1
|
Ngocho K, Yang X, Wang Z, Hu C, Yang X, Shi H, Wang K, Liu J. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400086. [PMID: 38563581 DOI: 10.1002/smll.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Kleins Ngocho
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xilei Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zefeng Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Cunjie Hu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Mahmoudi Meimand N, Tsoi JKH, Burrow MF, He J, Cho K. A comparative study on the mechanical and antibacterial properties of BPA-free dental resin composites. Dent Mater 2024; 40:e31-e39. [PMID: 38926013 DOI: 10.1016/j.dental.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The commonly used base monomer utilized in resinous commercial dental restorative products is bis-GMA which is derived from bisphenol-A (BPA) - a well-known compound which may disrupt endocrine functions. To address concerns about its leaching into the oral environment and to optimize the quality of dental composites, a BPA-free alternative base monomer, fluorinated urethane dimethacrylate (FUDMA), was designed by modifying a UDMA monomer system. METHODS Nine groups of composites were prepared by mixing the base monomers and TEGDMA in a ratio of 70/30 wt% to which were added silanized glass particles (mean diameter: 0.7 µm) in 3 different volume fractions (40, 45, and 50 vol%). Bis-GMA and UDMA base monomers were used as control groups in the same ratios. Various properties including degree of conversion (DC), flexural strength (FS) and flexural modulus (FM), water sorption (WS), solubility (SL), surface hardness and roughness, and initial adhesion property against S.mutans were investigated. One-way analysis of variance followed by Bonferroni test at α = 0.05 was used to analyze the results. RESULTS A significant difference in FS between FUDMA-based composite with 40 vol% filler (120.3 ± 10.4 MPa) and Bis-GMA-based composite with the same filler fraction (105.8 ± 10.0 MPa) was observed but there was no significant difference among other groups. The UDMA based group exhibited the highest WS (1.3 ± 0.3 %). Bis-GMA showed greater initial bacterial adhesion but was not statistically different from the other groups (p = 0.082). SIGNIFICANCE FUDMA-based resin composites exhibit comparable mechanical and bacterial adhesion properties compared with Bis-GMA and UDMA-based composites. The FUDMA composites show positive outcomes indicating they could be used as substitute composites to Bis-GMA-based composites.
Collapse
Affiliation(s)
- Negar Mahmoudi Meimand
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, PR China
| | - Kiho Cho
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Yi C, Wang A, Cao C, Kuang Z, Tao X, Wang Z, Zhou F, Zhang G, Liu Z, Huang H, Cao Y, Li R, Wang N, Huang W, Wang J. Elevating Charge Transport Layer for Stable Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400658. [PMID: 38782446 DOI: 10.1002/adma.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Ion migration is a major factor affecting the long term stability of perovskite light-emitting diodes (LEDs), which limits their commercialization potential. The accumulation of excess halide ions at the grain boundaries of perovskite films is a primary cause of ion migration in these devices. Here, it is demonstrated that the channels of ion migrations can be effectively impeded by elevating the hole transport layer between the perovskite grain boundaries, resulting in highly stable perovskite LEDs. The unique structure is achieved by reducing the wettability of the perovskites, which prevents infiltration of the upper hole-transporting layer into the spaces of perovskite grain boundaries. Consequently, nanosized gaps are formed between the excess halide ions and the hole transport layer, effectively suppressing ion migration. With this structure, perovskite LEDs with operational half-lifetimes of 256 and 1774 h under current densities of 100 and 20 mA cm-2 respectively are achieved. These lifetimes surpass those of organic LEDs at high brightness. It is further found that this approach can be extended to various perovskite LEDs, showing great promise for promoting perovskite LEDs toward commercial applications.
Collapse
Affiliation(s)
- Chang Yi
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Airu Wang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chensi Cao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiangru Tao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zekun Wang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fuyi Zhou
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guolin Zhang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ziping Liu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Heyong Huang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Cao
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Renzhi Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
4
|
Burrows SA, Shon JW, Peychev B, Slavchov RI, Smoukov SK. Phase transitions of fluorotelomer alcohols at the water|alkane interface studied via molecular dynamics simulation. SOFT MATTER 2024; 20:2243-2257. [PMID: 38351894 DOI: 10.1039/d3sm01444d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Fluorosurfactants are long-lasting environmental pollutants that accumulate at interfaces ranging from aerosol droplet surfaces to cell membranes. Modeling of adsorption-based removal technologies for fluorosurfactants requires accurate simulation methods which can predict their adsorption isotherm and monolayer structure. Fluorotelomer alcohols with one or two methylene groups adjacent to the alcohol (7 : 1 FTOH and 6 : 2 FTOH, respectively) are investigated using the OPLS-AA force field at the water|hexane interface, varying the interfacial area per surfactant. The acquired interfacial pressure isotherms and monolayer phase behavior are compared with previous experimental results. The results are consistent with the experimental data inasmuch as, at realistic adsorption densities, only 7 : 1 FTOH shows a phase transition between liquid-expanded (LE) and 2D crystalline phases. Structures of the LE and crystalline phases are in good agreement with the sticky disc and Langmuir defective crystal models, respectively, used previously to interpret experimental data. Interfacial pressure of the LE phase agrees well with experiment, and sticky disc interaction parameters indicate no 2D LE-gas transition is present for either molecule. Conformation analysis reveals 7 : 1 FTOH favors conformers where the OH dipole is perpendicular to the molecular backbone, such that the crystalline phase is stabilized when these dipoles align.
Collapse
Affiliation(s)
- Stephen A Burrows
- Centre for Sustainable Engineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Jang Won Shon
- Centre for Sustainable Engineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Boyan Peychev
- Centre for Sustainable Engineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Radomir I Slavchov
- Centre for Sustainable Engineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Stoyan K Smoukov
- Centre for Sustainable Engineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
5
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
6
|
He X, Zhang S, Zhong Y, Huang X, Liu F, He J, Mai S. A low-shrinkage-stress and anti-bacterial adherent dental resin composite: physicochemical properties and biocompatibility. J Mater Chem B 2024; 12:814-827. [PMID: 38189164 DOI: 10.1039/d3tb01556d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Polymerisation shrinkage and biofilm accumulation are the two main problems associated with dental resin composites (DRCs) that induce secondary caries, which can cause restoration failure. Polymerisation shrinkage can lead to microleakage gaps between the tooth and the DRCs, causing the aggregation of bacteria and development of secondary caries. Reducing the shrinkage stress (SS) and improving the resistance to bacterial adhesion have always been the focus of this field in modifying DRCs. A thiol-ene resin system can effectively reduce the polymerisation SS via its step-growth mechanism for delaying the gel point. Fluorinated compounds can reduce the surface free energies, thereby reducing bacterial adhesion. Thus, in this study, a range of mass fractions (0, 10, 20, 30, and 40 wt%) of a fluorinated thiol-ene resin system were added to a fluorinated dimethacrylate resin system/tricyclo decanedimethanol diacrylate to create a fluorinated methacrylate-thiol-ene ternary resin matrix. DRCs were prepared using the obtained ternary resin matrix, and their physical and chemical properties, effect on bacterial adhesion, and biocompatibility were investigated. The results demonstrated that the volumetric shrinkage and SS of the DRCs were reduced with no reduction in conversion degree even after the thiol-ene resin system was added. All DRC-based fluorinated resin systems exhibited an excellent anti-bacterial adhesion effect, as evidenced by the colony-forming unit counts, live/dead bacterial staining, and crystal violet staining tests against Streptococcus mutans (S. mutans). The genetic expressions associated with the bacterial adhesion of S. mutans were substantially affected after being cultured with fluorinated DRCs. All fluorinated DRCs demonstrated good biocompatibility through the in vitro cytotoxicity test and live/dead staining images of the L-929 cells. The above results illustrate that the DRCs based on the fluorinated methacrylate-thiol-ene resin matrix can be potentially applied in clinical practice due to their low SS and anti-bacterial adhesion effect.
Collapse
Affiliation(s)
- Xinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Shengcan Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Xiangya Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| |
Collapse
|
7
|
Steffens SD, Sedlak DL, Alvarez-Cohen L. Enhanced aggregation and interfacial adsorption of an aqueous film forming foam (AFFF) in high salinity matrices. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2181-2188. [PMID: 37990920 DOI: 10.1039/d3em00247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exist in contaminated groundwater, surface water, soil, and sediments from use of aqueous film forming foams (AFFFs). Under these conditions PFAS exhibit unusual behavior due to their surfactant properties, namely, aggregation and surface activity. Environmental factors such as salinity can affect these properties, and complicate efforts to monitor PFAS. The effect of high salinity matrices on the critical micelle concentration (CMC) of a AFFF formulation manufactured by 3M and the surface accumulation of PFAS was assessed with surface tension isotherm measurements and bench-scale experiments quantifying PFAS at the air-water interface. Conditions typical of brackish and saline waters substantially depressed the CMC of the AFFF by over 50% and increased the interfacial mass accumulation of PFAS in the AFFF mixture by up to a factor of 3, relative to values measured in ultrapure water. These results indicate that high salinity matrices increase the aggregation and surface activity of PFAS in mixtures, which are key properties affecting their transport.
Collapse
Affiliation(s)
- Sophia D Steffens
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| |
Collapse
|
8
|
Zhang S, Liu F, He J. Enhanced anti-bacterial adhesion effect of FDMA/SR833s based dental resin composites by using 1H,1H-heptafluorobutyl methacrylate as partial diluent. Biomater Investig Dent 2023; 10:2281090. [PMID: 38979097 PMCID: PMC11229670 DOI: 10.1080/26415275.2023.2281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/04/2023] [Indexed: 07/10/2024] Open
Abstract
With the purpose of further reducing surface free energy to achieve better anti-bacterial adhesion effect of fluorinated dimethacrylate (FDMA)/tricyclo (5.2.1.0) decanedimethanol diacrylate (SR833s) based dental resin composites (DS), 1H,1H-heptafluorobutyl methacrylate (FBMA) was used to partially replace SR933s as reactive diluent. According to the degree of substitution, the obtained resin composites were marked as DSF-1 (20 wt.% of SR833s was replaced by FBMA), DSF-2 (40 wt.% of SR833s was replaced by FBMA), and DSF-3 (60 wt.% of SR833s was replaced by FBMA). Bisphenol A glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based resin composite (BT) was used as control. The influence of FBMA concentration on double bond conversion (DC), contact angle, surface free energy, anti-bacterial adhesion effect against Streptococcus mutans (S. mutans), volumetric shrinkage (VS) and shrinkage stress (SS), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL) were investigated. The results showed that FBMA addition could reduce surface free energy from 44.6 mN/m for DS to 32.9 mN/m for DSF-3, and lead to better anti-bacterial adhesion effect (the amounts of adherent bacteria decreased from 2.03 × 105 CFU/mm2 for DS to 6.44 × 104 CFU/mm2 for DSF-3). The FBMA had no negative effects on DC, VS, SS, WS, and SL. Too high a concentration of FBMA reduced FS and FM before water immersion, but the values were still higher than those of BT.
Collapse
Affiliation(s)
- Shengcan Zhang
- College of Materials Science and Engineering, South China University of Technology, China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, China
| |
Collapse
|
9
|
Guo S, Guo Y, Huang M, Qian L, Su Z, Chen QY, Wu C, Liu C. Synthesis, Surface Activity, and Foamability of Two Short-Chain Fluorinated Sulfonate Surfactants with Ether Bonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14519-14527. [PMID: 37802506 DOI: 10.1021/acs.langmuir.3c01623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fluorinated surfactants are widely used in many fields because of their excellent surface active properties, but their high stability has caused many environmental problems. With the ban and restriction of classical long-chain fluorinated surfactants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) worldwide, the development and replacement of their alternatives is now a major challenge. How to reduce environmental persistence, bioaccumulation, and biotoxicity while maintaining high surface activity has become an important issue in the development of fluorinated surfactants. Using short-chain fluorinated surfactants is one of the important solutions to resolve the pollution of organic fluorinated compounds. In this article, we synthesized two short-chain fluorinated surfactants with ether bonds. One of them 6:2 FTESNa (2) used the perfluoroalkyl chain (n-C6F13-) and the other C72 FEESNa (4) used the fluoroether segment with six fluorinated carbons and two oxygens (CF3OCF(CF3)CF2OCF(CF3)). The surface activity, foam performance, and wettability of the two molecules were measured. The surface tensions at critical micelle concentration (γcmc) and the critical micelle concentration (cmc) of 2 and 4 were 17.6 mN/m (2.2 g/L) and 20.2 mN/m (4.6 g/L), respectively. Both of them were significantly superior to the surface activity of 6:2 FTSNa (7) which is one of the current alternatives for PFOS. Additionally, the foamability and foam stability of both 2 and 4 were better than that of 7. In the aspect of wettability on PTFE, that of 4 was greater than those of 2 and 7. In summary, this work provided a new choice for alternatives of PFOS and PFOA.
Collapse
Affiliation(s)
- Shanwei Guo
- School of Chemical and Environment Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiwei Huang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Libo Qian
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoben Su
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengying Wu
- Sanming Hexafluo Chemicals Company, Ltd., Fluorinated New Material Industry Park, Mingxi, Sanming, Fujian 365200, China
| | - Chao Liu
- School of Chemical and Environment Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
10
|
Li Y, Liu Y, Wu C, Zhao R, Li M, Cai J, Ma L, He X, Wu X, Zhenhua Z. Effect of adjuvants on physicochemical properties of lime sulfur on flower/paraffin and application on flower thinning. FRONTIERS IN PLANT SCIENCE 2023; 14:1257672. [PMID: 37780520 PMCID: PMC10536241 DOI: 10.3389/fpls.2023.1257672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
Introduction Adjuvants can effectively enhance the utilization rate of pesticides, but the application of adjuvants in plant growth regulators is rarely studied. Methods This work explored the effects of adjuvants dioctyl sulfosuccinate sodium salt (AOT) and methyl oleate (MO) on lime sulfur (LS), especially the drop behavior on flower and paraffin surface. Results The results showed that the addition of AOT and AOT+MO can significantly reduce the static and dynamic surface tension of LS from 72mN/m to 28mN/m and 32mN/m respectively, and increase the spreading factor from 0.18 to 1.83 and 3.10 respectively, reduce the bounce factor from 2.72 to 0.37 and 0.27 respectively. The fluorescence tracer test showed that the addition of adjuvants could promote the spreading and permeation of droplets. The field test results revealed that the flower thinning rate of adjuvant and non-adjuvant were 80.55% and 54.4% respectively, and the flower thinning effect of adding adjuvant was the same as that of artificial which the flower thinning rate was 84.77%. The quality of apples treated with adjuvants was similar to that treated with artificial, and the weight of single fruit increased by 24.08% compared with CK (spray water). Discussion The application of tank-mixture adjuvant could reduce the dosage of LS for thinning agent application, improve apple's quality, and decrease labor cost and improve the economic benefits of fruit planting and the environmental benefits of plant growth regulators.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Science, China Agricultural University, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Science, China Agricultural University, Beijing, China
| | - Changjie Wu
- College of Science, China Agricultural University, Beijing, China
| | - Rui Zhao
- College of Science, China Agricultural University, Beijing, China
| | - Minghua Li
- College of Science, China Agricultural University, Beijing, China
| | - Jing Cai
- Qingshengyuan Agricultural Development Co., Ltd., Chengde, Hebei, China
| | - Li Ma
- Qingshengyuan Agricultural Development Co., Ltd., Chengde, Hebei, China
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing, China
| | - Xuemin Wu
- College of Science, China Agricultural University, Beijing, China
| | - Zhang Zhenhua
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Li X, Bi R, Ou X, Han S, Sheng Y, Chen G, Xie Z, Liu C, Yue W, Wang Y, Hu W, Guo SZ. 3D-Printed Intrinsically Stretchable Organic Electrochemical Synaptic Transistor Array. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41656-41665. [PMID: 37610705 DOI: 10.1021/acsami.3c07169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Songjia Han
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
12
|
Rius-Ayra O, Carmona-Ruiz M, Llorca-Isern N. Superhydrophobic cotton fabrics for effective removal of high-density polyethylene and polypropylene microplastics: Insights from surface and colloidal analysis. J Colloid Interface Sci 2023; 646:763-774. [PMID: 37229994 DOI: 10.1016/j.jcis.2023.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
HYPOTHESIS The use of superhydrophobic materials to remove particulate pollutants such as microplastics is still in its infancy. In a previous study, we investigated the effectiveness of three different types of superhydrophobic materials - coatings, powdered materials, and meshes - for removing microplastics. In this study, we will explain the removal process by considering microplastics as colloids and taking into account their wetting properties as well as those of a superhydrophobic surface. The process will be explained through the interactions of electrostatic forces, van der Waals forces, and the DLVO theory. EXPERIMENTS In order to replicate and verify the previous experimental findings on the removal of microplastics using superhydrophobic surfaces, we have modified non-woven cotton fabrics with polydimethylsiloxane. We then proceeded to remove high-density polyethylene and polypropylene microplastics from water by introducing oil at the microplastics-water interface, and we determined the removal efficiency of the modified cotton fabrics. FINDINGS After achieving a superhydrophobic non-woven cotton fabric (159 ± 1°), we confirmed its effectiveness in removing high-density polyethylene and polypropylene microplastics from water with a removal efficiency of 99%. Our findings suggest that the binding energy of microplastics increases and the Hamaker constant becomes positive when they are present in oil instead of water, leading to their aggregation. As a result, electrostatic interactions become negligible in the organic phase, and van der Waals interactions become more important. The use of the DLVO theory allowed us to confirm that solid pollutants can be easily removed from the oil using superhydrophobic materials.
Collapse
Affiliation(s)
- O Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain.
| | - M Carmona-Ruiz
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| | - N Llorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Fan Y, Wang Y. Deposition and Spread of Aqueous Pesticide Droplets on Hydrophobic/Superhydrophobic Surfaces by Fast Aggregation of Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5631-5640. [PMID: 37053578 DOI: 10.1021/acs.langmuir.3c00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deposition and spread of aqueous droplets on hydrophobic/superhydrophobic surfaces are of great significance in many practical applications, such as spraying, coating, and printing, and particularly in improving pesticide utilization efficiency because the intrinsic hydrophobicity/superhydrophobicity of most plant leaves results in serious loss of water-based pesticides during spraying. It has been found that proper surfactants can promote the droplet spread on such surfaces. However, most reports involved the effects of surfactants on the spread of the gently released droplets over hydrophobic or highly hydrophobic substrates, while the situation on superhydrophobic substrates has rarely been explored. Moreover, high-speed impact makes it extremely difficult to deposit and spread the aqueous droplets on superhydrophobic surfaces; thus, the deposition and spread have just been achieved by surfactants in recent years. Here, we give an overview concerning the influence factors on the deposition and spreading performance of gently released and high-speed impacted droplets on hydrophobic/superhydrophobic substrates and emphasize the effects of fast aggregation of surfactants at the interface and in solution. We also outline perspectives on the future development of surfactant-assisted deposition and spreading after high-speed impact.
Collapse
Affiliation(s)
- Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Ding L, Zhou X, Liang X, Dong Y, Fang C, Wu Y, Li B, Mu W, Lin J, Li Y. Achieving High Efficacy and Low Safety Risk by Balancing Pesticide Deposition on Leaves and Fruits of Chinese Wolfberry ( Lycium barbarum L.). ACS OMEGA 2023; 8:14672-14683. [PMID: 37125088 PMCID: PMC10134462 DOI: 10.1021/acsomega.3c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Pesticide residue has become the main technical barrier that restricts the export of Chinese wolfberry. Can we achieve high efficacy and low safety risk by balancing pesticide deposition on the leaves and fruits of Chinese wolfberry? In this research, the structural characteristics and wettability of leaves and fruits of Chinese wolfberry at different growth stages were studied. The adaxial and abaxial surfaces of leaves were hydrophobic, whereas the fruit surfaces were hydrophilic. Adding spray adjuvant could increase the retention of droplets on the leaf surfaces of Chinese wolfberry by 52.28-97.89% and reduce the retention on the fruit surfaces by 21.68-42.14%. A structural equation model analysis showed that the adhesion tension was the key factor affecting the retention of the solutions among various interface behaviors. When the concentrations of Silwet618, AEO-5, Gemini 31551, and 1227 were 2-5 times higher than their CMCs, the retention of pesticide solutions (pyraclostrobin and tylophorine) on Chinese wolfberry leaves significantly increased, and the control efficacies on aphids and powdery mildew also dramatically improved (65.90-105.15 and 41.18-133.06%, respectively). Meanwhile, the retention of pesticides on the fruit of Chinese wolfberry was reduced. This study provides new insights into increasing the utilization of pesticides in controlling pests and improving food safety.
Collapse
Affiliation(s)
- Lei Ding
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Xuan Zhou
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Xiaojie Liang
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Yujin Dong
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Cunbao Fang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yueming Wu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Beixing Li
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Wei Mu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Jin Lin
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yuekun Li
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| |
Collapse
|
15
|
Kim DK, Ananth R. Spontaneous aqueous foaming with fluorosurfactants from a hydrocarbon liquid at ambient conditions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent Mater 2023; 39:402-409. [PMID: 36894413 DOI: 10.1016/j.dental.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The purpose of this study was to characterize physicochemical properties and investigate anti-bacterial adhesion effect of dental resins containing fluorinated monomers. METHOD Fluorinated dimethacrylate FDMA was mixed with commonly used reactive diluent triethylene- glycol dimethacrylate (TEGDMA) and fluorinated diluent 1 H,1 H-heptafluorobutyl methacrylate (FBMA) separately at a mass ratio of 60 wt./40 wt. to prepare fluorinated resin systems. Double bond conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL), contact angle and surface free energy, surface element concentration, and anti-adhesion effect against Streptococcus mutans (S. mutans) were investigated according to standard or referenced methods. 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA)/TEGDMA (60/40, wt./wt.) was used as control. RESULTS Both fluorinated resin systems had higher DC than Bis-GMA based resin (p < 0.05); compared with Bis-GMA based resin (FS, FDMA/TEGDMA resin system had higher FS (p < 0.05) and comparable FM (p > 0.05), while FDMA/FBMA resins system had lower FS and FM (p < 0.05). Both fluorinated resin systems had lower WS and SL than Bis-GMA based resin (p < 0.05), and FDMA/TEGDMA resin system had the lowest WS (p < 0.05) in all experimental resin systems. Only FDMA/FBMA resin system showed lower surface free energy than Bis-GMA based resin (p < 0.05). When the surface was smooth, FDMA/FBMA resin system had lower amount of adherent S. mutans than Bis-GMA based resin (p < 0.05), while after the surface became roughness, FDMA/FBMA resin system had comparable amount of adherent S. mutans as Bis-GMA based resin (p > 0.05). SIGNIFICANCE Resin system prepared exclusively with fluorinated methacrylate monomers reduced the S. mutans adhesion due to their increased hydrophobicity and decreased surface energy., while flexural properties of it should be improved.
Collapse
|
17
|
Rius-Ayra O, Biserova-Tahchieva A, Llorca-Isern N. Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. CHEMOSPHERE 2023; 311:137148. [PMID: 36351466 DOI: 10.1016/j.chemosphere.2022.137148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A wide variety of pollutants can be currently found in water that are extremely difficult to remove due to their chemical composition and properties. A lot of effort has been made to tackle this issue that directly affects the environment. In this scenario, superhydrophobic surfaces, which have a water contact angle >150°, have emerged as an innovative technology that could be applied in different ways. Their environmental applications show promise in removing emerging pollutants from water. While the number of publications on superhydrophobic materials has remained largely unchanged since 2019, the number of articles on the environmental applications of superhydrophobic surfaces is still rising, corroborating the interest in this area. Herein, we briefly present the basis of superhydrophobicity and show the different materials that have been used to remove pollutants from water. We have identified five types of emerging pollutants that are efficiently removed by superhydrophobic materials: oils, microplastics, dyes, heavy metals, and ethanol. Finally, the future challenges of these applications are also discussed, considering the state of the art of the environmental applications of superhydrophobic materials.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| | - Alisiya Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Nuria Llorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
18
|
Zeng G, Zhong C, Wang X, He X, Pu E. Micellization Thermodynamics, Interfacial Behavior, Salt-resistance and Wettability Alteration of Gemini Hybrid Fluorinated Surfactant. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Promoting the utilization efficiency of agrochemicals via short-chain nonionic fluorinated synergist: Strategies and working mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Promoting Efficacy and Environmental Safety of Pesticide Synergists via Non-Ionic Gemini Surfactants with Short Fluorocarbon Chains. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196753. [PMID: 36235302 PMCID: PMC9572613 DOI: 10.3390/molecules27196753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
Improving the utilization rate of pesticides is key to achieve a reduction and synergism, and adding appropriate surfactant to pesticide preparation is an effective way to improve pesticide utilization. Fluorinated surfactants have excellent surface activity, thermal and chemical stability, but long-chain linear perfluoroalkyl derivatives are highly toxic, obvious persistence and high bioaccumulation in the environment. Therefore, new strategies for designing fluorinated surfactants which combine excellent surface activity and environmental safety would be useful. In this study, four non-ionic gemini surfactants with short fluorocarbon chains were synthesized. The surface activities of the resulting surfactants were assessed on the basis of equilibrium surface tension, dynamic surface tension, and contact angle. Compared with their monomeric counterparts, the gemini surfactants had markedly lower critical micelle concentrations and higher diffusivities, as well as better wetting abilities. We selected a single-chain surfactant and a gemini surfactant with good surface activities as synergists for the glyphosate water agent. Both surfactants clearly improved the efficacy of the herbicide, but the gemini surfactant had a significantly greater effect than the single-chain surfactant. An acute toxicity test indicated that the gemini surfactant showed slight toxicity to rats.
Collapse
|
21
|
Song XJ, Jiang XM, Hao CL. Photoswitchable adsorption behavior on a silica surface: A comparison of the partially fluorinated surfactants with the hydrocarbon surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
23
|
Zhang S, Liao M, Liu F, Huang X, Mai S, He J. Preparation of Bis-GMA free dental resin composites with anti-adhesion effect against Streptococcus mutans using synthesized fluorine-containing methacrylate (DFMA). J Mech Behav Biomed Mater 2022; 131:105263. [DOI: 10.1016/j.jmbbm.2022.105263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 12/21/2022]
|
24
|
Jin Y, Li C, Zhang N, Li Y, Han K, Song S, Pan M, Pan Z. A novel fluorinated capping agent and silicone synergistically enhanced waterborne polyurethane. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Trinh V, Malloy CS, Durkin TJ, Gadh A, Savagatrup S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens 2022; 7:1514-1523. [PMID: 35442626 DOI: 10.1021/acssensors.2c00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) in water supplies will continue to have serious health and environmental consequences. Despite the importance of monitoring the concentrations of PFAS at potential sites of contamination and at treatment plants, there are few suitable and rapid on-site methods. Many nonconventional techniques do not possess the necessary selectivity and sensitivity to distinguish PFAS from other surface-active components and to quantify the low concentrations in real-world conditions. Herein, we report a novel and rapid method for the detection of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by leveraging their differential behaviors at the interfaces of emissive complex droplets. Measurement of surface and interfacial tensions via a force tensiometer reveals that PFAS preferentially self-assemble at the water-fluorocarbon oil interface (F/W) rather than the water-hydrocarbon oil interface (H/W). We also observe an opposite behavior for hydrocarbon surfactants. This difference in interfacial behavior produces distinct effects on the morphological change and optical emission of biphasic oil-in-water droplets. The change in the intensity of fluorescence emission, measured with a simple spectroscopic setup, correlates with the concentrations of PFAS. We also demonstrate that the range of detection and sensitivity can be tuned by adjusting the initial composition of the complex droplets. Our results illustrate an alternative mode of sensors that may provide a rapid and on-site detection of PFAS.
Collapse
Affiliation(s)
- Vivian Trinh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Cameron S. Malloy
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Tyler J. Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
26
|
Fluorinated surfactants: A review on recent progress on synthesis and oilfield applications. Adv Colloid Interface Sci 2022; 303:102634. [PMID: 35305443 DOI: 10.1016/j.cis.2022.102634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
The selection of appropriate chemicals and the synthetic method plays an important role in oilfield application. The objectives of this study are to describe the various synthetic route for the preparation of fluorinated surfactants and highlight their oilfield applications. Fluorinated surfactants are the type of surfactants where the hydrophobic tail is either partially fluorinated or replaced totally with fluorine molecules. Fluorinated surfactants have distinct properties compared to corresponding hydrocarbon surfactants such as lower surface tension, better efficiency in lowering the interfacial tension, both oleophobic and hydrophobic nature, high thermal stability, and better chemical tolerance. These properties make them a material of choice for several applications which include but are not limited to fire-fighting, household items, foaming, coating, and paints. Despite these attractive properties, environmental concerns associated with fluorinated surfactants is a major hurdle in extending the application of such surfactants. This review discusses the various synthetic routes for the synthesis of different classes of surfactants such as cationic, anionic, non-ionic, and zwitterionic surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. In addition, the review highlights the application of fluorinated surfactants in the oil & gas industry.
Collapse
|
27
|
Interfacial properties of nonionic hybrid surfactant with double branches of fluorocarbon and hydrocarbon. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Design of water-based polyvinyl alcohol coatings using a drying modifier to minimize the residual solvent and coating defects. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-01019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Sequestration of poly- and perfluoroalkyl substances (PFAS) by adsorption: surfactant and surface aspects. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Alexander S, Barron AR, Denkov N, Grassia P, Kiani S, Sagisaka M, Shojaei MJ, Shokri N. Foam Generation and Stability: Role of the Surfactant Structure and Asphaltene Aggregates. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirin Alexander
- Energy Safety Research Institute (ESRI), Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Andrew R. Barron
- Energy Safety Research Institute (ESRI), Swansea University, Bay Campus, Swansea SA1 8EN, U.K
- Arizona Institutes of Resilience (AIR), University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Paul Grassia
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K
| | - Sajad Kiani
- Energy Safety Research Institute (ESRI), Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Mohammad Javad Shojaei
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BX, U.K
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany
| |
Collapse
|
31
|
Grządka E, Matusiak J, Godek E, Maciołek U. Mixtures of cationic guar gum and anionic surfactants as stabilizers of zirconia suspensions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Bui T, Frampton H, Huang S, Collins IR, Striolo A, Michaelides A. Water/oil interfacial tension reduction - an interfacial entropy driven process. Phys Chem Chem Phys 2021; 23:25075-25085. [PMID: 34738605 DOI: 10.1039/d1cp03971g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial tension (IFT) of a fluid-fluid interface plays an important role in a wide range of applications and processes. When low IFT is desired, surface active compounds (e.g. surfactants) can be added to the system. Numerous attempts have been made to relate changes in IFT arising from such compounds to the specific nature of the interface. However, the IFT is controlled by an interplay of factors such as temperature and molecular structure of surface-active compounds, which make it difficult to predict IFT as those conditions change. In this study, we present the results from molecular dynamics simulations revealing the specific role surfactants play in IFT. We find that, in addition to reducing direct contact between the two fluids, surfactants serve to increase the disorder at the interface (related to interfacial entropy) and consequently reduce the water/oil IFT, especially when surfactants are present at high surface density. Our results suggest that surfactants that yield more disordered interfacial films (e.g. with flexible and/or unsaturated tails) reduce the water/oil IFT more effectively than surfactants which yield highly ordered interfacial films. Our results shed light on some of the factors that control IFT and could have important practical implications in industrial applications such as the design of cosmetics, food products, and detergents.
Collapse
Affiliation(s)
- Tai Bui
- Thomas Young Centre and London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. .,BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Harry Frampton
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Shanshan Huang
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Ian R Collins
- BP Exploration Operating Co. Ltd, Chertsey Road, Sunbury-on-Thames TW16 7LN, UK
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
33
|
Wang J, Niven RK. Unification of surface tension isotherms of PFOA or GenX salts in electrolyte solutions by mean ionic activity. CHEMOSPHERE 2021; 280:130715. [PMID: 33965869 DOI: 10.1016/j.chemosphere.2021.130715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The surface tension isotherms of soluble salts of per- and polyfluoroalkyl substances (PFAS) in electrolyte solutions are typically reported as functions of the PFAS concentration. However, for univalent salts and electrolytes, the Langmuir-Szyszkowski equation is a function of the mean ionic activity a*. Using previously reported data, we show that for salts of perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (GenX™), use of a* rather than concentration provides a unified surface tension isotherm, independent of the electrolyte concentration. This suggests that the electrolyte dependence of the isotherm arises purely from its effect on PFAS activity, rather than an intrinsic surface property. This finding has important implications for the understanding of PFAS retention in saline unsaturated soils, and for PFAS extraction from saline waters by foam fractionation.
Collapse
Affiliation(s)
- Jianlong Wang
- School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT, 2610, Australia.
| | - Robert K Niven
- School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT, 2610, Australia.
| |
Collapse
|
34
|
Liao YF, Zhou MH, Zhang Y, Peng YY, Jian JX, Lu F, Tong QX. Facile synthesis and marked pH-responsive behavior of novel foaming agents based on amide- and ester-linked morpholine fluorosurfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Syed UT, Dias AM, Crespo J, Brazinha C, de Sousa HC. Studies on the formation and stability of perfluorodecalin nanoemulsions by ultrasound emulsification using novel surfactant systems. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Aliabouzar M, Kripfgans OD, Wang WY, Baker BM, Brian Fowlkes J, Fabiilli ML. Stable and transient bubble formation in acoustically-responsive scaffolds by acoustic droplet vaporization: theory and application in sequential release. ULTRASONICS SONOCHEMISTRY 2021; 72:105430. [PMID: 33401189 PMCID: PMC7803826 DOI: 10.1016/j.ultsonch.2020.105430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
Acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels containing monodispersed perfluorocarbon (PFC) emulsions, respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Previously, ADV has been used to control the release of bioactive payloads from ARSs to stimulate regenerative processes. In this study, we used classical nucleation theory (CNT) to predict the nucleation pressure in emulsions of different PFC cores as well as the corresponding condensation pressure of the ADV-generated bubbles. According to CNT, the threshold bubble radii above which ADV-generated bubbles remain stable against condensation were 0.4 µm and 5.2 µm for perfluoropentane (PFP) and perfluorohexane (PFH) bubbles, respectively, while ADV-generated bubbles of any size in perfluorooctane (PFO) condense back to liquid at ambient condition. Additionally, consistent with the CNT findings, stable bubble formation from PFH emulsion was experimentally observed using confocal imaging while PFO emulsion likely underwent repeated vaporization and recondensation during ultrasound pulses. In further experimental studies, we utilized this unique feature of ADV in generating stable or transient bubbles, through tailoring the PFC core and ultrasound parameters (excitation frequency and pulse duration), for sequential delivery of two payloads from PFC emulsions in ARSs. ADV-generated stable bubbles from PFH correlated with complete release of the payload while transient ADV resulted in partial release, where the amount of payload release increased with the number of ultrasound exposure. Overall, these results can be used in developing drug delivery strategies using ARSs.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Zhou R, Jin Y, Shen Y, Zhao P, Zhou Y. Synthesis and application of non-bioaccumulable fluorinated surfactants: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Due to negative effects of conventional fluorinated surfactants with long perfluorocarbon chain (CxF2x+ 1, x≥7) like perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), these conventional long perfluorocarbon chain surfactants have been restricted in many industrial applications. Nowadays, their potential non-bioaccumulable alternatives have been developed to meet the requirements of environmental sustainable development. In this paper, the recent advances of potential non-bioaccumulable fluorinated surfactants with different fluorocarbon chain structures, including the short perfluorocarbon chain, the branched fluorocarbon chain, and the fluorocarbon chain with weak points, are reviewed from the aspects of synthesis processes, properties, and structure-activity relationships. And their applications in emulsion polymerization of fluorinated olefins, handling membrane proteins, and leather manufacture also are summarized. Furthermore, the challenges embedded in the current non-bioaccumulable fluorinated surfactants are also highlighted and discussed with the hope to provide a valuable reference for the prosperous development of fluorinated surfactants.
Graphical abstract
Collapse
|
38
|
Cao Y, Yang W, Jiang Y, Wang Y, Ju H, Geng T. Studies on physicochemical properties of three Gemini surfactants with different spacer groups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Wang X, Yang X, Sun Y, Guo C, Li P, Li J. Effect of Oxyethylene Groups on Adsorption Properties of Fatty Alcohol Polyoxyethylene Ether Sodium Sulfate with Narrow Ethylene Oxide Distribution. TENSIDE SURFACT DET 2021. [DOI: 10.3139/113.110708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effect of oxyethylene groups on the adsorption properties of fatty alcohol polyoxyethylene ether sodium sulfate with narrow ethylene oxide distribution (AEmS, m = 3, 5, 7, 9) was characterized by means of the equilibrium surface tension, the dynamic surface tension and the contact angle. The results show that at a concentration lower than the critical micelle concentration (CMC) the oxyethylene groups act like hydrophobic groups to change the absorption properties. If the concentration is higher than the critical micelle concentration, the oxyethylene groups act as hydrophilic groups to change the absorption properties. The long polyoxyethylene chain of AE9S is very curly, which means that AE9S does not strictly follow the rule derived from AEmS (m = 3, 5, 7). The adsorption process of AEmS is a mixed diffusion-kinetic adsorption mechanism.
Collapse
|
40
|
Peychev B, Slavchov RI. Adsorption model and phase transitions of diblock perfluoroalkylated surfactants at the water∣alkane interface. J Colloid Interface Sci 2021; 594:372-388. [PMID: 33774394 DOI: 10.1016/j.jcis.2021.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
We present a theory of the adsorption behaviour and phase transitions in monolayers of perfluoroalkylated alcohols, n-CnF2n+1CmH2mOH, at the water∣oil interface, and validate it for a range of temperatures and surfactant structures. The reason for the observed cohesive behaviour is identified as dispersion attraction between the fluorocarbon blocks. The London constant is determined from the increment of the lateral attraction parameter with the size of the fluorocarbon chain. The monolayers exhibit phase transition from liquid expanded state to van der Waals crystal. However, they are supercritical with respect to the gas-liquid transition. For the description of the liquid phase, we use the sticky disc model - fluid monolayer made of hard discs interacting with a short-ranged sticky potential. For the crystalline phase, a two-dimensional cell model is developed using the same interaction potential. This new model coincides with the empirical equation of state of Jura and Harkins, and ascribes physical meaning to its parameters. We extend the theory of Ivanov et al. for the adsorption constant Ka to diblock molecules; it predicts accurately the dependence of Ka and the adsorption heat on the surfactant structure. An invariant phase diagram of the monolayers is constructed.
Collapse
Affiliation(s)
- Boyan Peychev
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| | - Radomir I Slavchov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
41
|
Venzmer J. Superspreading - Has the mystery been unraveled? Adv Colloid Interface Sci 2021; 288:102343. [PMID: 33359962 DOI: 10.1016/j.cis.2020.102343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Superspreading is a fascinating phenomenon first observed about 30 years ago with dilute solutions of trisiloxane surfactants on hydrophobic substrates. Although many groups all over the world have contributed considerably to solve the scientific challenges involved, the reasons why only some trisiloxane surfactants promote superspreading, whereas others of similar chemical structure behave more like ordinary surfactants, has remained a mystery up to now. A number of original papers and reviews on superspreading have been published in recent years. The driving force still proposed today is most often Marangoni flow. This is, however, in contradiction with recent results showing that superspreading only starts after a surface tension gradient between apex and leading edge has been eliminated. From foam film experiments unrelated to wetting, there is evidence for "dangling" bilayers attached to the air/water interface only in case of the superspreading trisiloxane surfactants. By combining this and other published experimental findings, a new hypothesis of the mode of action is put forward: Advancing by "rolling action" at the leading edge, and the supply of surfactant by "unzippering" of the dangling bilayers all over the surface of the drop; this hypothesis even fulfills basic thermodynamic requirements.
Collapse
|
42
|
Foams of vegetable oils containing long-chain triglycerides. J Colloid Interface Sci 2021; 583:522-534. [DOI: 10.1016/j.jcis.2020.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
|
43
|
Kovalchuk NM, Simmons MJ. Surfactant-mediated wetting and spreading: Recent advances and applications. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
44
|
Synthesis and structure–activity relationships of nonionic surfactants with short fluorocarbon chains. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Hasanov EE, Rahimov RA, Abdullayev Y, Asadov ZH, Ahmadova GA, Isayeva AM, Yolcuyeva U, Zubkov FI, Autschbach J. Counterion-coupled gemini surfactants based on propoxylated hexamethylenediamine and fatty acids: Theory and application. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Superspreading performance of branched ionic trimethylsilyl surfactant Mg(AOTSiC)2. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review. ENERGIES 2020. [DOI: 10.3390/en13184591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gas-wetting alteration is a versatile and effective approach for alleviating liquid-blockage that occurs when the wellbore pressure of a gas-condensate reservoir drops below the dew point. Fluorochemicals are of growing interest in gas-wetting alteration because of their high density of fluorine groups and thermal stability, which can change the reservoir wettability into more favorable conditions for liquids. This review aims to integrate the overlapping research between the current knowledge in organic chemistry and enhanced oil and gas recovery. The difference between wettability alteration and gas-wetting alteration is illustrated, and the methods used to evaluate gas-wetting are summarized. Recent advances in the applications of fluorochemicals for gas-wetting alteration are highlighted. The mechanisms of self-assembling adsorption layers formed by fluorochemicals with different surface morphologies are also reviewed. The factors that affect the gas-wetting performance of fluorochemicals are summarized. Meanwhile, the impacts of gas-wetting alteration on the migration of fluids in the pore throat are elaborated. Furthermore, the Wenzel and Cassie-Baxter theories are often used to describe the wettability model, but they are limited in reflecting the wetting regime of the gas-wetting surface; therefore, a wettability model for gas-wetting is discussed. Considering the promising prospects of gas-wetting alteration, this study is expected to provide insights into the relevance of gas-wetting, surface morphology and fluorochemicals, further exploring the mechanism of flow efficiency improvement of fluids in unconventional oil and gas reservoirs.
Collapse
|
48
|
Matusiak J, Grządka E, Kowalczuk A, Pietruszka R, Godlewski M. The influence of hydrocarbon, fluorinated and silicone surfactants on the adsorption, stability and electrokinetic properties of the κ-carrageenan/alumina system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Moncayo-Riascos I, Hoyos BA. Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Cichomski M, Borkowska E, Prowizor M, Batory D, Jedrzejczak A, Dudek M. The Effect of Physicochemical Properties of Perfluoroalkylsilanes Solutions on Microtribological Features of Created Self-Assembled Monolayers. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13153357. [PMID: 32751115 PMCID: PMC7436167 DOI: 10.3390/ma13153357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The presented article shows the influence of concentration of perfluoroalkylsilanes in solutions on tribological properties of self-assembled monolayers (SAMs) deposited on three surfaces with different silicon content in the millinewton load range. The SAMs were created using the liquid phase deposition (LPD) method with 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (FDTS) and (3, 3, 3-trifluoropropyl) trichlorosilane (FPTS) solutions, for which viscosity and surface tension were estimated. Deposited layers were analyzed in terms of thickness, coverage, wettability, structure and coefficient of friction. The obtained results demonstrated that SAMs created on the silicon-incorporated diamond-like carbon (Si-DLC) coatings possess the best microtribological properties. Systems composed of perfluoroalkylsilane SAM structures deposited on Si-DLC coatings are highly promising candidates as material for microelectromechanical applications.
Collapse
Affiliation(s)
- Michał Cichomski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland; (E.B.); (M.P.)
| | - Ewelina Borkowska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland; (E.B.); (M.P.)
| | - Milena Prowizor
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland; (E.B.); (M.P.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Anna Jedrzejczak
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (A.J.); (M.D.)
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (A.J.); (M.D.)
| |
Collapse
|