1
|
Xiang Z, Chen H, Wu F, Pan H. Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment. Macromol Biosci 2025; 25:e2400336. [PMID: 39513645 DOI: 10.1002/mabi.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/20/2024] [Indexed: 11/15/2024]
Abstract
Protein adhesion and thrombosis formation caused by limited surface properties pose great challenges to biomedical implants. Although various hydrophilic coating or drug release coatings are reported, the single coating cannot cope with cases under the condition of complex physiological environment, which causes the coating effect is limited. In this study, a polyamino acid-derived zwitterionic coating is constructed to eliminate reactive oxygen species (ROS) in the microenvironment. It is demonstrated that the coating has excellent hydrophilicity, stability, and lubricity, and can obviously prevent protein adhesion. At the same time, the coating can eliminate hydrogen peroxide and maintain the stability of the microenvironment. The in vivo and in vitro experiments show that the coating has good biocompatibility, and inhibits thrombus. Amino acid zwitterion coating prevents protein deposition, alleviates the inflammatory process, inhibit of thrombosis, reduces the risk of implantable medical devices, and prolongs their service time. Hence, the work paves a new way to develop amino acid based zwitterionic polymer coating that can reduce the implant complications.
Collapse
Affiliation(s)
- Zehong Xiang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Honghong Chen
- Chen, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Feng Wu
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
2
|
Jeong GJ, Khan F, Kim DK, Cho KJ, Tabassum N, Choudhury A, Hassan MI, Jung WK, Kim HW, Kim YM. Marine polysaccharides for antibiofilm application: A focus on biomedical fields. Int J Biol Macromol 2024; 283:137786. [PMID: 39577534 DOI: 10.1016/j.ijbiomac.2024.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Microbial pathogens such as bacteria and fungi form biofilms, which represent substantial hurdles in treating human illness owing to their adaptive resistance mechanism to conventional antibiotics. Biofilm may cause persistent infection in a variety of bodily areas, including wounds, oral cavity, and vaginal canal. Using invasive devices such as implants and catheters contributes significantly to developing healthcare-associated infections because they offer an ideal surface for biofilm formation. Marine organisms produce a variety of polysaccharides, which have recently attracted worldwide attention due to their biochemical features, various applications, and advantageous properties such as bioactivity, biodegradability, and biocompatibility. Because of their antimicrobial and antibiofilm features, several polysaccharides such as chitosan, fucoidan, carrageenan, alginate, and hyaluronic acid have been used to treat infected wounds as well as ophthalmic, oral, and vaginal infections. In addition, marine polysaccharides are currently employed as coatings on medical devices and implant materials, alone or in combination with other bioactive substances or nanomaterials, to protect the materials' undertones from microbial contamination. This review discussed the recent advancements in marine polysaccharides and their derivatives as a therapeutic potential against biofilm-associated diseases. The potential obstacles in the scalability of their production, clinical translation, and/or regulatory hurdles have also been discussed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Do-Kyun Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Shin S, Lee CH, Kim SJ. Identification and comparison of protein composition of biofilms in response to EGCG from Enterococcus faecalis and Staphylococcus lugdunensis, which showed opposite patterns in biofilm-forming abilities. Biofilm 2024; 8:100232. [PMID: 39555139 PMCID: PMC11564074 DOI: 10.1016/j.bioflm.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial biofilm is resistant to conventional antibiotic treatments, leading to complications associated with many infection-related human diseases. Epigallocatechin Gallate (EGCG), a phenolic catechin enriched in green tea, is recognized for its anti-bacterial and anti-biofilm activities. In this study, we examined the protein components of the biofilms formed in the absence or presence of EGCG using Enterococcus faecalis and Staphylococcus lugdunensis, which had shown opposing patterns in biofilm formation. A clustering heatmap revealed that the two microorganisms expressed the different protein sets in response to EGCG. Proteins that were noticeably upregulated included those associated with stress responsiveness and gluconeogenesis in E. faecalis, and gene modification in S. lugdunensis. Conversely, downregulated proteins were related to tRNA-modifying enzyme activity in E. faecalis, and anabolic metabolism in S. lugdunensis. Among the proteins identified only in EGCG-responsive biofilms, enzymes involved in de novo purine biosynthesis were enriched in E. faecalis, while proteins likely to cause DNA instability and pathogenicity changes were abundantly present in S. lugdunensis. The classification based on gene ontology (GO) terms by microorganism exhibited that metabolic process or catabolic activity was at the top rank in E. faecalis with more than 33 proteins, and in S. lugdunensis, localization or transport was highly ranked with 4 proteins. These results support the hypothesis that EGCG might cause different cellular programs in each microorganism. Finally, comparison of the proteomes between two groups that form biofilms to similar extents discovered that 2 proteins were commonly found in the weak biofilm-forming groups (E. faecalis and EGCG-responding S. lugudunensis), whereas 9 proteins were common among the strong biofilm-forming groups (S. lugdunensis and EGCG-responding E. faecalis). It was suggested that these proteins could serve as potential indicators to detect the presence and predict the extent of biofilm formation by multiple microorganisms. Taken all together, proteomics data and analyses performed in this study provided useful and new information on the proteins embedded in the biofilms formed at the specific conditions, which can aid in diagnosis and the development of tailored treatment strategies.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sukjin Shin
- Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
4
|
Khan SA, Rahman ZU, Javed A, Ahmad Z, Cai Z, Jiang O, Xu G. Natural biopolymers in the fabrication and coating of ureteral stent: An overview. BIOMATERIALS ADVANCES 2024; 165:214009. [PMID: 39216319 DOI: 10.1016/j.bioadv.2024.214009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Ureteral stents are indwelling medical devices that are most commonly used in treating different urinary tract complications like ureteral obstruction, kidney stones, and strictures, and allow normal urine flow from the kidney to the bladder. Tremendous work has been done in ureteral stent technology to meet the clinical demands, however, till-date a gold standard material for ureteral stents has not yet been developed. Many materials such as metal, and synthetic polymers have been published, however, the role of natural biopolymers has not yet been summarized and discussed. There is no detailed review published to explain the role of natural biopolymers in ureteral stent technology. This is the first review that explains and summarizes the role of natural polymer in ureter stent technology. In this review alginate and chitosan polymers are discussed in detail in the fabrications and coating of ureteral stents. It was summarized that alginate polymer alone or in combination with other polymers have been successfully used by many researchers for the manufacturing of ureteral stents with satisfactory results in vitro, in vivo, and clinical trials. However, alginate is rarely used to coat the surface of ureteral stent. On the other hand, only two reports are available on chitosan polymers for the manufacturing of ureteral stents, however, chitosan is largely used to coat the existing ureteral stents owing to their good antibacterial characteristics. Coating procedures can inhibit encrustation and biofilm formation. Nevertheless, the lack of antibacterial efficiency and inadequate coating limit their applications, however, natural biopolymers like chitosan showed significant promises in coating. Overall, the renewable nature, abundant, biocompatible, and biodegradable potential of natural polymer can be established with significant aspects as the ideal ureteral stent. To fully utilize the potential of the natural biopolymers in the ureteral stent design or coatings, an in-depth study is required to understand and identify their performance both in vitro and in vivo in the urinary tract.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Aimen Javed
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Ouyang Jiang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
5
|
Lamba S, Wang K, Lu J, Phillips ARJ, Swift S, Sarojini V. Polydopamine-Mediated Antimicrobial Lipopeptide Surface Coating for Medical Devices. ACS APPLIED BIO MATERIALS 2024; 7:7574-7584. [PMID: 39475192 DOI: 10.1021/acsabm.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Biofilm formation on medical implants such as catheters is a major issue which needs to be addressed as it leads to severe health care associated infections. This study explored the design and synthesis of a polydopamine-lipopeptide based antimicrobial coating. The coating was used to modify the surface of Ultrathane Catheters. The lipopeptide SL1.15 with an N-terminal cysteine was covalently conjugated to the polydopamine modified catheters via a Michael addition reaction between the thiol moiety in the peptide and the aromatic ring in the polydopamine layer. The immobilization of the peptide on the polydopamine coated catheters was confirmed using water contact angle, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy (SEM). The antimicrobial activity of the coated catheters investigated using drug resistant and clinical strains of Gram-positive (MRSA and S. aureus) and Gram-negative (E. coli, A. baumannii, and P. aeruginosa) bacteria revealed that lipopeptide immobilization inhibited >90% bacterial adhesion to the catheter surface. Additionally, biofilm assays against MRSA and E. coli revealed that the lipopeptide immobilized catheters inhibited >85% bacterial growth after 1 week incubation. Finally, the cytotoxicity profile of the catheters using the human dermal fibroblast, and the human embryonic kidney cell lines demonstrated that the polydopamine-lipopeptide coating was not toxic after 72 h incubation.
Collapse
Affiliation(s)
- Saurabh Lamba
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Kelvin Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Anthony R J Phillips
- Surgical and Translational Research Centre, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
6
|
Deleanu IM, Grosu E, Ficai A, Ditu LM, Motelica L, Oprea OC, Gradisteanu Pircalabioru G, Sonmez M, Busuioc C, Ciocoiu R, Antoniac VI. New Antimicrobial Materials Based on Plasticized Polyvinyl Chloride for Urinary Catheters: Preparation and Testing. Polymers (Basel) 2024; 16:3028. [PMID: 39518238 PMCID: PMC11548089 DOI: 10.3390/polym16213028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Given the constant increased number of nosocomial infections in hospitals, especially associated with prolonged usage of inserted medical devices, our work aims to ameliorate clinical experience and promote faster healing of patients undergoing urinary catheterization by improving the properties of medical devices materials. Within this research, nine different composites were prepared based on polyvinyl chloride, using three different plasticizers (di-(2-ethylhexyl) phthalate, Proviplast 2646, and Proviplast 2755), and two different antimicrobial additives containing silver nanoparticles. The prepared materials were analyzed, and their physicochemical properties were determined: water absorption, relative density, plasticizer migration, hydrophobicity/hydrophilicity by contact angle measurement, Shore A hardness, tensile strength, and elongation at break. Structure and morphology were also investigated by means of FTIR, SEM, and EDX analyses, and thermal (TG-DSC) and biological properties were evaluated. The most important aspects of obtained results are showing that plasticizer migration was significantly reduced (to almost zero) and that the usage of antimicrobial additives improved the materials' biocompatibility. Thus, based on the concluded favorable properties, the obtained materials can be further used for catheter development. Pressure-flow studies for different sizes and configurations are the next steps toward advanced in vivo and clinical trials.
Collapse
Affiliation(s)
- Iuliana Mihaela Deleanu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
| | - Elena Grosu
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania;
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Ludmila Motelica
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
- National Center of Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Maria Sonmez
- National Research and Development Institute for Textile and Leather, Leather and Footwear Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania;
| | - Cristina Busuioc
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania; (I.M.D.); (L.M.); (O.-C.O.); (C.B.)
| | - Robert Ciocoiu
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania; (E.G.); (R.C.); (V.I.A.)
- Academy of Romanian Scientists, 3 Ilfov St., 050044 Bucharest, Romania;
| |
Collapse
|
7
|
Lv X, Li Z, Zhang Z, Wang H, Song H, Yuan S, Fu X, Li Z. Quaternary Ammonium Salt-Based Intrinsic Antibacterial Polyurethanes: Optimizing the Antibacterial Activity via Cationic Main- or Side-Chain Design in Hard Segments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56862-56873. [PMID: 39397780 DOI: 10.1021/acsami.4c13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Thermoplastic polyurethanes (TPUs) are one of the most appealing materials with extensive applications in biomedical fields due to their versatile mechanical properties and excellent biocompatibility. In response to the escalating challenges of bacterial infections, it is desirable to obtain TPUs with intrinsic antibacterial activity, particularly for application in biomedical devices and public places. Herein, a cationic main-/side-chain structure regulation strategy in the TPU hard segment was adopted to introduce and optimize the antibacterial activity. This was achieved by synthesizing two types of quaternary ammonium salts (QAS)-containing chain extenders, i.e., N-methyl-N-alkyl-N,N-bis(2-hydroxyethyl) ammonium bromide (Mn, where n represents the N-alkyl chain length) and N,N-dimethyl-N-alkyl-N-2,3-propylene glycol (Dn), from N-methyldiethanolamine (MDEA) and 3-dimethylamino-1,2-propanediol (DMAD), respectively. Given the structural differences between Mn and Dn, main-chain-type PU-Mn and side-chain-type PU-Dn were subsequently obtained with QAS groups in the hard segment. The N-alkyl chain length, QAS content, and main-/side-chain types were systematically investigated to optimize bactericidal properties. The results revealed that a long N-alkyl chain (from C6 to C14) increased the antibacterial activity of the chain extenders and corresponding TPU films. Besides, side-chain-type PU-Dn films showed higher contact-active antibacterial activity than that exerted by the main-chain-type PU-Mn films. Remarkably, almost 100% of Staphylococcus aureus(S. aureus) could be killed by the PU-D14 film with a low QAS content (1.6 wt %). All the TPUs showed good thermal stability with a degradation temperature of 5% mass loss (Td,5%) above 300 °C. Moreover, the TPU films displayed excellent mechanical properties with the tensile strength at break varying from 20.7 to 47.5 MPa and ultimate elongation above 1000%. All of the intrinsic antibacterial films showed negligible hemolytic activities.
Collapse
Affiliation(s)
- Xingshuang Lv
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhi Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhenhao Zhang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao Wang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongwei Song
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaohui Fu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Nguyen KN, Sao L, Kyllo K, Hernandez D, Salomon S, Shah K, Oh D, Kao KC. Antibiofilm Activity of PDMS/TiO 2 against Candida glabrata through Inhibited Hydrophobic Recovery. ACS OMEGA 2024; 9:42593-42601. [PMID: 39431067 PMCID: PMC11483912 DOI: 10.1021/acsomega.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Coatings with antibiofilm properties are desirable for biomedical applications. Titanium dioxide (TiO2) has been explored as an antimicrobial agent in materials development primarily due to it being an excellent photocatalyst. Candida glabrata (C. glabrata) is an emerging human fungal pathogen with known high resistance to oxidative stress. Here, we fabricated a polydimethylsiloxane/titanium dioxide (PDMS/TiO2) nanocomposite coating and tested its antibiofilm activities against C. glabrata. The resulting nanocomposite exhibited >50% reduction in C. glabrata biofilm formation with 2.5 wt % TiO2 loading, even in the dark. Through ROS detection and surface characterization, the antibiofilm activity was attributed to the synergistic interaction of TiO2 nanoparticles with the PDMS matrix, which resulted in the impediment of hydrophobic recovery. This work provides a design strategy to develop antibiofilm coatings against C. glabrata.
Collapse
Affiliation(s)
- Khoi-Nguyen Nguyen
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Leena Sao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kevin Kyllo
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Danitza Hernandez
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Samantha Salomon
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kalp Shah
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Dahyun Oh
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Katy C. Kao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| |
Collapse
|
9
|
Hou Z, Ren X, Sun Z, An R, Huang M, Gao C, Yin M, Liu G, He D, Du H, Tang R. Trash into Treasure: Nano-coating of Catheter Utilizes Urine to Deprive H 2S Against Persister and Rip Biofilm Matrix. Adv Healthc Mater 2024; 13:e2401067. [PMID: 39030869 DOI: 10.1002/adhm.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.
Collapse
Affiliation(s)
- Zhiming Hou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyu Ren
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Zhuangzhuang Sun
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Ruoqi An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mingzhi Huang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Cen Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mengying Yin
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Guangxiu Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Dengqi He
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongliang Du
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
10
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
11
|
Zhang L, Ren L, Chen Y, Cao Y, Li S, Lu W, Jia Y, Li Y, Liu C, Li C, Dong Q. An Octopus-Inspired Stimulus-Responsive Structural Color Hydrogel for Uterus Cervical Canal Stent. Adv Healthc Mater 2024; 13:e2400439. [PMID: 38870451 DOI: 10.1002/adhm.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soft-bodied aquatic organisms have exhibited remarkable capabilities in navigating and moving within liquid environments serving as a profound inspiration for the development of bionic robots with intricate movements. Traditional rigid components are being replaced by stimulus-responsive soft materials such as hydrogels and shape memory polymers, leading to the creation of dynamically responsive soft robots. In this study, the development of a bionic robot inspired by the shape of an octopus and the adsorptive properties of its tentacles, specifically tailored for targeted stimulation and pH sensing in the cervix, are presented. This approach involves the design of a soft, water-based Janus adhesive hydrogel patch that adheres to specific parts of the cervix and responds to pH changes through external stimuli. The hydrogel patch incorporates inverse opal microstructures mimicking the legs of an octopus, to facilitate efficient and stable locomotion, unidirectional transport of biofluids, and pH-responsive behavior. This miniature bionic robot showcases controlled adhesion and precise unidirectional fluid transport highlighting its potential for targeted stimulus response and pH sensing in the uterine cervical tract. This breakthrough opens new avenues for medical applications within the expanding field of soft-bodied robotics.
Collapse
Affiliation(s)
- Lihao Zhang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Lehao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yufei Chen
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Yaoyuan Jia
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Yachun Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201601, China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Li
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Qian Dong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| |
Collapse
|
12
|
Ke Y, Meng H, Du Z, Zhang W, Ma Q, Huang Y, Cui L, Lei Y, Yang Z. Bioinspired super-hydrophilic zwitterionic polymer armor combats thrombosis and infection of vascular catheters. Bioact Mater 2024; 37:493-504. [PMID: 38698921 PMCID: PMC11063950 DOI: 10.1016/j.bioactmat.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Thrombosis and infection are two major complications associated with central venous catheters (CVCs), which significantly contribute to morbidity and mortality. Antifouling coating strategies currently represent an efficient approach for addressing such complications. However, existing antifouling coatings have limitations in terms of both duration and effectiveness. Herein, we propose a durable zwitterionic polymer armor for catheters. This armor is realized by pre-coating with a robust phenol-polyamine film inspired by insect sclerotization, followed by grafting of poly-2-methacryloyloxyethyl phosphorylcholine (pMPC) via in-situ radical polymerization. The resulting pMPC coating armor exhibits super-hydrophilicity, thereby forming a highly hydrated shell that effectively prevents bacterial adhesion and inhibits the adsorption and activation of fibrinogen and platelets in vitro. In practical applications, the armored catheters significantly reduced inflammation and prevented biofilm formation in a rat subcutaneous infection model, as well as inhibited thrombus formation in a rabbit jugular vein model. Overall, our robust zwitterionic polymer coating presents a promising solution for reducing infections and thrombosis associated with vascular catheters.
Collapse
Affiliation(s)
- You Ke
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Haotian Meng
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zeyu Du
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Qing Ma
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuting Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Linxian Cui
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan, 611137, China
| | - Yifeng Lei
- The Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
13
|
Tüfekçi M, Hamarat S, Çalışkan TD, Özgüzar HF, Meydan AE, Göçmen JS, Evren E, Gökçe Mİ, Goktas H. Long-term antifouling surfaces for urinary catheters. J Mater Chem B 2024; 12:5711-5721. [PMID: 38758163 DOI: 10.1039/d4tb00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The presence of a variety of bacteria is an inevitable/indispensable part of human life. In particular, for patients, the existence and spreading of bacteria lead to prolonged treatment period with many more complications. The widespread use of urinary catheters is one of the main causes for the prevalence of infections. The necessity of long-term use of indwelling catheters is unavoidable in terms of the development of bacteriuria and blockage. As is known, since a permanent solution to this problem has not yet been found, research and development activities continue actively. Herein, polyethylene glycol (PEG)-like thin films were synthesized by a custom designed plasma enhanced chemical vapor deposition (PE-CVD) method and the long-term effect of antifouling properties of PEG-like coated catheters was investigated against Escherichia coli and Proteus mirabilis. The contact angle measurements have revealed the increase of wettability with the increase of plasma exposure time. The antifouling activity of surface-coated catheters was analyzed against the Gram-negative/positive bacteria over a long-term period (up to 30 days). The results revealed that PE-CVD coated PEG-like thin films are highly capable of eliminating bacterial attachment on surfaces with relatively reduced protein attachment without having any toxic effect. Previous statements were supported with SEM, XPS, FTIR spectroscopy, and contact angle analysis.
Collapse
Affiliation(s)
- Mustafa Tüfekçi
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| | - Sena Hamarat
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| | | | - Hatice Ferda Özgüzar
- Plasma Aided Biomedical Research Group (pabmed) Biomedical Engineering Division, Graduate School of Engineering and Science, TOBB university of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, 3000, Belgium
| | - Ahmet Ersin Meydan
- Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Julide Sedef Göçmen
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University School of Medicine, Turkey
| | | | - Hilal Goktas
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| |
Collapse
|
14
|
Duan X, Xu Y, Zhang Z, Ma X, Wang C, Ma W, Jia F, Pan X, Liu Y, Zhao Y, Li Q, Liu Z, Yang Y. Piezoelectrically-activated antibacterial catheter for prevention of urinary tract infections in an on-demand manner. Mater Today Bio 2024; 26:101089. [PMID: 38779557 PMCID: PMC11109010 DOI: 10.1016/j.mtbio.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane. ZnO-PVDF-HFP could be stably coated onto silicone catheters simply by a one-step solution film-forming method, very convenient for industrial production. In vitro, it was demonstrated that ZnO-PVDF-HFP coating could significantly inhibit bacterial growth and the formation of bacterial biofilm under ultrasound-mediated mechanical stimulation even after 4 weeks. Importantly, the on and off of antimicrobial activity as well as the strenth of antibacterial property could be controlled in an adaptive manner via ultrasound. In a rabbit model, the ZnO-PVDF-HFP-coated catheter significantly reduced the incidence CAUTIs compared with clinically-commonly used catheters under assistance of ultrasonication, and no side effect was detected. Collectively, the study provided a novel antibacterial catheter to prevent the occurrence of CAUTIs, whose antibacterial activity could be controlled in on-demand manner, adaptive to infection situation and promising in clinical application.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yongde Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhifa Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinbo Ma
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenjing Ma
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Fan Jia
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiaoying Pan
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| |
Collapse
|
15
|
Cho JA, Jeon S, Kwon Y, Roh YJ, Lee CH, Kim SJ. Comparative proteomics analysis of biofilms and planktonic cells of Enterococcus faecalis and Staphylococcus lugdunensis with contrasting biofilm-forming ability. PLoS One 2024; 19:e0298283. [PMID: 38809833 PMCID: PMC11135667 DOI: 10.1371/journal.pone.0298283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilms make it difficult to eradicate bacterial infections through antibiotic treatments and lead to numerous complications. Previously, two periprosthetic infection-related pathogens, Enterococcus faecalis and Staphylococcus lugdunensis were reported to have relatively contrasting biofilm-forming abilities. In this study, we examined the proteomics of the two microorganisms' biofilms using LC-MS/MS. The results showed that each microbe exhibited an overall different profile for differential gene expressions between biofilm and planktonic cells as well as between each other. Of a total of 929 proteins identified in the biofilms of E. faecalis, 870 proteins were shared in biofilm and planktonic cells, and 59 proteins were found only in the biofilm. In S. lugdunensis, a total of 1125 proteins were identified, of which 1072 proteins were found in common in the biofilm and planktonic cells, and 53 proteins were present only in the biofilms. The functional analysis for the proteins identified only in the biofilms using UniProt keywords demonstrated that they were mostly assigned to membrane, transmembrane, and transmembrane helix in both microorganisms, while hydrolase and transferase were found only in E. faecalis. Protein-protein interaction analysis using STRING-db indicated that the resulting networks did not have significantly more interactions than expected. GO term analysis exhibited that the highest number of proteins were assigned to cellular process, catalytic activity, and cellular anatomical entity. KEGG pathway analysis revealed that microbial metabolism in diverse environments was notable for both microorganisms. Taken together, proteomics data discovered in this study present a unique set of biofilm-embedded proteins of each microorganism, providing useful information for diagnostic purposes and the establishment of appropriately tailored treatment strategies. Furthermore, this study has significance in discovering the target candidate molecules to control the biofilm-associated infections of E. faecalis and S. lugdunensis.
Collapse
Affiliation(s)
- Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sangsoo Jeon
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Youngmin Kwon
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
16
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
17
|
Chen Y, Zheng W, Xia Y, Zhang L, Cao Y, Li S, Lu W, Liu C, Fu S. Implantable Resistive Strain Sensor-Decorated Colloidal Crystal Hydrogel Catheter for Intestinal Tract Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21736-21745. [PMID: 38630008 DOI: 10.1021/acsami.4c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In the quest to develop advanced monitoring systems for intestinal peristaltic stress, this study introduces a groundbreaking approach inspired by nature's sensory networks. By the integration of novel materials and innovative manufacturing techniques, a multifunctional Janus hydrogel patch has been engineered. This unique patch not only demonstrates superior stress-sensing capabilities in the intricate intestinal environment but also enables adhesion to wet tissue surfaces. This achievement opens new avenues for real-time physiological monitoring and potential therapeutic interventions in the realm of gastrointestinal health.
Collapse
Affiliation(s)
- Yufei Chen
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Wei Zheng
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Hubei 41300, China
| | - Youchen Xia
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lihao Zhang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sengwang Fu
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
18
|
Zhao X, Yang K, Song B, Qiu H, Zhao J, Liu H, Lin Z, Han L, Zhang R. Amphiphilic nanofibrillated cellulose/polyurethane composites with antibacterial, antifouling and self-healing properties for potential catheter applications. Int J Biol Macromol 2024; 263:130407. [PMID: 38417747 DOI: 10.1016/j.ijbiomac.2024.130407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
This study focuses on enhancing interventional medical devices, specifically catheters, using a novel composite material. Challenges like corrosion and contamination in vivo, often caused by body fluids' pH, bacteria, and proteins, lead to mechanical damage, bacterial colonization, and biofilm formation on devices like catheters. The objective of this study was to prepare a versatile composite (HFs) by designing polyurethanes (HPU) with an ionic chain extender (HIID) and blending them with amphiphilic nanofibrillated cellulose (Am-CNF). The composite leverages dynamic interactions such as hydrogen bonding and electrostatic forces, as evidenced by Molecular Mechanics (MM) calculations. The H4F0.75 composite exhibited exceptional properties: 99 % length recovery post 600 stretching cycles at 100 % strain, rapid self-healing in artificial urine, high bactericidal activity, and excellent cell viability. Moreover, mechanical aging tests and UV-vis spectral analysis confirmed the material's durability and safety. These findings suggest that the HFs composite holds significant promise for improving catheters' performance in medical applications.
Collapse
Affiliation(s)
- Xin Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Kai Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Baiyang Song
- Department of Urology, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, Zhejiang, China.
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Jiake Zhao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hongzhi Liu
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, Zhejiang Province, China
| | - Zhihao Lin
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lijing Han
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Ruoyu Zhang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| |
Collapse
|
19
|
Perelshtein I, Shoshani S, Jacobi G, Natan M, Dudchenko N, Perkas N, Tkachev M, Bengalli R, Fiandra L, Mantecca P, Ivanova K, Tzanov T, Banin E, Gedanken A. Protecting the Antibacterial Coating of Urinal Catheters for Improving Safety. ACS APPLIED BIO MATERIALS 2024; 7:990-998. [PMID: 38226433 DOI: 10.1021/acsabm.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.
Collapse
Affiliation(s)
- Ilana Perelshtein
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nataliia Dudchenko
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nina Perkas
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maria Tkachev
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Rossella Bengalli
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Luisa Fiandra
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
20
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
21
|
da Silva CR, Rebouças JDDO, Cabral VPDF, Rodrigues DS, Barbosa AD, Moreira LEA, Barroso FDD, Coutinho TDNP, de Lima EA, de Andrade CR, de Andrade Neto JB, Lima ISP, Nobre Júnior HV, Gurgel do Amaral Valente Sá L. Promising activity of etomidate against mixed biofilms of fluconazole-resistant Candida albicans and methicillin-resistant Staphylococcus aureus. J Med Microbiol 2024; 73. [PMID: 38385528 DOI: 10.1099/jmm.0.001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Elaine Aires de Lima
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Iri Sandro Pampolha Lima
- Department of Pharmacology, School of Medicine, Federal University of Ceará, Barbalha, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
22
|
Zhang Y, Song G, Hu C, Liu Z, Liu H, Wang Y, Wang L, Feng X. Perfluoropolyether-incorporated polyurethane with enhanced antibacterial and anti-adhesive activities for combating catheter-induced infection. RSC Adv 2024; 14:568-576. [PMID: 38173603 PMCID: PMC10759042 DOI: 10.1039/d3ra07831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
To avoid the undesired bacterial attachment on polyurethane-based biomedical devices, we designed a class of novel perfluoropolyether-incorporated polyurethanes (PFPU) containing different contents of perfluoropolyether (PFPE) segments. After blending with Ag nanoparticles (AgNPs), a series of bifunctional PFPU/AgNPs composites with bactericidal and anti-adhesion abilities were obtained and correspondingly made into PFPU/AgNPs films (PFPU/Ag-F) using a simple solvent-casting method. Due to its highest hydrophobicity and suitable mechanical properties, PFPU8/Ag-F containing 8 mol% of PFPE content was chosen as the optimized one for the next antibacterial assessment. The PFPU8/Ag-F can effectively deactivate over 99.9% of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) cells at 106 CFU mL-1 within 30 min. Furthermore, the PFPU8/AgNPs composite was used as painting material to form a protective coating for the commercial polyurethane (PU) catheter. The as-prepared PFPU8/Ag coating exhibits high resistance to bacterial adhesion in a continuous-flow artificial urine model in an 8 day exposure. Therefore, it can be expected that the proposed PFPE-containing films and coatings can effectively prevent bacterial colonization and biofilm formation on catheters or other implants, thereby reducing the risk of postoperative catheter-induced infection.
Collapse
Affiliation(s)
- Yang Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Guangbin Song
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Can Hu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Zixu Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Huansen Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Yilei Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Liang Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Xuequan Feng
- Neurosurgery Department, Tianjin First Centre Hospital Tianjin China
| |
Collapse
|
23
|
Rhoné B, Galtayries A, Semetey V. Efficient One-Step Passivation of Polyurethane Using Transurethanization. Macromol Biosci 2023; 23:e2300168. [PMID: 37551859 DOI: 10.1002/mabi.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Indexed: 08/09/2023]
Abstract
The uncontrolled accumulation of biological materials on the surface of medical devices through protein adsorption or cell adhesion causes adverse biological reactions in the living host system, leading to complications. In this study, poly(ethylene glycol) (PEG) is successfully grafted onto polyurethane (PU) surfaces by using a new strategy through a simple and efficient transurethanization reaction. The PEG hydroxyl group is deprotonated and then reacted with the PU surface to provide antiadhesive hydrophilic surfaces in a single step. Surface analysis techniques proved the grafting to be efficient and the formation of a hydrophilic polymeric layer at the surface of PU. Biological assays showed that the surface modification induced lower protein adsorption, cell, platelet, and bacterial adhesion than untreated surfaces, showing a potential for biomedical applications.
Collapse
Affiliation(s)
- Benoît Rhoné
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Anouk Galtayries
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Vincent Semetey
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
24
|
Baburova PI, Kladko DV, Lokteva A, Pozhitkova A, Rumyantceva V, Rumyantceva V, Pankov IV, Taskaev S, Vinogradov VV. Magnetic Soft Robot for Minimally Invasive Urethral Catheter Biofilm Eradication. ACS NANO 2023; 17:20925-20938. [PMID: 37871301 DOI: 10.1021/acsnano.2c10127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Catheter-related biofilm infection remains the main problem for millions of people annually, affecting morbidity, mortality, and quality of life. Despite the recent advances in the prevention of biofilm formation, alternative methods for biofilm prevention or eradication still should be found to avoid traumatic and expensive removal or catheter replacement. Soft magnetic robots have drawn significant interest in favor of remote control, fast response, and wide space for design. In this work, we demonstrated magnetic soft robots as a minimally invasive, safe, and effective approach to eliminate biofilm from urethral catheters (20 Fr or 5.1 mm in diameter). Seven designs of the robot were fabricated (size 4.5 × 15 mm), characterized, and tested in the presence of a rotating magnetic field. As a proof-of-concept, we demonstrated the superior efficiency of biofilm removal on the model of a urethral catheter using a magnetic robot, reaching full eradication for the octagram-shaped robot (velocity 2.88 ± 0.6 mm/s) at a 15 Hz frequency and a 10 mT amplitude. These findings are helpful for the treatment of biofilm-associated catheter contamination, which allows an increase in the catheter wearing time without frequent replacement and treatment of catheter-associated infections.
Collapse
Affiliation(s)
- Polina I Baburova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Alina Lokteva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Anna Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Viktoriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Valeriya Rumyantceva
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Ilya V Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergey Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| |
Collapse
|
25
|
Valtin J, Behrens S, Ruland A, Schmieder F, Sonntag F, Renner LD, Maitz MF, Werner C. A New In Vitro Blood Flow Model for the Realistic Evaluation of Antimicrobial Surfaces. Adv Healthc Mater 2023; 12:e2301300. [PMID: 37498721 DOI: 10.1002/adhm.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.
Collapse
Affiliation(s)
- Juliane Valtin
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
- Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, 01307, Dresden, Germany
| |
Collapse
|
26
|
Li K, Peng J, Liu Y, Zhang F, Wu D, Luo R, Du Z, Yang L, Liu G, Wang Y. Surface Engineering of Central Venous Catheters via Combination of Antibacterial Endothelium-Mimicking Function and Fibrinolytic Activity for Combating Blood Stream Infection and Thrombosis. Adv Healthc Mater 2023; 12:e2300120. [PMID: 37166220 DOI: 10.1002/adhm.202300120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Long-term blood-contacting devices (e.g., central venous catheters, CVCs) still face the highest incidence of blood stream infection and thrombosis in clinical application. To effectively address these complications, this work reports a dual-functional surface engineering strategy for CVCs by organic integration of endothelium-mimicking and fibrinolytic functions. In this proposal, a lysine (Lys)/Cu2+ -incorporated zwitterionic polymer coating (defined as PDA/Lys/Cu-SB) is designed and robustly fabricated onto commercial CVCs using a facile two-step process. Initially, adhesive ene-functionalized dopamine is covalently reacted with Lys and simultaneously coordinated with bactericidal Cu2+ ions, leading to the deposition of a PDA/Lys/Cu coating on CVCs through mussel foot protein inspired surface chemistry. Next, zwitterionic poly(sulfobetaine methacrylate) (pSB) brushes are grafted onto the PDA/Lys/Cu coating to endow lubricant and antifouling properties. In the final PDA/Lys/Cu-SB coating, endothelium-mimicking function is achieved by combining the catalytic generation of nitric oxide from the chelated Cu2+ with antifouling pSB brushes, which led to significant prevention of thrombosis, and bacterial infection in vivo. Furthermore, the immobilized Lys with fibrinolytic activity show remarkably enhanced long-term anti-thrombogenic properties as evidenced in vivo by demonstrating the capability to lyse nascent clots. Therefore, this developed strategy provides a promising solution for long-term blood-contacting devices to combat thrombosis and infection.
Collapse
Affiliation(s)
- Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuqi Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, 611135, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
27
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
28
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
29
|
Sun J, Wang K, Hao R, Zhang Z, Feng Z, Shi Z, Yuan W, Jing Z, Zhang L. Disregarded Free Chains Affect Bacterial Adhesion on Cross-Linked Polydimethylsiloxane Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466242 DOI: 10.1021/acsami.3c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The surface properties exhibited by chemically cross-linked polydimethylsiloxanes (CPDMS) such as morphology, stiffness, and wettability have garnered great interest in the study of bacteria-material interactions. Nevertheless, the hidden factor of uncross-linked free PDMS chains that dissociate in CPDMS has often been overlooked when studying the biofilm formation on these polymeric elastomer surfaces. Here, we undertake a comparative characterization of the effects of free chains in CPDMS on bacterial adhesion to both flat and textured Sharklet CPDMS surfaces. Surprisingly, compared to unextracted surfaces, removing free chains from flat and textured CPDMS through solvent extraction results in a tremendous increase in bacterial colony-forming units for both Gram-negative and Gram-positive bacteria up to 2-3 orders in the initial adhesion stage of 2 h. These findings demonstrate that the solvent extraction of free chains from CPDMS is essential in studying the interactions between bacteria and silicone elastomer materials when focusing on a single variable.
Collapse
Affiliation(s)
- Jining Sun
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Kunwen Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruonan Hao
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Feng
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyu Jing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
31
|
Yu H, Wang L, Zhang Z, Zhang X, Luan S, Shi H. Regulable Polyelectrolyte-Surfactant Complex for Antibacterial Biomedical Catheter Coating via a Readily Scalable Route. Adv Healthc Mater 2023; 12:e2202096. [PMID: 36285359 DOI: 10.1002/adhm.202202096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Constructing multifunctional surfaces is one of the practical approaches to address catheter-related multiple complications but is generally time-consuming and substrate-dependent. Herein, a novel anti-adhesion, antibacterial, low friction, and robustness coating on medical catheters are developed via a universal and readily scalable method based on a regulable polyelectrolyte surfactant complex. The complex is rapidly assembled in one step by electrostatic and hydrophobic interactions between organosilicon quaternary ammonium surfactant (N+ Si ) and adjustable polyelectrolyte with cross-linkable, anti-adhesive, and anionic groups. The alcohol-soluble feature of the complex is conducive to the rapid formation of coatings on any medical device with arbitrary shapes via dip coating. Different from the conventional polyelectrolyte-surfactant complex coating, the regulated complex coating with nonleaching mode could be stable in harsh conditions (high concentration salt solution, organic reagents, etc.) because of the cross-linked structure while improving the biocompatibility and reducing the adhesion of various bacteria, proteins, and blood cells. The coated catheter exhibits good antibacterial infection in vitro and in vivo, owing to the synergistic effect of N+ Si and zwitterionic groups. Therefore, the rationally designed complex supplies a facile coating approach for the potential development in combating multiple complications of the medical catheter.
Collapse
Affiliation(s)
- Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
32
|
Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen XZ, Zeng H. Bionic Engineered Protein Coating Boosting Anti-Biofouling in Complex Biological Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208824. [PMID: 36367362 DOI: 10.1002/adma.202208824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Implantable medical devices have been widely applied in diagnostics, therapeutics, organ restoration, and other biomedical areas, but often suffer from dysfunction and infections due to irreversible biofouling. Inspired by the self-defensive "vine-thorn" structure of climbing thorny plants, a zwitterion-conjugated protein is engineered via grafting sulfobetaine methacrylate (SBMA) segments on native bovine serum albumin (BSA) protein molecules for surface coating and antifouling applications in complex biological fluids. Unlike traditional synthetic polymers of which the coating operation requires arduous surface pretreatments, the engineered protein BSA@PSBMA (PolySBMA conjugated BSA) can achieve facile and surface-independent coating on various substrates through a simple dipping/spraying method. Interfacial molecular force measurements and adsorption tests demonstrate that the substrate-foulant attraction is significantly suppressed due to strong interfacial hydration and steric repulsion of the bionic structure of BSA@PSBMA, enabling coating surfaces to exhibit superior resistance to biofouling for a broad spectrum of species including proteins, metabolites, cells, and biofluids under various biological conditions. This work provides an innovative paradigm of using native proteins to generate engineered proteins with extraordinary antifouling capability and desired surface properties for bioengineering applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
33
|
Wang S, Liu Z, Wang L, Xu J, Mo R, Jiang Y, Wen C, Zhang Z, Ren L. Superhydrophobic Mechano-Bactericidal Surface with Photodynamic Antibacterial Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:723-735. [PMID: 36573916 DOI: 10.1021/acsami.2c21310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial invasion and proliferation on various surfaces pose a serious threat to public health worldwide. Conventional antibacterial strategies that mainly rely on bactericides exhibit high bacteria-killing efficiency but might trigger the well-known risk of antibiotic resistance. Here, we report a superhydrophobic mechano-bactericidal surface with photodynamically enhanced antibacterial capability. First, bioinspired nanopillars with polycarbonate as the bulk material were replicated from anodized alumina oxide templates via a simple hot-pressing molding method. Subsequently, a facile bovine serum albumin phase-transition method was used to introduce chlorin e6 onto the nanopillar-patterned surface, which was then perfluorinated to render the surface superhydrophobic. Benefiting from its strong liquid super-repellency and photodynamically enhanced mechano-bactericidal properties, the superhydrophobic nanopillar-patterned surface exhibits 100% antibacterial efficiency after 30 min visible light irradiation (650 nm, 20 mW cm-2). More strikingly, the surface exhibited impressive long-lasting antimicrobial performance, maintaining a very high bactericidal efficiency (≥99%) even after 10 cycles of bacterial contamination tests. Also, the superhydrophobic nanopillar-patterned surface displays good hemocompatibility with a much lower than the 5% hemolysis rate. Overall, this work offers a new method for significantly enhancing the antibacterial efficiency of structural antimicrobial surfaces without involving any bactericidal agents, and this functional surface shows great potential in the field of advanced medical materials and hospital surfaces.
Collapse
Affiliation(s)
- Shujin Wang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun130022, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ru Mo
- Jilin Province People's Hospital, Changchun130021, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| |
Collapse
|
34
|
Zhang W, Du J, Zhu T, Wang R. SiO 2 nanosphere coated tough catheter with superhydrophobic surface for improving the antibacteria and hemocompatibility. Front Bioeng Biotechnol 2023; 10:1067139. [PMID: 36704310 PMCID: PMC9872198 DOI: 10.3389/fbioe.2022.1067139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Catheter infection is the most common complication after vascular catheter placement, which seriously threatens the survival of critically ill patients. Although catheters with antibacterial drug coatings have been used, catheter infections have not been effectively resolved. In this research, a SiO2 nanosphere-coated PTFE catheter (PTFE-SiO2) with enhanced antibacterial and excellent mechanical properties was prepared via dopamine as a graft bridge. The microscopic morphology results show that the nanospheres are uniformly dispersed on the surface of the catheter. The physicochemical characterization confirmed that PTFE-SiO2 had reliable bending resistance properties, superhydrophobicity, and cytocompatibility and could inhibit thrombosis. Antibacterial results revealed that PTFE-SiO2 could hinder the reproduction of E. coli and S. aureus. This research demonstrates the hydroxyl-rich materials obtained by hydroboration oxidation have the advantages of better dispersion of functional coatings, indicating their potential for helpful modification of catheters.
Collapse
Affiliation(s)
- Weixing Zhang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Ruilan Wang,
| |
Collapse
|
35
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
36
|
Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities. Microorganisms 2022; 10:microorganisms10122484. [PMID: 36557737 PMCID: PMC9785902 DOI: 10.3390/microorganisms10122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Medical-device-related infections are considered a worldwide public health problem. In particular, urinary catheters are responsible for 75% of cases of hospital urinary infections (a mortality rate of 2.3%) and present a high cost for public and private health systems. Some actions have been performed and described aiming to avoid it, including clinical guidelines for catheterization procedure, antibiotic prophylaxis, and use of antimicrobial coated-urinary catheters. In this review paper, we present and discuss the functionalization of urinary catheters surfaces with antimicrobial entities (e.g., photosensitizers, antibiotics, polymers, silver salts, oxides, bacteriophage, and enzymes) highlighting the immobilization of photosensitizing molecules for antimicrobial photodynamic applications. Moreover, the characterization techniques and (photo)antimicrobial effects of the coated-urinary catheters are described and discussed. We highlight the most significant examples in the last decade (2011-2021) concerning the antimicrobial coated-urinary catheter and their potential use, limitations, and future perspectives.
Collapse
|
37
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
38
|
Dardouri M, Bettencourt A, Martin V, Carvalho FA, Colaço B, Gama A, Ramstedt M, Santos NC, Fernandes MH, Gomes PS, Ribeiro IAC. Assuring the Biofunctionalization of Silicone Covalently Bonded to Rhamnolipids: Antibiofilm Activity and Biocompatibility. Pharmaceutics 2022; 14:pharmaceutics14091836. [PMID: 36145584 PMCID: PMC9501004 DOI: 10.3390/pharmaceutics14091836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.
Collapse
Affiliation(s)
- Maïssa Dardouri
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | | | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria H. Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Pedro S. Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| |
Collapse
|
39
|
Dardouri M, Aljnadi IM, Deuermeier J, Santos C, Costa F, Martin V, Fernandes MH, Gonçalves L, Bettencourt A, Gomes PS, Ribeiro IA. Bonding antimicrobial rhamnolipids onto medical grade PDMS: A strategy to overcome multispecies vascular catheter-related infections. Colloids Surf B Biointerfaces 2022; 217:112679. [DOI: 10.1016/j.colsurfb.2022.112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/06/2023]
|
40
|
Yuan Y, Shang Y, Zhou Y, Guo J, Yan F. Enabling Antibacterial and Antifouling Coating via Grafting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules 2022; 23:2329-2341. [PMID: 35652936 DOI: 10.1021/acs.biomac.2c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections caused by bacteria and biofilms on the surfaces of biomedical devices and implants pose serious threats to public health. Herein, a nitric oxide (NO) gas-releasing quaternary ammonium-type ionic liquid (IL)-based coating on polydimethylsiloxane (PDMS), PDIL-NO, with effective and long-acting antibacterial and antifouling properties was prepared. N-(2-((2, 3-Dimethylbut-3-enoyl)oxy)ethyl)-N, N-dimethyloctan-1-aminium bromide (IL-Br), and 2-methyl-2-propenoic acid 2-(2-methoxyethoxy) ethyl ester were covalently grafted onto the surfaces of PDMS by a thiol-ene click chemical reaction, followed by incorporation of l-proline anions (Pro-) through anion exchange with Br- to adsorb NO gas. The prepared PDIL-NO showed a prolonged NO-releasing time (>1440 min) and a relatively high concentration (88 μM). Additionally, PDIL-NO possessed good and long-term antimicrobial activity, and could effectively reduce the adsorption of bovine serum albumin and adhesion of bacteria, as well as inhibit wound infection and reduce inflammation in vivo due to the synergetic effect of IL and the released NO. This study may provide a new approach to combat bacterial infections associated with biomedical devices and implants.
Collapse
Affiliation(s)
- Yinghui Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yating Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Xu LC, Siedlecki CA. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. J Biomed Mater Res A 2022; 110:1238-1250. [PMID: 35128791 PMCID: PMC9885517 DOI: 10.1002/jbm.a.37369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Surface topography modification with nano- or micro-textured structures has been an efficient approach to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection without modification of surface chemistry/bulk properties of materials and without causing antibiotic resistance. This manuscript focuses on submicron-textured patterns with ordered arrays of pillars on polyurethane (PU) biomaterial surfaces in an effort to understand the effects of surface pillar features and surface properties on adhesion and colonization responses of two staphylococcal strains. Five submicron patterns with a variety of pillar dimensions were designed and fabricated on PU film surfaces and bacterial adhesion and biofilm formation of Staphylococcal strains (Staphylococcus epidermidis RP62A and Staphylococcus aureus Newman D2C) were characterized. Results show that all submicron textured surface significantly reduced bacterial adhesion and inhibited biofilm formation, and bacterial adhesion linearly decreased with the reduction in top surface area fraction. Surface wettability did not show a linear correlation with bacterial adhesion, suggesting that surface contact area dominates bacterial adhesion. From this, it appears that the design of textured patterns should minimize surface area fraction to reduce the bacterial interaction with surfaces but in a way that ensures the mechanical strength of pillars in order to avoid collapse. These findings may provide a rationale for design of polymer surfaces for antifouling medical devices.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Department of Biomedical Engineering,The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Correspondence: Dr. Christopher A. Siedlecki, The Pennsylvania State University, Milton S. Hershey Medical Center, College of Medicine, H151, 500 University Dr., Hershey, PA 17033. Phone: (717) 531-5716. Fax: (717) 531-4464.
| |
Collapse
|
42
|
Teixeira-Santos R, Gomes LC, Mergulhão FJ. Recent advances in antimicrobial surfaces for urinary catheters. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Andersen MJ, Fong C, La Bella AA, Molina JJ, Molesan A, Champion MM, Howell C, Flores-Mireles AL. Inhibiting host-protein deposition on urinary catheters reduces associated urinary tract infections. eLife 2022; 11:e75798. [PMID: 35348114 PMCID: PMC8986317 DOI: 10.7554/elife.75798] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial adhesion to medical devices is common for hospital-acquired infections, particularly for urinary catheters. If not properly treated these infections cause complications and exacerbate antimicrobial resistance. Catheter use elicits bladder inflammation, releasing host serum proteins, including fibrinogen (Fg), into the bladder, which deposit on the urinary catheter. Enterococcus faecalis uses Fg as a scaffold to bind and persist in the bladder despite antibiotic treatments. Inhibition of Fg-pathogen interaction significantly reduces infection. Here, we show deposited Fg is advantageous for uropathogens E. faecalis, Escherichia coli, Pseudomonas aeruginosa, K. pneumoniae, A. baumannii, and C. albicans, suggesting that targeting catheter protein deposition may reduce colonization creating an effective intervention for catheter-associated urinary tract infections (CAUTIs). In a mouse model of CAUTI, host-protein deposition was reduced, using liquid-infused silicone catheters, resulting in decreased colonization on catheters, in bladders, and dissemination in vivo. Furthermore, proteomics revealed a significant decrease in deposition of host-secreted proteins on liquid-infused catheter surfaces. Our findings suggest targeting microbial-binding scaffolds may be an effective antibiotic-sparing intervention for use against CAUTIs and other medical device infections.
Collapse
Affiliation(s)
- Marissa Jeme Andersen
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - ChunKi Fong
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Maine, Orono, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Alyssa Ann La Bella
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Jonathan Jesus Molina
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Alex Molesan
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, United States
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, College of Engineering, University of Maine, Orono, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Ana L Flores-Mireles
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, United States
| |
Collapse
|
45
|
Arango-Santander S. Bioinspired Topographic Surface Modification of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2383. [PMID: 35407716 PMCID: PMC8999667 DOI: 10.3390/ma15072383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.
Collapse
|
46
|
Corrêa Carvalho G, Miguel Sábio R, Spósito L, de Jesus Andreoli Pinto T, Chorilli M. An overview of the use of central venous catheters impregnated with drugs or with inorganic nanoparticles as a strategy in preventing infections. Int J Pharm 2022; 615:121518. [DOI: 10.1016/j.ijpharm.2022.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 10/19/2022]
|
47
|
Dadi NCT, Radochová B, Vargová J, Bujdáková H. Impact of Healthcare-Associated Infections Connected to Medical Devices-An Update. Microorganisms 2021; 9:2332. [PMID: 34835457 PMCID: PMC8618630 DOI: 10.3390/microorganisms9112332] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023] Open
Abstract
Healthcare-associated infections (HAIs) are caused by nosocomial pathogens. HAIs have an immense impact not only on developing countries but also on highly developed parts of world. They are predominantly device-associated infections that are caused by the planktonic form of microorganisms as well as those organized in biofilms. This review elucidates the impact of HAIs, focusing on device-associated infections such as central line-associated bloodstream infection including catheter infection, catheter-associated urinary tract infection, ventilator-associated pneumonia, and surgical site infections. The most relevant microorganisms are mentioned in terms of their frequency of infection on medical devices. Standard care bundles, conventional therapy, and novel approaches against device-associated infections are briefly mentioned as well. This review concisely summarizes relevant and up-to-date information on HAIs and HAI-associated microorganisms and also provides a description of several useful approaches for tackling HAIs.
Collapse
Affiliation(s)
| | - Barbora Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| | | | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (N.C.T.D.); (J.V.)
| |
Collapse
|
48
|
Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112563. [DOI: 10.1016/j.msec.2021.112563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
|
49
|
Liu Y, Zhang F, Lang S, Yang L, Gao S, Wu D, Liu G, Wang Y. A Uniform and Robust Bioinspired Zwitterion Coating for Use in Blood-Contacting Catheters with Improved Anti-Inflammatory and Antithrombotic Properties. Macromol Biosci 2021; 21:e2100341. [PMID: 34644005 DOI: 10.1002/mabi.202100341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/10/2021] [Indexed: 11/10/2022]
Abstract
Inflammation and thrombosis are two major complications of blood-contacting catheters that are used as extracorporeal circuits for hemodialysis and life-support systems. In clinical applications, complications can lead to increased mortality and morbidity rates. In this work, a biomimetic erythrocyte membrane zwitterion coating based on poly(2-methacryloyloxyethyl phosphorylcholine-co-dopamine methacrylate) (pMPCDA) copolymers is uniformly and robustly modified onto a polyvinyl chloride (PVC) catheter via mussel-inspired surface chemistry. The zwitterionic pMPCDA coating exhibits excellent antifouling activity and resists bacterial adhesion, fibrinogen adsorption, and platelet adhesion/activation. The material also demonstrates great hemocompatibility, cytocompatibility, and anticoagulation properties in vitro. Additionally, this biocompatible pMPCDA coating reduces in vivo foreign-body reactions by mitigating inflammatory response and collagen capsule formation, due to its outstanding ability to resist nonspecific protein adsorption. More importantly, when compared with a bare PVC catheter, the pMPCDA coating exhibits outstanding antithrombotic properties when tested in an ex vivo rabbit perfusion model. Thus, it is envisioned that this biomimetic erythrocyte membrane surface strategy will provide a promising way to mitigate inflammation and thrombosis caused by the use of blood-contacting catheters.
Collapse
Affiliation(s)
- Yuqi Liu
- Collage of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China.,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shiying Lang
- Collage of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China.,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shuai Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,Chengdu Daxan Innovative Medical Tech. Co., Ltd, Chengdu, 611135, China
| | - Dimeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,Chengdu Daxan Innovative Medical Tech. Co., Ltd, Chengdu, 611135, China
| | - Gongyan Liu
- Collage of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China.,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
50
|
Tarabal VS, Silva FG, Sinisterra RD, Gonçalves D, Silva J, Granjeiro JM, Speziali M, Granjeiro PA. Impact of DMPEI on Biofilm Adhesion on Latex Urinary Catheter. Recent Pat Biotechnol 2021; 15:51-66. [PMID: 33588743 DOI: 10.2174/1872208315666210215084127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microorganisms can migrate from the external environment to the patient's organism through the insertion of catheters. Despite being indispensable medical device, the catheter surface can be colonized by microorganisms and become a starting point for biofilm formation. Therefore, new technologies are being developed in order to modify surfaces to prevent the adhesion and survival of microorganisms. Patents with the use of DMPEI have been filed. OBJECTIVE In the present work, we coated latex catheter surfaces with 2 mg mL-1 DMPEI in different solvents, evaluated the wettability of the surface and the anti- biofilm activity of the coated catheter against Escherichia coli, Staphylococcus aureus, and Candida albicans. METHODS We coated the inner and outer catheter surfaces with 2 mg mL-1 of DMPEI solubilized in butanol, dimethylformamide, and cyclohexanone and the surfaces were analyzed visually. Contact angle measurement allowed the analysis of the wettability of the surfaces. The CFU mL-1 count evaluated E. coli, S. aureus, and C. albicans adhesion onto the control and treated surfaces. RESULTS The contact angle decreased from 50.48º to 46.93º on the inner surface and from 55.83º to 50.91º on the outer surface of latex catheters coated with DMPEI. The catheter coated with DMPEI showed anti-biofilm activity of 83%, 88%, and 93% on the inner surface and 100%, 92%, and 86% on the outer surface for E. coli, S. aureus, and C. albicans, respectively. CONCLUSION Latex catheter coated with DMPEI efficiently impaired the biofilm formation both on the outer and inner surfaces, showing a potential antimicrobial activity along with a high anti-biofilm activity for medical devices.
Collapse
Affiliation(s)
- Vinícius S Tarabal
- Campus Centro-Oeste, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Flávia G Silva
- Chemistry Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Gonçalves
- Campus Centro-Oeste, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jose Silva
- Campus Centro-Oeste, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jose M Granjeiro
- National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Marcelo Speziali
- Chemistry Department, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Paulo A Granjeiro
- Campus Centro-Oeste, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|