1
|
Bendotti G, Montefusco L, Pastore I, Lazzaroni E, Lunati ME, Fiorina P. The anti-inflammatory and immunological properties of SGLT-2 inhibitors. J Endocrinol Invest 2023; 46:2445-2452. [PMID: 37535237 DOI: 10.1007/s40618-023-02162-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic oral drugs that act on proximal renal tubules promoting renal glucose excretion. Although SGLT-2i belong to the class of hypoglycemic agents, in the last years great interest has emerged in studying their pleiotropic effects, beyond their ability to lower glucose levels. PURPOSE In this review we are describing the anti-inflammatory and immunological properties of SGLT-2i; furthermore, we are addressing how the mechanisms associated with the aforementioned anti-inflammatory properties may contribute to the beneficial effects of SGLT-2i in diabetes. METHODS A systematic search was undertaken for studies related the properties of SGLT-2i in reducing the inflammatory milieu of acute and chronic disease by acting on the immune system, independently by glycemia. RESULTS Recently, some data described the anti-inflammatory and immunological properties of SGLT-2 in both pre-clinical and clinical studies. Numerous data confirmed the cardio- and -renal protective effects of SGLT-2i in patients with heart failure and kidney diseases, with or without diabetes. CONCLUSIONS SGLT-2i are promising drugs with anti-inflammatory and immunological properties. Despite the mechanism of action of SGLT-2i is not fully understood, these drugs demonstrated anti-inflammatory effects, which may help in keeping under control the variety of complications associated with diabetes.
Collapse
Affiliation(s)
- G Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Endocrinology and Metabolic Diseases Unit, AO S.S. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - L Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - I Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - E Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - M E Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - P Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. Enders Building 5th floor En511, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
3
|
Wan XX, Zhang DY, Khan MA, Zheng SY, Hu XM, Zhang Q, Yang RH, Xiong K. Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Front Endocrinol (Lausanne) 2022; 13:859638. [PMID: 35370989 PMCID: PMC8972968 DOI: 10.3389/fendo.2022.859638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yi Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- *Correspondence: Kun Xiong, ; Rong-Hua Yang,
| |
Collapse
|
4
|
Wang MY, Zhou Y, Lai GS, Huang Q, Cai WQ, Han ZW, Wang Y, Ma Z, Wang XW, Xiang Y, Fang SX, Peng XC, Xin HW. DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 2021; 24:849. [PMID: 34643250 PMCID: PMC8524429 DOI: 10.3892/mmr.2021.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/15/2021] [Indexed: 12/05/2022] Open
Abstract
Umbilical cord blood transplantation was first reported in 1980. Since then, additional research has indicated that umbilical cord blood stem cells (UCBSCs) have various advantages, such as multi-lineage differentiation potential and potent renewal activity, which may be induced to promote their differentiation into a variety of seed cells for tissue engineering and the treatment of clinical and metabolic diseases. Recent studies suggested that UCBSCs are able to differentiate into nerve cells, chondrocytes, hepatocyte-like cells, fat cells and osteoblasts. The culture of UCBSCs has developed from feeder-layer to feeder-free culture systems. The classical techniques of cell labeling and tracing by gene transfection and fluorescent dye and nucleic acid analogs have evolved to DNA barcode technology mediated by transposon/retrovirus, cyclization recombination-recombinase and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 strategies. DNA barcoding for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications.
Collapse
Affiliation(s)
- Mo-Yu Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Guang-Shun Lai
- Department of Digestive Medicine, People's Hospital of Lianjiang, Lianjiang, Guangdong 524400, P.R. China
| | - Qi Huang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yingying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Shu-Xian Fang
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
5
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
6
|
Short-Term Protocols to Obtain Insulin-Producing Cells from Rat Adipose Tissue: Signaling Pathways and In Vivo Effect. Int J Mol Sci 2019; 20:ijms20102458. [PMID: 31109026 PMCID: PMC6566438 DOI: 10.3390/ijms20102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Studies using mesenchymal stromal cells (MSCs) as a source of insulin-secreting cells (IPCs) are a promising path in the pursuit for diabetes therapy. Here, we investigate three short-term differentiation protocols in order to generate IPCs from autologous adipose-derived stromal cells (ADSCs) with an expressive insulin-secreting profile in vitro and in vivo, as well as the signaling pathways involved in the chosen differentiation protocols. We extracted and cultured ADSCs and differentiated them into IPCs, using three different protocols with different inductors. Afterwards, the secretory profile was analyzed and IPCs differentiated in exendin-4/activin A medium, which presented the best secretory profile, was implanted in the kidney subcapsular region of diabetic rats. All protocols induced the differentiation, but media supplemented with exendin-4/activin A or resveratrol induced the expression and secretion of insulin more efficiently, and only the exendin-4/activin-A-supplemented medium generated an insulin secretion profile more like β-cells, in response to glucose. The PI3K/Akt pathway seems to play a negative role in IPC differentiation; however, the differentiation of ADSCs with exendin-4/activin A positively modulated the p38/MAPK pathway. Resveratrol medium activated the Jak/STAT3 pathway and generated IPCs apparently less sensitive to insulin and insulin-like receptors. Finally, the implant of IPCs with the best secretory behavior caused a decrease in hyperglycemia after one-week implantation in diabetic rats. Our data provide further information regarding the generation of IPCs from ADSCs and strengthen evidence to support the use of MSCs in regenerative medicine, specially the use of exendin-4/activin A to produce rapid and effectively IPCs with significant in vivo effects.
Collapse
|
7
|
Mesenchymal stem cells to treat type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165315. [PMID: 30508575 DOI: 10.1016/j.bbadis.2018.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.
Collapse
|
8
|
Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L. Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 2017; 27:583-600. [PMID: 28545927 DOI: 10.1016/j.numecd.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advancement of knowledge in the field of regenerative medicine is increasing the therapeutic expectations of patients and clinicians on cell therapy approaches. Within these, stem cell therapies are often evoked as a possible therapeutic option for diabetes, already ongoing or possible in the near future. AIM The purpose of this document is to make a point of the situation on existing knowledge and therapies with stem cells to treat patients with diabetes by focusing on some of the aspects that most frequently raise curiosity and discussion in clinical practice and in the interaction with the patient. In fact, at present there are no clinically approved treatments based on the use of stem cells for the treatment of diabetes, but several therapeutic approaches have already been evaluated or are being evaluated in clinical trials. DATA SYNTHESIS It is possible to identify three large potential application fields: 1) the reconstruction of the β cell mass; 2) the immunomodulation in type 1 diabetes (T1D); 3) the treatment of complications. In this study we will limit the discussion to approaches that have the potential for clinical translation, deliberately omitting aspects of basic biology and preclinical data. Also, we intentionally omit the treatment of the complications that will be the subject of a future document. Finally, an overview of the Italian situation regarding the storage of cord blood cells for the therapy of diabetes will be given.
Collapse
Affiliation(s)
- V Sordi
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Pellegrini
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Pessina
- CRC-StaMeTec (Mesenchymal Stem Cells for Cell Therapy), Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - G Ciardelli
- DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - G Fadini
- Medicine Department (DIMED), University of Padua, Italy
| | - C Pintus
- Italian National Transplant Center (CNT), Italy
| | - G Pantè
- Italian Medicines Agency (AIFA), Italy
| | - L Piemonti
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med 2017; 39:775-782. [PMID: 28290609 DOI: 10.3892/ijmm.2017.2912] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in cell-based therapy for various diseases, due to their immunomodulatory and inflammatory effects. However, the function of MSCs is known to decline with age, a process that is called senescence. To date, the process of MSC senescence remains unknown as in-depth understanding of the mechanisms involved in cellular senescence is lacking. First, senescent MSCs are so heterogeneous that not all of them express the same phenotypic markers. In addition, the genes and signaling pathways which regulate this process in MSCs are still unknown. Thus, an understanding of the molecular processes controlling MSC senescence is crucial to determining the drivers and effectors of age-associated MSC dysfunction. Moreover, the proper use of MSCs for clinical application requires a general understanding of the MSC aging process. Furthermore, such knowledge is essential for the development of therapeutic interventions that can slow or reverse age-related degenerative changes to enhance repair processes and maintain healthy function in aging tissues. To further clarify the properties of senescent cells, as well as to present significant findings from studies on the mechanisms of cellular aging, we summarize these biological features in the senescence of MSCs in this scenario. This review summarizes recent advances in our understanding of the markers and differentiation potential indicating MSC senescence, as well as factors affecting MSC senescence with particular emphasis on the roles of oxidative stress, intrinsic changes in telomere shortening, histone deacetylase and DNA methyltransferase, genes and signaling pathways and immunological properties.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Lange-Consiglio A, Perrini C, Bertero A, Esposti P, Cremonesi F, Vincenti L. Isolation, molecular characterization, and in vitro differentiation of bovine Wharton jelly-derived multipotent mesenchymal cells. Theriogenology 2016; 89:338-347. [PMID: 28341078 DOI: 10.1016/j.theriogenology.2016.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022]
Abstract
Extrafetal tissues are a noncontroversial and inexhaustible source of mesenchymal stem cells that can be harvested noninvasively at low cost. In the veterinary field, as in man, stem cells derived from extrafetal tissues express plasticity, reduced immunogenicity, and have high anti-inflammatory potential making them promising candidates for treatment of many diseases. Umbilical cord mesenchymal cells have been isolated and characterized in different species and have recently been investigated as potential candidates in regenerative medicine. In this study, cells derived from bovine Wharton jelly (WJ) were isolated for the first time by enzymatic methods, frozen/thawed, cultivated for at least 10 passages, and characterized. Wharton jelly-derived cells readily attached to plastic culture dishes displaying typical fibroblast-like morphology and, although their proliferative capacity decreased to the seventh passage, these cells showed a mean doubling time of 34.55 ± 6.33 hours and a mean frequency of one colony-forming unit fibroblast like for every 221.68 plated cells. The results of molecular biology studies and flow cytometry analyses revealed that WJ-derived cells showed the typical antigen profile of mesenchymal stem cells and were positive for CD29, CD44, CD105, CD166, Oct-4, and c-Myc. They were negative for CD34 and CD14. Remarkably, WJ-derived cells showed differentiation ability. After culture in induced media, WJ-derived cells were able to differentiate into osteogenic, adipogenic, chondrogenic, and neurogenic lines as shown by positive staining and expression of specific markers. On polymerase chain reaction analysis, these cells were negative for MHC-II and positive for MHC-I, thus reinforcing the role of extrafetal tissue as an allogenic source for bovine cell-based therapies. These results provide evidence that bovine WJ-derived cells may have the potential to differentiate to repair damaged tissues and reinforce the importance of extrafetal tissues as stem cell sources in veterinary regenerative medicine. A more detailed evaluation of their immunologic properties is necessary to better understand their potential role in cellular therapy.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Claudia Perrini
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Alessia Bertero
- Department of Animal Science, Università degli Studi di Torino, Torino, Italy
| | - Paola Esposti
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy
| | - Fausto Cremonesi
- Reproduction Unit, Large Animal Hospital, Università degli Studi di Milano, Lodi, Italy.
| | - Leila Vincenti
- Department of Animal Science, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
11
|
Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, Tan Y, Wintergerst KA, Li Y, Li Y. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia. PLoS One 2016; 11:e0145838. [PMID: 26756576 PMCID: PMC4710504 DOI: 10.1371/journal.pone.0145838] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. METHODS hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6) differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. RESULTS The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. CONCLUSIONS IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.
Collapse
Affiliation(s)
- Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xuejin Su
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Meiyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yi Tan
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Kupper A. Wintergerst
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Louisville, Kentucky, United States of America
| | - Yan Li
- Department of Orthopedic Surgery, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (Yan Li); (Yulin Li)
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- * E-mail: (Yan Li); (Yulin Li)
| |
Collapse
|
12
|
Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int 2016; 2016:6180487. [PMID: 26880976 PMCID: PMC4736569 DOI: 10.1155/2016/6180487] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Aswati Subramanian
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Conor Flavin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Hassane Oudadesse
- Sciences Chimiques, University of Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| |
Collapse
|
13
|
Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, Wu W, Luo F, Wu C, Pugliese A, Pileggi A, Ricordi C, Tan J. Umbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care 2016; 39:149-57. [PMID: 26628416 DOI: 10.2337/dc15-0171] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/22/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the safety and effects on insulin secretion of umbilical cord (UC) mesenchymal stromal cells (MSCs) plus autologous bone marrow mononuclear cell (aBM-MNC) stem cell transplantation (SCT) without immunotherapy in established type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Between January 2009 and December 2010, 42 patients with T1D were randomized (n = 21/group) to either SCT (1.1 × 10(6)/kg UC-MSC, 106.8 × 10(6)/kg aBM-MNC through supraselective pancreatic artery cannulation) or standard care (control). Patients were followed for 1 year at 3-month intervals. The primary end point was C-peptide area under the curve (AUC(C-Pep)) during an oral glucose tolerance test at 1 year. Additional end points were safety and tolerability of the procedure, metabolic control, and quality of life. RESULTS The treatment was well tolerated. At 1 year, metabolic measures improved in treated patients: AUCC-Pep increased 105.7% (6.6 ± 6.1 to 13.6 ± 8.1 pmol/mL/180 min, P = 0.00012) in 20 of 21 responders, whereas it decreased 7.7% in control subjects (8.4 ± 6.8 to 7.7 ± 4.5 pmol/mL/180 min, P = 0.013 vs. SCT); insulin area under the curve increased 49.3% (1,477.8 ± 1,012.8 to 2,205.5 ± 1,194.0 mmol/mL/180 min, P = 0.01), whereas it decreased 5.7% in control subjects (1,517.7 ± 630.2 to 1,431.7 ± 441.6 mmol/mL/180 min, P = 0.027 vs. SCT). HbA1c decreased 12.6% (8.6 ± 0.81% [70.0 ± 7.1 mmol/mol] to 7.5 ± 1.0% [58.0 ± 8.6 mmol/mol], P < 0.01) in the treated group, whereas it increased 1.2% in the control group (8.7 ± 0.9% [72.0 ± 7.5 mmol/mol] to 8.8 ± 0.9% [73 ± 7.5 mmol/mol], P < 0.01 vs. SCT). Fasting glycemia decreased 24.4% (200.0 ± 51.1 to 151.2 ± 22.1 mg/dL, P < 0.002) and 4.3% in control subjects (192.4 ± 35.3 to 184.2 ± 34.3 mg/dL, P < 0.042). Daily insulin requirements decreased 29.2% in only the treated group (0.9 ± 0.2 to 0.6 ± 0.2 IU/day/kg, P = 0.001), with no change found in control subjects (0.9 ± 0.2 to 0.9 ± 0.2 IU/day/kg, P < 0.01 vs. SCT). CONCLUSIONS Transplantation of UC-MSC and aBM-MNC was safe and associated with moderate improvement of metabolic measures in patients with established T1D.
Collapse
Affiliation(s)
- Jinquan Cai
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Zhixian Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Lianming Liao
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Jin Chen
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Lianghu Huang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Weizhen Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Fang Luo
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Chenguang Wu
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - Alberto Pugliese
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Antonello Pileggi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant Center, University of Miami, Miami, FL Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL Department of Surgery, University of Miami Miller School of Medicine, Miami, FL Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jianming Tan
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China Diabetes Research Institute Federation, Hollywood, FL The Cure Alliance, Miami, FL
| |
Collapse
|
14
|
Snarski E, Szmurło D, Hałaburda K, Król M, Urbanowska E, Milczarczyk A, Franek E, Wiktor-Jedrzejczak W. An economic analysis of autologous hematopoietic stem cell transplantation (AHSCT) in the treatment of new onset type 1 diabetes. Acta Diabetol 2015; 52:881-8. [PMID: 25744552 DOI: 10.1007/s00592-015-0724-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
AIMS Autologous hematopoietic stem cell transplantation (AHSCT) is an emerging treatment option in new onset type 1 diabetes (T1DM), leading to a remission of the T1DM for a longer time period in up to 50 % of patients. The aim of the study was to analyze the cost-effectiveness of this treatment option compared with standard insulin therapy. METHODS The medical records of patients who had undergone immunoablation with AHSCT for new onset T1DM were analyzed for the cost-effectiveness of the treatment using the IMS CORE Diabetes Model. RESULTS The expected survival of patients with T1DM treated solely with insulin (without transplantation) was estimated to be 34.4 years, and their quality-adjusted survival was 13.8 QALY, whereas the expected survival of the patients treated with AHSCT was 34.9 years when the HbA1c benefit over standard treated patients lasted for 2, 35.4 years with 8-year benefit and even up to 40.3 years with the lifelong benefit scenario. Values under the threshold of ICER were reached after 8 years of sustained benefit in terms of HbA1c concentration. If discounting was not applied, the threshold values were reached after 3 years of HbA1c benefit over the standard group, independent of insulin use after transplantation. CONCLUSIONS The results of our study show that hematopoietic stem cell transplantation could be cost-effective in treating new onset T1DM, providing that the benefits of the transplantation lasted over 3-8 years, depending on application of discounting.
Collapse
Affiliation(s)
- Emilian Snarski
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097, Warsaw, Poland.
| | - Daria Szmurło
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097, Warsaw, Poland
| | | | - Małgorzata Król
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097, Warsaw, Poland
| | - Elżbieta Urbanowska
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097, Warsaw, Poland
| | - Alicja Milczarczyk
- Department of Internal Diseases, Diabetology and Endocrinology, Central Hospital, Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Diabetology and Endocrinology, Central Hospital, Ministry of Internal Affairs and Administration, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wiesław Wiktor-Jedrzejczak
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, ul. Banacha 1a, 02-097, Warsaw, Poland
| |
Collapse
|
15
|
Ben Nasr M, Vergani A, Avruch J, Liu L, Kefaloyianni E, D'Addio F, Tezza S, Corradi D, Bassi R, Valderrama-Vasquez A, Usuelli V, Kim J, Azzi J, El Essawy B, Markmann J, Abdi R, Fiorina P. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 2015; 52:917-27. [PMID: 25808641 PMCID: PMC4968999 DOI: 10.1007/s00592-015-0735-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
AIMS Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory properties. We tested the ability of MSCs to delay islet allograft rejection. METHODS Mesenchymal stem cells were generated in vitro from C57BL/6 and BALB/c mice bone marrow, and their immunomodulatory properties were tested in vitro. We then tested the effect of a local or systemic administration of heterologous and autologous MSCs on graft survival in a fully allogeneic model of islet transplantation (BALB/c islets into C57BL/6 mice). RESULTS In vitro, autologous, but not heterologous, MSCs abrogated immune cell proliferation in response to alloantigens and skewed the immune response toward a Th2 profile. A single dose of autologous MSCs co-transplanted under the kidney capsule with allogeneic islets delayed islet rejection, reduced graft infiltration, and induced long-term graft function in 30 % of recipients. Based on ex vivo analysis of recipient splenocytes, the use of autologous MSCs did not appear to have any systemic effect on the immune response toward graft alloantigens. The systemic injection of autologous MSCs or the local injection of heterologous MSCs failed to delay islet graft rejection. CONCLUSION Autologous, but not heterologous, MSCs showed multiple immunoregulatory properties in vitro and delayed allograft rejection in vivo when co-transplanted with islets; however, they failed to prevent rejection when injected systemically. Autologous MSCs thus appear to produce a local immunoprivileged site, which promotes graft survival.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - James Avruch
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Liye Liu
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Eirini Kefaloyianni
- Renal Division, Brigham and Women's Hospital, Harvard Institute of Medicine, HIM510, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | - Domenico Corradi
- Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA
| | | | - Vera Usuelli
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy
| | - James Kim
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jamil Azzi
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James Markmann
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Abdi
- Nephrology Division, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Enders Building 5th Floor Room EN511, 300 Longwood Ave, Boston, MA, USA.
- Transplant Medicine, Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
16
|
|
17
|
Mameli C, Mazzantini S, Ben Nasr M, Fiorina P, Scaramuzza AE, Zuccotti GV. Explaining the increased mortality in type 1 diabetes. World J Diabetes 2015; 6:889-895. [PMID: 26185597 PMCID: PMC4499523 DOI: 10.4239/wjd.v6.i7.889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Despite large improvements in the management of glucose levels and in the treatment of cardiovascular risk factors, the mortality rate in individuals with type 1 diabetes (T1D) is still high. Recently, Lind et al found that T1D individuals with glycated hemoglobin levels of 6.9% or lower had a risk of death from any cause or from cardiovascular causes that is twice as high as the risk for matched controls. T1D is a chronic disease with an early onset (e.g., pediatric age) and thus in order to establish a clear correlation between death rate and the glycometabolic control, the whole history of glycemic control should be considered; particularly in the early years of diabetes. The switch from a normo- to hyperglycemic milieu in an individual with T1D in the pediatric age, represents a stressful event that may impact outcomes and death rate many years later. In this paper we will discuss the aforementioned issues, and offer our view on these findings, paying a particular attention to the several alterations occurring in the earliest phases of T1D and to the many factors that may be associated with the chronic history of T1D. This may help us to better understand the recently published death rate data and to develop future innovative and effective preventive strategies.
Collapse
|
18
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
19
|
Damien P, Allan DS. Regenerative Therapy and Immune Modulation Using Umbilical Cord Blood-Derived Cells. Biol Blood Marrow Transplant 2015; 21:1545-54. [PMID: 26079441 DOI: 10.1016/j.bbmt.2015.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
Abstract
Since the first cord blood transplantation in 1988, umbilical cord blood has become an important option as a source of cells for hematopoietic transplantation. Beyond its role in regenerating the blood and immune systems to treat blood diseases and inherited metabolic disorders, the role of nonhematopoietic progenitor cells in cord blood has led to new and emerging uses of umbilical cord blood in regenerative therapy and immune modulation. In this review, we provide an update on the clinical and preclinical studies using cord blood-derived cells such as mesenchymal stromal cells, endothelial-like progenitor cells, and others. We also provide insight on the use of cord blood cells as vehicles for the delivery of therapeutic agents through gene therapy and microvesicle-associated strategies. Moreover, cord blood can provide essential reagents for regenerative applications. Clinical activity using cord blood cells is increasing rapidly and this review aims to provide an important update on the tremendous potential within this fast-moving field.
Collapse
Affiliation(s)
- Pauline Damien
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David S Allan
- Centre for Transfusion Research, University of Ottawa, Ottawa, Ontario, Canada; Regenerative Medicine Program, Ottawa Hospital Research Unit, Ottawa, Ontario, Canada; Department of Medicine (Hematology), University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Bueno PDG, Yochite JNU, Derigge-Pisani GF, Malmegrim de Farias KCR, de Avó LRDS, Voltarelli JC, Leal ÂMDO. Metabolic and pancreatic effects of bone marrow mesenchymal stem cells transplantation in mice fed high-fat diet. PLoS One 2015; 10:e0124369. [PMID: 25923733 PMCID: PMC4414281 DOI: 10.1371/journal.pone.0124369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to investigate the effects of multiple infusions of allogeneic MSCs on glucose homeostasis and morphometry of pancreatic islets in high- fat diet (HFD) fed mice. Swiss mice were fed standard diet (C group) or HFD (HFD group). After 8 weeks, animals of HFD group received sterile phosphate-buffered saline infusions (HFD-PBS) or four infusions of MSCs one week apart (HFD-MSCs). Fasting glycemia (FG) was determined weekly and glucose (GTT) and insulin (ITT) tolerance tests were performed 4, 8, 12, and 16 weeks after the infusions of MSCs. The MSCs transplanted mice were classified as responder (FG < 180 mg/dL, 72.2% of transplanted mice) or non-responder (FG > 180mg/dL, 28.8%) Seven weeks after MSCs infusions, FG decreased in HFD-MSCs responder mice compared with the HFD-PBS group. Sixteen weeks post MSCs infusions, GTT and ITT areas under the curve (AUC) decreased in HFD-MSCs responder mice compared to HFD-PBS group. Serum insulin concentration was higher in HFD-PBS group than in control animals and was not different compared with the other groups. The relative volume of α-cells was significantly smaller in HFD-PBS group than in C group and significantly higher in HFD-MSCs-NR than in HFD-PBS and HFD-MSCs-R groups. Cell apoptosis in the islets was higher in HFD-PBS group than in C group, and lower in HFD-MSCs responder mice than in HFD-PBS group and non-responder animals. The results demonstrate the ability of multiple infusions of MSCs to promote prolonged decrease in hyperglycemia and apoptosis in pancreatic islets and increase in insulin sensitivity in HFD fed mice.
Collapse
Affiliation(s)
- Patricia de Godoy Bueno
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana Navarro Ueda Yochite
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Graziela Fernanda Derigge-Pisani
- Department of Physiological Science, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim de Farias
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Wang ZX, Cao JX, Li D, Zhang XY, Liu JL, Li JL, Wang M, Liu Y, Xu BL, Wang HB. Clinical efficacy of autologous stem cell transplantation for the treatment of patients with type 2 diabetes mellitus: a meta-analysis. Cytotherapy 2015; 17:956-68. [PMID: 25824289 DOI: 10.1016/j.jcyt.2015.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/29/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS In this study, we investigate whether bone marrow mononuclear cells (BM-MNC) or peripheral blood mononuclear cells (PB-MNC) have therapeutic efficacy in type 2 diabetes (T2D). METHODS Search terms included stem cell, bone marrow cell, peripheral blood cell, umbilical cord blood and T2D in MEDLINE, the Cochrane Controlled Trials Register, EMBASE, the Wanfang Database, the China Science and Technology Periodical Database and China Journal Net. RESULTS Fifteen trials met our inclusion criteria (n = 497). One group included 266 cases with BM-MNC therapy and the other group contained 231 cases with PB-MNC treatment. Glycosylated hemoglobin was decreased after BM-MNC or PB-MNC therapy compared with that before (12 months: P < 0.001; 6 months: P < 0.001; 3 months: P < 0.05). Fasting plasma glucose was reduced in BM-MNC therapy group compared with control after 12-month follow-up (P < 0.001) and after BM-MNC therapy compared with that before (9 months: P < 0.001) but was not obvious in other stages. Meanwhile, the analysis showed that C-peptide level increased after BM-MNC and PB-MNC therapy compared with the control therapy (12 months: P < 0.001) and with that before therapy (6 months: P < 0.05). Insulin requirement reduction was also observed in patients receiving BM-MNC therapy (3, 6, 9 and 12 months: P < 0.05). CONCLUSIONS To a certain extent, BM-MNC or PB-MNC therapy for T2D demonstrated superiority of glycemic control, increased insulin biosynthesis and elevated insulin secretion from existing β-cells and might prevent islet cell loss.
Collapse
Affiliation(s)
- Zheng-Xu Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China.
| | - Jun-Xia Cao
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Duo Li
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Xiao-Yan Zhang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Jin-Long Liu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Jun-Li Li
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Min Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Yishan Liu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Bei-Lei Xu
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| | - Hai-Bo Wang
- Biotherapy Center, the General Hospital of Beijing Military Command, Beijing, China
| |
Collapse
|
22
|
Re-engineering islet cell transplantation. Pharmacol Res 2015; 98:76-85. [PMID: 25814189 DOI: 10.1016/j.phrs.2015.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to this rapidly evolving field.
Collapse
|
23
|
Li Y, Guo G, Li L, Chen F, Bao J, Shi YJ, Bu H. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360:297-307. [PMID: 25749992 DOI: 10.1007/s00441-014-2055-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen Y, Wang X, Shao X. A Combination of Human Embryonic Stem Cell-Derived Pancreatic Endoderm Transplant with LDHA-Repressing miRNA Can Attenuate High-Fat Diet Induced Type II Diabetes in Mice. J Diabetes Res 2015; 2015:796912. [PMID: 26770982 PMCID: PMC4681983 DOI: 10.1155/2015/796912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/22/2015] [Indexed: 01/03/2023] Open
Abstract
Type II diabetes mellitus (T2D) is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. The deficit and dysfunction of insulin secreting β-cell are signature symptom for T2D. Additionally, in pancreatic β-cell, a small group of genes which are abundantly expressed in most other tissues are highly selectively repressed. Lactate dehydrogenase A (LDHA) is one of such genes. Upregulation of LDHA is found in both human T2D and rodent T2D models. In this study, we identified a LDHA-suppressing microRNA (hsa-miR-590-3p) and used it together with human embryonic stem cell (hESC) derived pancreatic endoderm (PE) transplantation into a high-fat diet induced T2D mouse model. The procedure significantly improved glucose metabolism and other symptoms of T2D. Our findings support the potential T2D treatment using the combination of microRNA and hESC-differentiated PE cells.
Collapse
Affiliation(s)
- Yunya Chen
- Department of Endocrinology, Wuxi People's Hospital of Huishan District, 2 Zhanqian Street, Wuxi, Jiangsu 214187, China
| | - Xiujie Wang
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Xinyu Shao
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
- *Xinyu Shao:
| |
Collapse
|
25
|
D'Addio F, Trevisani A, Ben Nasr M, Bassi R, El Essawy B, Abdi R, Secchi A, Fiorina P. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol 2014; 51:897-904. [PMID: 24894496 DOI: 10.1007/s00592-014-0603-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy is the leading and possibly the most devastating complication of diabetes, with a prevalence ranging from 25 to 40 % in diabetic individuals, and as such represents an important challenge for public health worldwide. As a major cause of end-stage renal disease, diabetic nephropathy also accounts for a large proportion of deaths in diabetic individuals. To date, therapeutic options for overt diabetic nephropathy include medical interventions to reduce blood glucose levels and to control blood pressure and proteinuria. Recent evidence suggests a strong role for inflammation in the development and progression of diabetic nephropathy. Various immune cells, cytokines and chemokines have been implicated in the onset of diabetic nephropathy, while immune-related transcription factors and adhesion molecules have been correlated with the establishment of a renal proinflammatory microenvironment. Both inflammation and immune activation may promote severe distress in the kidney, with subsequent increased local fibrosis, ultimately leading to the development of end-stage renal disease. Stem cells are undifferentiated cells capable of regenerating virtually any organ or tissue and bearing important immunoregulatory and anti-inflammatory properties. Due to the aforementioned considerations, significant interest has been ignited with regard to the use of stem cells as novel therapeutics for diabetic nephropathy. Here, we will be examining in detail how anti-inflammatory properties of different populations of stem cells may offer novel therapy for the treatment of diabetic nephropathy.
Collapse
|
26
|
D'Addio F, Valderrama Vasquez A, Ben Nasr M, Franek E, Zhu D, Li L, Ning G, Snarski E, Fiorina P. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 2014; 63:3041-6. [PMID: 24947362 DOI: 10.2337/db14-0295] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is one of the major autoimmune diseases affecting children and young adults worldwide. To date, the different immunotherapies tested have achieved insulin independence in <5% of treated individuals. Recently, a novel hematopoietic stem cell (HSC)-based strategy has been tested in individuals with new-onset T1D. The aim of this study was to determine the effects of autologous nonmyeloablative HSC transplantation in 65 individuals with new-onset T1D who were enrolled in two Chinese centers and one Polish center, pooled, and followed up for 48 months. A total of 59% of individuals with T1D achieved insulin independence within the first 6 months after receiving conditioning immunosuppression therapy (with antithymocyte globulin and cyclophosphamide) and a single infusion of autologous HSCs, and 32% remained insulin independent at the last time point of their follow-up. All treated subjects showed a decrease in HbA1c levels and an increase in C-peptide levels compared with pretreatment. Despite a complete immune system recovery (i.e., leukocyte count) after treatment, 52% of treated individuals experienced adverse effects. Our study suggests the following: 1) that remission of T1D is possible by combining HSC transplantation and immunosuppression; 2) that autologous nonmyeloablative HSC transplantation represents an effective treatment for selected individuals with T1D; and 3) that safer HSC-based therapeutic options are required.
Collapse
Affiliation(s)
- Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA Transplant Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Edward Franek
- Department of Internal Diseases, Diabetology and Endocrinology, Central Hospital, Ministry of Interior Affairs and Administration, Warsaw, Poland Department of Endocrinology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dalong Zhu
- Division of Endocrinology, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lirong Li
- Division of Endocrinology, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Guang Ning
- Shangai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Emilian Snarski
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA Transplant Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
27
|
Hua XF, Wang YW, Tang YX, Yu SQ, Jin SH, Meng XM, Li HF, Liu FJ, Sun Q, Wang HY, Li JY. Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes. PLoS One 2014; 9:e102198. [PMID: 25009980 PMCID: PMC4092102 DOI: 10.1371/journal.pone.0102198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Background Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes. Methods We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels. Results The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001). Conclusions The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.
Collapse
Affiliation(s)
- Xiu-feng Hua
- Department of Endocrinology, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yan-wei Wang
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yu-xiao Tang
- Department of Endocrinology, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Sheng-qiang Yu
- Department of Urology, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Shao-hua Jin
- Department of clinical laboratory, Yuhuangding Hospital, Yantai, Shangdong Province, China
| | - Xiao-mei Meng
- Department of Endocrinology, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Hua-feng Li
- Department of Endocrinology, Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Fu-jun Liu
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Qiang Sun
- Department of Orthopedics, Chinese people's Liberation Army Navy 407 hospital, Yantai, Shandong Province, China
| | - Hai-yan Wang
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Jian-yuan Li
- Research Center of Stem Cell Engineering of Shandong, Central Laboratory of Yuhuangding Hospital, Yantai, Shandong Province, China
- * E-mail:
| |
Collapse
|
28
|
Paek HJ, Kim C, Williams SK. Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World J Diabetes 2014; 5:235-243. [PMID: 24936245 PMCID: PMC4058728 DOI: 10.4239/wjd.v5.i3.235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/30/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (diabetes) is a devastating disease that affects millions of people globally and causes a myriad of complications that lead to both patient morbidity and mortality. Currently available therapies, including insulin injection and beta cell replacement through either pancreas or pancreatic islet transplantation, are limited by the availability of organs. Stem cells provide an alternative treatment option for beta cell replacement through selective differentiation of stem cells into cells that recognize glucose and produce and secrete insulin. Embryonic stem cells, albeit pluripotent, face a number of challenges, including ethical and political concerns and potential teratoma formation. Adipose tissue represents an alternative source of multipotent mesenchymal stem cells, which can be obtained using a relatively simple, non-invasive, and inexpensive method. Similarly to other adult mesenchymal stem cells, adipose-derived stem cells (ADSCs) are capable of differentiating into insulin-producing cells. They are also capable of vasculogenesis and angiogenesis, which facilitate engraftment of donor pancreatic islets when co-transplanted. Additionally, anti-inflammatory and immunomodulatory effects of ADSCs can protect donor islets during the early phase of transplantation and subsequently improve engraftment of donor islets into the recipient organ. Although ADSC-therapy is still in its infancy, the potential benefits of ADSCs are far reaching.
Collapse
|
29
|
Cai J, Yu X, Xu R, Fang Y, Qian X, Liu S, Teng J, Ding X. Maximum efficacy of mesenchymal stem cells in rat model of renal ischemia-reperfusion injury: renal artery administration with optimal numbers. PLoS One 2014; 9:e92347. [PMID: 24637784 PMCID: PMC3956922 DOI: 10.1371/journal.pone.0092347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Backgrounds Despite the potential therapeutic benefits, cell therapy in renal ischemia-reperfusion (I/R) injury is currently limited by low rates of cell engraftment after systemic delivery. In this study, we investigate whether locally administration through renal artery can enhance the migration and therapeutic potential of mesenchymal stem cells (MSCs) in ischemic kidney. Methods The model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle and right nephrectomy in rat. Followed by reperfusion, graded doses of CM-Dil labeled MSCs were implanted via three routes: tail vein (TV), carotid artery (CA), and renal artery (RA). Renal blood flow was evaluated by color and spectral Doppler ultrasound at 1 h and 24 h post-I/R. All the samples were collected for analysis at 24 h post-I/R. Results After injection of 1×106 MSCs, RA group showed obviously increased renal retention of grafted MSCs compared with TV and CA group; however, the renal function was even further deteriorated. When graded doses of MSCs, the maximal therapeutic efficiency was achieved with renal artery injection of 1×105 MSCs, which was significantly better than TV and CA group of 1×106 MSCs. In addition, further fluorescent microscopic and ultrasonic examination confirmed that the aggravated renal dysfunction in RA group was due to renal hypoperfusion caused by cell occlusion. Conclusion Administration route and dosage are two critical factors determining the efficiency of cell therapy and 1×105 MSCs injected through renal artery produces the most dramatic improvement in renal function and morphology in rat model of renal I/R injury.
Collapse
Affiliation(s)
- Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rende Xu
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqin Qian
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaopeng Liu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Blood Purification Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Scuteri A, Donzelli E, Rodriguez-Menendez V, Ravasi M, Monfrini M, Bonandrini B, Figliuzzi M, Remuzzi A, Tredici G. A double mechanism for the mesenchymal stem cells' positive effect on pancreatic islets. PLoS One 2014; 9:e84309. [PMID: 24416216 PMCID: PMC3885554 DOI: 10.1371/journal.pone.0084309] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear. The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures. MSCs were both able to prolong the survival of pancreatic islets, and to directly differentiate into an “insulin-releasing” phenotype. Two distinct mechanisms mediated these effects: i) the survival increase was observed in pancreatic islets indirectly co-cultured with MSCs, probably mediated by the trophic factors released by MSCs; ii) MSCs in direct contact with pancreatic islets started to express Pdx1, a pivotal gene of insulin production, and then differentiated into insulin releasing cells. These results demonstrate that MSCs may be useful for potentiating pancreatic islets' functionality and feasibility.
Collapse
Affiliation(s)
- Arianna Scuteri
- Dipartimento di Chirurgia e Medicina Interdisciplinare, Università Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Elisabetta Donzelli
- Dipartimento di Chirurgia e Medicina Interdisciplinare, Università Milano-Bicocca, Monza, Italy
| | | | - Maddalena Ravasi
- Dipartimento di Chirurgia e Medicina Interdisciplinare, Università Milano-Bicocca, Monza, Italy
| | - Marianna Monfrini
- Dipartimento di Chirurgia e Medicina Interdisciplinare, Università Milano-Bicocca, Monza, Italy
| | - Barbara Bonandrini
- Department of Biomedical Engineering, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Marina Figliuzzi
- Department of Biomedical Engineering, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Industrial Engineering, University of Bergamo, Dalmine (BG), Italy
| | - Giovanni Tredici
- Dipartimento di Chirurgia e Medicina Interdisciplinare, Università Milano-Bicocca, Monza, Italy
| |
Collapse
|
31
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Kanji S, Das M, Aggarwal R, Lu J, Joseph M, Basu S, Pompili VJ, Das H. Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy accelerates murine cutaneous wound closure by attenuating pro-inflammatory factors and secreting IL-10. Stem Cell Res 2013; 12:275-88. [PMID: 24321844 DOI: 10.1016/j.scr.2013.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 12/26/2022] Open
Abstract
Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy is under consideration for treating peripheral and cardiac ischemia. However, the therapeutic efficacy of nanofiber-expanded human umbilical cord blood-derived (NEHUCB) CD34+ cell therapy for wound healing and its mechanisms are yet to be established. Using an excision wound model in NOD/SCID mice, we show herein that NEHUCB-CD34+ cells home to the wound site and significantly accelerate the wound-healing process compared to vehicle-treated control. Histological analysis reveals that accelerated wound closure is associated with the re-epithelialization and increased angiogenesis. Additionally, NEHUCB-CD34+ cell-therapy decreases expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and NOS2A in the wound bed, and concomitantly increases expression of IL-10 compared to vehicle-treated control. These findings were recapitulated in vitro using primary dermal fibroblasts and NEHUCB-CD34+ cells. Moreover, NEHUCB-CD34+ cells attenuate NF-κB activation and nuclear translocation in dermal fibroblasts through enhanced secretion of IL-10, which is known to bind to NF-κB and suppress transcriptional activity. Collectively, these data provide novel mechanistic evidence of NEHUCB-CD34+ cell-mediated accelerated wound healing.
Collapse
Affiliation(s)
- Suman Kanji
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Manjusri Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Reeva Aggarwal
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Jingwei Lu
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Joseph
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Sujit Basu
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Vincent J Pompili
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Stem Cell Research Laboratory, Cardiovascular Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Xiong YY, Fan Q, Huang F, Zhang Y, Wang Y, Chen XY, Fan ZP, Zhou HS, Xiao Y, Xu XJ, Dai M, Xu N, Sun J, Xiang P, Huang XJ, Liu QF. Mesenchymal stem cells versus mesenchymal stem cells combined with cord blood for engraftment failure after autologous hematopoietic stem cell transplantation: a pilot prospective, open-label, randomized trial. Biol Blood Marrow Transplant 2013; 20:236-42. [PMID: 24216182 DOI: 10.1016/j.bbmt.2013.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
Engraftment failure (EF) after autologous hematopoietic stem cell transplantation is a serious complication. We prospectively evaluated the effects and safeties of mesenchymal stem cells (MSCs) alone and MSCs combined with cord blood (CB) for EF. Twenty-two patients were randomized to receive MSCs (MSC group; n = 11) or MSCs plus CB (CB group; n = 11). Patients with no response (NR) to MSCs received the therapeutic schedule in the CB group, and those patients with partial response (PR) in the MSC group and patients without complete remission (CR) in the CB group received another cycle of MSC treatment. Patients who did not achieve CR after 2 cycles of treatments received other treatments, including allogeneic HSCT. After the first treatment cycle, response was seen in 7 of 11 patients in the MSC group and in 9 of 11 in the CB group (P = .635), with a significant difference in neutrophil reconstruction between the 2 groups (P = .030). After 2 treatment cycles, 16 patients achieved CR, 3 achieved PR, and 3 had NR. No patient experienced graft-versus-host disease (GVHD). With a median follow-up of 345 d (range, 129 to 784 d) post-transplantation, 18 patients remained alive and 4 had died (3 from primary disease relapse and 1 from cytomegalovirus pneumonia). The 2-year overall survival, disease-free survival, and cumulative incidence of tumor relapse post-transplantation were 75.2% ± 12.0%, 79.5% ± 9.4%, and 20.5% ± 9.4%, respectively. Our data indicate that the 2 strategies are effective for EF and do not result in GVHD or increase the risk of tumor relapse, but the MSC plus CB regimen has a superior effect on neutrophil reconstruction.
Collapse
Affiliation(s)
- Yi-Ying Xiong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Yong Chen
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Ping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Xiao-Jun Xu
- Department of Hematology, Zhongshan People's Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Jun Huang
- Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Yang H, Yang H, Xie Z, Wei L, Bi J. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS One 2013; 8:e69129. [PMID: 23935936 PMCID: PMC3723739 DOI: 10.1371/journal.pone.0069129] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is one of most prevalent dementias, which is characterized by the deposition of extracellular amyloid-beta protein (Aβ) and the formation of neurofibrillary tangles within neurons. Although stereotaxic transplantation of mesenchymal stem cells (MSCs) into the hippocampus of AD animal model as immunomodulatory cells has been suggested as a potential therapeutic approach to prevent the progress of AD, it is invasive and difficult for clinical perform. Systemic and central nervous system inflammation play an important role in pathogenesis of AD. T regulatory cells (Tregs) play a crucial role in maintaining systemic immune homeostasis, indicating that transplantation of Tregs could prevent the progress of the inflammation. In this study, we aimed to evaluate whether systemic transplantation of purified autologous Tregs from spleens of AβPPswe/PS1dE9 double-transgenic mice after MSCs from human umbilical cords (UC-MSCs) education in vitro for 3 days could improve the neuropathology and cognition deficits in AβPPswe/PS1dE9 double-transgenic mice. We observed that systemic transplantation of autologous Tregs significantly ameliorate the impaired cognition and reduced the Aβ plaque deposition and the levels of soluble Aβ, accompanied with significantly decreased levels of activated microglia and systemic inflammatory factors. In conclusion, systemic transplantation of autologous Tregs may be an effective and safe intervention to prevent the progress of AD.
Collapse
Affiliation(s)
- Hongna Yang
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Hui Yang
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Zhaohong Xie
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Lifei Wei
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Jianzhong Bi
- Department of Neural Medicine, the Second Hospital of Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
35
|
Bourdeau A, Trop S, Doody KM, Dumont DJ, Tremblay ML, Tremblayef ML. Inhibition of T cell protein tyrosine phosphatase enhances interleukin-18-dependent hematopoietic stem cell expansion. Stem Cells 2013; 31:293-304. [PMID: 23135963 PMCID: PMC3593175 DOI: 10.1002/stem.1276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/11/2012] [Indexed: 01/30/2023]
Abstract
The clinical application of hematopoietic progenitor cell-based therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout results in a ninefold increase in the number of hematopoietic progenitors in murine bone marrow (BM). This effect could be reproduced using a short (48 hours) treatment with a pharmacological inhibitor of TC-PTP in murine BM, as well as in human BM, peripheral blood, and cord blood. We also demonstrate that the ex vivo use of TC-PTP inhibitor only provides a temporary effect on stem cells and did not alter their capacity to reconstitute all hematopoietic components in vivo. We establish that one of the mechanisms whereby inhibition of TC-PTP mediates its effects involves the interleukin-18 (IL-18) signaling pathway, leading to increased production of IL-12 and interferon-gamma by progenitor cells. Together, our results reveal a previously unrecognized role for IL-18 in contributing to the augmentation of the stem cell pool and provide a novel and simple method to rapidly expand progenitor cells from a variety of sources using a pharmacological compound.
Collapse
Affiliation(s)
- Annie Bourdeau
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Lo WC, Chen WH, Lin TC, Hwang SM, Zeng R, Hsu WC, Chiang YM, Liu MC, Williams DF, Deng WP. Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines. Biomaterials 2013; 34:4739-48. [PMID: 23557858 DOI: 10.1016/j.biomaterials.2013.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a common rheumatic disease associated with imbalanced cartilage homeostasis which could be corrected by mesenchymal stem cells (MSCs) therapy. However, MSCs from different origins might exhibit distinct differentiation capacities. This study was undertaken to compare the therapeutic efficacies between MSCs from cord blood (CB-MSCs) and bone marrow (BM-MSCs) on OA treatment. The surface phenotypes and multipotent capacities of CB-MSCs and BM-MSCs were first characterized. The coculture commitment system was subsequently utilized for comparing the patterned molecules in stage-specific chondrogenesis of committed MSCs. For examining the therapeutic efficacies, committed CB-MSCs and BM-MSCs were encapsulated in neo-cartilage and subjected into pro-inflammatory cytokine environment. Finally, chondrogenic and inflammatory cytokine profiles in committed MSCs were evaluated. CB-MSCs and BM-MSCs were both negative for hematopoietic markers and positive for adhesion and mesenchymal cell markers. The CB-MSCs showed a markedly higher chondrogenic potential and relatively lower osteogenic and adipogenic capacities than BM-MSCs. During chondrogenesis, the committed CB-MSCs also showed significant increases in cell proliferation, adhesion molecules, signaling molecules, and chondrogenic-specific gene expressions in a coculture system. For the therapeutic efficacies, the committed CB-MSCs could strongly recover the pro-inflammatory cytokines diminished-Col II and proteoglycan expressions in a 3D arthritic model. The IL-10, ICAM-1 and TGF-β1 were also up-regulated in committed CB-MSCs analyzed by using cytokine profiling. Our data demonstrate that CB-MSCs possess specific advantages in cartilage regeneration over BM-MSCs. The CB-MSCs showed a better therapeutic potential that can contribute to advanced cell-based transplantation for clinical OA therapy.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Sheng Z, Niu S, Ge L, Ren C, Zou Y. Rapid and complete reconstitution of autologous haemopoiesis after cord blood infusion in treatment-naive patients with severe aplastic anemia receiving high-dose cyclophosphamide/ATG therapy. Eur J Haematol 2012; 90:45-50. [PMID: 23106334 DOI: 10.1111/ejh.12033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Yanxiang Li
- Shandong University School of Medicine; Jinan; China
| | | | - Shaona Niu
- Department of Endocrinology; Lin Yi People's Hospital; Linyi; China
| | - Lifu Ge
- Department of Hematology; Jinan Military General Hospital; Jinan; China
| | - Cuiai Ren
- Department of Hematology; Weifang People's Hospital; Weifang; China
| | - Yandun Zou
- Internal Medicine; GuangDong Women And Children Hospital; Guangzhou; China
| |
Collapse
|
38
|
Zhou YN, Zhu CY, Li JP. Co-transplantation of islets and umbilical cord mesenchymal stem cells improves graft activity and function in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:2601-2607. [DOI: 10.11569/wcjd.v20.i27.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of co-transplantation of islets and umbilical cord mesenchymal stem cells (UCMSCs) on graft activity and function in rats.
METHODS: Streptozotocin-induced diabetic Sprague-Dawley (SD) rats were divided into four groups, with (1) 500 islets, (2) 1 to 5×106 UCMSCs, (3) 500 islets and 1 to 5×106 UCMSCs; and (4) normal saline transplanted under the kidney capsule, respectively. All rats were evaluated for blood glucose, serum insulin, glucose tolerance, and the rate of normoglycaemia (blood glucose ≤ 11.1 mmol/L) up to postoperative day 28.
RESULTS: Blood glucose was lowest and serum insulin was highest in the islet+UCMSCs group relative to the islet only group (both P < 0.05). The rate of normoglycaemia was better in the co-transplantation group than in the islet only group (P < 0.05). However, there were no differences in the parameters detected between the sham operation group and UCMSCs alone group, and no normoglycemic rats were found in the UCMSCs alone group.
CONCLUSION: Co-transplantation of umbilical cord mesenchymal stem cells with islets is associated with enhanced islet graft activity and function.
Collapse
|
39
|
Liu S, Yuan M, Hou K, Zhang L, Zheng X, Zhao B, Sui X, Xu W, Lu S, Guo Q. Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells. Cell Immunol 2012; 278:35-44. [PMID: 23121974 DOI: 10.1016/j.cellimm.2012.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 06/21/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hWJMSCs) became prospective seed cell candidate for tissue engineering and cell-based therapy because of its variety source, easy procurement, robust proliferation, and high purity compared with bone marrow- and adipose-derived MSCs. Such neonatal stem cells can be isolated from a variety of extraembryonic tissues and appear to be more primitive and have greater multi-potentiality than their adult counterparts. In this study, we investigated the immune characters of hWJMSCs and its derived cartilage cells (hWJMSC-Cs) by detecting the expression of major histocompatibility complex I/I(MHC-I/II), costimulatory molecules (CD40, CD80 and CD86) and immune inhibitors including human leukocyte antigen G (HLA-G), indoleamine-2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2). We found that hWJMSCs did not express MHC-II and costimulatory molecules, but moderately expressed MHC-I, and positively expressed immune inhibitors as HLA-G, IDO, PGE2, demonstrating their very low immunogenicity and potential to induce immune tolerance microenvironment in hosts. The results of chondrogenic differentiated hWJMSCs(hWJMSC-Cs) are similar to those of undifferentiated cells, except for the slightly elevated MHC-II and costimulators expression. Additionally, we detected cytokine profile of hWJMSCs through cytokine antibody array and verified by western blot the positive expression of immune suppression-related molecules, HGF, VEGF, TGF, and IL-10. Furthermore, to investigate the in vivo immune response of the cells, hWJMSCs-scaffold constructs were implanted into rabbits and rats, and the result showed that hWJMSCs did not elicit immune rejection in the animals. Their intermediate state between adult and embryonic stem cells makes them an ideal candidate for reprogramming to the pluripotent status. Additional studies are necessary to clarify the potential of hWJMSCs to be used in cartilage and other tissue regeneration and cell-based therapies.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of the People's Liberation Army (PLA), Institute of Orthopedics, Chinese PLA General Hospital, No. 28 FuXing Road, Haidian District, Beijing 100853, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 2012; 12:18. [PMID: 22559872 PMCID: PMC3443425 DOI: 10.1186/1472-6750-12-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/12/2012] [Indexed: 11/12/2022] Open
Abstract
Background The possibility for isolating bovine mesenchymal multipotent cells (MSCs) from fetal adnexa is an interesting prospect because of the potential for these cells to be used for biotechnological applications. Bone marrow and adipose tissue are the most common sources of MSCs derived from adult animals. However, little knowledge exists about the characteristics of these progenitors cells in the bovine species. Traditionally most cell cultures are developed in two dimensional (2D) environments. In mammalian tissue, cells connect not only to each other, but also support structures called the extracellular matrix (ECM). The three-dimensional (3D) cultures may play a potential role in cell biotechnology, especially in tissue therapy. In this study, bovine-derived umbilical cord Wharton’s jelly (UC-WJ) cells were isolated, characterized and maintained under 3D-free serum condition as an alternative of stem cell source for future cell banking. Results Bovine-derived UC-WJ cells, collected individually from 5 different umbilical cords sources, were successfully cultured under serum-free conditions and were capable to support 60 consecutive passages using commercial Stemline® mesenchymal stem cells expansion medium. Moreover, the UC-WJ cells were differentiated into osteocytes, chondrocytes, adipocytes and neural-like cells and cultured separately. Additionally, the genes that are considered important embryonic, POU5F1 and ITSN1, and mesenchymal cell markers, CD105+, CD29+, CD73+ and CD90+ in MSCs were also expressed in five bovine-derived UC-WJ cultures. Morphology of proliferating cells typically appeared fibroblast-like spindle shape presenting the same viability and number. These characteristics were not affected during passages. There were 60 chromosomes at the metaphase, with acrocentric morphology and intense telomerase activity. Moreover, the proliferative capacity of T cells in response to a mitogen stimulus was suppressed when bovine-derived UC-WJ cells was included in the culture which demonstrated the immunossupression profile typically observed among isolated mesenchymal cells from other species. After classified the UC-WJ cells as mesenchymal stromal phenotype the in vitro 3D cultures was performed using the AlgiMatrix® protocol. Based on the size of spheroids (283,07 μm ± 43,10 μm) we found that three weeks of culture was the best period to growth the UC-WJ cells on 3D dimension. The initial cell density was measured and the best value was 1.5 × 106 cells/well. Conclusions We described for the first time the isolation and characterization of UC-WJ cells in a serum-free condition and maintenance of primitive mesenchymal phenotype. The culture was stable under 60 consecutive passages with no genetic abnormalities and proliferating ratios. Taken together all results, it was possible to demonstrate an easy way to isolate and culture of bovine-derived UC-WJ cells under 2D and 3D serum-free condition, from fetal adnexa with a great potential in cell therapy and biotechnology.
Collapse
|
41
|
Bassi R, Trevisani A, Tezza S, Ben Nasr M, Gatti F, Vergani A, Farina A, Fiorina P. Regenerative therapies for diabetic microangiopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:916560. [PMID: 22536216 PMCID: PMC3321284 DOI: 10.1155/2012/916560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.
Collapse
Affiliation(s)
- Roberto Bassi
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | | | - Sara Tezza
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moufida Ben Nasr
- Department of Biophysical and Medical Science, Higher Institute of Medical Technology, 1006 Tunis, Tunisia
| | - Francesca Gatti
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonio Farina
- Department of Obstetrics and Gynecology, University of Bologna, 40138 Bologna, Italy
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
42
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
43
|
Teti G, Cavallo C, Grigolo B, Giannini S, Facchini A, Mazzotti A, Falconi M. Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis. Microsc Res Tech 2011; 75:596-604. [PMID: 21998022 DOI: 10.1002/jemt.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/26/2011] [Indexed: 02/06/2023]
Abstract
The main purpose of this article was to describe the morphology of mesenchymal stem cells (MSCs) differentiated in vitro towards osteogenic and chondrogenic lineages and to focus on the ultrastructural features associated with these processes. Human mononuclear cells (hMNC) were isolated, expanded, and analyzed for the expression of specific cell surface markers to demonstrate their stem cell characteristics. Human mononuclear cells were differentiated in vitro in an osteogenic and in a chondrogenic sense for 7, 14, 21, and 28 days. Subsequently, they were processed using electron microscopic analysis (FEISEM). Alizarin red and alcian blue staining were carried out to demonstrate the deposition of mineral salts and proteoglycans in the extracellular matrix. Undifferentiated MSCs showed a cell surface covered by filopodia and ondulopodia. During differentiation, the MSCs changed their shape from a round to a fibroblastic-like shape. At the end of the differentiation, several filaments with a parallel orientation in the osteogenic samples as well as a network organization in the chondrogenic samples were detected in the extracellular spaces. This study demonstrated that there are morphological features associated with the undifferentiated and differentiated states of the MSCs, which could be utilized as new parameters for identifying and classifying these cells.
Collapse
Affiliation(s)
- Gabriella Teti
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, University of Bologna, via Irnerio 48, Bologna 40126, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The term 'stem cell' most commonly refers to embryonic stem cells, particularly in the lay media; however, it also describes other cell types. A stem cell represents a cell of multi-lineage potential with the ability for self-renewal. It is now clear that the plasticity and immortality of a given stem cell will depend on what type of stem cell it is, whether an embryonic stem cell, a fetal-placental stem cell or an adult stem cell. Stem cells offer great promise as cell-based therapies for the future. With evolving technology, much of the socio-political debate regarding stem cells can now be avoided.
Collapse
Affiliation(s)
- Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
45
|
Parolini O, Caruso M. Review: Preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 2011; 32 Suppl 2:S186-95. [PMID: 21251712 DOI: 10.1016/j.placenta.2010.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
Recent years have seen considerable advances in our knowledge of the biology and properties of stem/progenitor cells isolated from placental tissues. This has encouraged researchers to address the potential effects of these cells in animal models of different diseases, resulting in increasing expectations regarding their possible utility for cell-based therapeutic applications. This rapidly evolving research field is also enriched by studies aimed at expanding the use of the whole amniotic membrane (AM), a well-known surgical material, for pathological conditions other than those tested so far and for which clinical applications already exist. In this review, we provide an update on studies that have been performed with placenta-derived cells and fragments of the entire AM to validate their potential clinical applications in a variety of diseases, in particular those associated with degenerative processes induced by inflammatory and fibrotic mechanisms. We also offer, as far as possible, insight into the interpretation and suggested mechanisms to explain the most important outcomes achieved to date.
Collapse
Affiliation(s)
- O Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy.
| | | |
Collapse
|
46
|
Wen Y, Chen B, Ildstad ST. Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opin Biol Ther 2010; 11:41-53. [PMID: 21110785 DOI: 10.1517/14712598.2011.540235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD β-Cell regeneration and β-cell preservation are two promising therapeutic approaches for the management of patients with type 1 diabetes (T1D). Stem cell-based strategies to address the problems of shortage in β cells, autoimmune and alloimmune responses have become an area of intense study. AREAS COVERED IN THIS REVIEW This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. WHAT THE READER WILL GAIN A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. TAKE HOME MESSAGE Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived β-cell maturation in vivo is poorly understood.
Collapse
Affiliation(s)
- Yujie Wen
- University of Louisville, Institute for Cellular Therapeutics, Louisville, KY 40202-1760, USA
| | | | | |
Collapse
|
47
|
Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 2010; 10:103-7. [PMID: 20728583 DOI: 10.1016/j.autrev.2010.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/22/2022]
Abstract
Umbilical cord blood contains several types of stem cells that are of interest to a wide range of disciplines in regenerative medicine. The translational potential to the clinical applications of cord blood stem cells has increased enormously in recent years, mainly because of its advantages including no risk to the donor, no ethical issues, low risk of graft-versus-host disease (GVHD) and rapid availability. Type 1 diabetes (T1D) is an autoimmune disease caused by an autoimmune destruction of pancreatic islet β cells. Understanding the nature and function of cord blood stem cells is an exciting challenge that might set the stage for new approaches to the treatment of T1D. Here, we review progress in this field and draw conclusions for the development of future therapeutics in T1D. New insights are provided on a unique type of cord blood-derived multipotent stem cells (CB-SC), including the molecular mechanisms underlying immune modulation by CB-SC, protection of β-cell mass, and promotion of islet β-cell neogenesis.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|