1
|
Ridouani F, Alberto Vargas H, Holzwanger DJ, Schöder H, Waters E, Petre EN, Martin A, Satagopan J, Gonen M, Autio KA, Chen Y, Slovin SF, Danila DC, Morris MJ, Scher HI, Arcila ME, Solomon SB, Durack JC. Clinical, Imaging, and Technical Factors Associated with Successful Genomic Profiling of Bone Biopsy Tissue in Prostate Cancer. Eur Urol Oncol 2024:S2588-9311(24)00180-9. [PMID: 39095299 DOI: 10.1016/j.euo.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The source of tissue for genomic profiling of metastatic castration-resistant prostate cancer (mCRPC) is often limited to osseous metastases. To guide patient management, metastatic site selection and the technique for targeted bone biopsies are critical for identifying deleterious gene mutations. Our objective was to identify key parameters associated with successful large-panel DNA sequencing. METHODS We analyzed parameters for 243 men with progressing mCRPC who underwent 269 bone biopsies for genomic profiling between 2014 and 2018. Univariate and multivariate analyses were performed for clinical, imaging (bone scan; fluorodeoxyglucose [FDG] positron emission tomography [PET]; computed tomography [CT]; magnetic resonance imaging), and technical (biopsy site, number of samples, needle gauge) features associated with successful genomic profiling. KEY FINDINGS AND LIMITATIONS Overall, 159 of 269 biopsies (59%) generated sufficient tumor material for a genomic profile. Seventy (26%) of the failures were histopathologically negative for mCRPC and 40 (15%) had insufficient tumor for genomic profiling. Of 199 mCRPC samples submitted for molecular testing, 159 (80%) yielded a genomic profile. On univariate analysis, PSA, serum acid phosphatase, number of biopsy samples, FDG PET positivity, CT attenuation, and CT morphology were significantly associated with genomic profiling success. On multivariate analysis, higher FDG maximum standardized uptake value (odds ratio [OR] 7.51, 95% confidence interval [CI] 3.01-18.78; p < 0.001), higher number of biopsy samples (OR 4.73, 95% CI 1.49-15.02; p = 0.008), and lower mean CT attenuation (OR 0.4, 95% CI 0.18-0.89; p = 0.025) were significantly associated with sequencing success. CONCLUSIONS AND CLINICAL IMPLICATIONS In patients with mCRPC, bone biopsies from sites with metabolic activity and lower CT attenuation are associated with higher success rates for genomic profiling via a large-panel DNA sequencing platform. PATIENT SUMMARY We identified factors associated with successful genetic testing of bone tissue for patients with metastatic prostate cancer. Our findings may help in guiding the right scan technique and biopsy site for personalized treatment planning.
Collapse
Affiliation(s)
- Fourat Ridouani
- Department of Radiology, Interventional Radiology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - H Alberto Vargas
- Department of Radiology, Oncologic Imaging Division, NYU Langone, New York, NY, USA
| | - Daniel J Holzwanger
- Department of Radiology, Interventional Radiology Division, Weill Cornell Medicine, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Molecular Imaging and Therapy Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Emily Waters
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Elena N Petre
- Department of Radiology, Interventional Radiology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Axel Martin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Jaya Satagopan
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Brunswick, NJ, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Karen A Autio
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Yu Chen
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Susan F Slovin
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Daniel C Danila
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Michael J Morris
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Howard I Scher
- Department of Medicine, Genitourinary Oncology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Stephen B Solomon
- Department of Radiology, Interventional Radiology Division, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Jeremy C Durack
- Department of Radiology, Interventional Radiology Division, Memorial Sloan Kettering Cancer, New York, NY, USA; Department of Radiology, Interventional Radiology Division, Veterans Administration Hospital, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Neeb A, Figueiredo I, Gurel B, Nava Rodrigues D, Rekowski J, Riisnaes R, Ferreira A, Miranda S, Crespo M, Westaby D, de Los Dolores Fenor de La Maza M, Guo C, Carmichael J, Grochot R, Tunariu N, Cato ACB, Plymate SR, de Bono JS, Sharp A. Development and Validation of a New BAG-1L-Specific Antibody to Quantify BAG-1L Protein Expression in Advanced Prostate Cancer. J Transl Med 2023; 103:100245. [PMID: 37652207 DOI: 10.1016/j.labinv.2023.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
BCL-2-associated athanogene-1L (BAG-1L) is a critical co-regulator that binds to and enhances the transactivation function of the androgen receptor, leading to prostate cancer development and progression. Studies investigating the clinical importance of BAG-1L protein expression in advanced prostate cancer have been limited by the paucity of antibodies that specifically recognize the long isoform. In this study, we developed and validated a new BAG-1L-specific antibody using multiple orthogonal methods across several cell lines with and without genomic manipulation of BAG-1L and all BAG-1 isoforms. Following this, we performed exploratory immunohistochemistry to determine BAG-1L protein expression in normal human, matched castration-sensitive prostate cancer (CSPC) and castration-resistant prostate cancer (CRPC), unmatched primary and metastatic CRPC, and early breast cancer tissues. We demonstrated higher BAG-1L protein expression in CRPC metastases than in unmatched, untreated, castration-sensitive prostatectomies from men who remained recurrence-free for 5 years. In contrast, BAG-1L protein expression did not change between matched, same patient, CSPC and CRPC biopsies, suggesting that BAG-1L protein expression may be associated with more aggressive biology and the development of castration resistance. Finally, in a cohort of patients who universally developed CRPC, there was no association between BAG-1L protein expression at diagnosis and time to CRPC or overall survival, and no association between BAG-1L protein expression at CRPC biopsy and clinical outcome from androgen receptor targeting therapies or docetaxel chemotherapy. The limitations of this study include the requirement to validate the reproducibility of the assay developed, the potential influence of pre-analytical factors, timing of CRPC biopsies, relatively small patient numbers, and heterogenous therapies on BAG-1L protein expression, and the clinical outcome analyses performed. We describe a new BAG-1L-specific antibody that the research community can further develop to elucidate the biological and clinical significance of BAG-1L protein expression in malignant and nonmalignant diseases.
Collapse
Affiliation(s)
- Antje Neeb
- Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- Institute of Cancer Research, London, United Kingdom
| | | | - Jan Rekowski
- Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- Institute of Cancer Research, London, United Kingdom
| | | | - Mateus Crespo
- Institute of Cancer Research, London, United Kingdom
| | - Daniel Westaby
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Christina Guo
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Juliet Carmichael
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Rafael Grochot
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nina Tunariu
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew C B Cato
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Eggenstein-Leopoldshafen, Germany
| | - Stephen R Plymate
- University of Washington, Seattle, Washington; Geriatrics Research, Education and Clinical Center, VAPSHCS, Seattle, Washington
| | - Johann S de Bono
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Adam Sharp
- Institute of Cancer Research, London, United Kingdom; Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
5
|
Cimadamore A, Rescigno P, Conteduca V, Caliò A, Allegritti M, Calò V, Montagnani I, Lucianò R, Patruno M, Bracarda S. SIUrO best practice recommendations to optimize BRCA 1/2 gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Arch 2023; 483:579-589. [PMID: 37794204 DOI: 10.1007/s00428-023-03660-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
The main guidelines and recommendations for the implementation of the BRCA1/2 somatic test do not focus on the clinical application of predictive testing on bone metastases, a frequent condition in metastatic prostate cancer, by analyzing the critical issues encountered by laboratory practice. Our goal is to produce a document (protocol) deriving from a multidisciplinary team approach to obtain high quality nucleic acids from biopsy of bone metastases. This document aims to compose an operational check-list of three phases: the pre-analytical phase concerns tumor cellularity, tissue processing, sample preservation (blood/FFPE), fixation and staining, but above all the decalcification process, the most critical phase because of its key role in allowing the extraction of somatic DNA with a good yield and high quality. The analytical phase involves the preparation of the libraries that can be analyzed in various NGS genetic sequencing platforms and with various bioinformatics software for the interpretation of sequence variants. Finally, the post-analytical phase that allows to report the variants of the BRCA1/2 genes in a clear and usable way to the clinician who will use these data to manage cancer therapy with PARP Inhibitors.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), University of Udine, Via Palladio 8, 33100, Udine, Italy.
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, 71122, Foggia, Italy
| | - Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Largo L. Scuro 10, 37134, Verona, Italy
| | - Massimiliano Allegritti
- Interventional radiology Unit, Azienda ospedaliera Santa Maria Terni, Viale Tristano di Joannuccio, 05100, Terni, Italy
| | - Valentina Calò
- Central Laboratory of Advanced Diagnosis and Biomedical Research, (CLADIBIOR) Policlinico Paolo Giaccone Hospital, University of Palermo, 90127, Palermo, Italy
| | - Ilaria Montagnani
- Pathology Unit, USL Toscana Centro - Ospedale San Giuseppe, Empoli, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Patruno
- Center for Study of Heredo-Familial Tumors - IRCCS Istituto Tumori "Giovanni Paolo II,", Bari, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano di Joannuccio, 05100, Terni, Italy
| |
Collapse
|
6
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
7
|
Loehr A, Patnaik A, Campbell D, Shapiro J, Bryce AH, McDermott R, Sautois B, Vogelzang NJ, Bambury RM, Voog E, Zhang J, Piulats JM, Hussain A, Ryan CJ, Merseburger AS, Daugaard G, Heidenreich A, Fizazi K, Higano CS, Krieger LE, Sternberg CN, Watkins SP, Despain D, Simmons AD, Dowson M, Golsorkhi T, Chowdhury S, Abida W. Response to Rucaparib in BRCA-Mutant Metastatic Castration-Resistant Prostate Cancer Identified by Genomic Testing in the TRITON2 Study. Clin Cancer Res 2021; 27:6677-6686. [PMID: 34598946 PMCID: PMC8678310 DOI: 10.1158/1078-0432.ccr-21-2199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The PARP inhibitor rucaparib is approved in the United States for patients with metastatic castration-resistant prostate cancer (mCRPC) and a deleterious germline and/or somatic BRCA1 or BRCA2 (BRCA) alteration. While sequencing of tumor tissue is considered the standard for identifying patients with BRCA alterations (BRCA+), plasma profiling may provide a minimally invasive option to select patients for rucaparib treatment. Here, we report clinical efficacy in patients with BRCA+ mCRPC identified through central plasma, central tissue, or local genomic testing and enrolled in TRITON2. PATIENTS AND METHODS Patients had progressed after next-generation androgen receptor-directed and taxane-based therapies for mCRPC and had BRCA alterations identified by central sequencing of plasma and/or tissue samples or local genomic testing. Concordance of plasma/tissue BRCA status and objective response rate and prostate-specific antigen (PSA) response rates were summarized. RESULTS TRITON2 enrolled 115 patients with BRCA+ identified by central plasma (n = 34), central tissue (n = 37), or local (n = 44) testing. Plasma/tissue concordance was determined in 38 patients with paired samples and was 47% in 19 patients with a somatic BRCA alteration. No statistically significant differences were observed between objective and PSA response rates to rucaparib across the 3 assay groups. Patients unable to provide tissue samples and tested solely by plasma assay responded at rates no different from patients identified as BRCA+ by tissue testing. CONCLUSIONS Plasma, tissue, and local testing of mCRPC patients can be used to identify men with BRCA+ mCRPC who can benefit from treatment with the PARP inhibitor rucaparib.
Collapse
Affiliation(s)
- Andrea Loehr
- Translational Medicine, Clovis Oncology, Inc., Boulder, Colorado
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - David Campbell
- Medical Oncology, Barwon Health, University Hospital Geelong, Geelong, Victoria, Australia
| | - Jeremy Shapiro
- Medical Oncology, Cabrini Hospital, Malvern, Victoria, Australia
| | - Alan H Bryce
- Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Ray McDermott
- Genitourinary Oncology, Adelaide and Meath Hospital (Incorporating the National Children's Hospital), Dublin, Ireland
| | - Brieuc Sautois
- Department of Medical Oncology, University Hospital of Liège, CHU Sart Tilman, Liège, Belgium
| | | | | | - Eric Voog
- Medical Oncology, Clinique Victor Hugo Centre Jean Bernard, Le Mans, France
| | - Jingsong Zhang
- Genitourinary Oncology Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Josep M Piulats
- Medical Oncology, Institut Català d'Oncologia, Barcelona, Spain
| | - Arif Hussain
- Department of Medicine, Greenebaum Cancer Center, Baltimore, Maryland
| | - Charles J Ryan
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | | | - Gedske Daugaard
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Axel Heidenreich
- Department of Urology, Universitätsklinikum Köln, Cologne, Germany
| | - Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif Cedex, France
| | - Celestia S Higano
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Laurence E Krieger
- Oncology, Genesis Care Integrative Cancer Centre, St Leonards, Sydney, New South Wales, Australia
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York-Presbyterian, New York, New York
| | - Simon P Watkins
- Clinical Science, Clovis Oncology UK, Ltd., Cambridge, United Kingdom
| | | | - Andrew D Simmons
- Translational Medicine, Clovis Oncology, Inc., Boulder, Colorado
| | - Melanie Dowson
- Study Operations, Clovis Oncology UK, Ltd., Cambridge, United Kingdom
| | - Tony Golsorkhi
- Clinical Development, Clovis Oncology, Inc., Boulder, Colorado
| | - Simon Chowdhury
- Medical Oncology, Guy's Hospital and Sarah Cannon Research Institute, London, United Kingdom
| | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Technical and biological constraints on ctDNA-based genotyping. Trends Cancer 2021; 7:995-1009. [PMID: 34219051 DOI: 10.1016/j.trecan.2021.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) enables real-time genomic profiling of cancer without the need for tissue biopsy. ctDNA-based technology is seeing rapid uptake in clinical practice due to the potential to inform patient management from diagnosis to advanced disease. In metastatic disease, ctDNA can identify somatic mutations, copy-number variants (CNVs), and structural rearrangements that are predictive of therapy response. However, the ctDNA fraction (ctDNA%) is unpredictable and confounds variant detection strategies, undermining confidence in liquid biopsy results. Assay design also influences which types of genomic alterations are identifiable. Here, we describe the relationships between ctDNA%, methodology, and sensitivity-specificity for major classes of genomic alterations in prostate cancer. We provide recommendations to navigate the technical complexities that constrain the detection of clinically relevant genomic alterations in ctDNA.
Collapse
|
9
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
10
|
Tukachinsky H, Madison RW, Chung JH, Gjoerup OV, Severson EA, Dennis L, Fendler BJ, Morley S, Zhong L, Graf RP, Ross JS, Alexander BM, Abida W, Chowdhury S, Ryan CJ, Fizazi K, Golsorkhi T, Watkins SP, Simmons A, Loehr A, Venstrom JM, Oxnard GR. Genomic Analysis of Circulating Tumor DNA in 3,334 Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clin Cancer Res 2021; 27:3094-3105. [PMID: 33558422 PMCID: PMC9295199 DOI: 10.1158/1078-0432.ccr-20-4805] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Comprehensive genomic profiling (CGP) is of increasing value for patients with metastatic castration-resistant prostate cancer (mCRPC). mCRPC tends to metastasize to bone, making tissue biopsies challenging to obtain. We hypothesized CGP of cell-free circulating tumor DNA (ctDNA) could offer a minimally invasive alternative to detect targetable genomic alterations (GA) that inform clinical care. EXPERIMENTAL DESIGN Using plasma from 3,334 patients with mCRPC (including 1,674 screening samples from TRITON2/3), we evaluated the landscape of GAs detected in ctDNA and assessed concordance with tissue-based CGP. RESULTS A total of 3,129 patients (94%) had detectable ctDNA with a median ctDNA fraction of 7.5%; BRCA1/2 was mutated in 295 (8.8%). In concordance analysis, 72 of 837 patients had BRCA1/2 mutations detected in tissue, 67 (93%) of which were also identified using ctDNA, including 100% of predicted germline variants. ctDNA harbored some BRCA1/2 alterations not identified by tissue testing, and ctDNA was enriched in therapy resistance alterations, as well as possible clonal hematopoiesis mutations (e.g., in ATM and CHEK2). Potential androgen receptor resistance alterations were detected in 940 of 2,213 patients (42%), including amplifications, polyclonal and compound mutations, rearrangements, and novel deletions in exon 8. CONCLUSIONS Genomic analysis of ctDNA from patients with mCRPC recapitulates the genomic landscape detected in tissue biopsies, with a high level of agreement in detection of BRCA1/2 mutations, but more acquired resistance alterations detected in ctDNA. CGP of ctDNA is a compelling clinical complement to tissue CGP, with reflex to tissue CGP if negative for actionable variants.See related commentary by Hawkey and Armstrong, p. 2961.
Collapse
Affiliation(s)
| | | | - Jon H Chung
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | | | - Lucas Dennis
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | | | - Lei Zhong
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Ryon P Graf
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Massachusetts
- Upstate Medical University, Syracuse, New York
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon Chowdhury
- Guy's, King's, and St. Thomas' Hospital, London, England, United Kingdom
| | - Charles J Ryan
- University of Minnesota Medical School, Minneapolis, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Increased Pathway Complexity Is a Prognostic Biomarker in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13071588. [PMID: 33808193 PMCID: PMC8037684 DOI: 10.3390/cancers13071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Circulating tumour DNA profiling can cost-efficiently accelerate biomarker discovery within oncology trials. However, biomarker identification in metastatic castration-resistant prostate cancer is confounded by a heterogeneous genomic landscape with few commonly-perturbed genes and a large number of infrequently mutated, yet potentially biologically-relevant, cancer drivers. Hence, large sample sizes are required for the stratified evaluation of these infrequent perturbations. To circumvent this issue, we investigated whether grouping genomic alterations with other events within the same cellular pathways would offer increased precision for biomarker discovery. We undertook an individual patient-level pooled analysis of 342 patients with metastatic castration-resistant prostate cancer-initiating abiraterone acetate or enzalutamide. We found that the total number of altered pathways, which we termed the pathway complexity index (PCI) was associated with a poor prognosis. Since genomic profiling is now standard practice in interventional oncology trials, our findings highlight the importance of comprehensive genomic profiling for biomarker discovery and utilization. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease, characterized by common and rare driver gene alterations that provide a selective growth advantage for progressing tumour cells. We hypothesized that the number of distinct gene driver alteration-affected pathways or gene classes was associated with poor prognosis in patients initiating androgen receptor signalling inhibitors (ARSi). We performed a post hoc analysis of an amalgamated baseline circulating tumour DNA (ctDNA) mutational landscape dataset of ARSi-treated men with mCRPC (n = 342). We associated the detected hotspot, pathogenic, and/or high impact protein function-affecting perturbations in 39 genes into 13 pathways. Progression-free (PFS) and overall survival (OS) were analysed using Kaplan–Meier curves and multivariate Cox regression models. Driver gene alterations were detected in 192/342 (56.1%) evaluable patients. An increased number of affected pathways, coined pathway complexity index (PCI), resulted in a decremental PFS and OS, and was independently associated with prognosis once ≥3 pathway or gene classes were affected (PFS HR (95%CI): 1.7 (1.02–2.84), p = 0.04, and OS HR (95%CI): 2.5 (1.06–5.71), p = 0.04). Additionally, visceral disease and baseline PSA and plasma ctDNA levels were independently associated with poor prognosis. Elevated PCI is associated with poor ARSi outcome and supports comprehensive genomic profiling to better infer mCRPC prognosis.
Collapse
|
12
|
Smits M, Ekici K, Pamidimarri Naga S, van Oort IM, Sedelaar MJP, Schalken JA, Nagarajah J, Scheenen TWJ, Gerritsen WR, Fütterer JJ, Mehra N. Prior PSMA PET-CT Imaging and Hounsfield Unit Impact on Tumor Yield and Success of Molecular Analyses from Bone Biopsies in Metastatic Prostate Cancer. Cancers (Basel) 2020; 12:cancers12123756. [PMID: 33327413 PMCID: PMC7764855 DOI: 10.3390/cancers12123756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is currently the fifth leading cause of death in men worldwide. To personalize and guide treatment in prostate cancer, identification of druggable genomic alterations is of major importance. Prostate cancer often metastasizes solely or predominantly to the bones, with molecular analyses on bone biopsies challenging due to technical difficulties to identify and obtain biopsies from high tumor cell containing locations. In our retrospective analysis, we showed a significantly higher success rate in patients where biopsy location was selected by a prior PSMA PET-CT compared to solely CT or MRI. CT-guided biopsies in locations with low Hounsfield units (HUs) and deviation of HUs were associated with a higher proportion of successful histological and molecular biopsies. Based on these results, we designed a simple prediction model for daily clinical practice to increase the success rate of bone biopsies for molecular analyses in prostate cancer to guide precision medicine. Abstract Developing and optimizing targeted therapies in metastatic castration-resistant prostate cancer (mCRPC) necessitates molecular characterization. Obtaining sufficient tumor material for molecular characterization has been challenging. We aimed to identify clinical and imaging variables of imaging-guided bone biopsies in metastatic prostate cancer patients that associate with tumor yield and success in obtaining molecular results, and to design a predictive model: Clinical and imaging data were collected retrospectively from patients with prostate cancer who underwent a bone biopsy for histological and molecular characterization. Clinical characteristics, imaging modalities and imaging variables, were associated with successful biopsy results. In our study, we included a total of 110 bone biopsies. Histological conformation was possible in 84 of all biopsies, of which, in 73 of the 84, successful molecular characterization was performed. Prior use of PSMA PET-CT resulted in higher success rates in histological and molecular successful biopsies compared to CT or MRI. Evaluation of spine biopsies showed more often successful results compared to other locations for both histological and molecular biopsies (p = 0.027 and p = 0.012, respectively). Low Hounsfield units (HUs) and deviation (Dev), taken at CT-guidance, were associated with histological successful biopsies (p = 0.025 and p = 0.023, respectively) and with molecular successful biopsies (p = 0.010 and p = 0.006, respectively). A prediction tool combining low HUs and low Dev resulted in significantly more successful biopsies, histological and molecular (p = 0.023 and p = 0.007, respectively). Based on these results, we concluded that site selection for metastatic tissue biopsies with prior PSMA PET-CT imaging improves the chance of a successful biopsy. Further optimization can be achieved at CT-guidance, by selection of low HU and low Dev lesions. A prediction tool is provided to increase the success rate of bone biopsies in mCRPC patients, which can easily be implemented in daily practice.
Collapse
Affiliation(s)
- Minke Smits
- Department of Medical Oncology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (K.E.); (S.P.N.); (W.R.G.); (N.M.)
- Correspondence: ; Tel.: +31-24-3618800
| | - Kamer Ekici
- Department of Medical Oncology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (K.E.); (S.P.N.); (W.R.G.); (N.M.)
| | - Samhita Pamidimarri Naga
- Department of Medical Oncology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (K.E.); (S.P.N.); (W.R.G.); (N.M.)
| | - Inge M. van Oort
- Department of Urology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (I.M.v.O.); (M.J.P.S.); (J.A.S.)
| | - Michiel J. P. Sedelaar
- Department of Urology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (I.M.v.O.); (M.J.P.S.); (J.A.S.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (I.M.v.O.); (M.J.P.S.); (J.A.S.)
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (J.N.); (T.W.J.S.); (J.J.F.)
- Department of Nuclear Medicine, Technical University, Arcisstraße 21, 80333 Munich, Germany
| | - Tom W. J. Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (J.N.); (T.W.J.S.); (J.J.F.)
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (K.E.); (S.P.N.); (W.R.G.); (N.M.)
| | - Jurgen J. Fütterer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (J.N.); (T.W.J.S.); (J.J.F.)
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (K.E.); (S.P.N.); (W.R.G.); (N.M.)
| |
Collapse
|
13
|
Mateo J, McKay R, Abida W, Aggarwal R, Alumkal J, Alva A, Feng F, Gao X, Graff J, Hussain M, Karzai F, Montgomery B, Oh W, Patel V, Rathkopf D, Rettig M, Schultz N, Smith M, Solit D, Sternberg C, Van Allen E, VanderWeele D, Vinson J, Soule HR, Chinnaiyan A, Small E, Simons JW, Dahut W, Miyahira AK, Beltran H. Accelerating precision medicine in metastatic prostate cancer. NATURE CANCER 2020; 1:1041-1053. [PMID: 34258585 PMCID: PMC8274325 DOI: 10.1038/s43018-020-00141-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
Despite advances in prostate cancer screening and treatment, available therapy options, particularly in later stages of the disease, remain limited and the treatment-resistant setting represents a serious unmet medical need. Moreover, disease heterogeneity and disparities in patient access to medical advances result in significant variability in outcomes across patients. Disease classification based on genomic sequencing is a promising approach to identify patients whose tumors exhibit actionable targets and make more informed treatment decisions. Here we discuss how we can accelerate precision oncology to inform broader genomically-driven clinical decisions for men with advanced prostate cancer, drug development and ultimately contribute to new treatment paradigms.
Collapse
Affiliation(s)
- Joaquin Mateo
- Vall d'Hebron Institute of Oncology and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rana McKay
- University of California at San Diego, San Diego, CA, USA
| | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rahul Aggarwal
- University of California at San Francisco, San Francisco, CA, USA
| | | | - Ajjai Alva
- University of Michigan, Ann Arbor, MI, USA
| | - Felix Feng
- University of California at San Francisco, San Francisco, CA, USA
| | - Xin Gao
- Massachusetts General Hospital, Boston, MA, USA
| | - Julie Graff
- Oregon Health & Science University, VA Portland Health Care System, Portland, OR, USA
| | - Maha Hussain
- Lurie Comprehensive Cancer Center at Northwestern University, Chicago, IL, USA
| | | | | | | | | | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Rettig
- University of California at Los Angeles, VA Greater Los Angeles, Los Angeles, CA, USA
| | | | | | - David Solit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - David VanderWeele
- Lurie Comprehensive Cancer Center at Northwestern University, Chicago, IL, USA
| | - Jake Vinson
- Prostate Cancer Clinical Trials Consortium, New York, NY, USA
| | | | | | - Eric Small
- University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
14
|
Maia MC, Salgia M, Pal SK. Harnessing cell-free DNA: plasma circulating tumour DNA for liquid biopsy in genitourinary cancers. Nat Rev Urol 2020; 17:271-291. [PMID: 32203306 DOI: 10.1038/s41585-020-0297-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
In the era of precision oncology, liquid biopsy techniques, especially the use of plasma circulating tumour DNA (ctDNA) analysis, represent a paradigm shift in the use of genomic biomarkers with considerable implications for clinical practice. Compared with tissue-based tumour DNA analysis, plasma ctDNA is more convenient to test, more readily accessible, faster to obtain and less invasive, minimizing procedure-related risks and offering the opportunity to perform serial monitoring. Additionally, genomic profiles of ctDNA have been shown to reflect tumour heterogeneity, which has important implications for the identification of resistant clones and selection of targeted therapy well before clinical and radiographic changes occur. Moreover, plasma ctDNA testing can also be applied to cancer screening, risk stratification and quantification of minimal residual disease. These features provide an unprecedented opportunity for early treatment of patients, improving the chances of treatment success.
Collapse
Affiliation(s)
- Manuel Caitano Maia
- Department of Medical Oncology, Centro de Oncologia do Paraná, Curitiba, PR, Brazil. .,Latin American Cooperative Oncology Group, Genitourinary Group, Porto Alegre, Brazil.
| | - Meghan Salgia
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
15
|
Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2019; 145:102860. [PMID: 31874447 DOI: 10.1016/j.critrevonc.2019.102860] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid-organ cancer in males. The PSA testing may cause overdiagnosis and overtreatment for PCa patients. There is an urgent need for new biomarkers with greater discriminative precision for diagnosis and risk-stratification, to select for prostate biopsy and treatment of PCa. Liquid biopsy is a promising field with the potential to provide comprehensive information on the genetic landscape at diagnosis and to track genomic evolution over time in order to tailor the therapeutic choices at all stages of PCa. Exosomes, containing RNAs, DNAs and proteins, have been shown to be involved in tumour progression and a rich potential source of tumour biomarkers, especially for profiling analysis of their miRNAs content. In this review, we summarise the exosomal miRNAs in PCa diagnosis, prognosis and management, and further discuss their possible technical challenges associated with isolating PCa-specific exosomes.
Collapse
Affiliation(s)
- Jingpu Wang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Department of Urology, St. George Hospital, Kogarah, NSW, Australia; Prostate Clinical Research Group, Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
van Steenbergen TRF, Smits M, Scheenen TWJ, van Oort IM, Nagarajah J, Rovers MM, Mehra N, Fütterer JJ. 68Ga-PSMA-PET/CT and Diffusion MRI Targeting for Cone-Beam CT-Guided Bone Biopsies of Castration-Resistant Prostate Cancer Patients. Cardiovasc Intervent Radiol 2019; 43:147-154. [PMID: 31444628 PMCID: PMC6940314 DOI: 10.1007/s00270-019-02312-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Introduction Precision medicine expands the treatment options for metastatic castration-resistant prostate cancer (mCRPC) by targeting druggable genetic aberrations. Aberrations can be identified following molecular analysis of metastatic tissue. Bone metastases, commonly present in mCRPC, hinder precision medicine due to a high proportion of biopsies with insufficient tumor cells for next-generation DNA sequencing. We aimed to investigate the feasibility of incorporating advanced target planning and needle guidance in bone biopsies and whether this procedure increases biopsy tumor yield and success rate of molecular analysis as compared to the current standards, utilizing only CT guidance. Materials and Methods In a pilot study, ten mCRPC patients received 68Ga-prostate-specific membrane antigen (PSMA)-PET/CT and diffusion-weighted MRI as biopsy planning images. These datasets were fused for targeting metastatic lesions with high tumor densities. Biopsies were performed under cone-beam CT (CBCT) guidance. Feasibility of target planning and needle guidance was assessed, and success of molecular analysis and tumor yield were reported. Results Fusion target planning and CBCT needle guidance were feasible. Nine out of ten biopsies contained prostate cancer cells, with a median of 39% and 40% tumor cells by two different sequencing techniques. Molecular analysis was successful in eight of ten patients (80%). This exceeds previous reports on CT-guided biopsies that ranged from 33 to 44%. In two patients, important druggable aberrations were found. Discussion A biopsy procedure using advanced target planning and needle guidance is feasible and can increase the success rate of molecular analysis in bone metastases, thereby having the potential of improving treatment outcome for patients with mCRPC. Level of Evidence Level 4, case series.
Collapse
Affiliation(s)
- T R F van Steenbergen
- Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - M Smits
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - I M van Oort
- Department of Urology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M M Rovers
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Mehra
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J J Fütterer
- Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hahn AW, Stenehjem D, Nussenzveig R, Carroll E, Bailey E, Batten J, Maughan BL, Agarwal N. Evolution of the genomic landscape of circulating tumor DNA (ctDNA) in metastatic prostate cancer over treatment and time. Cancer Treat Res Commun 2019; 19:100120. [PMID: 30743187 DOI: 10.1016/j.ctarc.2019.100120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Targeted therapies have shown promise for men with metastatic castration-resistant prostate cancer (mCRPC). Due to the difficulty with obtaining tumor tissue in bony metastases, liquid biopsies are a promising alternative to guide treatment selection. While concurrent tissue next-generation sequencing (tNGS) and liquid biopsy has high concordance, it is unknown whether the genomic landscape of metastatic prostate cancer (mPC) changes over time or treatment. Herein, we hypothesize that the genomic landscape of mPC evolves with new treatments and/or time between tests. PATIENTS AND METHODS Men with mPC from the University of Utah with matched tNGS and liquid biopsy were included. Clinical data was collected retrospectively. Exonic regions from 69 genes covered by both platforms were included for analysis. Paired t tests were used to assess number of genomic alterations (GAs) between testing platforms. Number of alterations was assessed by time and number of treatments between testing by multivariate nonparametric trend tests. RESULTS 101 men with mPC were eligible and included. In men with no new treatments and ≤ 1 year between tests, a similar number of GAs were detected in both tests (2.0 vs. 2.2). In contrast, men with ≥ 1 new treatment between tests had significantly more GAs after treatment (5.0 vs. 2.4, p = 0.005). Total number of GAs was correlated with number of new treatments between testing (p = 0.003) and not time between testing (p = 0.76). CONCLUSION The genomic landscape of mPC evolves with subsequent therapies. This finding suggests that contemporary tumor genomic profile upon disease progression may optimize guidance towards subsequent therapy selection.
Collapse
Affiliation(s)
- Andrew W Hahn
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA
| | - David Stenehjem
- College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Roberto Nussenzveig
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA
| | - Emma Carroll
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA; College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Erin Bailey
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA
| | - Julia Batten
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA
| | - Benjamin L Maughan
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, UT 84112, USA.
| |
Collapse
|
18
|
Mayrhofer M, De Laere B, Whitington T, Van Oyen P, Ghysel C, Ampe J, Ost P, Demey W, Hoekx L, Schrijvers D, Brouwers B, Lybaert W, Everaert E, De Maeseneer D, Strijbos M, Bols A, Fransis K, Oeyen S, van Dam PJ, Van den Eynden G, Rutten A, Aly M, Nordström T, Van Laere S, Rantalainen M, Rajan P, Egevad L, Ullén A, Yachnin J, Dirix L, Grönberg H, Lindberg J. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med 2018; 10:85. [PMID: 30458854 PMCID: PMC6247769 DOI: 10.1186/s13073-018-0595-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited. METHODS A combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients. RESULTS ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays. CONCLUSIONS ctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.
Collapse
Affiliation(s)
- Markus Mayrhofer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Tom Whitington
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jozef Ampe
- Department of Urology, AZ Sint-Jan, Brugge, Belgium
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Wim Demey
- Department of Oncology, AZ KLINA, Brasschaat, Belgium
| | - Lucien Hoekx
- Department of Urology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Willem Lybaert
- Department of Oncology, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Els Everaert
- Department of Oncology, AZ Nikolaas, Sint-Niklaas, Belgium
| | | | | | - Alain Bols
- Department of Oncology, AZ Sint-Jan, Brugge, Belgium
| | - Karen Fransis
- Department of Urology, Antwerp University Hospital, Antwerp, Belgium
| | - Steffi Oeyen
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | | | - Annemie Rutten
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Nordström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Steven Van Laere
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Prabhakar Rajan
- Centre for Molecular Oncology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, UK
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jeffrey Yachnin
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Luc Dirix
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Perez-Lopez R, Nava Rodrigues D, Figueiredo I, Mateo J, Collins DJ, Koh DM, de Bono JS, Tunariu N. Multiparametric Magnetic Resonance Imaging of Prostate Cancer Bone Disease: Correlation With Bone Biopsy Histological and Molecular Features. Invest Radiol 2018; 53:96-102. [PMID: 28906339 PMCID: PMC5768227 DOI: 10.1097/rli.0000000000000415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to correlate magnetic resonance imaging (MRI) of castration-resistant prostate cancer (CRPC) bone metastases with histological and molecular features of bone metastases. MATERIALS AND METHODS Forty-three bone marrow biopsies from 33 metastatic CRPC (mCRPC) patients with multiparametric MRI and documented bone metastases were evaluated. A second cohort included 10 CRPC patients with no bone metastases. Associations of apparent diffusion coefficient (ADC), normalized b900 diffusion-weighted imaging (nDWI) signal, and signal-weighted fat fraction (swFF) with bone marrow biopsy histological parameters were evaluated using Mann-Whitney U test and Spearman correlations. Univariate and multivariate logistic regression models were analyzed. RESULTS Median ADC and nDWI signal was significantly higher, and median swFF was significantly lower, in bone metastases than nonmetastatic bone (P < 0.001). In the metastatic cohort, 31 (72.1%) of 43 biopsies had detectable cancer cells. Median ADC and swFF were significantly lower and median nDWI signal was significantly higher in biopsies with tumor cells versus nondetectable tumor cells (898 × 10 mm/s vs 1617 × 10 mm/s; 11.5% vs 62%; 5.3 vs 2.3, respectively; P < 0.001). Tumor cellularity inversely correlated with ADC and swFF, and positively correlated with nDWI signal (P < 0.001). In serial biopsies, taken before and after treatment, changes in multiparametric MRI parameters paralleled histological changes. CONCLUSIONS Multiparametric MRI provides valuable information about mCRPC bone metastases. These data further clinically qualify DWI as a response biomarker in mCRPC.
Collapse
Affiliation(s)
- Raquel Perez-Lopez
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Daniel Nava Rodrigues
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ines Figueiredo
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joaquin Mateo
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - David J. Collins
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Dow-Mu Koh
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann S. de Bono
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nina Tunariu
- From the *The Institute of Cancer Research; and †The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Tolkach Y, Kristiansen G. The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology 2018; 85:108-116. [PMID: 29393241 DOI: 10.1159/000477852] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is a paradigm tumor model for heterogeneity in almost every sense. Its clinical, spatial, and morphological heterogeneity divided by the high-level molecular genetic diversity outline the complexity of this disease in the clinical and research settings. In this review, we summarize the main aspects of prostate cancer heterogeneity at different levels, with special attention given to the spatial heterogeneity within the prostate, and to the standard morphological heterogeneity, with respect to tumor grading and modern classifications. We also cover the complex issue of molecular genetic heterogeneity, discussing it in the context of the current evidence of the genetic characterization of prostate carcinoma; the interpatient, intertumoral (multifocal disease), and intratumoral heterogeneity; tumor clonality; and metastatic disease. Clinical and research implications are summarized and serve to address the most pertinent problems stemming from the extreme heterogeneity of prostate cancer.
Collapse
|
21
|
Sailer V, Schiffman MH, Kossai M, Cyrta J, Beg S, Sullivan B, Pua BB, Lee KS, Talenfeld AD, Nanus DM, Tagawa ST, Robinson BD, Rao RA, Pauli C, Bareja R, Beltran LS, Sigaras A, Eng KW, Elemento O, Sboner A, Rubin MA, Beltran H, Mosquera JM. Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. Cancer 2017; 124:1008-1015. [PMID: 29266381 DOI: 10.1002/cncr.31173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metastatic biopsies are increasingly being performed in patients with advanced prostate cancer to search for actionable targets and/or to identify emerging resistance mechanisms. Due to a predominance of bone metastases and their sclerotic nature, obtaining sufficient tissue for clinical and genomic studies is challenging. METHODS Patients with prostate cancer bone metastases were enrolled between February 2013 and March 2017 on an institutional review board-approved protocol for prospective image-guided bone biopsy. Bone biopsies and blood clots were collected fresh. Compact bone was subjected to formalin with a decalcifying agent for diagnosis; bone marrow and blood clots were frozen in optimum cutting temperature formulation for next-generation sequencing. Frozen slides were cut from optimum cutting temperature cryomolds and evaluated for tumor histology and purity. Tissue was macrodissected for DNA and RNA extraction, and whole-exome sequencing and RNA sequencing were performed. RESULTS Seventy bone biopsies from 64 patients were performed. Diagnostic material confirming prostate cancer was successful in 60 of 70 cases (85.7%). The median DNA/RNA yield was 25.5 ng/μL and 16.2 ng/μL, respectively. Whole-exome sequencing was performed successfully in 49 of 60 cases (81.7%), with additional RNA sequencing performed in 20 of 60 cases (33.3%). Recurrent alterations were as expected, including those involving the AR, PTEN, TP53, BRCA2, and SPOP genes. CONCLUSIONS This prostate cancer bone biopsy protocol ensures a valuable source for high-quality DNA and RNA for tumor sequencing and may be used to detect actionable alterations and resistance mechanisms in patients with bone metastases. Cancer 2018;124:1008-15. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Marc H Schiffman
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Myriam Kossai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Brian Sullivan
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Bradley B Pua
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Adam D Talenfeld
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David M Nanus
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott T Tagawa
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Rema A Rao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Chantal Pauli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Luis S Beltran
- Department of Radiology, NYU Langone Medical Center, New York, New York
| | - Alexandros Sigaras
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Kenneth Wa Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian, New York, New York
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian, New York, New York.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York
| |
Collapse
|
22
|
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, Foye A, Lloyd P, Nykter M, Beer TM, Alumkal JJ, Thomas GV, Reiter RE, Rettig MB, Evans CP, Gao AC, Chi KN, Small EJ, Gleave ME. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J Natl Cancer Inst 2017; 109:3902934. [PMID: 29206995 DOI: 10.1093/jnci/djx118] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Real-time knowledge of the somatic genome can influence management of patients with metastatic castration-resistant prostate cancer (mCRPC). While routine metastatic tissue biopsy is challenging in mCRPC, plasma circulating tumor DNA (ctDNA) has emerged as a minimally invasive tool to sample the tumor genome. However, no systematic comparisons of matched "liquid" and "solid" biopsies have been performed that would enable ctDNA profiling to replace the need for direct tissue sampling. Methods We performed targeted sequencing across 72 clinically relevant genes in 45 plasma cell-free DNA (cfDNA) samples collected at time of metastatic tissue biopsy. We compared ctDNA alterations with exome sequencing data generated from matched tissue and quantified the concordance of mutations and copy number alterations using the Fisher exact test and Pearson correlations. Results Seventy-five point six percent of cfDNA samples had a ctDNA proportion greater than 2% of total cfDNA. In these patients, all somatic mutations identified in matched metastatic tissue biopsies were concurrently present in ctDNA. Furthermore, the hierarchy of variant allele fractions for shared mutations was remarkably similar between ctDNA and tissue. Copy number profiles between matched liquid and solid biopsy were highly correlated, and individual copy number calls in clinically actionable genes were 88.9% concordant. Detected alterations included AR amplifications in 22 (64.7%) samples, SPOP mutations in three (8.8%) samples, and inactivating alterations in tumor suppressors TP53 , PTEN , RB1 , APC , CDKN1B , BRCA2 , and PIK3R1 . In several patients, ctDNA sequencing revealed robust changes not present in paired solid biopsy, including clinically relevant alterations in the AR, WNT, and PI3K pathways. Conclusions Our study shows that, in the majority of patients, a ctDNA assay is sufficient to identify all driver DNA alterations present in matched metastatic tissue and supports development of DNA biomarkers to guide mCRPC patient management based on ctDNA alone.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Matti Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Rahul Aggarwal
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kevin Beja
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Felix Feng
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Jack Youngren
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Adam Foye
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Paul Lloyd
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Matti Nykter
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Tomasz M Beer
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Joshi J Alumkal
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - George V Thomas
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Robert E Reiter
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Matthew B Rettig
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Christopher P Evans
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Allen C Gao
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Kim N Chi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Eric J Small
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Department of Medicine and Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA; Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR; Department of Urology, University of California, Davis, School of Medicine, Sacremento, CA; Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, Canada
| |
Collapse
|
23
|
Friedlander TW, Pritchard CC, Beltran H. Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. Am Soc Clin Oncol Educ Book 2017; 37:358-369. [PMID: 28561699 DOI: 10.1200/edbk_175510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although biopsies of metastatic prostate cancer are rarely undertaken in the clinical setting, there is increasing interest in developing personalized approaches to therapy by taking into account the genetic and phenotypic changes in an individual tumor. Indeed, analysis of metastatic prostate tumors can predict sensitivity to agents that inhibit DNA repair and resistance to novel hormonal agents, such as abiraterone and enzalutamide, and identify phenotypic changes, such as neuroendocrine differentiation, that have important clinical implications. Although obtaining metastatic tumor tissue is necessary for this genomic and molecular profiling, knowing when to biopsy, selecting the appropriate metastatic lesion, and interpreting the results are major challenges facing clinicians today. In this article, we discuss the rationale for obtaining metastatic tumor tissue, review the bioinformatic approach to analyzing these specimens, discuss the timing and approach to solid and liquid tumor biopsies, review the challenges associated with obtaining and acting on clinically relevant results, and discuss opportunities for the future.
Collapse
Affiliation(s)
- Terence W Friedlander
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| | - Colin C Pritchard
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| | - Himisha Beltran
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
24
|
Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genet 2017; 228-229:151-158. [PMID: 28958406 DOI: 10.1016/j.cancergen.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023]
Abstract
The therapeutic landscape of advanced prostate cancer (PCa) has rapidly expanded in recent years. Despite significant improvements in patient overall survival, it remains challenging to determine the optimal therapy and sequence of therapies for individual patients. The development of molecular biomarkers will be key for patient stratification, and for monitoring response and resistance to therapy. In this context, minimally-invasive blood-based "liquid" biopsies are attractive as a practical surrogate for solid tumor tissue, providing a window into metastatic disease. Circulating tumor cells and circulating cell-free tumor DNA in particular have demonstrated remarkable potential to inform on PCa patient outcomes through the detection of specific genomic and transcriptomic alterations. This review covers recent advances in the development of clinically-informative liquid biomarkers for advanced PCa.
Collapse
|
25
|
Holmes MG, Foss E, Joseph G, Foye A, Beckett B, Motamedi D, Youngren J, Thomas GV, Huang J, Aggarwal R, Alumkal JJ, Beer TM, Small EJ, Link TM. CT-Guided Bone Biopsies in Metastatic Castration-Resistant Prostate Cancer: Factors Predictive of Maximum Tumor Yield. J Vasc Interv Radiol 2017; 28:1073-1081.e1. [PMID: 28549709 DOI: 10.1016/j.jvir.2017.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To evaluate the success rate of CT-guided bone biopsies in metastatic castration-resistant prostate cancer (mCRPC) and to investigate associated technical, imaging, and clinical parameters affecting diagnostic yields. MATERIALS AND METHODS Eighty CT-guided bone biopsy specimens were obtained from 72 men (median age, 68 y; range, 49-89 y) enrolled in a multicenter trial to identify mechanisms of resistance in mCRPC. Successful biopsy was determined by histologic confirmation of tumor cells and successful isolation of RNA for molecular analysis. RESULTS The overall success rate of CT-guided bone biopsies was 69% (55/80) based on histology and 64% (35/55) based on isolation of molecular material for RNA sequencing. Biopsies performed in lesions with areas of radiolucency had significantly higher diagnostic yields compared with lesions of predominantly dense sclerosis (95% vs 33%; P = .002) and lesions of predominantly subtle sclerosis (95% vs 65%; P = .04). Success rates increased in lesions with density ≤ 475 HU (79% for ≤ 475 HU vs 33% for > 475 HU; P = .001) and in lesions with ill-defined margins (76% for ill-defined margins vs 36% for well-circumscribed margins; P = .005). Alkaline phosphatase was the only clinical parameter to correlate significantly with diagnostic yield (83% for > 110 U/L vs 50% for ≤ 110 U/L; P = .001). CONCLUSIONS Image-guided bone tumor biopsies can be successfully used to acquire cellular and molecular material for analyses in patients with osteoblastic prostate cancer metastases. Diagnostic yields are significantly increased in lesions with areas of radiolucency, density ≤ 475 HU, ill-defined margins, and interval growth and in patients with alkaline phosphatase > 110 U/L.
Collapse
Affiliation(s)
- Michael G Holmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628.
| | - Erik Foss
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Gabby Joseph
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - Adam Foye
- Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - Brooke Beckett
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Daria Motamedi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - Jack Youngren
- Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - George V Thomas
- Department of Pathology, Oregon Health & Science University, Portland, Oregon; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - Joshi J Alumkal
- Department of Medicine, Oregon Health & Science University, Portland, Oregon; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Tomasz M Beer
- Department of Medicine, Oregon Health & Science University, Portland, Oregon; OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Eric J Small
- Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue, S-261, San Francisco, CA 94143-0628
| |
Collapse
|
26
|
Rodrigues DN, Boysen G, Sumanasuriya S, Seed G, Marzo AMD, de Bono J. The molecular underpinnings of prostate cancer: impacts on management and pathology practice. J Pathol 2016; 241:173-182. [PMID: 27753448 DOI: 10.1002/path.4826] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease and current treatment strategies are based largely on anatomical and pathological parameters. In the recent past, several DNA sequencing studies of primary and advanced PCa have revealed recurrent patterns of genomic aberrations that expose mechanisms of resistance to available therapies and potential new drug targets. Suppression of androgen receptor (AR) signalling is the cornerstone of advanced prostate cancer treatment. Genomic aberrations of the androgen receptor or alternative splicing of its mRNA are increasingly recognised as biomarkers of resistance to AR-targeted therapies such as abiraterone or enzalutamide. Genomic aberrations of the PI3K-AKT axis, in particular affecting PTEN, are common in PCa, and compounds targeting different kinases in this pathway are showing promise in clinical trials. Both germline and somatic defects in DNA repair genes have been shown to sensitise some patients to therapy with PARP inhibition. In addition, abnormalities in mismatch-repair genes are associated with response to immune checkpoint inhibition in other solid tumours and present a tantalising therapeutic avenue to be pursued. Aberrations in CDK4/6-RB1 pathway genes occur in a subset of PCas, may associate with differential sensitivity to treatment, and are likely to have clinical implications beyond prognostication. Inhibitors of CDK4/6 are already being tested in prostate cancer clinical trials. Furthermore, deletions of RB1 are strongly associated with a neuroendocrine phenotype, a rare condition characterized by a non-AR-driven transcriptomic profile. Finally, aberrations in genes involved in regulating the chromatin structure are an emerging area of interest. Deletions of CHD1 are not infrequent in PCa and may associate with increased AR activity and genomic instability, and these tumours could benefit from DNA-damaging therapies. This review summarises how genomic discoveries in PCa are changing the treatment landscape of advanced CRPC, both by identifying biomarkers of resistance and by identifying vulnerabilities to be targeted. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Nava Rodrigues
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.,Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Gunther Boysen
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.,Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Semini Sumanasuriya
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.,Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - George Seed
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Johann de Bono
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.,Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
27
|
The oncologists’ unmet clinical needs for imaging in advanced prostate cancer. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|