and nicotinyl alcohol were present in 100% of the samples and correlated with R. idaeus pollen count (r > 0.60, Pearson's correlation analysis). CONCLUSION This study reveals important aspects about the characterization of red raspberry honey and could give new insights on bee diet and preferences, since niacin compounds resulted interestingly to be related to the presence of red raspberry pollen. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Sara Panseri
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Radmila Pavlovic
- Proteomics and Metabolomics Facility (PROMEFA), San Raffaele Scientific Institute, Milan, Italy
| | | | - Gloria Coatti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Wu Q, Zheng J, Yu Y, Li Z, Li Y, Hu C, Zhou Y, Chen R. Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules 2024; 29:3133. [PMID: 38999085 PMCID: PMC11242995 DOI: 10.3390/molecules29133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Vitex negundo has strong antioxidant activity, but its primary antioxidant components are not clear. In this study, the antioxidant components were screened by offline two-dimensional liquid chromatography coupled with electrochemical detection (2D-LC-ECD) and subsequently assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, radical scavenging capacity, and molecular docking. Various fractions were isolated from Vitex negundo leaves, and 39 antioxidant components were screened and identified. All of the fractions containing the antioxidant components exhibited certain antioxidant activity. Correlation analysis revealed a strong correlation between the response of LC-ECD and the in vitro antioxidant activity of the fractions. Molecular docking demonstrated that components with high response to LC-ECD exhibited robust interaction with antioxidant-related target proteins. The main antioxidant components of Vitex negundo leaves were isoorientin, chlorogenic acid, agnuside, cynaroside, and scutellarin. The 2D-LC-ECD combined with LC-MS/MS was rapid and effective in screening the antioxidant components in Vitex negundo leaves and could also provide technical support for the discovery of antioxidant components with different polarities and contents in other medicinal and edible plants.
Collapse
Affiliation(s)
- Qimei Wu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jinfen Zheng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yan Yu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhirong Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Ying Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chengfeng Hu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yaping Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Rongxiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Fei Z, Sun M, Song Q, Li C, Liu Y. Freezing-assisted sugaring-out liquid-liquid extraction coupled with LC-MS/MS for quantitative determination of perchlorate in honey. Food Chem 2024; 435:137604. [PMID: 37783124 DOI: 10.1016/j.foodchem.2023.137604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
For the first time, a simple, quick, sensitive, and low cost method for quantification of perchlorate in honey using liquid chromatography-tandem mass spectrometry was developed. Through freezing-assisted sugaring-out liquid-liquid extraction, one-step simultaneous extraction and clean-up of perchlorate from honey were perfectly achieved. Glucose and fructose, the most abundant sugars in honey, were almost completely removed from the extract without use of any clean-up materials. Under optimum conditions, the proposed approach exhibited satisfactory linearity, negligible matrix effects, and low detection limit of 0.05 µg/kg, providing recoveries of 96.7 %-102.3 % with relative standard deviation of < 9 % for honey samples. The validated method was applied to the analysis of perchlorate in 36 honey samples, and detection rate was 94.4 %. This work provided a simple and reliable method for extensive monitoring of perchlorate in honey and opened- up new insights for analysis of contaminants in honey matrixes.
Collapse
Affiliation(s)
- Zhixin Fei
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022,China.
| | - Mingyue Sun
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022,China; College of Public Health, Dali University, Dali 671000, China
| | - Qing Song
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022,China
| | - Chengxi Li
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022,China
| | - Yang Liu
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Xishan District, Kunming 650022,China.
| |
Collapse
|
10
|
Zouhri A, Bouddine T, Menyiy NE, El-Mernissi Y, Laaroussi H, Chebaibi M, Amhamdi H, Elharrak A, Nafidi HA, Sitotaw B, Jardan YAB, Bourhia M, Hajji L. Chemical composition and potential antioxidant, anti-inflammatory, and analgesic efficacy of Cistus albidus L. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:81-99. [PMID: 38554388 DOI: 10.2478/acph-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/01/2024]
Abstract
This study aims to assess the chemical composition of the aqueous extract of Cistus albidus L. leaves, as well as the potential of aqueous and hydroethanol extracts of the leaves and seeds as analgesic, anti--inflammatory, and antioxidant agents. The contents of phenolics and inorganic constituents were determined in C. albidus seeds and leaves; antioxidant capacity was assessed by 3 complementary and diverse tests. The carrageenan-induced paw edema technique was used to investigate the anti-inflammatory effect in vivo, and albumin denaturation to evaluate the anti-inflammatory effect in vitro. The acetic acid-induced contortion test, the tail-flick test, and the plantar test were used to assess the analgesic effi cacy in vivo. Chemical analysis was performed by UPLC-MS/MS to quantify several phenolic compounds including catechin (1,627.6 mg kg-1), quercitrin (1,235.8 mg kg-1) and gallic acid (628. 2 mg kg-1). The ICP analysis revealed that potassium and calcium were the main inorganic components in the seeds and leaves of C. albidus. The hydroethanolic extract of the leaves showed the highest content of polyphenols/flavonoids, whereas the highest value of proantho cyanidins was detected in the aqueous extract of the seeds. All extracts showed potent antioxidant activity related to different phenolic compounds (quercetin, gallic acid, astragalin, catechin, and rutin). The aqueous extract of the leaves strongly inhibited paw edema (76.1 %) after 6 h of treatment and showed maximal inhibition of protein denaturation (191.0 µg mL-1 for 50 % inhibition) and analgesic activity in different nociceptive models. The presented data reveal that C. albidus extracts potentially show antioxidant, anti-inflammatory, and analgesic activities that could confirm the traditional use of this plant.
Collapse
Affiliation(s)
- Aziz Zouhri
- Bioactives and Environmental Health Laboratory Faculty of Sciences, Moulay Ismail University Meknes B.P. 11201, Morocco
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Toufik Bouddine
- Bioactives and Environmental Health Laboratory Faculty of Sciences, Moulay Ismail University Meknes B.P. 11201, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Yahya El-Mernissi
- Research Unit in Applied Chemistry, Faculty of Science and Techniques, Abdelmalek Essaadi University, Al Hoceima 32003, Morocco
| | - Hassan Laaroussi
- Department of Biology, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah of Fez, 30000, Morocco
| | - Mohamed Chebaibi
- Laboratory of Biomedical and Translational Research Faculty of Medicine and Pharmacy of Fez, University of Sidi Mohamed Ben Abdellah, BP 1893, Km 22 Road of Sidi Harazem, Fez, Morocco
| | - Hassan Amhamdi
- Research Unit in Applied Chemistry, Faculty of Science and Techniques, Abdelmalek Essaadi University, Al Hoceima 32003, Morocco
| | - Abdelhay Elharrak
- Bioactives and Environmental Health Laboratory Faculty of Sciences, Moulay Ismail University Meknes B.P. 11201, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University 2325 Quebec City, QC G1V 0A6, Canada
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University Bahir Dar, Ethiopia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Lhoussain Hajji
- Bioactives and Environmental Health Laboratory Faculty of Sciences, Moulay Ismail University Meknes B.P. 11201, Morocco
| |
Collapse
|
11
|
Ismail CMKH, Abdul Hamid AA, Abdul Rashid NN, Lestari W, Mokhtar KI, Mustafa Alahmad BE, Abd Razak MRM, Ismail A. An ensemble docking-based virtual screening and molecular dynamics simulation of phytochemical compounds from Malaysian Kelulut Honey (KH) against SARS-CoV-2 target enzyme, human angiotensin-converting enzyme 2 (ACE-2). J Biomol Struct Dyn 2024:1-30. [PMID: 38279932 DOI: 10.1080/07391102.2024.2308762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells via receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 in vitro, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Che Muhammad Khairul Hisyam Ismail
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Widya Lestari
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Khairani Idah Mokhtar
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Basma Ezzat Mustafa Alahmad
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Azlini Ismail
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
12
|
Mansour FR, Abdallah IA, Bedair A, Hamed M. Analytical Methods for the Determination of Quercetin and Quercetin Glycosides in Pharmaceuticals and Biological Samples. Crit Rev Anal Chem 2023; 55:187-212. [PMID: 37898879 DOI: 10.1080/10408347.2023.2269421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Flavonoids are plant-derived compounds that have several health benefits, including antioxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. Quercetin is a flavonoid that is widely present in various fruits, vegetables, and drinks. Accurate determination of quercetin in different samples is of great importance for its potential health benefits. This review, is an overview of sample preparation and determination methods for quercetin in diverse matrices. Previous research on sample preparation and determination methods for quercetin are summarized, highlighting the advantages and disadvantages of each method and providing insights into recent developments in quercetin sample treatment. Various analytical techniques are discussed including spectroscopic, chromatographic, electrophoretic, and electrochemical methods for the determination of quercetin and its derivatives in different samples. UV-Vis (Ultraviolet-visible) spectrophotometry is simple and inexpensive but lacks selectivity. Chromatographic techniques (HPLC, GC) offer selectivity and sensitivity, while electrophoretic and electrochemical methods provide high resolution and low detection limits, respectively. The aim of this review is to comprehensively explore the determination methods for quercetin and quercetin glycosides in diverse matrices, with emphasis on pharmaceutical and biological samples. The review also provides a theoretical basis for method development and application for the analysis of quercetin and quercetin glycosides in real samples.
Collapse
Affiliation(s)
- Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Monufia, Egypt
| | - Mahmoud Hamed
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| |
Collapse
|
13
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Sala S, Zeni V, Benelli G, Giorgi A. Formal analyses are fundamental for the definition of honey, a product representing specific territories and their changes: the case of North Tyrrhenian dunes (Italy). Sci Rep 2023; 13:17542. [PMID: 37845313 PMCID: PMC10579322 DOI: 10.1038/s41598-023-44769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Honey is a variegate matrix depending significantly on the floral origin, and it could become an important agri-food product to valorise specific territories. Being so diverse, different analytical techniques are necessary for its description. Herein we characterized the honey produced in one of the Italian sand dunes systems hosting beekeeping activities. In terms of floristic origin, phytochemical characterization, and sensory and colour analysis, honey collected in 2021 and 2022 was comparable. Honey was polyfloral, with several pollens from dune habitat plants classified as minor. The presence of the allochthonous Amorpha fruticosa L. and the ruderal Rubus fruticosus L. pollens in the category of the secondary pollens testifies the alteration of the park vegetation. The phytochemical profile was rich in polyphenols. Other interesting compounds were coumarine derivatives, likely attributable to resin-laden plants as rockroses, long chain hydroxyacids typical of royal jelly and nicotinic acid and its analogues (2-hydroxynicotinic acid and 2-hydroxyquinoline). The above-mentioned honey showed interesting features and was a good representation of the vegetation of this area. Our study pointed out the importance of relying on multiple analytical techniques for the characterization of honey and the advisability of a technical support toward beekeepers to correctly describe and valorise their product.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy.
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy.
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Carla Gianoncelli
- Fondazione Fojanini Di Studi Superiori, Via Valeriana 32, 23100, Sondrio, Italy
| | - Stefano Sala
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| |
Collapse
|
14
|
Ismail CMKH, Khong NM, Ahmad A, Mokhtar KI, Lestari W, Mustafa Alahmad BE, Abdul Hamid AA, Mohd Abd Razak MR, Ismail A. LC-MS/MS-QTOF dataset of compounds detected in kelulut honey of the stingless bees, Heterotrigona itama and Tetrigona binghami from Kuantan, Pahang, Malaysia. Data Brief 2023; 49:109409. [PMID: 37520655 PMCID: PMC10372159 DOI: 10.1016/j.dib.2023.109409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Honey is a sustainable nutritious substance which has been incorporated into the human diet since ancient times for its health and remedial benefits. Stingless bee honey or kelulut honey (KH) is well-known in Malaysia and has received high demand in the market due to its distinctive unique flavour. Its composition, colour, and flavour are majorly affected by the geographical location, floral source, climate, as well as the bee species. This data article presents the nontargeted metabolite profiling of the extracts of KH of Heterotrigona itama and Tetrigona binghami bee species. The KH was collected from three nests in Kuantan, Pahang, which is situated in the east coast of Peninsular Malaysia. The extracts were prepared using sugaring-out assisted liquid-liquid extraction (SULLE) method and the Liquid Chromatography-Tandem Mass Spectrometry with Quadrupole Time-of-Flight, operated in the negative ion mode, was used to identify compounds in the extracts. The data processing revealed the presence of 35 known compounds in the KH1 extract by Heterotrigona itama collected from Bukit Kuin, 38 compounds in the KH2 extract by H. itama collected from Indera Mahkota, whilst 50 known compounds were present in KH3 extract by Tetrigona binghami species from Indera Mahkota. This data article contains the m/z values, retention times, and the METLIN database search hit identities of the compounds and their respective classes.
Collapse
Affiliation(s)
- Che Muhammad Khairul Hisyam Ismail
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
- Institute of Planetary Survival for Sustainable Well-Being (PLANETIIUM), International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nicholas M.H. Khong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Azmir Ahmad
- Department of Basic Medical Science for Nursing, Kulliyyah of Nursing, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Khairani Idah Mokhtar
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Widya Lestari
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Basma Ezzat Mustafa Alahmad
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, 40170 Shah Alam, Selangor, Malaysia
| | - Azlini Ismail
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
15
|
Bell AR, Grainger MNC. Accelerated loss of diastase in mānuka honey: Investigation of mānuka specific compounds. Food Chem 2023; 426:136614. [PMID: 37329801 DOI: 10.1016/j.foodchem.2023.136614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Diastase is used internationally as a quality monitor for excessive heat treatment and prolonged storage of honey; honey must contain an activity of at least 8 diastase numbers (DN) for it to be considered export quality. Freshly harvested mānuka honey can have diastase activity close to the export threshold of 8 DN without excess heating, increasing susceptibility for export failure. This research investigated the effect of compounds unique to or high in concentration in mānuka honey on diastase activity. Investigation of the effect of methylglyoxal, dihydroxyacetone, 2-methoxybenzoic acid, 3-phenyllatic acid, 4-hydroxyphenyllactic acid and 2'-methoxyacetophenone on diastase activity was carried out. Mānuka honey was stored at 20 and 27 °C and clover honey spiked with compounds of interest were stored at 20, 27 and 34 °C and monitored overtime. Methylglyoxal and 3-phenyllactic acid were found to accelerate the loss of diastase above the loss normally observed with time and elevated temperature.
Collapse
Affiliation(s)
- Amber R Bell
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Megan N C Grainger
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
16
|
Faúndez X, Báez ME, Martínez J, Zúñiga-López MC, Espinoza J, Fuentes E. Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chem 2023; 426:136561. [PMID: 37321119 DOI: 10.1016/j.foodchem.2023.136561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
The antibacterial activity (ABA) of honey is associated with the generation of reactive oxygen species (ROS), where polyphenols (PFs) play a key role due to their pro-oxidant action modulated by metallic cations. In this work, the contents of PFs, H2O2, OH radicals, Cu, Fe, Mn, Zn, and ABA against Staphylococcus epidermidis and Pseudomonas aeruginosa were determined in honeys from central Chile. Then, their relationships were evaluated through partial least squares regression. The average contents of phenolic acids, flavonoids and metals in honey ranged from 0.4 to 4 μg/g, 0.3-1.5 μg/g and 3-6 μg/g, respectively. All honeys showed accumulation of H2O2 (1-35 μg/g) and OH radicals. The PLS showed that gallic acid, p-coumaric acid, chrysin, kaempferol, Fe, and Mn stimulate the generation of ROS. Quercetin, Cu, and Zn showed marginal antioxidant effects. PFs favor the ABA of honey against both bacteria and H2O2 against S. epidermidis.
Collapse
Affiliation(s)
- Ximena Faúndez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - María C Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jeannette Espinoza
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Xia J, Zhou J, Liu Y, Yan N, Hu X, Zhou L, Pu Q. Non-destructive distinction of single seed for Medicago sativa and Melilotus officinalis by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2023; 1704:464116. [PMID: 37290349 DOI: 10.1016/j.chroma.2023.464116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Flavonoids are a class of natural polyphenolic compounds with great health benefits, and the development of methods for their analysis is of continuing interest. In this work, apigenin, kaempferol and formononetin were selected as the typical representatives of flavone, flavonol and isoflavone, three subclasses of flavonoids. Fluorescence studies revealed that tetraborate complexation could significantly sensitize the weak intrinsic fluorescence of flavonoids in solution, with a maximum of 137-fold for kaempferol. Subsequently, an integrated strategy of derivatization and separation was proposed for the universal analysis of flavonoids by capillary electrophoresis (CE) with 405 nm laser-induced fluorescence (LIF) detection. Using a running buffer consisting of 20 mM sodium tetraborate, 10 mM SDS and 10% methanol (pH 8.5), the dynamic derivatization was realized in the capillary, and the baseline separation was achieved within 10 min, with the detection limits of 0.92-35.46 nM (S/N=3) for the total of 9 flavonoids. The developed CE-LIF method was employed to the quantitative analysis of some flavonoids in Medicago sativa (alfalfa) plants and granulated alfalfa with the recoveries of 80.55-94.25%. Combined with the principal component analysis, the developed method was successfully applied to the non-destructive distinction of single seed for alfalfa and Melilotus officinalis (sweet clover), two forage grass seeds with very similar apparent morphology. Furthermore, this method was used to continuously monitor the substance metabolism during the soaking process at the level of single seed.
Collapse
Affiliation(s)
- Jingtong Xia
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiahao Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanlong Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaowen Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Liu T, Qiao N, Ning F, Huang X, Luo L. Identification and characterization of plant-derived biomarkers and physicochemical variations in the maturation process of Triadica cochinchinensis honey based on UPLC-QTOF-MS metabolomics analysis. Food Chem 2023; 408:135197. [PMID: 36527917 DOI: 10.1016/j.foodchem.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The maturation patterns of nectar into honey are not well understood. The current work selected Triadica cochinchinensis honey (TCH) at three maturity stages to systematically investigate the variation patterns in physicochemical parameters and metabolites. Based on both targeted and untargeted metabolomics analyses, the N1, N5, N10-(E)-tricoumaryl spermidine was identified as the plant-derived characteristic compound in TCH. A total of 26 compounds were quantified by UPLC-QTOF-MS using an external standard calibration method. Two patterns of the honey maturation process were identified based on the 723 metabolite signature transformations. The first was that the levels of plant-derived compounds with strong reducing activity were reduced, such as spermidine, flavonoids, and their derivatives. In contrast, the second pattern was that the maturation process of honey was accompanied by the formation of lactone glycoside analogs and organic acids, which may be facilitated by the enzymatic transformation of enzymes secreted by the bees.
Collapse
Affiliation(s)
- Tao Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ning Qiao
- Ganzhou Customs, Ganzhou 341000, PR China
| | - Fangjian Ning
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xueyong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Liping Luo
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
19
|
Guo J, Ding Q, Zhang Z, Zhang Y, He J, Yang Z, Zhou P, Gong X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules 2023; 28:molecules28073270. [PMID: 37050033 PMCID: PMC10097088 DOI: 10.3390/molecules28073270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
This study evaluates the phenolic profile as well as the antioxidant properties of Shennongjia Apis cerana honey through a comparison with Apis mellifera honey in China. The total phenolic content (TPC) ranges from 263 ± 2 to 681 ± 36 mg gallic acid/kg. The total flavonoids content (TFC) ranges from 35.9 ± 0.4 to 102.2 ± 0.8 mg epicatechin/kg. The correlations between TPC or TFC and the antioxidant results (FRAP, DPPH, and ABTS) were found to be statistically significant (p < 0.01). Furthermore, the phenolic compounds are quantified and qualified by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS), and a total of 83 phenolic compounds were tentatively identified in this study. A metabolomics analysis based on the 83 polyphenols was carried out and subjected to principal component analysis and orthogonal partial least squares-discriminant analysis. The results showed that it was possible to distinguish Apis cerana honey from Apis mellifera honey based on the phenolic profile.
Collapse
Affiliation(s)
- Jingwen Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qiong Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianshe He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zong Yang
- AB Sciex Co., Ltd., Beijing 100102, China
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Yu W, Zhang G, Wu D, Guo L, Huang X, Ning F, Liu Y, Luo L. Identification of the botanical origins of honey based on nanoliter electrospray ionization mass spectrometry. Food Chem 2023; 418:135976. [PMID: 36963136 DOI: 10.1016/j.foodchem.2023.135976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The botanical origins of honey are important for the quality control and commercialization of honey. In this research, we established a nanoliter electrospray ionization mass spectrometry (Nano-ESI-MS) method to identify Castanopsis honey (CH), Eurya honey (EH), Dendropanax dentiger honey (DH), and Triadica cochinchinensis honey (TH). In total, 38 compounds were identified based on the collision-induced dissociation experiments by Nano-ESI-MS with 16 differential compounds and 7 quantified as potential differential markers. These four types of honey were distinguished from each other by their mass spectrometry data combined with multivariate analysis with three out of the 7 differential markers, i.e., phenethylamine, tricoumaroyl spermidine, and (+/-)-abscisic acid, identified as potential markers for CH, EH, and DH, respectively. Both the qualitative and quantitative results derived from Nano-ESI-MS were further verified by UPLC-Q/TOF-MS. Our studies provided the significant potential of the Nano-ESI-MS method in the identification of the botanical origins of different kinds of honey.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Dong Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Fangjian Ning
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
21
|
Yi S, Zhang G, Liu M, Yu W, Cheng G, Luo L, Ning F. Citrus Honey Ameliorates Liver Disease and Restores Gut Microbiota in Alcohol-Feeding Mice. Nutrients 2023; 15:nu15051078. [PMID: 36904078 PMCID: PMC10005585 DOI: 10.3390/nu15051078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Citrus honey (CH) is rich in nutrients that have a wide variety of biological functions, such as antibacterial, anti-inflammatory, and antioxidant activities, and which demonstrate therapeutic properties, such as anti-cancer and wound-healing abilities. However, the effects of CH on alcohol-related liver disease (ALD) and the intestinal microbiota remain unknown. This study aimed to determine the alleviating effects of CH on ALD and its regulatory effects on the gut microbiota in mice. In total, 26 metabolites were identified and quantified in CH, and the results suggested that the primary metabolites were abscisic acid, 3,4-dimethoxycinnamic acid, rutin, and two markers of CH, hesperetin and hesperidin. CH lowered the levels of aspartate aminotransferase, glutamate aminotransferase, and alcohol-induced hepatic edema. CH could promote the proliferation of Bacteroidetes while reducing the abundance of Firmicutes. Additionally, CH also showed some inhibitory effects on the growth of Campylobacterota and Turicibacter. CH enhanced the secretion of short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, butyric acid, and valeric acid. Given its alleviating functions in liver tissue damage and its regulatory effects on the gut microbiota and SCFAs, CH could be a promising candidate for the therapeutic treatment of ALD.
Collapse
Affiliation(s)
- Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mingyan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guohua Cheng
- Agriculture and Rural Affairs Bureau of Nanfeng County, Fuzhou 344500, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| | - Fangjian Ning
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| |
Collapse
|
22
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
23
|
Dhamole PB, Joshi N, Bhat V. A review of recent developments in sugars and polyol based soluting out separation processes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Effect of Liquefaction of Honey on the Content of Phenolic Compounds. Molecules 2023; 28:molecules28020714. [PMID: 36677771 PMCID: PMC9861181 DOI: 10.3390/molecules28020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants and become honey from the nectar of blossoms. In this study, how the content of phenolic acids and flavones in honey were affected by liquefaction of honey using a microwave oven was studied. The concentration of tested compounds in untreated honey and in honey liquefied in a hot water bath, ultrasonic bath and microwave oven at four microwave power levels were determined by reversed phase liquid chromatography combined with multichannel electrochemical detection. A significant decrease in the content of all compounds was observed for all melting treatments. The phenolic compounds concentration decreased on average by 31.1-35.5% using microwave at intensities 270, 450 and 900 W and the time required for the sugar crystal melting was more than 20 times less than in the case of the 80 °C water bath. The temperature of samples after the end of microwave liquefaction was 76-89 °C. Significantly higher losses of phenolic compounds were observed during ultrasound treatment (48.5%), although the maximum temperature of honey was 45 °C, and at the lowest microwaves power (50.6%).
Collapse
|
25
|
Yu W, Sun F, Xu R, Cui M, Liu Y, Xie Q, Guo L, Kong C, Li X, Guo X, Luo L. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 2023; 14:250-261. [PMID: 36484340 DOI: 10.1039/d2fo02233h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Ruixin Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chenxian Kong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
26
|
An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Valverde S, Ares AM, Stephen Elmore J, Bernal J. Recent trends in the analysis of honey constituents. Food Chem 2022; 387:132920. [DOI: 10.1016/j.foodchem.2022.132920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
28
|
Alkan C, Çabuk H. Matrix‐induced sugaring‐out liquid‐liquid microextraction coupled with high‐performance liquid chromatography for the determination of organophosphorus pesticides in fruit jams. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cansu Alkan
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University Zonguldak Turkey
| | - Hasan Çabuk
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University Zonguldak Turkey
| |
Collapse
|
29
|
Salt-Induced Homogeneous Liquid–Liquid Microextraction of Piroxicam and Meloxicam from Human Urine Prior to Their Determination by HPLC-DAD. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A salt-induced homogeneous liquid–liquid microextraction (SI-HLLME) protocol combined with high-performance liquid chromatography–diode array detection is presented for the first time for the determination of piroxicam and meloxicam in human urine. The main parameters affecting the performance of the sample preparation protocol were optimized by means of a two-step experimental design (i.e., 2-level fractional factorial design and Box–Behnken design). Following its optimization, the proposed method was thoroughly validated in terms of the total error concept in order to take into consideration the random and systematic errors. For the target analytes, accuracy profiles were constructed, and they were used as graphical decision-making tools. In all cases, the β-expectation tolerance intervals complied with the acceptance criteria of ±15%, proving that 95% of future results will fall within the defined bias limits. The limits of detection were 0.02 μg mL−1 and 0.03 μg mL−1 for piroxicam and meloxicam, respectively. The relative standard deviations were lower than 4.4% in all cases, and the mean relative biases ranged between −5.7 and 3.4% for both drugs. The proposed scheme is simple and rapid, while it is characterized by high sample throughput. Moreover, SI-HLLME requires reduced sample and reagent consumption, according to the requirements of Green Analytical Chemistry.
Collapse
|
30
|
Lawag IL, Lim LY, Joshi R, Hammer KA, Locher C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022; 11:foods11081152. [PMID: 35454742 PMCID: PMC9025093 DOI: 10.3390/foods11081152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Ranee Joshi
- Centre for Exploration Targeting, School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Katherine A. Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
- Correspondence:
| |
Collapse
|
31
|
Antioxidant and bioaccessibility characteristics of functional fruit and vegetable honeys produced by innovative method. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Zhu Z, Zhang Y, Wang W, Sun S, Wang J, Li X, Dai F, Jiang Y. Changes in Physicochemical Properties, Volatile Profiles, and Antioxidant Activities of Black Apple During High-Temperature Fermentation Processing. Front Nutr 2022; 8:794231. [PMID: 35211493 PMCID: PMC8861435 DOI: 10.3389/fnut.2021.794231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Black apple is a new elaborated product obtained from whole fresh apple through fermentation at controlled high temperature (60~90°C) and humidity (relative humidity of 50~90%). The appearance, color, texture, and taste of black apple changed dramatically compared with those of fresh apple. In this study, changes in the physicochemical and phytochemical properties, volatile profiles, and antioxidant capacity of apple during the fermentation process were investigated. Results showed that the browning intensity and color difference increased continuously during the whole 65-day fermentation process (p < 0.05). Sugars decreased in the whole fermentation process (p < 0.05), whereas the contents of organic acids increased first and then decreased with prolonged 35 days of fermentation (p < 0.05). Total polyphenol content of black apple showed an increase of 1.5-fold as that of fresh apple, whereas 12 common polyphenolic compounds present in fresh apple decreased dramatically in the whole fermentation process (p < 0.05). The analysis of flavor volatiles showed that high-temperature fermentation decreased the levels of alcohols and esters and resulted in the formation of furanic and pyranic compounds, which are the main products of Maillard reaction (MR). Antioxidant activities of black apple were enhanced compared with those of fresh apple, and results indicated that the enhancement of antioxidant activities was related to the polyphenols and products of MR.
Collapse
|
33
|
Navarro-Hortal MD, Romero-Márquez JM, Muñoz-Ollero P, Jiménez-Trigo V, Esteban-Muñoz A, Tutusaus K, Giampieri F, Battino M, Sánchez-González C, Rivas-García L, Llopis J, Forbes-Hernández TY, Quiles JL. Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer's disease. Food Funct 2022; 13:11185-11199. [DOI: 10.1039/d2fo01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's is a chronic degenerative disease of the central nervous system considered the leading cause of dementia in the world.
Collapse
Affiliation(s)
- María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Pedro Muñoz-Ollero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - Victoria Jiménez-Trigo
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | | | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Universidad Internacional Iberoamericana, 24560 Campeche, Mexico
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/.Menéndez Pelayo 32, 18016 Armilla, Granada, Spain
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
34
|
Hammad SF, Abdallah IA, Bedair A, Mansour FR. Homogeneous liquid-liquid extraction as an alternative sample preparation technique for biomedical analysis. J Sep Sci 2021; 45:185-209. [PMID: 34472701 DOI: 10.1002/jssc.202100452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Liquid-liquid extraction is a widely used technique of sample preparation in biomedical analysis. In spite of the high pre-concentration capacities of liquid-liquid extraction, it suffers from a number of limitations including time and effort consumption, large organic solvent utilization, and poor performance in highly polar analytes. Homogeneous liquid-liquid extraction is an alternative sample preparation technique that overcomes some drawbacks of conventional liquid-liquid extraction, and allows employing greener organic solvents in sample treatment. In homogeneous liquid-liquid extraction, a homogeneous phase is formed between the aqueous sample and the water-miscible extractant, followed by chemically or physically induced phase separation. To form the homogeneous phase, aqueous samples are mixed with water-miscible organic solvents, water-immiscible solvents/cosolvents, surfactants, or smart polymers. Then, phase separation is induced chemically (adding salt, sugar, or buffer) or physically (changing temperature or pH). This mode is rapid, sustainable, and cost-effective in comparison with other sample preparation techniques. Moreover, homogeneous liquid-liquid extraction is more suitable for the extraction of delicate macromolecules such as enzymes, hormones, and proteins and it is more compatible with liquid chromatography with tandem mass spectrometry, which is a vital technique in metabolomics and proteomics. In this review, the principle, types, applications, automation, and technical aspects of homogeneous liquid-liquid extraction are discussed.
Collapse
Affiliation(s)
- Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
|
36
|
Zhang P, Chun Z, Shao Q, Fu L, Luo Y, Gu D, Chen R. Evaluation of the phytochemicals and antioxidant activity of Lophatherum gracile Brongn based on chemical fingerprinting by HPLC with electrochemical detection. J Sep Sci 2021; 44:3777-3788. [PMID: 34418299 DOI: 10.1002/jssc.202100318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022]
Abstract
A combinative method using high-performance liquid chromatography-electrochemical detection for fingerprinting and quantitative analysis was developed and successfully applied for the quality evaluation of Lophatherum gracile Brongn leaves collected from 21 geographical locations in China. In the fingerprint analysis, 18 common peaks were observed among the 21 samples, and 10 peaks were identified. Simultaneous quantification of the 10 components was conducted to interpret the variations in these compounds among the L. gracile Brongn leaves originating from different geographical locations. The correlation between the chromatograms and the antioxidant activities of the samples was further studied. The results indicated a linear correlation between the antioxidant activity and the total common peak areas of the fingerprints obtained by high-performance liquid chromatography-electrochemical detection. Importantly, it was found that high-performance liquid chromatography-electrochemical detection fingerprinting can not only determine the quantities of individual components present in such samples but also evaluate the antioxidant activities of the samples. The developed method is a valuable reference for the further study and development of L. gracile Brongn.
Collapse
Affiliation(s)
- Ping Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, P. R. China
| | - Zeli Chun
- School of Basic Medicine, Zunyi Medical University, Zunyi, P. R. China
| | - Qiju Shao
- School of Pharmacy, Zunyi Medical University, Zunyi, P. R. China
| | - Lidan Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, P. R. China
| | - Yipan Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, P. R. China
| | - Ding Gu
- School of Basic Medicine, Zunyi Medical University, Zunyi, P. R. China
| | - Rongxiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi, P. R. China
| |
Collapse
|
37
|
High-throughput subzero-temperature assisted homogenous liquid-liquid extraction for the fast sample preparation of multiple phenolic compounds in propolis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122823. [PMID: 34147873 DOI: 10.1016/j.jchromb.2021.122823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
In the present study, a high-throughput homogenous liquid-liquid extraction method was developed for fast sample preparation of multiple phenolic compounds in propolis. This method was proposed based on cooling samples array in subzero temperature to induce phase separation of ACN-H2O extractant. Due to the high-throughput ability, optimization of extraction parameters was rapidly achieved by using a 5 × 4 × 3 samples array. In addition, multiple arrays were investigated for evaluating the analytical performance of the high-throughput method, which indicated that limits of detection and quantification were ranged from 0.04 to 0.35 µg/mL and 0.12 to 1.05 µg/mL, respectively. Recoveries and precisions in inter-day high-throughput studies were in the range of 90.55-105.50% and 2.58-4.30%, respectively. Comparing with the conventional liquid extraction method, this ecofriendly high-throughput method presented remarkable advantages in reducing sample and chemical consumption, as well as saving labor and time cost. The proposed method might provide a valuable strategy for the design of high-throughput extraction procedures.
Collapse
|
38
|
Qiu X, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of organic Acids: An update since 2010. Food Chem 2021; 360:129977. [PMID: 34023712 DOI: 10.1016/j.foodchem.2021.129977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Organic acids, as an important component of food, have great influence on the flavor, texture, freshness of food. By lowering the pH of food to bacteriostatic acidity, organic acids are also used as additives and preservatives. Because organic acids are crucial to predict and evaluate food maturity, production and quality control, the rapid and sensitive determination methods of organic acids are necessary. This review aims to summarize and update the progress of the determination of organic acids in food samples. Pretreatment methods include simple steps (e.g., "dilute and shoot," protein precipitation, filtration, and centrifugation) and advanced microextraction methods (e.g., hollow fiber liquid phase microextraction, stir bar sorptive extraction and dispersive micro-solid phase extraction). Advances in novel materials (nanomaterial), solvents (ionic liquids and supercritical fluids) and hybrid methods are clearly displayed in detail. Continuous progress which has been made in electrochemical method, two-dimensional chromatography, high resolution mass is thoroughly illustrated.
Collapse
Affiliation(s)
- Xin Qiu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
39
|
Rusko J, Vainovska P, Vilne B, Bartkevics V. Phenolic profiles of raw mono- and polyfloral honeys from Latvia. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Silva B, Biluca FC, Gonzaga LV, Fett R, Dalmarco EM, Caon T, Costa ACO. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res Int 2021; 141:110086. [PMID: 33641965 DOI: 10.1016/j.foodres.2020.110086] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Honey is a natural ready-to-eat product rich in flavonoids, which is known by the wound healing properties due to both antibacterial and antioxidant activity. Flavonoids mitigate inflammatory processes, and thus it could currently support studies of anti-inflammatory potential of honeys. In this review, in vitro anti-inflammatory properties of flavonoids found in honey were prioritized. Mechanistic information of specific isolated flavonoids as modulators of inflammatory processes are summarized aiming to stimulate studies regarding the action of honey in inflammatory events. Lastly, a structure-activity relationship (SAR) of flavonoids was also included. Flavonoids found in honey have demonstrated antioxidant properties and ability to inhibit pro-inflammatory enzymes such as COX, LOX, iNOS, and pro-inflammatory mediators, including nitric oxide, cytokines and chemokines. Transcriptional factors such as NF-κB are also modulated by flavonoids, controlling the expression of several inflammatory mediators. SAR studies demonstrate the effect of flavonoids in the prevention of inflammatory cascades. Despite the promising reports of in vitro anti-inflammatory activity, well-designed clinical trials need yet to be performed to confirm the benefits of honeys from different botanical sources in diseases that include episodes of inflammation.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
41
|
Moharkar S, Dhamole PB. Sugaring-out extraction of erythromycin from fermentation broth. KOREAN J CHEM ENG 2021; 38:90-97. [PMID: 33432252 PMCID: PMC7787404 DOI: 10.1007/s11814-020-0680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters-glucose concentration, temperature, ACN/water ratio and pH-were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.
Collapse
Affiliation(s)
- Sharayu Moharkar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Pradip Babanrao Dhamole
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
42
|
Dmitrienko SG, Apyari VV, Gorbunova MV, Tolmacheva VV, Zolotov YA. Homogeneous Liquid–Liquid Microextraction of Organic Compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Hayes PE, Buzid A, Luong JHT, Glennon JD. Rapid Nanomolar Detection of Guaiacol from its Precursors Using a Core‐shell Reversed‐phase Column Coupled with a Boron‐doped Diamond Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Phyllis E. Hayes
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Alyah Buzid
- Department of Chemistry, College of Science King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - John H. T. Luong
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| |
Collapse
|
44
|
Magnetic porous aromatic framework with a core–shell structure as a sorbent for rapid extraction of phenols and their quantitation in urine by HPLC-UV. Anal Bioanal Chem 2020; 412:8361-8370. [DOI: 10.1007/s00216-020-02972-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
|
45
|
Abstract
Rosmarinic acid (RA) is an important bioactive phenolic acid with significant biochemical activities, including the antioxidant one. It is widely found in plants of the families Lamiaceae and Boraginaceae and has many uses in the food, pharmaceutical and cosmetics industries. RA is an electroactive species owing to the presence of the two catechol groups in its structure. Due to their inherent characteristics, such as sensitivity, selectivity, ease of operation and not too high costs, electrochemical methods of analysis are interesting tools for the assessment of redox-active compounds. Moreover, there is a good correlation between the redox potential of the analyte and its capability to donate electrons and, consequently, its antioxidant activity. Therefore, this paper presents a detailed overview of the electrochemical (bio)sensors and methods, in both stationary and dynamic systems, applied for RA investigation under different aspects. These comprise its antioxidant activity, its interaction with biological important molecules and the quantification of RA or total polyphenolic content in different samples.
Collapse
|
46
|
Guo N, Zhao L, Zhao Y, Li Q, Xue X, Wu L, Gomez Escalada M, Wang K, Peng W. Comparison of the Chemical Composition and Biological Activity of Mature and Immature Honey: An HPLC/QTOF/MS-Based Metabolomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4062-4071. [PMID: 32186876 DOI: 10.1021/acs.jafc.9b07604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harvesting uncapped immature honey (IMH) followed by dehydration is a typical counterfeit honey production process, but the differences between IMH and capped mature honey (MH) have not been well described previously. In this study, MH and IMH from Apis mellifera colonies during the same rapeseed flower season were compared. MH was found to have lower water content, lower acidity, and higher fructose content. High-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry-based untargeted metabolomic analysis indicated that MH had a distinct metabolite composition to IMH. Targeted metabolomic analysis on 20 major polyphenolic constituents showed higher accumulation in MH. MH had greater bacteriostatic effect and stronger free radical scavenging effect. While both the honeys mitigated cell damage caused by H2O2, the effective dosage of IMH was higher and its inducing effect on the antioxidant gene expression was weaker. Overall, MH was shown to be of better quality than IMH not only because of its richer polyphenolic composition but also because of its stronger biological activity.
Collapse
Affiliation(s)
- Nana Guo
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yazhou Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Northwest University, Xi'an 710069, Shanxi, China
| | | | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
47
|
Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga LV, Vitali L, Micke G, Fett R, Dalmarco EM, Costa ACO. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int 2020; 129:108756. [DOI: 10.1016/j.foodres.2019.108756] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 11/25/2022]
|
48
|
Hayes PE, Luong JHT, Gilchrist ES, Buzid A, Glennon JD. Profiling of phenolic flavorings using core-shell reversed-phase liquid chromatography with electrochemical detection at a boron-doped diamond electrode. J Chromatogr A 2020; 1612:460649. [PMID: 31708221 DOI: 10.1016/j.chroma.2019.460649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
A high-performance liquid chromatography (HPLC) method equipped with a boron-doped diamond (BDD) electrode was established for the simultaneous determination of phenol, 4-ethylphenol (4-EP), guaiacol, 4-ethylguaiacol (4-EG), 4-vinylguaiacol (4-VG), eugenol, and o-, m- and p-cresol. The separation was performed on a reversed-phase HALO C18 core-shell column (3.0 × 50 mm, 2.7 µm) with a mobile phase comprising 10 mM formate, pH 3, and 15% acetonitrile (ACN) (v/v), a flow rate of 1.5 mL/min, corresponding to a total run time of 9 min. The electrochemical detection (ECD) was set at +1.5 V vs. Pd/H2 in oxidative mode. Under optimized operating conditions, good linearity was obtained for the nine phenolics with corresponding coefficients of determination (R2) above 0.998. The limits of detection (LODs, S/N = 3) were 10 nM-1 µM, with an 80-fold increase in sensitivity for guaiacol achieved with ECD over ultraviolet (UV) detection. The sensitive and selective HPLC-ECD method was successfully applied for the identification and quantification of the nine phenolics in Islay, Irish, Scotch, and Highland whiskey samples, with significantly higher concentrations of the flavorings determined in Islay whiskey.
Collapse
Affiliation(s)
- Phyllis E Hayes
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC) Ireland, School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Western Road, Cork, Ireland
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC) Ireland, School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Western Road, Cork, Ireland
| | - Elizabeth S Gilchrist
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC) Ireland, School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Western Road, Cork, Ireland
| | - Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC) Ireland, School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Western Road, Cork, Ireland.
| | - Jeremy D Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC) Ireland, School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
49
|
Chen W, Wu S, Zhang J, Yu F, Hou J, Miao X, Tu X. Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules 2019; 24:molecules24152761. [PMID: 31366025 PMCID: PMC6695813 DOI: 10.3390/molecules24152761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
In the present work, we developed a simple and rapid sample preparation method for the determination of neonicotinoid pesticides in honey based on the matrix-induced sugaring-out. Since there is a high concentration of sugars in the honey matrix, the honey samples were mixed directly with acetonitrile (ACN)-water mixture to trigger the phase separation. Analytes were extracted into the upper ACN phase without additional phase separation agents and injected into the HPLC system for the analysis. Parameters of this matrix-induced sugaring-out method were systematically investigated. The optimal protocol involves 2 g honey mixed with 4 mL ACN-water mixture (v/v, 60:40). In addition, this simple sample preparation method was compared with two other ACN-water-based homogenous liquid-liquid extraction methods, including salting-out assisted liquid-liquid extraction and subzero-temperature assisted liquid-liquid extraction. The present method was fully validated, the obtained limits of detection (LODs) and limits of quantification (LOQs) were from 21 to 27 and 70 to 90 μg/kg, respectively. Average recoveries at three spiked levels were in the range of 91.49% to 97.73%. Precision expressed as relative standard deviations (RSDs) in the inter-day and intra-day analysis were all lower than 5%. Finally, the developed method was applied for the analysis of eight honey samples, results showed that none of the target neonicotinoid residues were detected.
Collapse
Affiliation(s)
- Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Siyuan Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengjie Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Hou
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|