1
|
Janse M, Sesa G, van de Burgwal L. A Case Study of European Collaboration between the Veterinary and Human Field for the Development of RSV Vaccines. Vaccines (Basel) 2023; 11:1137. [PMID: 37514953 PMCID: PMC10385505 DOI: 10.3390/vaccines11071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The One Health (OH) approach describes the interconnection between the health of animals, humans, and the environment. The need for collaboration between the veterinary and human fields is increasing due to the rise in several infectious diseases that cross human-animal barriers and need to be addressed jointly. However, such collaboration is not evident in practice, especially for non-zoonotic diseases. A qualitative research approach was used to explore the barriers and enablers influencing collaborative efforts on the development of vaccines for the non-zoonotic RSV virus. It was found that in the European context, most veterinary and human health professionals involved in RSV vaccine development see themselves as belonging to two distinct groups, indicating a lack of a common goal for collaboration. Next to this, the different conceptualizations of the OH approach, and the fact that RSV is not a zoonotic disease, strengthens the opinion that there is no shared need for collaboration. This paper adds insights on how, for a non-zoonotic situation, collaboration between human and veterinary professionals shaped the development of vaccines in both areas; thus, improving public health requires awareness, mutual appreciation, and shared goal setting.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Giulia Sesa
- Athena Institute, VU Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Reddout C, Hernandez LP, Chase CCL, Beck P, White F, Salak-Johnson JL. Immune phenotype is differentially affected by changing the type of bovine respiratory disease vaccine administered at revaccination in beef heifers. Front Vet Sci 2023; 10:1161902. [PMID: 37138923 PMCID: PMC10149669 DOI: 10.3389/fvets.2023.1161902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
During preconditioning, modified-live vaccines are frequently administered to beef calves before weaning. In this study, we began to characterize the immune phenotype of calves that received a modified-live vaccination at 3-4 months of age and then either received the same modified-live or an inactivated vaccine upon arrival at the feedlot (weaning) and 28 days post-arrival (booster). Innate and adaptive immune measures were assessed before revaccination and 14 and 28 days post. Heifers that received three doses of the modified-live vaccine exhibited a relatively balanced immune response based on increases in mean cytokine concentrations (IL-17, IL-21) and total immunoglobulin-G (IgG) and subsets IgG1 and IgG2, which are related to both arms of the adaptive immune system. Conversely, heifers that received one dose of modified live and two doses of the inactivated vaccine had a more robust neutrophil chemotactic response and greater serum-neutralizing antibody titers, resulting in an enhanced innate immune and a skewed proinflammatory response. These results indicate that the revaccination protocol used after initial vaccination with a modified-live vaccine differentially influences the immune phenotype of beef calves, with three doses of modified live inducing potentially immune homeostasis and a combination of modified live and inactivated vaccines inducing a skewed immune phenotype. However, more research is needed to determine the protective efficacy of these vaccination protocols against disease.
Collapse
Affiliation(s)
- Cassidy Reddout
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Lily P. Hernandez
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Christopher C. L. Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Paul Beck
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Frank White
- Elanco Animal Health, Greenfield, IN, United States
| | - Janeen L. Salak-Johnson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
3
|
Sacco RE, Mena I, Palmer MV, Durbin RK, García-Sastre A, Durbin JE. An intranasal recombinant NDV-BRSV F opt vaccine is safe and reduces lesion severity in a colostrum-deprived calf model of RSV infection. Sci Rep 2022; 12:22552. [PMID: 36581658 PMCID: PMC9800378 DOI: 10.1038/s41598-022-26938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, yet no safe, effective vaccine is commercially available. Closely related bovine RSV (BRSV) causes respiratory disease in young calves, with many similar features to those seen in HRSV. We previously showed that a Newcastle disease virus (NDV)-vectored vaccine expressing the F glycoprotein of HRSV reduced viral loads in lungs of mice and cotton rats and protected from HRSV. However, clinical signs and pathogenesis of disease in laboratory animals following HRSV infection differs from that observed in human infants. Thus, we examined whether a similar vaccine would protect neonatal calves from BRSV infection. Codon-optimized rNDV vaccine (rNDV-BRSV Fopt) was constructed and administered to colostrum-deprived calves. The rNDV-BRSV Fopt vaccine was well-tolerated and there was no evidence of vaccine-enhanced disease in the upper airways or lungs of these calves compared to the non-vaccinated calves. We found two intranasal doses reduces severity of gross and microscopic lesions and decreases viral load in the lungs. Furthermore, serum neutralizing antibodies were generated in vaccinated calves. Finally, reduced lung CXC chemokine levels were observed in vaccinated calves after BRSV challenge. In summary, we have shown that rNDV-BRSV Fopt vaccine is safe in colostrum-deprived calves, and is effective in reducing lung lesions, and decreasing viral load in upper respiratory tract and lungs after challenge.
Collapse
Affiliation(s)
- Randy E. Sacco
- grid.512856.d0000 0000 8863 1587Ruminant Diseases and Immunology Research Unit, National Animal Disease Center/USDA/ARS, 1920 Dayton Ave., Ames, IA 50010 USA
| | - Ignacio Mena
- grid.59734.3c0000 0001 0670 2351Departments of Microbiology and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, Global Health and Emergent Pathogens Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA
| | - Mitchell V. Palmer
- grid.512856.d0000 0000 8863 1587Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA/ARS, 1920 Dayton Ave., Ames, IA 50010 USA
| | - Russell K. Durbin
- grid.430387.b0000 0004 1936 8796Department of Pathology, Rutgers-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103 USA
| | - Adolfo García-Sastre
- grid.59734.3c0000 0001 0670 2351Departments of Microbiology and Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai, Global Health and Emergent Pathogens Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.516104.70000 0004 0408 1530Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, One Gustave Levy Place, Box 1124, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1124, New York, NY 10029 USA
| | - Joan E. Durbin
- grid.430387.b0000 0004 1936 8796Department of Pathology, Rutgers-New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103 USA
| |
Collapse
|
4
|
Janse M, Soekhradj SD, de Jong R, van de Burgwal LHM. Identifying Cross-Utilization of RSV Vaccine Inventions across the Human and Veterinary Field. Pathogens 2022; 12:pathogens12010046. [PMID: 36678394 PMCID: PMC9865526 DOI: 10.3390/pathogens12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The respiratory syncytial virus (RSV) has two main variants with similar impact, a human and a bovine variant. The human respiratory syncytial virus (HRSV) is the most frequent cause of acute respiratory disease (pneumonia) in children, leading to hospitalization and causing premature death. In Europe, lower respiratory tract infections caused by HRSV are responsible for 42-45 percent of hospital admissions in children under two. Likewise, the bovine respiratory syncytial virus (BRSV) is a significant cause of acute viral broncho-pneumonia in calves. To date no licensed HRSV vaccine has been developed, despite the high burden of the disease. In contrast, BRSV vaccines have been on the market since the 1970s, but there is still an articulated unmet need for improved BRSV vaccines with greater efficacy. HRSV/BRSV vaccine development was chosen as a case to assess whether collaboration and knowledge-sharing between human and veterinary fields is taking place, benefiting the development of new vaccines in both fields. The genetic relatedness, comparable pathogeneses, and similar severity of the diseases suggests much can be gained by sharing knowledge and experiences between the human and veterinary fields. We analyzed patent data, as most of pharmaceutical inventions, such as the development of vaccines, are protected by patents. Our results show only little cross-utilization of inventions and no collaborations, as in shared IP as an exchange of knowledge. This suggests that, despite the similarities in the genetics and antigenicity of HRSV and BRSV, each fields follows its own process in developing new vaccines.
Collapse
Affiliation(s)
- Marga Janse
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Swasti D. Soekhradj
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rineke de Jong
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Linda H. M. van de Burgwal
- Athena Institute, Faculteit der Bètawetenschappen W&N Gebouw, VU Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Brakel KA, Binjawadagi B, French-Kim K, Watts M, Harder O, Ma Y, Li J, Niewiesk S. Coexpression of respiratory syncytial virus (RSV) fusion (F) protein and attachment glycoprotein (G) in a vesicular stomatitis virus (VSV) vector system provides synergistic effects against RSV infection in a cotton rat model. Vaccine 2021; 39:6817-6828. [PMID: 34702618 PMCID: PMC8595748 DOI: 10.1016/j.vaccine.2021.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes of respiratory disease in infants, immunocompromised individuals, and the elderly. Natural infection does not result in long-term immunity, and there is no licensed vaccine. Vesicular stomatitis virus (VSV) is a commonly used vaccine vector platform against infectious diseases, and has been used as a vector for a licensed Ebola vaccine. In this study, we expressed the RSV fusion (F) protein, the RSV F protein stabilized in either a pre-fusion or a post-fusion configuration, the attachment glycoprotein (G), or the G and F proteins of RSV in combination in a VSV vector. Cotton rats were immunized with these recombinants intranasally or subcutaneously to test immunogenicity. RSV F stabilized in either a pre-fusion or a post-fusion configuration proved to be poorly immunogenic and protective when compared to unmodified F. RSV G provided partial protection and moderate levels of neutralizing antibody production, both of which improved with intranasal administration compared to subcutaneous inoculation. The most successful vaccine vector was VSV expressing both the G and F proteins after intranasal inoculation. Immunization with this recombinant induced neutralizing antibodies and provided protection from RSV challenge in the upper and lower respiratory tract for at least 80 days. Our results demonstrate that co-expression of F and G proteins in a VSV vector provides synergistic effects in inducing RSV-specific neutralizing antibodies and protection against RSV infection.
Collapse
Affiliation(s)
- Kelsey A Brakel
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.
| | - Basavaraj Binjawadagi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Ceva Sante Animale, Lenexa, KS, United States
| | - Kristen French-Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Mauria Watts
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
7
|
Respiratory Syncytial Virus Infection Induces Expression of Inducible Nitric Oxide Synthase, CD3, and CD8 in Naturally Occurring Pneumonia in Lambs. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Respiratory syncytial virus (RSV) is an RNA virus that belongs to the Pneumovirus genus of the Paramyxoviridae family. The aim of this study was to evaluate the expressions of inducible nitric oxide synthetase (iNOS), CD3 (pan T cells), and CD8 (cytotoxic T cells) in lamb lungs naturally infected with RSV using immunohistochemistry (IHC). For this purpose, 100 pneumonic and 10 control lung tissue samples were taken from lambs slaughtered in the slaughterhouse after macroscopic examination. The streptavidin– peroxidase method (ABC) was used for IHC staining, and it revealed RSV positivity in 18 of 100 examined lungs with pneumonia (18%). These positive cases were then immunostained for iNOS, CD3, and CD8, and compared to controls. In all these cases, an increase in iNOS expression (100%) was detected, the higher number of CD3+ T lymphocytes was detected in 14 (78%) cases while CD8+ T lymphocytes were detected in five (28%) cases, only. Given the increase of iNOS immunoexpression in all RSV-positive cases and increase in the number of CD3+ T lymphocytes in most cases, it was concluded that iNOS and CD3+ T lymphocytes play an important role in the immune response in lamb pneumonia with naturally occurring RSV infection. With this study, the role of the mentioned markers was evaluated for the first time in lambs naturally infected with RSV.
Collapse
|
8
|
Mucosal Delivery of Recombinant Vesicular Stomatitis Virus Vectors Expressing Envelope Proteins of Respiratory Syncytial Virus Induces Protective Immunity in Cotton Rats. J Virol 2021; 95:JVI.02345-20. [PMID: 33408176 DOI: 10.1128/jvi.02345-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.
Collapse
|
9
|
Nefedchenko AV, Glotov AG, Koteneva SV, Glotova TI. Developing and Testing a Real-Time Polymerase Chain Reaction to Identify and Quantify Bovine Respiratory Syncytial Viruses. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2021; 35:168-173. [PMID: 33500598 PMCID: PMC7818697 DOI: 10.3103/s0891416820030052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022]
Abstract
The bovine respiratory syncytial virus (BRSV) known as Bovine orthopneumovirus according to the international classification is one of the most important etiological agents of respiratory diseases in calves. At present, rapid and reliable methods to detect and measure the concentrations of this pathogen are needed. The objectives of the survey are developing the real-time polymerase chain reaction (PCR) to identify and quantify the BRSV RNA and, based on it, determining the number of the virus genomes in the respiratory tract of sick animals during the disease outbreaks. The nucleocapsid (N) protein gene of the virus served as the target for amplification. Messenger RNA (mRNA) of bovine GAPDH was used as a reference gene. A panel of positive control samples at known concentrations was used to estimate the virus and GAPDH numbers. The concentration of viral RNA extracted from the biomaterial samples was quantified relative to the bovine GAPDH mRNA level. The analytical sensitivity of PCR demonstrating high specificity and reproducibility was 1 × 103 genome equivalents per 1 cm3. All 273 samples of biological material taken from the animals with the respiratory diseases were analyzed. The virus genome was detected in 19.4% of samples. The viral RNA was more frequently detected in the lungs, which comprised 10.61% of positive samples. It was less frequently found in the mucous membranes of trachea and bronchi and the lymph nodes of the lungs, which comprised 0.73% of positive samples each. Concentrations of the virus in samples varied. The highest concentration was recorded in the lungs (1.3 ± 0.5—4.8 ± 0.47 log10 copies of BRSV/GAPDH RNA). The developed test kit may be used to quantify the concentration of the bovine respiratory syncytial virus in disease pathogenesis and to estimate the efficiency of vaccine or antivirus preparations for animals.
Collapse
Affiliation(s)
- A V Nefedchenko
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - A G Glotov
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - S V Koteneva
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| | - T I Glotova
- Institute of Experimental Veterinary Science of Siberia and the Far East, Siberian Federal Science Centre for Agro-BioTechnologies, Russian Academy of Science, 630501 Krasnoobsk, Novosibirsk oblast Russia
| |
Collapse
|
10
|
Mahmoud AHA, Slate JR, Hong S, Yoon I, McGill JL. Supplementing a Saccharomyces cerevisiae fermentation product modulates innate immune function and ameliorates bovine respiratory syncytial virus infection in neonatal calves. J Anim Sci 2020; 98:5891219. [PMID: 32780814 PMCID: PMC7457959 DOI: 10.1093/jas/skaa252] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/01/2022] Open
Abstract
The objectives of this study were to determine the effects of oral supplementation with Saccharomyces cerevisiae fermentation products (SCFP; SmartCare and NutriTek; Diamond V, Cedar Rapids, IA) on immune function and bovine respiratory syncytial virus (BRSV) infection in preweaned dairy calves. Twenty-four Holstein × Angus, 1- to 2-d-old calves (38.46 ± 0.91 kg initial body weight [BW]) were assigned two treatment groups: control or SCFP treated, milk replacer with 1 g/d SCFP (SmartCare) and calf starter top-dressed with 5 g/d SCFP (NutriTek). The study consisted of one 31-d period. On days 19 to 21 of the supplementation period, calves were challenged via aerosol inoculation with BRSV strain 375. Calves were monitored twice daily for clinical signs, including rectal temperature, cough, nasal and ocular discharge, respiration effort, and lung auscultation. Calves were euthanized on day 10 postinfection (days 29 to 31 of the supplementation period) to evaluate gross lung pathology and pathogen load. Supplementation with SCFP did not affect BW (P = 0.762) or average daily gain (P = 0.750), percentages of circulating white blood cells (P < 0.05), phagocytic (P = 0.427 for neutrophils and P = 0.460 for monocytes) or respiratory burst (P = 0.119 for neutrophils and P = 0.414 for monocytes) activity by circulating leukocytes either before or following BRSV infection, or serum cortisol concentrations (P = 0.321) after BRSV infection. Calves receiving SCFP had reduced clinical disease scores compared with control calves (P = 0.030), reduced airway neutrophil recruitment (P < 0.002), reduced lung pathology (P = 0.031), and a reduced incidence of secondary bacterial infection. Calves receiving SCFP shed reduced virus compared with control calves (P = 0.049) and tended toward lower viral loads in the lungs (P = 0.051). Immune cells from the peripheral blood of SCFP-treated calves produced increased (P < 0.05) quantities of interleukin (IL)-6 and tumor necrosis factor-alpha in response to toll-like receptor stimulation, while cells from the bronchoalveolar lavage (BAL) of SCFP-treated calves secreted less (P < 0.05) proinflammatory cytokines in response to the same stimuli. Treatment with SCFP had no effect on virus-specific T cell responses in the blood but resulted in reduced (P = 0.045) virus-specific IL-17 secretion by T cells in the BAL. Supplementing with SCFP modulates both systemic and mucosal immune responses and may improve the outcome of an acute respiratory viral infection in preweaned dairy calves.
Collapse
Affiliation(s)
- Asmaa H A Mahmoud
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA.,Agricultural Research Center, Animal Health Research Institute, Giza, Egypt
| | - Jamison R Slate
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA
| | - Suyeon Hong
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA
| | | | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA
| |
Collapse
|
11
|
Guo T, Zhang J, Chen X, Wei X, Wu C, Cui Q, Hao Y. Investigation of viral pathogens in cattle with bovine respiratory disease complex in Inner Mongolia, China. Microb Pathog 2020; 153:104594. [PMID: 33157218 DOI: 10.1016/j.micpath.2020.104594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/30/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
As a multifactor disease, the bovine respiratory disease complex (BRDC) causes high morbidity and mortality that is devastating to the cattle industry. To assess viral infections in beef cattle suffering from respiratory diseases in Inner Mongolia, 302 nasal swabs and serum samples were randomly collected from cattle with mild respiratory symptoms between March 2018 and May 2019. Our results showed that the rate of RT-PCR results positive for nucleic acids of viral pathogens in 6 cities was between 54 and 80%.The rates of bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BHV-1), bovine parainfluenza virus type 3(BPIV3), and bovine respiratory syncytial virus(BRSV)infections were 44.70% (135/302), 24.83% (75/302), 5.63% (17/302), and 6.95% (21/302),respectively. There are also 8.94% (27/302) of samples were positive for BVDV and BHV-1, and 3.97% (12/302) of samples were positive for BPIV3 and BRSV. In addition, the RT-PCR products were sequenced, and phylogenetic analysis based on these sequences was performed. The results indicated that: a) all of the BVDV isolates were BVDV-1 and were classified as BVDV-1a (66.67%) and BVDV-1b (33.33%); b) all of the BHV-1 isolates were classified as subtype 1.1; 44.44% of the isolates were closely related to modified live viral vaccine strains, and 55.56% of the isolates were closer to epidemic strains; c) all of the BPIV3 isolates belonged to BPIV3c; d) all of the BRSV isolates were classified into subgroup III. It is suggested that an important cause of respiratory diseases for beef cattle is viral infection, and phylogenetic analysis can help us choose the proper strain to develop a vaccine.
Collapse
Affiliation(s)
- Ting Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| | - Jianhua Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Xindi Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Xin Wei
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunxia Wu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Cui
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongqing Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
12
|
Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 2019; 233:116671. [PMID: 31336122 PMCID: PMC7094289 DOI: 10.1016/j.lfs.2019.116671] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) comprise a clan of proteins involved in identification and triggering a suitable response against pathogenic attacks. As lung is steadily exposed to multiple infectious agents, antigens and host-derived danger signals, the inhabiting stromal and myeloid cells of the lung express an aggregate of TLRs which perceive the endogenously derived damage-associated molecular patterns (DAMPs) along with pathogen associated molecular patterns (PAMPs) and trigger the TLR-associated signalling events involved in host defence. Thus, they form an imperative component of host defence activation in case of microbial infections as well as non-infectious pulmonary disorders such as interstitial lung disease, acute lung injury and airways disease, such as COPD and asthma. They also play an equally important role in lung cancer. Targeting the TLR signalling network would pave ways to the design of more reliable and effective vaccines against infectious agents and control deadly infections, desensitize allergens and reduce inflammation. Moreover, TLR agonists may act as adjuvants by increasing the efficiency of cancer vaccines, thereby contributing their role in treatment of lung cancer too. Overall, TLRs present a compelling and expeditiously bolstered area of research and addressing their signalling events would be of significant use in pulmonary diseases.
Collapse
Affiliation(s)
- Shweta Arora
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Rasha Irshad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Neha Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Husain
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - Anant Mohan
- Department of Pulmonary Medicine, AIIMS, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
13
|
León JCP, Diaz W, Vasquez MC, Tobón JC, Sánchez A, Ortiz D. Seroprevalence and risk factor associated with respiratory viral pathogens in dual-purpose cattle of Aguachica, Rio de Oro, and La Gloria municipalities in Cesar department, Colombia. Vet World 2019; 12:951-958. [PMID: 31528017 PMCID: PMC6702553 DOI: 10.14202/vetworld.2019.951-958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: The research was conducted to determine the seroprevalence and risk factor associated with respiratory viral pathogens in dual-purpose cattle of Aguachica, Rio de Oro and La Gloria municipalities in Cesar department, Colombia. Materials and Methods: The seroprevalence study was done from the random sampling (n=1000) of blood collected from 29 dual-purpose herds, located in three municipalities (Aguachica, Rio de Oro, and La Gloria) of Cesar department. The presence of antibodies against bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza-3 virus (BPI-3V) in the samples was detected by indirect enzyme-linked immunosorbent assay. Epidemiological data were obtained using a questionnaire administered to the owner or manager of each herd. Results: The overall highest seroprevalence was observed for BHV-1 (94.7%), followed by BRSV (98.6%), BVDV (35.2%), and BPI-3V (47.1%). Regarding the seroprevalence by municipalities, there was a statistical association (p<0.05) for BVDV; however, for BRSV, BHV-1, and BPI-3V, no statistical association was found (p>0.05) between seropositive values and the municipalities, indicating that animal was seropositive in similar proportions in the three municipalities. Female sex and older animals (>24 months) were a significant risk factor for BHV-1 and BPI-3V infection. Regarding the clinical signs, there was a statistical association (p<0.05) between the seropositive values of BVDV and most of clinical signs observed, except for abortion. Conclusion: This research confirms the high seroprevalence of the respiratory viral pathogens in nonvaccinated cattle within the study areas. Therefore, appropriate sanitary management practices and routine vaccination programs should be adopted to reduce the seroprevalence of these infectious agents.
Collapse
Affiliation(s)
- Juan Carlos Pinilla León
- Department of Veterinary Medicine, University of Santander, Faculty of Exact, Natural and Agricultural Sciences, Animal Science Research Group, Bucaramanga, Colombia
| | - Wilson Diaz
- Department of Veterinary Medicine, University of Santander, Faculty of Exact, Natural and Agricultural Sciences, Animal Science Research Group, Bucaramanga, Colombia
| | - María Cristina Vasquez
- Department of Bacteriology and Clinical Laboratory, University of Santander, Faculty of Health Sciences, Research Group in Clinical Management, Bucaramanga, Colombia
| | | | | | | |
Collapse
|
14
|
McGill JL, Guerra-Maupome M, Schneider S. Prophylactic digoxin treatment reduces IL-17 production in vivo in the neonatal calf and moderates RSV-associated disease. PLoS One 2019; 14:e0214407. [PMID: 30908540 PMCID: PMC6433258 DOI: 10.1371/journal.pone.0214407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of morbidity and mortality in human infants. Bovine RSV infection of neonatal calves is pathologically and immunologically similar to RSV infection in infants, and is therefore a useful preclinical model for testing novel therapeutics. Treatment of severe RSV bronchiolitis relies on supportive care and may include use of bronchodilators and inhaled or systemic corticosteroids. Interleukin-17A (IL-17) is an inflammatory cytokine that plays an important role in neutrophil recruitment and activation. IL-17 is increased in children and rodents with severe RSV infection; and in calves with severe BRSV infection. It is currently unclear if IL-17 and Th17 immunity is beneficial or detrimental to the host during RSV infection. Digoxin was recently identified to selectively inhibit IL-17 production by antagonizing its transcription factor, retinoid-related orphan receptor γ t (RORγt). Digoxin inhibits RORγt binding to IL-17 and Th17 associated genes, and suppresses IL-17 production in vitro in human and murine leukocytes and in vivo in rodent models of autoimmune disease. We demonstrate here that in vitro and in vivo digoxin treatment also inhibits IL-17 production by bovine leukocytes. To determine the role of IL-17 in primary RSV infection, calves were treated prophylactically with digoxin and infected with BRSV. Digoxin treated calves demonstrated reduced signs of clinical illness after BRSV infection, and reduced lung pathology compared to untreated control calves. Digoxin treatment did not adversely affect virus shedding or lung viral burden, but had a significant impact on pulmonary inflammatory cytokine expression on day 10 post infection. Together, our results suggest that exacerbated expression of IL-17 has a negative impact on RSV disease, and that development of specific therapies targeting Th17 immunity may be a promising strategy to improve disease outcome during severe RSV infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Sarah Schneider
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
15
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
16
|
Bertagnon HG, Batista CF, Santos KR, Gomes RC, Bellinazzi JB, Della Libera AMMP. Alveolar macrophage functions during the transition phase to active immunity in calves1. J Anim Sci 2018; 96:3738-3747. [PMID: 29982670 DOI: 10.1093/jas/sky261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/28/2018] [Indexed: 11/12/2022] Open
Abstract
The first 3 to 6 mo of the life of calves is the period during which active immunity is established. During this period, greater morbidity and mortality is caused by bronchopneumonia because of the immaturity of the pulmonary immune system or the exaggerated cytotoxic response at subsequent infection. The aim of this study was to examine the maturity of the immune system during this phase of activation of acquired immunity in calves. For this purpose, the functions of phagocytosis and the reactive oxygen species (ROS) of alveolar macrophages CD14+ were evaluated. Further, the classes of immunoglobulins and the cytokines implicated in lymphocyte response patterns Th1 and Th2 in 10 healthy Holstein calves were quantified. Samples were taken from calves every 15 d, from the third to the sixth month of life. The alveolar macrophage CD14+ functions increased progressively until 150 d of age (phagocytosis, P = 0.02, ROS, P = 0.05), IgG1 and IgG2 isotype secretion reached an equilibrium, and the cytokine profiles were compatible with the Th1 response. At 165 d of age, there was a decrease in cellular function (phagocytosis P = 0.02, ROS P = 0.04) and an increase in IgG1 titers (P = 0.005) and IL-10 mRNA expression (P = 0.09). At 180 d of life, we observed an IgG1 and IgG2 secretion balance, a decrease in IL-10 mRNA expression, and an increase in IL-12 mRNA (P = 0.04) and tumor necrosis factor (TNF)-α mRNA expressions (P = 0.0003) and alveolar macrophage oxidative metabolism were observed. These results indicate that the calves had an active immune response that was distinctive for the age group. The CD14+ response is more reactive at 150 d. A regulatory and/or humoral response begins at 165 d of life as the equilibrium of Th1 and Th2 profiles is reached at 180 d of life. This may be clinically relevant for the development of specific therapies and prophylactic measures for bronchopneumonia in calves at 135 to 180 d of life.
Collapse
Affiliation(s)
- Heloisa G Bertagnon
- Department of Veterinary Medicine, University of Centro Oeste of Parana (UNICENTRO), Guarapuava, PR, Brazil.,Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila F Batista
- Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Kamila R Santos
- Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Renata C Gomes
- Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jessyca B Bellinazzi
- Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alice Maria M P Della Libera
- Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
17
|
Sudaryatma PE, Nakamura K, Mekata H, Sekiguchi S, Kubo M, Kobayashi I, Subangkit M, Goto Y, Okabayashi T. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Vet Microbiol 2018; 220:33-38. [PMID: 29885798 PMCID: PMC7117154 DOI: 10.1016/j.vetmic.2018.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/28/2018] [Indexed: 01/27/2023]
Abstract
Primary infection with bovine respiratory syncytial virus (BRSV) predisposes cattle to secondary infection with bacteria that cause bovine respiratory disease complex (BRDC). However, the interaction between BRSV and bacteria is unclear. This in vitro study examined the adherence of Pasteurella multocida (PM) to BRSV-infected cells was assessed in colony forming unit assays, by flow cytometry analysis, and by indirect immunofluorescence analysis (IFA) of epithelial cells (A549, HEp-2, and MDBK). An in vitro model based on infection of BRSV-infected epithelial cells revealed that PM adherence to BRSV-infected cells was 2- to 8-fold higher than uninfected cells. This was confirmed by flow cytometry analysis and IFA. Epithelial cell expression of mRNA encoding cytokines and chemokines increased after exposure to PM, but increased further after co-infection with BRSV and PM. BRSV-mediated adherence of PM to epithelial cells may underlie the serious symptoms of BRDC.
Collapse
Affiliation(s)
- Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kimika Nakamura
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Organization for Promotion of Tenure Track University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Meiko Kubo
- Miyakonojo Meat Inspection Center Miyazaki Prefecture Government, Miyazaki, Japan
| | - Ikuo Kobayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan; Sumiyoshi education farm, University of Miyazaki, Miyazaki, Japan
| | - Mawar Subangkit
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Goto
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
18
|
Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, van Neerven RJJ. Effects of Bovine Immunoglobulins on Immune Function, Allergy, and Infection. Front Nutr 2018; 5:52. [PMID: 29988421 PMCID: PMC6024018 DOI: 10.3389/fnut.2018.00052] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
This review aims to provide an in depth overview of the current knowledge of the effects of bovine immunoglobulins on the human immune system. The stability and functional effects of orally ingested bovine immunoglobulins in milk products are described and potential mechanisms of action are discussed. Orally ingested bovine IgG (bovine IgG) can be recovered from feces, ranging from very low levels up to 50% of the ingested IgG that has passed through the gastrointestinal tract. In infants the recovered levels are higher than in adults most likely due to differences in stomach and intestinal conditions such as pH. This indicates that bovine IgG can be functionally active throughout the gastrointestinal tract. Indeed, a large number of studies in infants and adults have shown that bovine IgG (or colostrum as a rich source thereof) can prevent gastrointestinal tract infections, upper respiratory tract infections, and LPS-induced inflammation. These studies vary considerably in target group, design, source of bovine IgG, dosage, and endpoints measured making it hard to draw general conclusions on effectiveness of bovine immunoglobulin rich preparations. Typical sources of bovine IgG used in human studies are serum-derived IgG, colostrum, colostrum-derived IgG, or milk-derived immunoglobulins. In addition, many studies have used IgG from vaccinated cows, but studies using IgG from nonimmunized animals have also been reported to be effective. Mechanistically, bovine IgG binds to many human pathogens and allergens, can neutralize experimental infection of human cells, and limits gastrointestinal inflammation. Furthermore, bovine IgG binds to human Fc receptors which, enhances phagocytosis, killing of bacteria and antigen presentation and bovine IgG supports gastrointestinal barrier function in in vitro models. These mechanisms are becoming more and more established and explain why bovine IgG can have immunological effects in vivo. The inclusion of oral bovine immunoglobulins in specialized dairy products and infant nutrition may therefore be a promising approach to support immune function in vulnerable groups such as infants, children, elderly and immunocompromised patients.
Collapse
Affiliation(s)
| | - Jeanette H W Leusen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Huub F J Savelkoul
- Wageningen University & Research, Cell Biology and Immunology, Wageningen, Netherlands.,Allergy Consortium Wageningen, Wageningen, Netherlands
| | - John O Warner
- National Institute of Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, Imperial College, London, United Kingdom
| | - R J Joost van Neerven
- FrieslandCampina, Amersfoort, Netherlands.,Wageningen University & Research, Cell Biology and Immunology, Wageningen, Netherlands
| |
Collapse
|
19
|
Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci Rep 2018; 8:3021. [PMID: 29445124 PMCID: PMC5813012 DOI: 10.1038/s41598-018-21292-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Bovine RSV (BRSV) is closely related to HRSV and a significant cause of morbidity in young cattle. BRSV infection in calves displays many similarities to RSV infection in humans, including similar age dependency and disease pathogenesis. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have shown promise as adjuvants and vaccine delivery vehicles due to their ability to promote enhanced immunogenicity through the route of administration, provide sustained antigen exposure, and induce both antibody- and cell-mediated immunity. Here, we developed a novel, mucosal nanovaccine that encapsulates the post-fusion F and G glycoproteins from BRSV into polyanhydride nanoparticles and determined the efficacy of the vaccine against RSV infection using a neonatal calf model. Calves receiving the BRSV-F/G nanovaccine exhibited reduced pathology in the lungs, reduced viral burden, and decreased virus shedding compared to unvaccinated control calves, which correlated with BRSV-specific immune responses in the respiratory tract and peripheral blood. Our results indicate that the BRSV-F/G nanovaccine is highly immunogenic and, with optimization, has the potential to significantly reduce the disease burden associated with RSV infection in both humans and animals.
Collapse
|
20
|
Abstract
This study demonstrated the duration of immunity over 6 months of a vaccine against key bovine respiratory disease pathogens: Parainfluenza 3, Bovine Respiratory Syncytial Virus, Bovine Viral Diarrhoea and Mannheimia haemolytica. This was performed by challenge on colostrum-deprived calves at the age of 2 weeks. Recent European field isolates were used as challenge strains. Clinical signs and pathogen excretion or presence were monitored. Field relevance of the viral challenge strains was analysed using phylogenic analysis. Significant reduction of excretion of the 3 viruses in vaccinated animals was a consistent finding, demonstrating the efficacy of the vaccine. Reducing shedding is indeed key to interrupting the infection transmission chain and helping to achieve the protective effects of immunisation that extend beyond the individual. A significant reduction of clinical signs and lung lesions following the Mannheimia haemolytica challenge was also observed in vaccinated animals versus controls. Comparison of the challenge strains to an array of global and European strains, including recent ones, demonstrated a high genetic proximity, supporting the potential for the vaccine to maintain similar levels of efficacy in the field over a 6-month period post vaccination.
Collapse
|
21
|
|
22
|
McGill JL, Sacco RE. γδ T cells and the immune response to respiratory syncytial virus infection. Vet Immunol Immunopathol 2016; 181:24-29. [PMID: 26923879 DOI: 10.1016/j.vetimm.2016.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/06/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
Abstract
γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.
Collapse
Affiliation(s)
- Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, 1800 Denison Ave., Manhattan, KS 66503, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 1920 Dayton Ave., Ames, IA 50010, USA
| |
Collapse
|
23
|
Sacco RE, Durbin RK, Durbin JE. Animal models of respiratory syncytial virus infection and disease. Curr Opin Virol 2015; 13:117-22. [PMID: 26176495 DOI: 10.1016/j.coviro.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023]
Abstract
The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the inability of the virus to block the interferon response in any but the human host. This review addresses some of the issues encountered in mouse models of respiratory syncytial virus infection, and describes the advantages and disadvantages of alternative model systems.
Collapse
Affiliation(s)
- Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States
| | - Russell K Durbin
- Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | - Joan E Durbin
- Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States; Department of Pathology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
24
|
Gerdts V, Wilson HL, Meurens F, van Drunen Littel - van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large Animal Models for Vaccine Development and Testing. ILAR J 2015; 56:53-62. [DOI: 10.1093/ilar/ilv009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Blodörn K, Hägglund S, Gavier-Widen D, Eléouët JF, Riffault S, Pringle J, Taylor G, Valarcher JF. A bovine respiratory syncytial virus model with high clinical expression in calves with specific passive immunity. BMC Vet Res 2015; 11:76. [PMID: 25890239 PMCID: PMC4377052 DOI: 10.1186/s12917-015-0389-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle worldwide. Calves are particularly affected, even with low to moderate levels of BRSV-specific maternally derived antibodies (MDA). Available BRSV vaccines have suboptimal efficacy in calves with MDA, and published infection models in this target group are lacking in clinical expression. Here, we refine and characterize such a model. RESULTS In a first experiment, 2 groups of 3 calves with low levels of MDA were experimentally inoculated by inhalation of aerosolized BRSV, either: the Snook strain, passaged in gnotobiotic calves (BRSV-Snk), or isolate no. 9402022 Denmark, passaged in cell culture (BRSV-Dk). All calves developed clinical signs of respiratory disease and shed high titers of virus, but BRSV-Snk induced more severe disease, which was then reproduced in a second experiment in 5 calves with moderate levels of MDA. These 5 calves shed high titers of virus and developed severe clinical signs of disease and extensive macroscopic lung lesions (mean+/-SD, 48.3+/-12.0% of lung), with a pulmonary influx of inflammatory cells, characterized by interferon gamma secretion and a marked effect on lung function. CONCLUSIONS We present a BRSV-infection model, with consistently high clinical expression in young calves with low to moderate levels of BRSV-specific MDA, that may prove useful in studies into disease pathogenesis, or evaluations of vaccines and antivirals. Additionally, refined tools to assess the outcome of BRSV infection are described, including passive measurement of lung function and a refined system to score clinical signs of disease. Using this cognate host calf model might also provide answers to elusive questions about human RSV (HRSV), a major cause of morbidity in children worldwide.
Collapse
Affiliation(s)
- Krister Blodörn
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Sara Hägglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Dolores Gavier-Widen
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France.
| | - John Pringle
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | | | - Jean François Valarcher
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden. .,Department of Virology, National Veterinary Institute, Immunology, and Parasitology, Uppsala, Sweden.
| |
Collapse
|
26
|
Hong Z, Xu Y, Yin JF, Jin J, Jiang Y, Du Q. Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2182-9. [PMID: 25483592 DOI: 10.1021/jf404310y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) is the major bioactive compound in green tea. Its effect is limited by the harsh environment of the gastrointestinal tract. The present study investigates how the effectiveness of EGCG is influenced by its encapsulation into self-assembled nanoparticles of chitosan (CS) and aspartic acid (PAA). Blank nanoparticles with a mean diameter of ca. 93 nm were prepared from 30-50 kDa PAA and 3-5 kDa CS with a mass rate of 1:1. EGCG was loaded in the nanoparticles to yield EGCG-CS-PAA nanoparticles with an average diameter of 102 nm, which were pH-responsive and demonstrated different EGCG release profiles in simulated gastrointestinal tract media. The average ratio (%) of lipid deposition for EGCG-CS-PAA nanoparticles administered orally to rabbits was 16.9 ± 5.8%, which was close to that of oral simvastatin (15.6 ± 4.1%). Orally administered EGCG alone yielded an average ratio of lipid deposit area of 42.1 ± 4.0%, whereas this value was 65.3 ± 10.8% for the blank nanoparticles. The effectiveness of EGCG against rabbit atherosclerosis was significantly improved by incorporating EGCG into the nanoformulation.
Collapse
Affiliation(s)
- Zhiyong Hong
- Institute of Food Chemistry, Zhejiang A&F University , 88 Huanbei Road, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | |
Collapse
|
27
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
28
|
Blodörn K, Hägglund S, Fix J, Dubuquoy C, Makabi-Panzu B, Thom M, Karlsson P, Roque JL, Karlstam E, Pringle J, Eléouët JF, Riffault S, Taylor G, Valarcher JF. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PLoS One 2014; 9:e100392. [PMID: 24945377 PMCID: PMC4063758 DOI: 10.1371/journal.pone.0100392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022] Open
Abstract
The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by different immune responses that were influenced by vaccine-composition, immunization route and regimen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cattle
- Epitopes/chemistry
- Epitopes/immunology
- Gene Deletion
- Genes, Viral
- Humans
- Lung/immunology
- Lung/pathology
- Lung/virology
- Lymph Nodes/pathology
- Lymphocytes/immunology
- Molecular Sequence Data
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Bovine/genetics
- Respiratory Syncytial Virus, Bovine/immunology
- Respiratory Syncytial Virus, Bovine/pathogenicity
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Species Specificity
- Vaccination
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Viral Load
- Viral Proteins/metabolism
- Virulence
Collapse
Affiliation(s)
- Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Jenna Fix
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Catherine Dubuquoy
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Michelle Thom
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Per Karlsson
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| | | | - Erika Karlstam
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| |
Collapse
|
29
|
Taylor G, Wyld S, Valarcher JF, Guzman E, Thom M, Widdison S, Buchholz UJ. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves. J Gen Virol 2014; 95:1244-1254. [PMID: 24700100 PMCID: PMC4027036 DOI: 10.1099/vir.0.064931-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity.
Collapse
Affiliation(s)
| | - Sara Wyld
- Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | | | | | | | | | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
30
|
Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet Pathol 2013; 51:427-36. [PMID: 24009269 DOI: 10.1177/0300985813501341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
Collapse
Affiliation(s)
- R E Sacco
- National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
31
|
McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology 2013; 139:227-44. [PMID: 23368631 DOI: 10.1111/imm.12075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
γδ T cells respond to stimulation via toll-like receptors (TLR). Bovine γδ T cells express TLR3 and TLR7, receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of γδ T cells to stimulation via these receptors, and their role during viral infections, remains unclear. Here, we demonstrate that neonatal bovine γδ T cells exhibit robust chemokine and cytokine production in response to the TLR3 agonist, Poly(I:C), and the TLR7 agonist, Imiquimod. Importantly, we observe a similar phenotype in γδ T-cell subsets purified from calves infected with BRSV. Bovine γδ T cells are divided into subsets based upon their expression of WC1, and the response to TLR stimulation and viral infection differs between these subsets, with WC1.1(+) and WC1(neg) γδ T cells producing macrophage inflammatory protein-1α and granulocyte-macrophage colony-stimulating factor, and WC1.2(+) γδ T cells preferentially producing the regulatory cytokines interleukin-10 and transforming growth factor-β. We further report that the active vitamin D metabolite 1,25-dihydroxyvitamin D3 does not alter γδ T-cell responses to TLR agonists or BRSV. To our knowledge, this is the first characterization of the γδ T-cell response during in vivo BRSV infection and the first suggestion that WC1.1(+) and WC1(neg) γδ T cells contribute to the recruitment of inflammatory populations during viral infection. Based on our results, we propose that circulating γδ T cells are poised to rapidly respond to viral infection and suggest an important role for γδ T cells in the innate immune response of the bovine neonate.
Collapse
Affiliation(s)
- Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
32
|
Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 2013; 4:3731-53. [PMID: 23342375 PMCID: PMC3528288 DOI: 10.3390/v4123731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV plays a significant role in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Infection of calves with bovine RSV shares features in common with RSV infection in children, such as an age-dependent susceptibility. In addition, comparable microscopic lesions consisting of bronchiolar neutrophilic infiltrates, epithelial cell necrosis, and syncytial cell formation are observed. Further, our studies have shown an upregulation of pro-inflammatory mediators in RSV-infected calves, including IL-12p40 and CXCL8 (IL-8). This finding is consistent with increased levels of IL-8 observed in children with RSV bronchiolitis. Since rodents lack IL-8, neonatal calves can be useful for studies of IL-8 regulation in response to RSV infection. We have recently found that vitamin D in milk replacer diets can be manipulated to produce calves differing in circulating 25-hydroxyvitamin D3. The results to date indicate that although the vitamin D intracrine pathway is activated during RSV infection, pro-inflammatory mediators frequently inhibited by the vitamin D intacrine pathway in vitro are, in fact, upregulated or unaffected in lungs of infected calves. This review will summarize available data that provide parallels between bovine RSV infection in neonatal calves and human RSV in infants.
Collapse
|
33
|
Non-propagating, recombinant vesicular stomatitis virus vectors encoding respiratory syncytial virus proteins generate potent humoral and cellular immunity against RSV and are protective in mice. Immunol Lett 2012; 150:134-44. [PMID: 23261719 DOI: 10.1016/j.imlet.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in infants, the elderly, and other high-risk individuals. Despite years of research in this field, there is no effective licensed vaccine to prevent RSV infection. We have generated candidate RSV vaccines using a recombinant vesicular stomatitis virus (rVSV) replicon in which the attachment and fusion domains of the VSV glycoprotein (G) have been deleted (rVSV-Gstem), rendering the virus propagation-defective except in the presence of complementing VSV G provided in trans. A form of this vector encoding the RSV fusion protein (F) gene expressed high levels of F in vitro and elicited durable neutralizing antibody responses as well as complete protection against RSV challenge in vivo. Mice vaccinated with rVSV-Gstem-RSV-F replicons also developed robust cellular responses characterized by both primary and memory Th1-biased CD8+ and CD4+ T cells. Furthermore, a single high dose of the Gstem-RSV-F replicon was effective against challenge with both RSV A and B subgroup viruses. Finally, addition of an RSV glycoprotein (G)-expressing Gstem vector significantly improved the incomplete protection achieved with a single low dose of Gstem-RSV-F vector alone.
Collapse
|
34
|
Abstract
The bovine respiratory syncytial virus (BRSV) is an enveloped, negative sense, single-stranded RNA virus belonging to the pneumovirus genus within the family Paramyxoviridae. BRSV has been recognized as a major cause of respiratory disease in young calves since the early 1970s. The analysis of BRSV infection was originally hampered by its characteristic lability and poor growth in vitro. However, the advent of numerous immunological and molecular methods has facilitated the study of BRSV enormously. The knowledge gained from these studies has also provided the opportunity to develop safe, stable, attenuated virus vaccine candidates. Nonetheless, many aspects of the epidemiology, molecular epidemiology and evolution of the virus are still not fully understood. The natural course of infection is rather complex and further complicates diagnosis, treatment and the implementation of preventive measures aimed to control the disease. Therefore, understanding the mechanisms by which BRSV is able to establish infection is needed to prevent viral and disease spread. This review discusses important information regarding the epidemiology and molecular epidemiology of BRSV worldwide, and it highlights the importance of viral evolution in virus transmission.
Collapse
|
35
|
Glass EJ, Baxter R, Leach RJ, Jann OC. Genes controlling vaccine responses and disease resistance to respiratory viral pathogens in cattle. Vet Immunol Immunopathol 2012; 148:90-9. [PMID: 21621277 PMCID: PMC3413884 DOI: 10.1016/j.vetimm.2011.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 12/27/2022]
Abstract
Farm animals remain at risk of endemic, exotic and newly emerging viruses. Vaccination is often promoted as the best possible solution, and yet for many pathogens, either there are no appropriate vaccines or those that are available are far from ideal. A complementary approach to disease control may be to identify genes and chromosomal regions that underlie genetic variation in disease resistance and response to vaccination. However, identification of the causal polymorphisms is not straightforward as it generally requires large numbers of animals with linked phenotypes and genotypes. Investigation of genes underlying complex traits such as resistance or response to viral pathogens requires several genetic approaches including candidate genes deduced from knowledge about the cellular pathways leading to protection or pathology, or unbiased whole genome scans using markers spread across the genome. Evidence for host genetic variation exists for a number of viral diseases in cattle including bovine respiratory disease and anecdotally, foot and mouth disease virus (FMDV). We immunised and vaccinated a cattle cross herd with a 40-mer peptide derived from FMDV and a vaccine against bovine respiratory syncytial virus (BRSV). Genetic variation has been quantified. A candidate gene approach has grouped high and low antibody and T cell responders by common motifs in the peptide binding pockets of the bovine major histocompatibility complex (BoLA) DRB3 gene. This suggests that vaccines with a minimal number of epitopes that are recognised by most cattle could be designed. Whole genome scans using microsatellite and single nucleotide polymorphism (SNP) markers has revealed many novel quantitative trait loci (QTL) and SNP markers controlling both humoral and cell-mediated immunity, some of which are in genes of known immunological relevance including the toll-like receptors (TLRs). The sequencing, assembly and annotation of livestock genomes and is continuing apace. In addition, provision of high-density SNP chips should make it possible to link phenotypes with genotypes in field populations without the need for structured populations or pedigree information. This will hopefully enable fine mapping of QTL and ultimate identification of the causal gene(s). The research could lead to selection of animals that are more resistant to disease and new ways to improve vaccine efficacy.
Collapse
Affiliation(s)
- Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | | | | | | |
Collapse
|
36
|
Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eléouët JF, Sizun C. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 2012; 8:e1002734. [PMID: 22675274 PMCID: PMC3364950 DOI: 10.1371/journal.ppat.1002734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177) core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177), as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | | | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients 2012; 4:181-96. [PMID: 22666545 PMCID: PMC3347026 DOI: 10.3390/nu4030181] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
The endocrine physiology of vitamin D in cattle has been rigorously investigated and has yielded information on vitamin D requirements, endocrine function in health and disease, general metabolism, and maintenance of calcium homeostasis in cattle. These results are relevant to human vitamin D endocrinology. The current debate regarding vitamin D requirements is centered on the requirements for proper intracrine and paracrine vitamin D signaling. Studies in adult and young cattle can provide valuable insight for understanding vitamin D requirements as they relate to innate and adaptive immune responses during infectious disease. In cattle, toll-like receptor recognition activates intracrine and paracrine vitamin D signaling mechanism in the immune system that regulates innate and adaptive immune responses in the presence of adequate 25-hydroxyvitamin D. Furthermore, experiments with mastitis in dairy cattle have provided in vivo evidence for the intracrine vitamin D signaling mechanism in macrophages as well as vitamin D mediated suppression of infection. Epidemiological evidence indicates that circulating concentrations above 32 ng/mL of 25-hydroxyvitamin D are necessary for optimal vitamin D signaling in the immune system, but experimental evidence is lacking for that value. Experiments in cattle can provide that evidence as circulating 25-hydroxyvitamin D concentrations can be experimentally manipulated within ranges that are normal for humans and cattle. Additionally, young and adult cattle can be experimentally infected with bacteria and viruses associated with significant diseases in both cattle and humans. Utilizing the bovine model to further delineate the immunomodulatory role of vitamin D will provide potentially valuable insights into the vitamin D requirements of both humans and cattle, especially as they relate to immune response capacity and infectious disease resistance.
Collapse
|
38
|
Leach RJ, O'Neill RG, Fitzpatrick JL, Williams JL, Glass EJ. Quantitative trait loci associated with the immune response to a bovine respiratory syncytial virus vaccine. PLoS One 2012; 7:e33526. [PMID: 22438944 PMCID: PMC3305305 DOI: 10.1371/journal.pone.0033526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/15/2012] [Indexed: 12/05/2022] Open
Abstract
Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501) which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected. Heifers from the same population (n = 195) were subsequently immunised with a 40-mer Foot-and-Mouth Disease Virus peptide (FMDV) in a previous publication. Several of these QTL associated with the FMDV traits had overlapping peak positions with QTL in the current study, including the QTL on BTA23 which included the bovine Major Histocompatibility Complex (BoLA), and QTL on BTA9 and BTA24, suggesting that the genes underlying these QTL may control responses to multiple antigens. These results lay the groundwork for future investigations to identify the genes underlying the variation in clearance of maternal antibody and response to vaccination.
Collapse
Affiliation(s)
- Richard J Leach
- Department of Genetics and Genomics, The Roslin Institute and Royal, Dick, School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
| | | | | | | | | |
Collapse
|
39
|
Consequences of non-intervention for infectious disease in African great apes. PLoS One 2011; 6:e29030. [PMID: 22216162 PMCID: PMC3245243 DOI: 10.1371/journal.pone.0029030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
Infectious disease has recently joined poaching and habitat loss as a major threat to African apes. Both "naturally" occurring pathogens, such as Ebola and Simian Immunodeficiency Virus (SIV), and respiratory pathogens transmitted from humans, have been confirmed as important sources of mortality in wild gorillas and chimpanzees. While awareness of the threat has increased, interventions such as vaccination and treatment remain controversial. Here we explore both the risk of disease to African apes, and the status of potential responses. Through synthesis of published data, we summarize prior disease impact on African apes. We then use a simple demographic model to illustrate the resilience of a well-known gorilla population to disease, modeled on prior documented outbreaks. We found that the predicted recovery time for this specific gorilla population from a single outbreak ranged from 5 years for a low mortality (4%) respiratory outbreak, to 131 years for an Ebola outbreak that killed 96% of the population. This shows that mortality rates comparable to those recently reported for disease outbreaks in wild populations are not sustainable. This is particularly troubling given the rising pathogen risk created by increasing habituation of wild apes for tourism, and the growth of human populations surrounding protected areas. We assess potential future disease spillover risk in terms of vaccination rates amongst humans that may come into contact with wild apes, and the availability of vaccines against potentially threatening diseases. We discuss and evaluate non-interventionist responses such as limiting tourist access to apes, community health programs, and safety, logistic, and cost issues that constrain the potential of vaccination.
Collapse
|
40
|
Purification of human respiratory syncytial virus fusion glycoprotein. Protein Expr Purif 2011; 81:115-118. [PMID: 21979254 DOI: 10.1016/j.pep.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022]
Abstract
Human respiratory syncytial virus (RSV) fusion glycoprotein (F) elicits neutralizing antibodies to RSV and has therefore attracted much attention as a suitable candidate antigen in the development of gene-based vaccines against RSV infections. However, a major obstacle in vaccine development has been the problem of antigen purification. To address this problem, we have developed a new method that combines sucrose gradient ultracentrifugation and a two-step chromatographic process, to purify RSV F from RSV particles propagated in HEp-2 cells. Analysis of the fractions produced using this method showed recovery of a functional homodimer with a molecular weight of 140 kDa, and 54% preservation of the original F.
Collapse
|
41
|
Hägglund S, Hu K, Vargmar K, Poré L, Olofson AS, Blodörn K, Anderson J, Ahooghalandari P, Pringle J, Taylor G, Valarcher JF. Bovine respiratory syncytial virus ISCOMs-Immunity, protection and safety in young conventional calves. Vaccine 2011; 29:8719-30. [PMID: 21864616 PMCID: PMC7115641 DOI: 10.1016/j.vaccine.2011.07.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 01/18/2023]
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of bronchiolitis and pneumonia in cattle and causes yearly outbreaks with high morbidity in Europe. Commercial vaccines against this virus needs improvement of efficacy, especially in calves with BRSV-specific maternally derived antibodies (MDA). We previously reported that an experimental BRSV-ISCOM vaccine, but not a commercial vaccine, induced strong clinical and virological protection in calves with MDA, immunized at 7–15 weeks of age. The aim of the present study was to characterize the immune responses, as well as to investigate the efficacy and safety in younger animals, representing the target population for vaccination. Four groups of five 3–8 week old calves with variable levels of BRSV-specific MDA were immunized s.c. twice at a 3 weeks interval with (i) BRSV immunostimulating complexes (BRSV-ISCOMs), (ii) BRSV-protein, (iii) adjuvant, or (iv) PBS. All calves were challenged with virulent BRSV by aerosol 2 weeks later and euthanized on day 6 after infection. The cellular and humoral responses were monitored as well as the clinical signs, the viral excretion and the pathology following challenge. Despite presence of MDA at the time of the immunization, only a minimum of clinical signs were observed in the BRSV-ISCOM group after challenge. In contrast, in all control groups, clinical signs of disease were observed in most of the animals (respiratory rates up to 76 min−1 and rectal temperatures up to 41 °C). The clinical protection was associated to a highly significant reduction of virus replication in the upper and lower respiratory tract of calves, rapid systemic and local antibody responses and T helper cell responses dominated by IFNγ production. Animals that did not shed virus detectable by PCR or cell culture following challenge possessed particularly high levels of pulmonary IgA. The protective immunological responses to BRSV proteins and the ability to overcome the inhibiting effect of MDA were dependent on ISCOM borne antigen presentation.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Department of Clinical Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Lindell DM, Morris SB, White MP, Kallal LE, Lundy PK, Hamouda T, Baker JR, Lukacs NW. A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One 2011; 6:e21823. [PMID: 21789184 PMCID: PMC3137595 DOI: 10.1371/journal.pone.0021823] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960's led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations. PRINCIPAL FINDINGS In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines. CONCLUSIONS These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology.
Collapse
Affiliation(s)
- Dennis M. Lindell
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Susan B. Morris
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Maria P. White
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Lara E. Kallal
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Phillip K. Lundy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, Michigan, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
44
|
Nair H, Verma VR, Theodoratou E, Zgaga L, Huda T, Simões EAF, Wright PF, Rudan I, Campbell H. An evaluation of the emerging interventions against Respiratory Syncytial Virus (RSV)-associated acute lower respiratory infections in children. BMC Public Health 2011; 11 Suppl 3:S30. [PMID: 21501449 PMCID: PMC3231904 DOI: 10.1186/1471-2458-11-s3-s30] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections (ALRI) in children. It is estimated to cause approximately 33.8 million new episodes of ALRI in children annually, 96% of these occurring in developing countries. It is also estimated to result in about 53,000 to 199,000 deaths annually in young children. Currently there are several vaccine and immunoprophylaxis candidates against RSV in the developmental phase targeting active and passive immunization. Methods We used a modified CHNRI methodology for setting priorities in health research investments. This was done in two stages. In Stage I, we systematically reviewed the literature related to emerging vaccines against RSV relevant to 12 criteria of interest. In Stage II, we conducted an expert opinion exercise by inviting 20 experts (leading basic scientists, international public health researchers, international policy makers and representatives of pharmaceutical companies). The policy makers and industry representatives accepted our invitation on the condition of anonymity, due to the sensitive nature of their involvement in such exercises. They answered questions from the CHNRI framework and their “collective optimism” towards each criterion was documented on a scale from 0 to 100%. Results In the case of candidate vaccines for active immunization of infants against RSV, the experts expressed very low levels of optimism for low product cost, affordability and low cost of development; moderate levels of optimism regarding the criteria of answerability, likelihood of efficacy, deliverability, sustainability and acceptance to end users for the interventions; and high levels of optimism regarding impact on equity and acceptance to health workers. While considering the candidate vaccines targeting pregnant women, the panel expressed low levels of optimism for low product cost, affordability, answerability and low development cost; moderate levels of optimism for likelihood of efficacy, deliverability, sustainability and impact on equity; high levels of optimism regarding acceptance to end users and health workers. The group also evaluated immunoprophylaxis against RSV using monoclonal antibodies and expressed no optimism towards low product cost; very low levels of optimism regarding deliverability, affordability, sustainability, low implementation cost and impact on equity; moderate levels of optimism against the criteria of answerability, likelihood of efficacy, acceptance to end-users and health workers; and high levels of optimism regarding low development cost. They felt that either of these vaccines would have a high impact on reducing burden of childhood ALRI due to RSV and reduce the overall childhood ALRI burden by a maximum of about 10%. Conclusion Although monoclonal antibodies have proven to be effective in providing protection to high-risk infants, their introduction in resource poor settings might be limited by high cost associated with them. Candidate vaccines for active immunization of infants against RSV hold greatest promise. Introduction of a low cost vaccine against RSV would reduce the inequitable distribution of burden due to childhood ALRI and will most likely have a high impact on morbidity and mortality due to severe ALRI.
Collapse
Affiliation(s)
- Harish Nair
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:57. [PMID: 21108806 PMCID: PMC3003652 DOI: 10.1186/1476-9255-7-57] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/25/2010] [Indexed: 12/13/2022]
Abstract
By virtue of its direct contact with the environment, the lung is constantly challenged by infectious and non-infectious stimuli that necessitate a robust yet highly controlled host response coordinated by the innate and adaptive arms of the immune system. Mammalian Toll-like receptors (TLRs) function as crucial sentinels of microbial and non-infectious antigens throughout the respiratory tract and mediate host innate immunity. Selective induction of inflammatory responses to harmful environmental exposures and tolerance to innocuous antigens are required to maintain tissue homeostasis and integrity. Conversely, dysregulated innate immune responses manifest as sustained and self-perpetuating tissue damage rather than controlled tissue repair. In this article we review aspects of Toll-like receptor function that are relevant to the development of acute lung injury and chronic obstructive lung diseases as well as resistance to frequently associated microbial infections.
Collapse
Affiliation(s)
- Erin I Lafferty
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
| | | | | |
Collapse
|
46
|
Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol 2010; 125:1178-87; quiz 1188-9. [PMID: 20513517 PMCID: PMC7172767 DOI: 10.1016/j.jaci.2010.04.021] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 01/17/2023]
Abstract
Viral respiratory infections are the most common cause of an acute asthma exacerbation in both children and adults and represent a significant global health burden. An increasing body of evidence supports the hypothesis that these infections cause a greater degree of morbidity in asthmatic subjects than in the healthy population, emphasizing a discrepancy in the antiviral response of asthmatics. In this review we discuss why such a discrepancy might exist, examining the role of the bronchial epithelium as well as the main inflammatory cells, mediators, and molecular pathways that are involved in the immune response. In addition, the potential impact of virus-induced asthma exacerbations on airway remodelling is reviewed and we explore which therapeutic options might be of benefit in preventing the deterioration of asthma control seen following viral infection.
Collapse
Key Words
- asthma
- acute exacerbation
- virus
- bal, bronchoalveolar lavage
- bec, bronchial epithelial cell
- fgf, fibroblast growth factor
- hrv, human rhinovirus
- icam-1, intercellular adhesion molecule 1
- ip-10, interferon-inducible protein 10
- irf, interferon regulatory factor
- nf-κb, nuclear factor kappa b
- prr, pattern-recognition receptor
- socs1, suppressor of cytokine signaling 1
- tlr, toll-like receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- David J Jackson
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
47
|
A new subunit vaccine based on nucleoprotein nanoparticles confers partial clinical and virological protection in calves against bovine respiratory syncytial virus. Vaccine 2010; 28:3722-34. [PMID: 20307593 PMCID: PMC7115569 DOI: 10.1016/j.vaccine.2010.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 11/15/2022]
Abstract
Human and bovine respiratory syncytial viruses (HRSV and BRSV) are two closely related, worldwide prevalent viruses that are the leading cause of severe airway disease in children and calves, respectively. Efficacy of commercial bovine vaccines needs improvement and no human vaccine is licensed yet. We reported that nasal vaccination with the HRSV nucleoprotein produced as recombinant ring-shaped nanoparticles (N(SRS)) protects mice against a viral challenge with HRSV. The aim of this work was to evaluate this new vaccine that uses a conserved viral antigen, in calves, natural hosts for BRSV. Calves, free of colostral or natural anti-BRSV antibodies, were vaccinated with N(SRS) either intramuscularly, or both intramuscularly and intranasally using Montanide ISA71 and IMS4132 as adjuvants and challenged with BRSV. All vaccinated calves developed anti-N antibodies in blood and nasal secretions and N-specific cellular immunity in local lymph nodes. Clinical monitoring post-challenge demonstrated moderate respiratory pathology with local lung tissue consolidations for the non-vaccinated calves that were significantly reduced in the vaccinated calves. Vaccinated calves had lower viral loads than the non-vaccinated control calves. Thus N(SRS) vaccination in calves provided cross-protective immunity against BRSV infection without adverse inflammatory reaction.
Collapse
|
48
|
Lanzas C, Ayscue P, Ivanek R, Gröhn YT. Model or meal? Farm animal populations as models for infectious diseases of humans. Nat Rev Microbiol 2010; 8:139-48. [PMID: 20040917 PMCID: PMC7097165 DOI: 10.1038/nrmicro2268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent decades, theory addressing the processes that underlie the dynamics of infectious diseases has progressed considerably. Unfortunately, the availability of empirical data to evaluate these theories has not grown at the same pace. Although laboratory animals have been widely used as models at the organism level, they have been less appropriate for addressing issues at the population level. However, farm animal populations can provide empirical models to study infectious diseases at the population level.
Collapse
Affiliation(s)
- Cristina Lanzas
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
49
|
Mapletoft JW, Latimer L, Babiuk LA, van Drunen Littel-van den Hurk S. Intranasal immunization of mice with a bovine respiratory syncytial virus vaccine induces superior immunity and protection compared to those by subcutaneous delivery or combinations of intranasal and subcutaneous prime-boost strategies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:23-35. [PMID: 19864487 PMCID: PMC2812083 DOI: 10.1128/cvi.00250-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/27/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) infects cells of the respiratory mucosa, so it is desirable to develop a vaccination strategy that induces mucosal immunity. To achieve this, various delivery routes were compared for formalin-inactivated (FI) BRSV formulated with CpG oligodeoxynucleotide (ODN) and polyphosphazene (PP). Intranasal delivery of the FI-BRSV formulation was superior to subcutaneous delivery in terms of antibody, cell-mediated, and mucosal immune responses, as well as reduction in virus replication after BRSV challenge. Although intranasal delivery of FI-BRSV also induced higher serum and lung antibody titers and gamma interferon (IFN-gamma) production in the lungs than intranasal-subcutaneous and/or subcutaneous-intranasal prime-boost strategies, no significant differences were observed in cell-mediated immune responses or virus replication in the lungs of challenged mice. Interleukin 5 (IL-5), eotaxin, and eosinophilia were enhanced after BRSV challenge in the lungs of subcutaneously immunized mice compared to unvaccinated mice, but not in the lungs of mice immunized intranasally or through combinations of the intranasal and subcutaneous routes. These results suggest that two intranasal immunizations with FI-BRSV formulated with CpG ODN and PP are effective and safe as an approach to induce systemic and mucosal responses, as well to reduce virus replication after BRSV challenge. Furthermore, intranasal-subcutaneous and subcutaneous-intranasal prime-boost strategies were also safe and almost as efficacious. In addition to the implications for the development of a protective BRSV vaccine for cattle, formulation with CpG ODN and PP could also prove important in the development of a mucosal vaccine that induces protective immunity against human RSV.
Collapse
Affiliation(s)
- John W Mapletoft
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | | | | | | |
Collapse
|
50
|
Percopo CM, Qiu Z, Phipps S, Foster PS, Domachowske JB, Rosenberg HF. Pulmonary eosinophils and their role in immunopathologic responses to formalin-inactivated pneumonia virus of mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:604-12. [PMID: 19542471 DOI: 10.4049/jimmunol.0802270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enhanced disease is the term used to describe the aberrant Th2-skewed responses to naturally acquired human respiratory syncytial virus (hRSV) infection observed in individuals vaccinated with formalin-inactivated viral Ags. Here we explore this paradigm with pneumonia virus of mice (PVM), a pathogen that faithfully reproduces features of severe hRSV infection in a rodent host. We demonstrate that PVM infection in mice vaccinated with formalin-inactivated Ags from PVM-infected cells (PVM Ags) yields Th2-skewed hypersensitivity, analogous to that observed in response to hRSV. Specifically, we detect elevated levels of IL-4, IL-5, IL-13, and eosinophils in bronchoalveolar lavage fluid of PVM-infected mice that were vaccinated with PVM Ags, but not among mice vaccinated with formalin-inactivated Ags from uninfected cells (control Ags). Interestingly, infection in PVM Ag-vaccinated mice was associated with a approximately 10-fold reduction in lung virus titer and protection against weight loss when compared with infected mice vaccinated with control Ags, despite the absence of serum-neutralizing Abs. Given recent findings documenting a role for eosinophils in promoting clearance of hRSV in vivo, we explored the role of eosinophils in altering the pathogenesis of disease with eosinophil-deficient mice. We found that eosinophil deficiency had no impact on virus titer in PVM Ag-vaccinated mice, nor on weight loss or levels of CCL11 (eotaxin-1), IFN-gamma, IL-5, or IL-13 in bronchoalveolar lavage fluid. However, levels of both IL-4 and CCL3 (macrophage inflammatory protein-1alpha) in bronchoalveolar lavage fluid were markedly diminished in PVM Ag-vaccinated, PVM-infected eosinophil-deficient mice when compared with wild-type controls.
Collapse
Affiliation(s)
- Caroline M Percopo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|