1
|
Abdel-Raheem SM, El-Hamid MIA, Khamis T, Baz HA, Omar AE, Gad WM, El-Azzouny MM, Habaka MAM, Mohamed RI, Elkenawy ME, Dawod RE, Elalfy EA, Ibrahim D. Comprehensive efficacy of nano-formulated mixed probiotics on broiler chickens' performance and Salmonella Typhimurium challenge. Poult Sci 2024; 103:104334. [PMID: 39366292 PMCID: PMC11489064 DOI: 10.1016/j.psj.2024.104334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
The increasing recognition of the potential advantages beyond nanoencapsulation of probiotics gained great attention owing to effective properties. Hence, we provided the most in-depth look into the influence of nanoformulated multi strain probiotics; BLB-NPs comprising Bacillus subtilis ATCC19659, Lactobacillus plantarum ATCC8014 and Bifidobacterium bifidum ATCC29521 on growth performance, antioxidant status and intestinal immunity supporting the defense against Salmonella Typhimurium (S. Typhimurium) challenge in broilers chickens. A total of 2,800 one-day-old male Ross 308 boiler chicks were divided into 7 groups; 1 control without additives, 3 probiotics [fed control diets mixed with B. subtilis, L. plantarum and B. bifidum (BLB) at concentrations of 1 × 104 (BLBI), 1 × 106 (BLBII) and 1 × 108 (BLBIII) CFU /kg diet, respectively] and 3 nanoencapsulated probiotics [fed control diets supplemented with BLB loaded nanoparticles (BLB-NPs) at concentrations of 1 × 104 (BLB-NPsI), 1 × 106 (BLB-NPsII) and 1 × 108 (BLB-NPsIII) CFU /kg diet, respectively]. All previous groups were challenged at d 22 of age with S. Typhimurium. Birds fed BLB-NPs II and III exhibited better weight gain and FCR simultaneously with upregulation in nutrients transporters genes (LAT-1, PepT-1, CAT-1 and SGLT1) even after S. Typhimurium challenge. Upregulation of immmune related genes (IL-1β, IL-6, IL-8, MyD88, NF-kB, CCL20, CXCLi2, TLR-2, TLR-4 and SOCS1) was prominently subsided in BLB-NPsIII fed group. The strengthening ability of BLB-NPs for broilers' intestinal barriers was evidenced by augmented expression of JAM, MUC-2, occludin and FABP-2 genes, diminished S. Typhimurium counts and suppressed its virulence related genes (HilA and SopD) with restored histopathological pictures of cecum. Notably, post dietary inclusion of higher levels of BLB-NPsIII, the abundance of beneficial Biofidobacterium and Lactobacillus species was dominated over harmful E. coli ones. Birds fortified with BLB-NPs displayed potent antioxidant potential signified by boosting serum and intestinal antioxidant markers alongside reducing oxidative ones. Overall, the abovementioned positive outcomes of BLB-NPs encouraged their potential application in poultry feed to attain superior performance and elicit protective immunity against S. Typhimurium infection.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba A Baz
- Veterinary Education Hospital, Poultry diseases, Fac2ulty of Veterinary Medicine, Zagazig, 44511, Egypt
| | - Anaam E Omar
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Wafaa M Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch Agriculture Research Center, Mansoura 35511, Egypt
| | - Mona M El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| | - Manal A M Habaka
- Department of Poultry and Rabbits Diseases, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Mansoura, 35511, Egypt
| | - Mona E Elkenawy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Rehab E Dawod
- Department of Bacteriology, Animal Health Research Institute (AHRI), Damietta Branch, Agriculture Research center (ARC), Damietta, Egypt
| | - Eman A Elalfy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Abd El-Hamid MI, El-Azzouny MM, El-Malt RMS, Elkenawy ME, Abdelwarith AA, Younis EM, Youssef W, Dawod RE, Elged DWAH, Habaka MAM, El Oksh ASA, Mekawy S, Davies SJ, Ibrahim D. Future impact of thymoquinone-loaded nanoemulsion in rabbits: prospects for enhancing growth, immunity, antioxidant potential and resistance against Pasteurella multocida. Front Vet Sci 2024; 10:1340964. [PMID: 38292130 PMCID: PMC10824920 DOI: 10.3389/fvets.2023.1340964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Phytochemical nanoemulsions, such as thymoquinone nanoemulsions (TQN), are regarded as innovative alternatives to antimicrobials that significantly improve the performance, digestion, antioxidant potential and immunity of rabbits. Thus, the potential effects of TQN on growth, digestibility, antioxidant potential, immunity and resistance against Pasteurella multocida (P. multocida) in rabbits were assessed. Herein, 240 rabbits were offered either a basal diet or diets fortified with three TQN-graded concentrations. At 60 days of age, rabbits were challenged with multidrug-resistant (MDR) virulent P. multocida strain. Our outcomes described that dietary inclusion of TQN, especially at higher concentrations, significantly enhanced the growth performance of rabbits, which was supported by increasing the levels of jejunal lipase, amylase and trypsin enzymes. Of note, the levels of muscle and jejunal antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and total antioxidant capacity (T-AOC)], serum immunological markers (IgG, IgG, IgM and total Igs) and blood phagocytic percentage were significantly provoked after TQN fortification; meanwhile, the levels of muscle and jejunal MDA, serum biochemical parameters (total cholesterol, TG and LDL), abdominal fat percentage, breast and thigh cholesterol were significantly decreased following TQN supplementations. Our findings showed that TQN protected rabbits against P. multocida experimental challenge as evidenced by reducing P. multocida counts in rabbits' lungs, downregulating the transcription levels of P. multocida virulence-related genes (ptfA, toxA and nanB) at 48 and 96 h post-infection and ameliorating the expression levels of cytokines-related genes (IL-1β, IL-10, IL-8, IL-6, DEFB1, TNF-α, TLR-4 and TLR-2) at 96 h post-infection. Our findings suggest the utilization of TQN in rabbits' diets due to their stimulating effects on digestibility as well as their growth-promoting, anti-inflammatory, antioxidant, antibacterial, anti-virulence and immunostimulant properties, which enhance the rabbits' P. multocida resistance.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona M. El-Azzouny
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Rania M. S. El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Mona E. Elkenawy
- Department of Biochemistry, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Mansoura, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab E. Dawod
- Department of Bacteriology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Damietta, Egypt
| | - Dalia W. A. H. Elged
- Toxicology and Biochemical Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Manal A. M. Habaka
- Department of Poultry and Rabbits Diseases, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Amal S. A. El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Soad Mekawy
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Awad NFS, Abd El-Hamid MI, Nabil NM, Tawakol MM, Eid S, Al-Zaban MI, Farouk H, Zakai SA, Elkelish A, Ibrahim MS, Mahmoud HA, Salem SM, Ismail HM, Hamed RI. Multidrug resistant and multivirulent avian bacterial pathogens: tackling experimental leg disorders using phytobiotics and antibiotics alone or in combination. Poult Sci 2023; 102:102889. [PMID: 37666144 PMCID: PMC10491818 DOI: 10.1016/j.psj.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 09/06/2023] Open
Abstract
Locomotor disorders caused by multidrug-resistant (MDR) bacterial pathogens denote one of the most detrimental issues that collectively threaten the poultry industry leading to pronounced economic losses across the world. Hence, searching for effective alternatives, especially those extracted from plant origins became of great priority targeting a partial or complete replacement of chemical antimicrobials to tackle their developing resistance. Therefore, we aimed to determine the prevalence and antimicrobial resistance of Staphylococcus aureus (S. aureus), Salmonella species, Mycoplasma synoviae (M. synoviae), and Escherichia coli (E. coli) recovered from 500 broilers and ducks (250 each) with locomotor disorders in various farms in Dakahlia and Sharkia Governorates, Egypt. Additionally, we assessed, for the first time, the in vitro antimicrobial effectiveness of marjoram, garlic, ginger and cinnamon essential oils (EOs) against MDR and multivirulent bacterial isolates as well as the in vivo efficiency of the most effective antibiotics and EOs either separately or in combination in the treatment of experimentally induced poultry leg disorders. The overall prevalence rates of S. aureus, E. coli, Salmonella species, and M. synoviae were 54, 48, 36, and 2%, respectively. Salmonella species and S. aureus prevailed among ducks and broilers (36 and 76%, respectively). Notably, MDR was observed in 100, 91.7, 81.1, and 78.5% of M. synoviae, E. coli, Salmonella, and S. aureus isolates, respectively. Our in vitro results displayed that marjoram was the most forceful EO against MDR and multivirulent chicken vancomycin-resistant S. aureus (VRSA) and duck S. Typhimurium isolates. The current in vivo results declared that marjoram in combination with florfenicol or amoxicillin/clavulanic acid succeeded in relieving the induced duck and chicken leg disorders caused by S. Typhimurium and VRSA, respectively. This was evidenced by improvement in the clinical and histopathological pictures with a reduction of bacterial loads in the experimental birds. Our encountered successful in vitro and in vivo synergistic effectiveness of marjoram combined with florfenicol or amoxicillin/clavulanic acid recommends their therapeutic application for leg disorders and offers opportunities for reducing the antibiotics usage in the poultry industry.
Collapse
Affiliation(s)
- Naglaa F S Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Nehal M Nabil
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Maram M Tawakol
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Samah Eid
- Department of Bacteriology, Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mayasar I Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Heba Farouk
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Shadi A Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Botany, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona S Ibrahim
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Hanim A Mahmoud
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Sanaa M Salem
- Department of Pathology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| | - Hala M Ismail
- Department of Pathology, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Rehab I Hamed
- Department of Poultry Diseases, Reference Laboratory for Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| |
Collapse
|
4
|
Abdel-Raheem SM, Abd El-Hamid MI, Ibrahim D, El-Malt RMS, El-Ghareeb WR, Ismail HA, Al-Sultan SI, Meligy AMA, ELTarabili RM. Future scope of plant-derived bioactive compounds in the management of methicillin-resistant Staphylococcus aureus: In vitro antimicrobial and antivirulence prospects to combat MRSA. Microb Pathog 2023; 183:106301. [PMID: 37579824 DOI: 10.1016/j.micpath.2023.106301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost human and animal pathogen with public health and veterinary significance causing hospital and community infections and contagious bovine mastitis. Due to its ability to develop multidrug resistance (MDR) and its pathogenicity, MRSA infection control is becoming a global concern. Natural antibacterial options are needed to combat MDR development and infectious dissemination. This study investigated the antimicrobial resistance and virulence genes profiling of MRSA isolates and explored the antivirulence efficacy of trans-cinnamaldehyde, thymol, and carvacrol essential oils (EOs) against multivirulent and MDR-MRSA isolates. Thirty six S. aureus isolates (25%) were retrieved, of which 34 (94.4%) were MRSA. A high prevalence of MDR (66.7%) was monitored and all 53 molecularly verified isolates possessed icaA and cna virulence genes. Moreover, 94.1% of these isolates were multivirulent with 23.5% of them carrying icaA, cna, eta, tst, and sea virulence genes. Our data proved superior in vitro antimicrobial and antivirulence activities of trans-cinnamaldehyde, thymol, and carvacrol. They inhibited the growth of multi-virulent and MDR-MRSA isolates and downregulated the transcription of examined virulence genes. Our study suggests using EOs as prospective antimicrobials with excellent antivirulence activities against MRSA isolates. We provided data regarding the eventual role of phytogenics in prevention and control of MRSA infection.
Collapse
Affiliation(s)
- Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, 44516, Zagazig, Egypt.
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Hesham A Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Saad Ibrahim Al-Sultan
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Sciences, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf, 31982, Al-Ahsa, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Reham M ELTarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
5
|
El-Demerdash AS, Mohamady SN, Megahed HM, Ali NM. Evaluation of gene expression related to immunity, apoptosis, and gut integrity that underlies Artemisia's therapeutic effects in necrotic enteritis-challenged broilers. 3 Biotech 2023; 13:181. [PMID: 37193331 PMCID: PMC10182211 DOI: 10.1007/s13205-023-03560-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.
Collapse
Affiliation(s)
- Azza S. El-Demerdash
- Microbiology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Sahar N. Mohamady
- Clinical Pathology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Hend M. Megahed
- Biochemistry Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Naglaa M. Ali
- Poultry Disease Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Assuit, Egypt
| |
Collapse
|
6
|
Alhawas B, Abd El-Hamid MI, Hassan Z, Ibrahim GA, Neamat-Allah ANF, Rizk El-Ghareeb W, Alahmad BAHY, Meligy AMA, Abdel-Raheem SM, Abdel-Moez Ahmed Ismail H, Ibrahim D. Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108776. [PMID: 37182798 DOI: 10.1016/j.fsi.2023.108776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Application of novel trend comprising antioxidant phytogenics is aiming to minimize the stress related factors and associated diseases in intensive fish culturing. Today, the concept of exploiting and protecting natural antioxidants represents a paradigm shift for the aqua feed industry. Therefore, our principal goal targeting liposome as a novel nanocarrier for curcumin is directed to attain superior performance, fillet antioxidant stability and bacterial resistance in Nile tilapia. A total of 500 Nile tilapia fingerlings (average body weight, 10.27 ± 0.10 g) assigned into five experimental groups in 25 glass aquaria of 120 L capacity at the density 20 fish/aquaria. The experimental groups were supplemented with varying doses of liposomal curcumin-NPs, LipoCur-NPs (0, 5, 15, 25 and 35 mg/kg diet) were reared for 12 weeks and later Streptococcus agalactiae (S. agalactiae) challenged model was performed. Inclusion of LipoCur-NPs (25 and 35 mg/kg diet) had the most prominent impact on Nile tilapia growth rate and feed conversion ratio. The immune boosting outcomes post supplementing 35 mg/kg diet of LipoCur-NPs were evidenced by higher myeloperoxidase, lysozyme and total immunoglobulin levels. Even after 4 weeks frozen storage, LipoCur-NPs at the dose of 35 mg/kg diet prominently increased (P < 0.05) the fillet scavenging capability for free radicals (1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) with an inverse reduction in lipid peroxidation biomarker (malondialdehyde). Notably, upregulation of GSH-Px, CAT, and SOD genes in fillet of 35 mg/kg LipoCur-NPs fed fish coordinated with higher T-AOC and lower oxidative markers (ROS and H2O2). Post S. agalactiae challenge, higher supplementation levels of LipoCur-NPs (35 mg/kg diet) greatly attenuated the expression of its vital virulence genes (cfb, fbsA and cpsA) with higher expression of Igm, CXC-chemokine and MHC genes. Concordantly, downregulation of inflammatory markers (IL-1β, TNF-α and IL-8) and upregulation of anti-inflammatory ones (IL-10 and TGF-β) were remarkably documented. Based on these findings, the innovative curcumin loaded liposome was considered a novel multitargeting alternative not only playing an imperative role in Nile tilapia growth promotion and fillet stability upon storage, but also protecting efficiently against S. agalactiae.
Collapse
Affiliation(s)
- Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Ghada A Ibrahim
- Department of Bacteriology, Animal Health Research Institute (AHRI), Ismailia Branch, Agriculture Research Center (ARC), Ismailia, 41522, Egypt.
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Badr Abdul-Hakim Y Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Hesham Abdel-Moez Ahmed Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Hygiene Dept., Fac. of Vet. Med., Assiut Univ., Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
7
|
Ismail H, Ibrahim D, El Sayed S, Wahdan A, El-Tarabili RM, Rizk El-Ghareeb W, Abdullah Alhawas B, Alahmad BAHY, Abdel-Raheem SM, El-Hamid MIA. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens' Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals (Basel) 2023; 13:ani13050775. [PMID: 36899631 PMCID: PMC10000182 DOI: 10.3390/ani13050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Probiotics as novel antibiotics' substitutes are verified to provide barriers for hindering the colonization of enteric bacterial pathogens with nutritional benefits. For enhancement of the probiotics' effectiveness, their integration within nanomaterials is a paramount tool to support the progress of new compounds with functional features. Therefore, we addressed the impact of effective delivery of probiotics (Bacillus amyloliquefaciens) loaded nanoparticles (BNPs) on performance and Campylobacter jejuni (C. jejuni) shedding and colonization in poultry. Two hundred Ross broiler chickens were divided into four groups fed various BNP levels: BNPs I, BNPs II, BNPs III, and BNPs-free diets for 35 days. Nanoparticles delivery of probiotics within broiler diets improved growth performance as reflected by higher body weight gain and superior feed conversion ratio, especially in BNPs II- and BNPs III-fed groups. In parallel, the mRNA expression levels of digestive enzymes encoding genes (AMY2a, PNLIP, CELA1, and CCK) achieved their peaks in BNPs III-fed group (1.69, 1.49, 1.33, and 1.29-fold change, respectively) versus the control one. Notably, with increasing the levels of BNPs, the abundance of beneficial microbiota, such as Bifidobacterium and Lactobacillus species, was favored over harmful ones, including Clostridium species and Enterobacteriaceae. Birds fed higher levels of BNPs displayed significant improvement in the expression of barrier functions-linked genes including DEFB1, FABP-2, and MUC-2 alongside substantial reduction in cecal colonization and fecal shedding of C. jejuni. From the aforementioned positive effects of BNPs, we concluded their potential roles as growth promoters and effective preventive aids for C. jejuni infection in poultry.
Collapse
Affiliation(s)
- Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bassam Abdullah Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Badr Abdul-Hakim Y. Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Sherief M. Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Ibrahim D, Shahin SE, Alqahtani LS, Hassan Z, Althobaiti F, Albogami S, Soliman MM, El-Malt RMS, Al-Harthi HF, Alqadri N, Elabbasy MT, El-Hamid MIA. Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2022; 12:3034. [PMID: 36359158 PMCID: PMC9658592 DOI: 10.3390/ani12213034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sara E. Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Ha’il University, Ha’il 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
9
|
Nigella sativa Extract Potentially Inhibited Methicillin Resistant Staphylococcus aureus Induced Infection in Rabbits: Potential Immunomodulatory and Growth Promoting Properties. Animals (Basel) 2022; 12:ani12192635. [PMID: 36230379 PMCID: PMC9559630 DOI: 10.3390/ani12192635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Simple Summary The high incidence of stress-associated diseases post rabbit weaning results in great losses threatening the rabbit industry. The increasing emergence of multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) causes life threatening infections worldwide. Thus, the necessity to look inward for natural alternative treatments is now compelling. In this perspective, Nigella sativa extract (NSE) could serve as an effective antibiotic alternate source against MRSA. Herein, NSE was found to possess iin vitro antimicrobial activities against MRSA clinical isolates. Moreover, the synergistic activity between NSE and other antimicrobials was employed to overcome the MRSA resistance. Our findings added new insights for application of NSE in diets of growing rabbits as a growth promoting and an immunostimulant agent, which in turn reduced the high risk associated MRSA infections in growing rabbits. Abstract Weaning is the most crucial period associated with increased stress and susceptibility to diseases in rabbits. Methicillin-resistant Staphylococcus aureus (MRSA), a historic emergent pathogen related to post weaning stressors, adversely affects rabbit’s growth rate and productive cycle. Since MRSA is rapidly evolving antibiotics resistance, natural products are desperately required to tackle the public health threats posed by antimicrobial resistance. Thus, this study aimed to screen the iin vitro antibacterial activity of Nigella sativa extract (NSE) and its interactions with antibiotics against MRSA isolates. Moreover, 200 weaned rabbits were divided into 4 groups to investigate the iin vivo superiority of NSE graded levels towards growth performance, tight junction integrity, immune responsiveness and resistance against MRSA. Herein, NSE showed promising antimicrobial activities against MRSA isolates from animal (77.8%) and human (64.3%) origins. Additionally, MRSA isolates exposed to NSE became sensitive to all antimicrobials to which they were previously resistant. Our results described that the growth-promoting functions of NSE, especially at higher levels, were supported by elevated activities of digestive linked enzymes. Post-NSE feeding, rabbits’ sera mediated bactericidal activities against MRSA. Notably, upregulated expression of occludin, CLDN-1, MUC-2 and JAM-2 genes was noted post NSE supplementation with maximum transcriptional levels in 500 mg/kg NSE fed group. Our data described that NSE constitutively motivated rabbits’ immune responses and protected them against MRSA-induced experimental infection. Our results suggest the antimicrobial, growth stimulating and immunomodulation activities of NSE to maximize the capability of rabbits for disease response.
Collapse
|
10
|
Modulatory Impacts of Multi-Strain Probiotics on Rabbits’ Growth, Nutrient Transporters, Tight Junctions and Immune System to Fight against Listeria monocytogenes Infection. Animals (Basel) 2022; 12:ani12162082. [PMID: 36009671 PMCID: PMC9405287 DOI: 10.3390/ani12162082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is a crucial period associated with great stress and susceptibility to infection, implying adverse impacts on farmed rabbits’ production. Recently, probiotics have been provided as direct microbial feed supplements, which are considered the ideal antibiotic substitutes during pathogenic infections with an emphasis on promoting rabbits’ growth and modulating their immune functions. Therefore, our experiment was carried out to explore the efficacy of multi-strain probiotics (MSP) on rabbits’ growth, molecular aspects, such as nutrients transporters, cytokines, and intestinal integrity, and effectiveness against Listeria monocytogenes (L. monocytogenes) infection. Altogether, our findings proposed the beneficial consequences of MSP on rabbits’ growth, gut health, and immunity. After post-experimental infection of rabbits with L. monocytogenes, administration of MSP during the whole rearing period greatly reduced the detrimental impact of infection and consequently renovated efficient rabbits’ production. Abstract Multi-strain probiotics (MSP) are considered innovative antibiotics’ substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits’ growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.
Collapse
|
11
|
Insights into growth-promoting, anti-inflammatory, immunostimulant, and antibacterial activities of Toldin CRD as a novel phytobiotic in broiler chickens experimentally infected with Mycoplasma gallisepticum. Poult Sci 2022; 101:102154. [PMID: 36182847 PMCID: PMC9523390 DOI: 10.1016/j.psj.2022.102154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) leads to impaired broiler growth performance and significant economic losses worldwide. The utilization of essential oils (EOs) as natural alternatives to antibiotics to control CRD outbreaks is not completely clarified yet. Thus, we investigated the effect of a commercial EOs mixture (toldin CRD), in comparison to tilmicosin antibiotic, on the clinical observations, growth performance, immunity, digestive enzymes, gut barrier functions, and bacterial loads in broilers experimentally infected with MG. A total of 400 one-day-old broiler chicks were assigned into four groups; negative control (NC), positive control (PC), tilmicosin, and toldin CRD treated groups. All groups except NC were experimentally infected with MG at 14 d of age. Our data showed that birds treated with toldin CRD showed significant enhancement in the body weight gain (BWG) and feed conversion ratio (FCR) (P = 0.001 each) over the whole experimental period. Likely, improved digestibility and intestinal barrier functions in the toldin CRD treated group was evidenced by the significant upregulation (P < 0.05) of cholecystokinin (CCK), alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP), junctional adhesion molecule-2 (JAM-2), occludin, and mucin-2 (MUC-2) genes. Moreover, toldin CRD exhibited immunostimulant and ant-inflammatory activities via significant downregulation (P < 0.05) of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 genes, significant reduction of lysozyme (LYZ), myeloperoxidase (MPO), and nitric oxide (NO) levels (P = 0.03, 0.02, and 0.001, respectively) and significant increase in the immunoglobulin G (IgG) level (P = 0.03). Notably, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR) results showed prominent reductions (P < 0.05) in the levels of MG antigens and MG loads in the toldin CRD treated group, which were evidenced by relieving the clinical picture of MG experimental infection. In conclusion, we recommend the utilization of toldin CRD as a potential candidate for controlling MG infection in broiler chickens.
Collapse
|
12
|
Ammar AM, Abd El-Hamid MI, Mohamed YH, Mohamed HM, Al-khalifah DHM, Hozzein WN, Selim S, El-Neshwy WM, El-Malt RMS. Prevalence and Antimicrobial Susceptibility of Bovine Mycoplasma Species in Egypt. BIOLOGY 2022; 11:biology11071083. [PMID: 36101462 PMCID: PMC9312167 DOI: 10.3390/biology11071083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Bovine Mycoplasma species, particularly antimicrobial resistant Mycoplasma bovis are important causes of bovine respiratory disease (BRD) in cattle, which causes major economic losses worldwide. Thus, the current study aimed to determine the prevalence and antimicrobial resistance profiles of bovine Mycoplasma spp. isolated from cattle’s respiratory tracts, in addition to evaluating the fluoroquinolone resistance in the recovered isolates using broth microdilution and conventional PCR techniques in Egypt. Our result showed that M. bovis was the most common spp. (61%), followed by M. bovirhinis (15%). In total, mycoplasma isolates were more prevalent among all examined lung tissues (38%), followed by nasal swabs (35%), tracheal tissues (28%), and tracheal swabs (27%). All the examined mycoplasma isolates (n = 76) were 100% susceptible to spectinomycin, tulathromycin, spiramycin, and tylosin, but high doxycycline and enrofloxacin minimum inhibitory concentrations (MICs) values were observed among 43.4% and 60.5% of the tested isolates, respectively. Three and two mycoplasma isolates with high enrofloxacin MICs were confirmed to be M. bovis and M. bovirhinis, respectively, by PCR assays. All molecularly confirmed mycoplasma isolates (n = 5) were positive for the gyrA gene (100%), meanwhile, three isolates (60%) were positive for the parC gene. In conclusion, understanding antimicrobial resistance mechanisms is a significant tool for the future development of genetic-based diagnostic techniques for the rapid detection of resistant mycoplasma strains. Abstract Among many bovine Mycoplasma species (spp.), Mycoplasma bovis is recognized as a significant causative agent of respiratory diseases in cattle. In recent years, resistant M. bovis isolates, especially to fluoroquinolones, have been reported globally as a result of the extensive usage of antimicrobials in the treatment of bovine pneumonia. Therefore, the aim of this study is to investigate the prevalence and antimicrobial susceptibility patterns of bovine Mycoplasma spp. isolated from the respiratory tracts of cattle in Egypt and to assess the fluoroquinolones resistance in the recovered mycoplasma isolates via broth microdilution and conventional PCR techniques. Conventional phenotypic methods identified 128 mycoplasma isolates (32%) from 400 different samples, with M. bovis being the predominant spp. (61%), followed by M. bovirhinis (15%). Of note, mycoplasma isolates were rarely isolated from total healthy lung tissues (7/55, 12.7%), but they were frequently isolated from pneumonic lungs (31/45, 68.9%). All the examined mycoplasma isolates (n = 76) were sensitive to tilmicosin, tylosin, tulathromycin, spiramycin, and spectinomycin (100% each), while 60.5% and 43.4% of the examined isolates had high minimum inhibitory concentration (MIC) values to enrofloxacin and doxycycline, respectively. Three and two mycoplasma isolates with high enrofloxacin MICs were confirmed to be M. bovis and M. bovirhinis, respectively, by PCR assays. All molecularly confirmed mycoplasma isolates (n = 5) were positive for the gyrA gene (100%); meanwhile, three isolates (60%) were positive for the parC gene. In conclusion, our findings revealed alarming resistance to enrofloxacin and doxycycline antibiotics; thus, antimicrobial usage must be restricted and molecular techniques can help in the rapid detection of the resistant strains.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Yousreya H. Mohamed
- Department of Mycoplasma Research, Animal Health Research Institute, Agriculture Research Center, Giza 12622, Egypt;
| | - Heba M. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.); (H.M.M.)
| | - Dalal H. M. Al-khalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
- Correspondence:
| |
Collapse
|
13
|
Prevalence and Antimicrobial Susceptibility of Campylobacter Species with Particular Focus on the Growth Promoting, Immunostimulant and Anti-Campylobacter jejuni Activities of Eugenol and Trans-Cinnamaldehyde Mixture in Broiler Chickens. Animals (Basel) 2022; 12:ani12070905. [PMID: 35405892 PMCID: PMC8996860 DOI: 10.3390/ani12070905] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Campylobacter species are the leading cause of foodborne bacterial enteritis worldwide. Recently, extensively drug-resistant (XDR) and multi-drug-resistant (MDR) Campylobacter spp. have caused several global crises. Therefore, the present work aims to detect the prevalence and antimicrobial resistance patterns of Campylobacter spp. from various chicken sources in Egypt, and to investigate the efficacy of a mixture of eugenol and trans-cinnamaldehyde on the performance and immunity of challenged broilers and also to assess their effects on C. jejuni load and virulence gene expression in an in vivo model. Our results showed a high prevalence of campylobacter isolates (67.3%). Of note, 25.7 and 74.3% of campylobacter isolates were XDR and MDR, respectively. Interestingly, a mixture of eugenol and trans-cinnamaldehyde had significant enhancing and antimicrobial effects through improving the growth-performance variables, minimizing the C. jejuni fecal loads, and decreasing the C. jejuni virulence genes (flaA, virB11, and wlaN) expressions in broilers challenged with C. jejuni. Moreover, the mixture of eugenol and the trans-cinnamaldehyde had immunostimulant and anti-inflammatory activities. In conclusion, our findings suggest that the utilization of the mixture of eugenol and trans-cinnamaldehyde has a growth-promoting role and can be considered as a better replacement of the antimicrobial agents for the control and treatment of campylobacter infection in broiler chickens. Abstract Campylobacter species (spp.) are one of the most important causes of human bacterial gastroenteritis in foods of animal origin. Recently, with the spread of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) Campylobacter spp., natural alternative therapeutic methods are urgently required. Phytogenic active principles have gained considerable attention due to their proficiency to enhance gut health and, thereby, performance of broiler chickens. Thus, the current study aims to determine the prevalence and antimicrobial resistance of Campylobacter spp. of different chicken sources in Sharkia Governorate, Egypt, and to assess the growth-promoting, immunostimulant and antimicrobial effects of a mixture of eugenol and trans-cinnamaldehyde in an in vivo approach. A total of 101 (67.3%) campylobacter isolates was identified, according to both phenotypic and genotypic techniques. Moreover, all of the campylobacter isolates were resistant to erythromycin, trimethoprim/sulfamethoxazole, and ampicillin (100% each). Of note, a dietary supplementation of the mixture of eugenol and trans-cinnamaldehyde led to a significant improvement of the feed conversion ratio and body weight gain and a decrease in the cecal C. jejuni loads in the broilers challenged with XDR C. jejuni. Additionally, eugenol and the trans-cinnamaldehyde mixture had protective activities via the down-regulation of XDR C. jejuni (flaA, virB11 and wlaN) virulence genes and proinflammatory cytokines (TNF-α, IL-2, IL-6, and IL-8), and the up-regulation of anti-inflammatory cytokine IL-10. Thus, we recommend the usage of a mixture of eugenol and trans-cinnamaldehyde as an alternative to antimicrobials for the control and treatment of campylobacter infections.
Collapse
|
14
|
Innovative next-generation therapies in combating multi-drug-resistant and multi-virulent Escherichia coli isolates: insights from in vitro, in vivo, and molecular docking studies. Appl Microbiol Biotechnol 2022; 106:1691-1703. [PMID: 35133473 DOI: 10.1007/s00253-022-11781-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Despite notable advances in vaccine and antimicrobial therapies, treatment failure has been increasingly reported worldwide. Of note, multi-drug-resistant (MDR) Escherichia coli (E. coli) strains have a considerable share in the evolution of this crisis. So, current practice guidelines are directed towards complementary and alternative therapies. Therefore, we evaluated the antibacterial and antivirulence activities of curcumin, thymol, and eugenol essential oils (EOs) as well as EOs-EOs and EOs-antibiotics interactions on MDR and multi-virulent E. coli isolates. Unfortunately, MDR E. coli could be isolated with a prevalence rate of 95.6% (86/90). Additionally, the majority of our isolates harbored both fimH (95.6%) and ompA (91.1%) genes, and half of them (45/90) were multi-virulent. Interestingly, all the tested EOs, especially curcumin, exhibited inhibitory activities against all MDR and multi-virulent E. coli isolates. The addition of thymol enhanced the antibacterial activities of curcumin and eugenol. Moreover, the activities of piperacillin/tazobactam and imipenem were increased by adding any one of the tested EOs. Regarding the antivirulence activities of the tested EOs, the cell surfaces of treated E. coli isolates under transmission electron microscope (TEM) were uneven. The cells appeared damaged and lost their appendages. Furthermore, EOs strongly reduced the transcription of ompA and fimH genes. The antibacterial and antivirulence activities of the used EOs were confirmed by in silico and mice protection assays. Hereby, we introduced the promising uses of curcumin, thymol, and eugenol oils as complementary and alternative therapies for combating MDR and multi-virulent E. coli isolates. KEY POINTS: • Our promising results confirmed that we were right for renewed interest of EOs. • The EOs, especially curcumin, can be used to prevent treatment failure. • We supposed a new pharmaceutical formulation of antibiotic powders dissolved in EOs.
Collapse
|
15
|
Shan LP, Zhang X, Hu Y, Liu L, Chen J. Antiviral activity of esculin against white spot syndrome virus: A new starting point for prevention and control of white spot disease outbreaks in shrimp seedling culture. JOURNAL OF FISH DISEASES 2022; 45:59-68. [PMID: 34536027 DOI: 10.1111/jfd.13533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
White spot syndrome virus (WSSV) is a pathogenic and threatening virus in shrimp culture for which there is no effective control strategy. Finding antiviral lead compounds for the development of anti-WSSV drugs is urgent and necessary; in this study, esculin from 12 monomeric compounds exhibited an excellent anti-WSSV activity. The results showed that esculin increased the survival rate of WSSV-infected shrimps by 59% and reduced the virus copy number in vivo over 90% at 100 μM. In the pre-treatment and post-treatment experiments, esculin could prevent and treat WSSV infection. Compared with the control group, the virus copy number decreased by 30% after 6 h of esculin pre-incubation with WSSV particles and inhibited horizontal transmission of WSSV to a certain extent. Considering that the antiviral activity of esculin was stable in the aquacultural water for 2 days, we evaluated the dosing pattern of continuous medication changes. Obviously, the survival rate of WSSV-infected shrimps was 0% at 108 h when no esculin exchange was made, while at 120 h the survival rate was over 40% at continuous medicine changes. In addition, esculin significantly increased the expression of antimicrobial peptides and thus improved the ability of shrimp to resist WSSV. Overall, our findings suggest that esculin has the potential to be developed into an anti-WSSV medicine.
Collapse
Affiliation(s)
- Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Xu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Ammar AM, Abd El-Hamid MI, El-Malt RMS, Azab DS, Albogami S, Al-Sanea MM, Soliman WE, Ghoneim MM, Bendary MM. Molecular Detection of Fluoroquinolone Resistance among Multidrug-, Extensively Drug-, and Pan-Drug-Resistant Campylobacter Species in Egypt. Antibiotics (Basel) 2021; 10:1342. [PMID: 34827280 PMCID: PMC8614916 DOI: 10.3390/antibiotics10111342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/03/2022] Open
Abstract
In recent times, resistant foodborne pathogens, especially of the Campylobacter species, have created several global crises. These crises have been compounded due to the evolution of multidrug-resistant (MDR) bacterial pathogens and the emergence of extensively drug-resistant (XDR) and pan-drug-resistant (PDR) strains. Therefore, this study aimed to investigate the development of resistance and the existence of both XDR and PDR among Campylobacter isolates. Moreover, we explored the use of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique for the detection of fluoroquinolone (FQ)-resistant Campylobacter isolates. A total of 120 Campylobacter isolates were identified depending on both phenotypic and genotypic methods. Of note, cefoxitin and imipenem were the most effective drugs against the investigated Campylobacter isolates. Interestingly, the majority of our isolates (75%) were MDR. Unfortunately, both XDR and PDR isolates were detected in our study with prevalence rates of 20.8% and 4.2%, respectively. All FQ-resistant isolates with ciprofloxacin minimum inhibitory concentrations ≥4 µg/mL were confirmed by the genetic detection of gyrA chromosomal mutation via substitution of threonine at position 86 to isoleucine (Thr-86-to-Ile) using the PCR-RFLP technique. Herein, PCR-RFLP was a more practical and less expensive method used for the detection of FQ resistant isolates. In conclusion, we introduced a fast genetic method for the identification of FQ-resistant isolates to avoid treatment failure through the proper description of antimicrobials.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.)
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (M.I.A.E.-H.)
| | - Rania M. S. El-Malt
- Animal Health Research Institute-Agriculture Research Center, Zagazig University, Zagazig 44516, Egypt;
| | - Doaa S. Azab
- Zagazig Veterinary Hospital, Zagazig University, Zagazig 44516, Egypt;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 11099, Saudi Arabia;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Microbiology and Immunology Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
17
|
Ibrahim D, Ismail TA, Khalifa E, Abd El-Kader SA, Mohamed DI, Mohamed DT, Shahin SE, Abd El-Hamid MI. Supplementing Garlic Nanohydrogel Optimized Growth, Gastrointestinal Integrity and Economics and Ameliorated Necrotic Enteritis in Broiler Chickens Using a Clostridium perfringens Challenge Model. Animals (Basel) 2021; 11:2027. [PMID: 34359156 PMCID: PMC8300316 DOI: 10.3390/ani11072027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds' intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt;
| | - Shaimaa A. Abd El-Kader
- Department of Bacteriology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig 44519, Egypt;
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig 44519, Egypt;
| | - Dalia T. Mohamed
- Department of Pathology and Clinical Pathology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig 44519, Egypt;
| | - Sara E. Shahin
- Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
18
|
Abd El-Hamid MI, Ibrahim SM, Eldemery F, El-Mandrawy SAM, Metwally AS, Khalifa E, Elnahriry SS, Ibrahim D. Dietary cinnamaldehyde nanoemulsion boosts growth and transcriptomes of antioxidant and immune related genes to fight Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 113:96-105. [PMID: 33826939 DOI: 10.1016/j.fsi.2021.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
The present study was conducted to investigate the effects of dietary cinnamaldehyde nanoemulsion (CNE) on growth, digestive activities, antioxidant and immune responses and resistance against Streptococcus agalactiae (S. agalactiae) in Nile tilapia. Four experimental diets were formulated containing CNE at levels of 0, 100, 200 and 300 mg/kg diet for 12 weeks. At the end of the experiment, all fish were challenged by S. agalactiae. The results showed that the final body weight was increased in fish groups fed 200 and 300 mg CNE/kg diet by 18.4 and 17.2% with respect to the control group. Moreover, feed conversion ratio and digestive enzymes' activities were improved in groups fed 200 and 300 then 100 mg of dietary CNE/kg diet. Groups fed CNE exhibited a significant increase in serum immune-related parameters when compared with control group. Additionally, the hypocholesterolemic effects was achieved after CNE feeding unlike the control group in a dose dependent manner. With increasing dietary CNE levels, genes expression of cytokines and antioxidant enzymes were upregulated. Less severe adverse clinical symptoms and respectable cumulative mortalities associated with S. agalactiae infection were observed in fish fed CNE. To our knowledge, this study was the first offering a protective effect of CNE against S. agalactiae infection in Nile tilapia with a maximum down-regulation of cylE and hylB virulence genes expression noticed in group fed 300 mg of CNE/kg diet (up to 0.10 and 0.19- fold, respectively). Therefore, the present study recommended that an incorporation of CNE at level of 300 mg/kg diet for Nile tilapia could promote their growth, enhance their immunity and antioxidant status and provide protection against virulent S. agalactiae.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Seham M Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Aya Sh Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia, 32897, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
19
|
Ibrahim D, Abdelfattah-Hassan A, Badawi M, Ismail TA, Bendary MM, Abdelaziz AM, Mosbah RA, Mohamed DI, Arisha AH, El-Hamid MIA. Thymol nanoemulsion promoted broiler chicken's growth, gastrointestinal barrier and bacterial community and conferred protection against Salmonella Typhimurium. Sci Rep 2021; 11:7742. [PMID: 33833292 PMCID: PMC8032708 DOI: 10.1038/s41598-021-86990-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
The present study involved in vivo evaluation of the growth promoting effects of thymol and thymol nanoemulsion and their protection against Salmonella Typhimurium infection in broilers. One-day old 2400 chicks were randomly divided into eight groups; negative and positive control groups fed basal diet without additives and thymol and thymol nanoemulsion groups (0.25, 0.5 and 1% each). At d 23, all chicks except negative control were challenged with S. Typhimurium. Over the total growing period, birds fed 1% thymol nanoemulsion showed better growth performance even after S. Typhimurium challenge, which came parallel with upregulation of digestive enzyme genes (AMY2A, PNLIP and CCK). Additionally, higher levels of thymol nanoemulsion upregulated the expression of MUC-2, FABP2, IL-10, IgA and tight junction proteins genes and downregulated IL-2 and IL-6 genes expression. Moreover, 1% thymol nanoemulsion, and to lesser extent 0.5% thymol nanoemulsion and 1% thymol, corrected the histological alterations of cecum and liver postinfection. Finally, supplementation of 1% thymol, 0.5 and 1% thymol nanoemulsion led to increased Lactobacilli counts and decreased S. Typhimurium populations and downregulated invA gene expression postinfection. This first report of supplying thymol nanoemulsion in broiler diets proved that 1% nano-thymol is a potential growth promoting and antibacterial agent.
Collapse
Affiliation(s)
- Doaa Ibrahim
- grid.31451.320000 0001 2158 2757Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- grid.31451.320000 0001 2158 2757Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt ,grid.440881.10000 0004 0576 5483Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, October Gardens, 6th of October, Giza, 12578 Egypt
| | - M. Badawi
- grid.31451.320000 0001 2158 2757Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- grid.412895.30000 0004 0419 5255Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Mahmoud M. Bendary
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said Governorate, Egypt
| | - Adel M. Abdelaziz
- grid.31451.320000 0001 2158 2757Faculty of Veterinary Medicine, Veterinary Educational Hospital, Zagazig University, Zagazig, Egypt
| | - Rasha A. Mosbah
- grid.31451.320000 0001 2158 2757Zagazig University Hospital, Zagazig, Egypt
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Ahmed H. Arisha
- grid.507995.70000 0004 6073 8904Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt ,grid.31451.320000 0001 2158 2757Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I. Abd El-Hamid
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Ammar AM, El-Naenaeey ESY, El-Malt RMS, El-Gedawy AA, Khalifa E, Elnahriry SS, Abd El-Hamid MI. Prevalence, Antimicrobial Susceptibility, Virulence and Genotyping of Campylobacter jejuni with a Special Reference to the Anti-Virulence Potential of Eugenol and Beta-Resorcylic Acid on Some Multi-Drug Resistant Isolates in Egypt. Animals (Basel) 2020; 11:E3. [PMID: 33375019 PMCID: PMC7822005 DOI: 10.3390/ani11010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis in humans worldwide. Contaminated chickens and their products are the main sources of human campylobacteriosis. Therefore, this study aimed to detect the genotypic and virulence genes' profiles of multi-drug resistant (MDR) C. jejuni isolates and to assess the effects of sub-inhibitory concentrations (SICs) of eugenol and beta-resorcylic acid on the virulence of avian MDR C. jejuni isolates. These isolates were clustered together with the human isolates via enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting. A total of 345 samples were collected from human stool (100) and different chicken (245) samples in Sharkia Governorate, Egypt. Conventional phenotypic methods identified 113 isolates (32.8%) as C. jejuni, and all C. jejuni isolates were MDR and resistant to erythromycin and ampicillin. The genes virB11, wlaN, and flaA were detected in 52%, 36% and 100% strains, respectively. ERIC-PCR yielded 14 profiles and five main clusters. Interestingly, human and chicken C. jejuni isolates were clustered together in ERIC-PCR clusters II-V, which confirmed the genetic relatedness between the isolates from both origins. Beta-resorcylic acid and eugenol inhibited the invasion of C. jejuni isolates to chicken intestinal cells by 41.66-38.19% and 31.94-29.16%, respectively, and minimized the transcription of flaA, virB11, and wlaN genes in the tested isolates by real-time quantitative reverse transcription PCR (qRT-PCR). In essence, eugenol and beta-resorcylic acid are promising natural antimicrobials for minimizing the virulence of MDR C. jejuni in chickens, thereby managing human campylobacteriosis.
Collapse
Affiliation(s)
- Ahmed M. Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (E.-S.Y.E.-N.); (M.I.A.E.-H.)
| | - El-Sayed Y. El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (E.-S.Y.E.-N.); (M.I.A.E.-H.)
| | - Rania M. S. El-Malt
- Department of Microbiology, Animal Health Research Institute, Zagazig 44516, Egypt
| | - Attia A. El-Gedawy
- Tuberculosis Unit, Department of Bacteriology, Animal Health Research Institute, Giza 12618, Egypt;
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt;
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt;
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.M.A.); (E.-S.Y.E.-N.); (M.I.A.E.-H.)
| |
Collapse
|