1
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
2
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
3
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:ijms23052445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
|
4
|
The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett 2022; 27:10. [PMID: 35109786 PMCID: PMC8809072 DOI: 10.1186/s11658-022-00311-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.
Collapse
|
5
|
The Influence of Mitochondrial-DNA-Driven Inflammation Pathways on Macrophage Polarization: A New Perspective for Targeted Immunometabolic Therapy in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 23:ijms23010135. [PMID: 35008558 PMCID: PMC8745401 DOI: 10.3390/ijms23010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia-reperfusion injury is related to inflammation driven by free mitochondrial DNA. At the same time, the pro-inflammatory activation of macrophages, that is, polarization in the M1 direction, aggravates the cycle of inflammatory damage. They promote each other and eventually transform macrophages/microglia into neurotoxic macrophages by improving macrophage glycolysis, transforming arginine metabolism, and controlling fatty acid synthesis. Therefore, we propose targeting the mtDNA-driven inflammatory response while controlling the metabolic state of macrophages in brain tissue to reduce the possibility of cerebral ischemia-reperfusion injury.
Collapse
|
6
|
TLR Signaling in Brain Immunity. Handb Exp Pharmacol 2021; 276:213-237. [PMID: 34761292 DOI: 10.1007/164_2021_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toll-like receptors (TLRs) comprise a group of transmembrane proteins with crucial roles in pathogen recognition, immune responses, and signal transduction. This family represented the first line of immune homeostasis in an evolutionarily conserved manner. Extensive researches in the past two decades had emphasized their structural and functional characteristics under both healthy and pathological conditions. In this review, we summarized the current understanding of TLR signaling in the central nervous system (CNS), which had been viewed as a previously "immune-privileged" but now "immune-specialized" area, with major implications for further investigation of pathological nature as well as potential therapeutic manipulation of TLR signaling in various neurological disorders.
Collapse
|
7
|
Saleki K, Banazadeh M, Miri NS, Azadmehr A. Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1. Rev Neurosci 2021; 33:147-160. [PMID: 34225390 DOI: 10.1515/revneuro-2021-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is identified as the cause of coronavirus disease 2019 (COVID-19), and is often linked to extreme inflammatory responses by over activation of neutrophil extracellular traps (NETs), cytokine storm, and sepsis. These are robust causes for multi-organ damage. In particular, potential routes of SARS-CoV2 entry, such as angiotensin-converting enzyme 2 (ACE2), have been linked to central nervous system (CNS) involvement. CNS has been recognized as one of the most susceptible compartments to cytokine storm, which can be affected by neuropilin-1 (NRP-1). ACE2 is widely-recognized as a SARS-CoV2 entry pathway; However, NRP-1 has been recently introduced as a novel path of viral entry. Apoptosis of cells invaded by this virus involves Fas receptor-Fas ligand (FasL) signaling; moreover, Fas receptor may function as a controller of inflammation. Furthermore, NRP-1 may influence FasL and modulate cytokine profile. The neuroimmunological insult by SARS-CoV2 infection may be inhibited by therapeutic approaches targeting soluble Fas ligand (sFasL), cytokine storm elements, or related viral entry pathways. In the current review, we explain pivotal players behind the activation of cytokine storm that are associated with vast CNS injury. We also hypothesize that sFasL may affect neuroinflammatory processes and trigger the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- USERN Office, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Niloufar Sadat Miri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| | - Abbas Azadmehr
- National Elite Foundation, Mazandaran Province Branch, Tehran, 48157-66435, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 47176-47745, Iran
- Medical Immunology Department, Babol University of Medical Sciences, Babol, 47176-47745, Iran
| |
Collapse
|
8
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
9
|
Lu YY, Ma XJ, Yang YN. MicroRNA-18a-5p mitigates oxygen-glucose-deprivation/reoxygenation-induced injury through suppression of TLRs/NF-κB signaling by targeting TLR8 in PC12 cells. Biosci Biotechnol Biochem 2020; 84:2476-2483. [PMID: 32815784 DOI: 10.1080/09168451.2020.1806705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This work aimed to assess the role of TLR8 in cerebral I/R injury and its in-depth pathogenesis. Bioinformatics analysis indicated that TLR8 was up-regulated in patients with ischemic stroke than that in healthy control, and miR-18a-5p was the upstream regulatory of TLR8. Then, the rat pheochromocytoma PC12 cells were exposed in oxygen-glucose-deprivation/reoxygenation (OGD/R) conditions to construct a model in vitro. The functional experiments indicated that OGD/R can decline the viability and elevate the apoptosis of PC12 cells, while up-regulation of miR-18a-5p can alleviate OGD/R-induced cell injury. Notably, overexpression of TLR8 reverses the miR-18a-5p-mediated protection on OGD/R-induced cells injury. Finally, we found that up-regulation of miR-18a-5p obviously declined the protein levels of TLR4 and TLR7 as well as the phosphorylation of NF-κB, while overexpression of TLR8 canceled the decrease caused by miR-18a-5p up-regulation. In summing, our results illustrated that miR-18a-5p/TLR8 axis can mitigate OGD/R-induced cells injury through TLRs and NF-κB pathway.
Collapse
Affiliation(s)
- Ying-Yun Lu
- Department of Severe Rehabilitation, Shandong Provincial Third Hospital , Jinan, P.R. China
| | - Xiao-Jun Ma
- Department of Geriatrics, Shandong Provincial Third Hospital , Jinan, P.R. China
| | - Yan-Na Yang
- Department of Respiratory, Jinan Central Hospital Affiliated to Shandong First Medical University , Jinan, P.R. China
| |
Collapse
|
10
|
Li Z, Cui Y, Feng J, Guo Y. Identifying the pattern of immune related cells and genes in the peripheral blood of ischemic stroke. J Transl Med 2020; 18:296. [PMID: 32746852 PMCID: PMC7398186 DOI: 10.1186/s12967-020-02463-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic stroke (IS) is the second leading cause of death worldwide which is a serious hazard to human health. Evidence suggests that the immune system plays a key role in the pathophysiology of IS. However, the precisely immune related mechanisms were still not been systematically understood. Methods In this study, we aim to identify the immune related modules and genes that might play vital role in the occurrence and development of IS by using the weighted gene co-expression network analysis (WGCNA). Meanwhile, we applied a kind of deconvolution algorithm to reveal the proportions of 22 subsets of immune cells in the blood samples. Results There were total 128 IS patients and 67 healthy control samples in the three Gene Expression Omnibus (GEO) datasets. Under the screening criteria, 1082 DEGs (894 up-regulated and 188 down-regulated) were chosen for further analysis. A total of 11 clinically significant modules were identified, from which immune-related hub modules and hub genes were further explored. Finally, 16 genes were selected as real hub genes for further validation analysis. Furthermore, these CIBERSORT results suggest that detailed analysis of the immune subtype distribution pattern has the potential to enhance clinical prediction and to identify candidates for immunotherapy. More specifically, we identified that neutrophil emerge as a promising target for IS therapies. Conclusions In the present study, we investigated the immune related gene expression modules, in which the SLAMF1, IL7R and NCF4 may be novel therapeutic targets to promote functional and histological recovery after ischemic stroke. Furthermore, these hub genes and neutrophils may become important biological targets in the drug screening and drug designing.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yanxia Guo
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Zhou Y, Little PJ, Downey L, Afroz R, Wu Y, Ta HT, Xu S, Kamato D. The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacol Transl Sci 2020; 3:457-471. [PMID: 32566912 PMCID: PMC7296543 DOI: 10.1021/acsptsci.9b00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are dominant components of the innate immune system. Activated by both pathogen-associated molecular patterns and damage-associated molecular patterns, TLRs underpin the pathology of numerous inflammation related diseases that include not only immune diseases, but also cardiovascular disease (CVD), diabetes, obesity, and cancers. Growing evidence has demonstrated that TLRs are involved in multiple cardiovascular pathophysiologies, such as atherosclerosis and hypertension. Specifically, a trial called the Canakinumab Anti-inflammatory Thrombosis Outcomes Study showed the use of an antibody that neutralizes interleukin-1β, reduces the recurrence of cardiovascular events, demonstrating inflammation as a therapeutic target and also the research value of targeting the TLR system in CVD. In this review, we provide an update of the interplay between TLR signaling, inflammatory mediators, and atherothrombosis, with an aim to identify new therapeutic targets for atherothrombotic CVD.
Collapse
Affiliation(s)
- Ying Zhou
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Peter J. Little
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| | - Liam Downey
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Rizwana Afroz
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Yuao Wu
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Hang T. Ta
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Suowen Xu
- Aab
Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Danielle Kamato
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| |
Collapse
|
12
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Yehualashet AS. Toll-like Receptors as a Potential Drug Target for Diabetes Mellitus and Diabetes-associated Complications. Diabetes Metab Syndr Obes 2020; 13:4763-4777. [PMID: 33311992 PMCID: PMC7724365 DOI: 10.2147/dmso.s274844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease distinguished by hyperglycemia due to disturbance in carbohydrate or lipid metabolism or insulin function. To date, diabetes, and its complications, is established as a global cause of morbidity and mortality. The intended aim during the management of diabetes is to maintain blood glucose close to normal because the majority of patients have poor control of their elevated blood glucose and are highly prone to severe macrovascular and microvascular complications. To decrease the burden of the disease and its complications, scientists from various disciplines are working intensively to identify novel and promising drug targets for diabetes and its complications. Increased and ongoing investigations on mechanisms relating to diabetes and associated complications could potentially consider inflammatory cascades as a promising component of the strategy in the prevention and control of diabetes and its complications. The potential of targeting mediators of inflammation like toll-like receptors (TLRs) are part of current investigation by the scientific community. Hence, the aim of the present review is to discuss the role of TLRs as a potential drug target for diabetes and diabetes associated complications.
Collapse
Affiliation(s)
- Awgichew Shewasinad Yehualashet
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
- Correspondence: Awgichew Shewasinad Yehualashet Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, EthiopiaTel +251935450290 Email
| |
Collapse
|
14
|
Stan RC, Pinto Bonin C, Porto R, Soriano FG, de Camargo MM. Increased grp78 transcription is correlated to reduced tlr4 transcription in patients surviving sepsis. Clin Exp Immunol 2019; 198:273-280. [PMID: 31314904 PMCID: PMC6797895 DOI: 10.1111/cei.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated transcriptional readthrough during stress maintains genome structure and ensures access to genes that are necessary for cellular recovery. A broad number of genes, including of the bacterial sensor Toll-like receptor 4 (TLR-4), are markedly transcribed on initiating the systemic inflammatory response. Here we study the transcriptional patterns of tlr4 and of its modulator grp78 during human sepsis, and establish their correlations with the outcome of patients. We measured the daily tlr4 and grp78 RNA expression levels in peripheral blood of septic patients, immediately after admission to intensive care, and modeled these RNA values with a sine damping function. We obtained negative correlations between the transcription of tlr4 and grp78 RNA in the survivor group. In contrast, such relation is lost in the deceased patients. Loss of transcriptional homeostasis predicted by our model within the initial 4 days of hospitalization was confirmed by death of those patients up to 28 days later.
Collapse
Affiliation(s)
- R. C. Stan
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Cantacuzino Military Medical Research Development National InstituteBucharestRomania
| | - C. Pinto Bonin
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - R. Porto
- University Hospital, University of São PauloSão PauloBrazil
| | - F. G. Soriano
- University Hospital, University of São PauloSão PauloBrazil
- School of MedicineUniversity of São PauloSão PauloBrazil
| | - M. M. de Camargo
- Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| |
Collapse
|
15
|
Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front Immunol 2019; 10:1000. [PMID: 31134076 PMCID: PMC6522942 DOI: 10.3389/fimmu.2019.01000] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Neuronal dysfunction initiates several intracellular signaling cascades to release different proinflammatory cytokines and chemokines, as well as various reactive oxygen species. In addition to neurons, microglia, and astrocytes are also affected by this signaling cascade. This release can either be helpful, neutral or detrimental for cell survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to activate NF-κB and pro-IL-1β, both of which are responsible for neuroinflammation and linked to the pathogenesis of different age-related neurological conditions. However, herein, recent aspects of polyphenols in the treatment of neurodegenerative diseases are assessed, with a focus on TLR regulation by polyphenols. Different polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes, and lignans can potentially target TLR signaling in a distinct pathway. Further, some polyphenols can suppress overexpression of inflammatory mediators through TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed, neurodegeneration etiology is complex and yet to be completely understood, it may be that targeting TLRs could reveal a number of molecular and pharmacological aspects related to neurodegenerative diseases. Thus, activating TLR signaling modulation via natural resources could provide new therapeutic potentiality in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Md Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju-si, South Korea
| | - Joonsoo Kim
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Md Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea.,Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju-si, South Korea
| |
Collapse
|
16
|
Li H, Chen L, Ma X, Cui P, Lang W, Hao J. Shared Gene Expression Between Multiple Sclerosis and Ischemic Stroke. Front Genet 2019; 9:598. [PMID: 30809253 PMCID: PMC6379658 DOI: 10.3389/fgene.2018.00598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Patients with multiple sclerosis (MS) appear to have an increased risk of ischemic stroke (IS). Although MS and IS have very different phenotypes, gene-based and pathway-based analyses of large-scale genome-wide association studies (GWAS) have increasingly enhanced our understanding of these two diseases. Whether there are common molecular mechanisms connecting MS and IS is still unclear. Here, we describe the outcome of gene-based test and pathway-based analysis of GWAS datasets that explored potential gene expression links between MS and IS. After identifying significant gene sets individually of MS and IS, we performed pathway-based analysis in four biological pathway databases (KEGG, PANTHER, REACTOME, and WikiPathways) and GO categories. We discovered that there were 9 shared pathways between MS and IS in KEGG, 2 in PANTHER, 14 in REACTOME, 1 in WikiPathways, and 194 in GO annotations (p < 0.05). These results provide an improved understanding about possible shared mechanisms and treatments strategies for MS and IS. They also provide some basis for further studies of how these two diseases are linked at the molecular level.
Collapse
Affiliation(s)
- He Li
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Lin Chen
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Pan Cui
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Wenjing Lang
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
17
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
18
|
Tajalli-Nezhad S, Karimian M, Beyer C, Atlasi MA, Azami Tameh A. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4. Cell Mol Life Sci 2019; 76:523-537. [PMID: 30377701 PMCID: PMC11105485 DOI: 10.1007/s00018-018-2953-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is the most common cerebrovascular disease and considered as a worldwide leading cause of death. After cerebral ischemia, different pathophysiological processes including neuroinflammation, invasion and aggregation of inflammatory cells and up-regulation of cytokines occur simultaneously. In this respect, Toll-like receptors (TLRs) are the first identified important mediators for the activation of the innate immune system and are widely expressed in glial cells and neurons following brain trauma. TLRs are also able to interact with endogenous and exogenous molecules released during ischemia and can increase tissue damage. Particularly, TLR2 and TLR4 activate different downstream inflammatory signaling pathways. In addition, TLR signaling can alternatively play a role for endogenous neuroprotection. In this review, the gene and protein structures, common genetic polymorphisms of TLR2 and TLR4, TLR-related molecular pathways and their putative role after ischemic stroke are delineated. Furthermore, the relationship between neurosteroids and TLRs as neuroprotective mechanism is highlighted in the context of brain ischemia.
Collapse
Affiliation(s)
- Saeedeh Tajalli-Nezhad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Shimamura M, Nakagami H, Shimizu H, Mukai H, Watanabe R, Okuzono T, Kawano T, Ikeda Y, Hayashi H, Yoshida S, Ju N, Mochizuki H, Morishita R. Development of a novel RANKL-based peptide, microglial healing peptide1-AcN (MHP1-AcN), for treatment of ischemic stroke. Sci Rep 2018; 8:17770. [PMID: 30538259 PMCID: PMC6290023 DOI: 10.1038/s41598-018-35898-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Although the regulation of post-ischemic inflammation is an important strategy to treat ischemic stroke, all clinical trials have failed to show its efficacy. To solve the problem, we previously developed a novel partial peptide of RANKL, microglial healing peptide 1 (MHP1), which could reduce ischemic injury by inhibiting Toll-like receptor (TLR) induced inflammation. However, optimization of the peptide was necessary to increase the stability and efficacies for clinical use. According to information gathered through HPLC/MS in serum, we have newly designed a series of modified MHP1 peptides and have found that N-terminal acetylation and C-terminal amidation in MHP1 (MHP1-AcN), can strengthen its anti-inflammatory effects and increase its stability with anti-osteoclastogenic effects. Anti-TLR activity was reported to be reduced in MHP1 when incubated at 37 °C for 24 hrs, but MHP1-AcN could keep the activity under the same condition. The therapeutic effect of MHP1-AcN was observed in transient ischemic stroke model at lower dose than MHP1. Importantly, MHP1-AcN did not affect thrombolytic effects of tissue plasminogen activator (tPA) and inhibited tPA-induced hemorrhagic transformation. These findings indicated that MHP1-AcN was stable and effective anti-TLR signal peptide and could be a promising agent for treating stroke patients receiving tPA and endovascular therapy.
Collapse
Affiliation(s)
- Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan. .,Department of Neurology, Osaka University Graduate School of Medicine, Centre of Medical Innovation and Translational Research (6th floor, Room 0612B), Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Hironori Nakagami
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideo Shimizu
- Department of Internal Medicine, Osaka Dental University, Osaka, Japan
| | - Hideyuki Mukai
- Tsukuba Laboratories, Nemoto Science Co., Ltd, Ibaraki, Japan
| | | | - Takeshi Okuzono
- Contract Research Department, Drug Development Solutions Center, Drug Development Solutions Division, Sekisui Medical Co., Ltd, Ibaraki, Japan
| | - Tomohiro Kawano
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Centre of Medical Innovation and Translational Research (6th floor, Room 0612B), Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuka Ikeda
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nan Ju
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Centre of Medical Innovation and Translational Research (6th floor, Room 0612B), Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
20
|
Goldshmit Y, Jona G, Schmukler E, Solomon S, Pinkas-Kramarski R, Ruban A. Blood Glutamate Scavenger as a Novel Neuroprotective Treatment in Spinal Cord Injury. J Neurotrauma 2018; 35:2581-2590. [DOI: 10.1089/neu.2017.5524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yona Goldshmit
- Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Australian Regenerative Medicine Institute, Monash Biotechnology, Clayton, Victoria, Australia
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Schmukler
- Department of Neurobiology, Tel-Aviv University, Tel Aviv, Israel
| | - Shira Solomon
- Department of Neurobiology, Tel-Aviv University, Tel Aviv, Israel
| | | | - Angela Ruban
- Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Li M, Liu J, Bi Y, Chen J, Zhao L. Potential Medications or Compounds Acting on Toll-like Receptors in Cerebral Ischemia. Curr Neuropharmacol 2018; 16:160-175. [PMID: 28571545 PMCID: PMC5883378 DOI: 10.2174/1570159x15666170601125139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Toll-like receptors play an integral role in the process of inflammatory response after ischemic in-jury. The therapeutic potential acting on TLRs is worth of evaluations. The aim of this review was to introduce readers some potential medications or compounds which could alleviate the ischemic damage via TLRs. Methods: Research articles online on TLRs were reviewed. Categorizations were listed according to the follows, methods acting on TLRs directly, modulations of MyD88 or TRIF signaling pathway, and the ischemic tolerance induced by the pre-conditioning or postconditioning with TLR ligands or minor cerebral ischemia via acting on TLRs. Results: There are only a few studies concerning on direct effects. Anti-TLR4 or anti-TLR2 therapies may serve as promis-ing strategies in acute events. Approaches targeting on inhibiting NF-κB signaling pathway and enhancing interferon regu-latory factor dependent signaling have attracted great interests. Not only drugs but compounds extracted from traditional Chinese medicine have been used to identify their neuroprotective effects against cerebral ischemia. In addition, many re-searchers have reported the positive therapeutic effects of preconditioning with agonists of TLR2, 3, 4, 7 and 9. Several trails have also explored the potential of postconditioning, which provide a new idea in ischemic treatments. Considering all the evidence above, many drugs and new compounds may have great potential to reduce ischemic insults. Conclusion: This review will focus on promising therapies which exerting neuroprotective effects against ischemic injury by acting on TLRs.
Collapse
Affiliation(s)
- Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Neurology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Ying Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Therapeutic Effects of Systemic Administration of the Novel RANKL-Modified Peptide, MHP1, for Ischemic Stroke in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4637084. [PMID: 30151382 PMCID: PMC6091369 DOI: 10.1155/2018/4637084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Microglial healing peptide 1, "MHP1", is a newly developed synthetic peptide composed of the DE and a part of the EF loop of the receptor activator of nuclear factor-кB (NFκB) ligand (RANKL). Our previous report demonstrated that MHP1 significantly inhibits Toll-like receptor (TLR) 2- and 4-induced inflammation in microglia/macrophages through RANK signaling without osteoclast activation. However, its inhibitory effects on ischemic stroke when administered intravenously have not been clarified. First, we examined whether MHP1 could penetrate the brain parenchyma. Intravenous injection of FITC-conjugated MHP1 demonstrated that MHP1 could cross the blood-brain-barrier in peri-infarct regions, but not in intact regions. Because MHP1 in the parenchyma was reduced at 60 minutes after injection, we speculated that continuous injection was necessary to achieve the therapeutic effects. To check the possible deactivation of MHP1 by continuous injection, the anti-inflammatory effects were checked in MG6 cells after incubation in 37°C for 24 hours. Although the inhibitory effects for IL6 and TNFα were reduced compared to nonincubated MHP1, its anti-inflammatory efficacy remained, indicating that continuous administration with pump was possible. The single and successive continuous administration of MHP1 starting from 4 or 6 hours after cerebral ischemia successfully reduced infarct volume and prevented the exacerbation of neurological deficits with reduced activation of microglia/macrophages and inflammatory cytokines. Different from recombinant RANKL, MHP1 did not activate osteoclasts in the paralytic arm. Although further modification of MHP1 is necessary for stabilization, the MHP1 could be a novel agent for the treatment ischemic stroke.
Collapse
|
23
|
Welling LC, Welling MS, Figueiredo EG. Scavenger and Spinal Cord Injury: Light at the End of the Tunnel. World Neurosurg 2018; 114:368. [PMID: 29689405 DOI: 10.1016/j.wneu.2018.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Leonardo C Welling
- Department of Neurological Surgery, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Mariana S Welling
- Department of Neurology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | |
Collapse
|
24
|
The Role of Toll-Like Receptors and Vitamin D in Cardiovascular Diseases-A Review. Int J Mol Sci 2017; 18:ijms18112252. [PMID: 29077004 PMCID: PMC5713222 DOI: 10.3390/ijms18112252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Therefore, a better understanding of their pathomechanisms and the subsequent implementation of optimal prophylactic and therapeutic strategies are of utmost importance. A growing body of evidence states that low-grade inflammation is a common feature for most of the cardiovascular diseases in which the contributing factors are the activation of toll-like receptors (TLRs) and vitamin D deficiency. In this article, available data concerning the association of cardiovascular diseases with TLRs and vitamin D status are reviewed, followed by a discussion of new possible approaches to cardiovascular disease management.
Collapse
|
25
|
Anttila JE, Whitaker KW, Wires ES, Harvey BK, Airavaara M. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:3-14. [PMID: 27389423 PMCID: PMC5214845 DOI: 10.1016/j.pnpbp.2016.07.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the leading cause of disability in adults. Drug treatments that target stroke-induced pathological mechanisms and promote recovery are desperately needed. In the brain, an ischemic event triggers major inflammatory responses that are mediated by the resident microglial cells. In this review, we focus on the microglia activation after ischemic brain injury as a target of immunomodulatory therapeutics. We divide the microglia-mediated events following ischemic stroke into three categories: acute, subacute, and long-term events. This division encompasses the spatial and temporal dynamics of microglia as they participate in the pathophysiological changes that contribute to the symptoms and sequela of a stroke. The importance of Toll-like receptor (TLR) signaling in the outcomes of these pathophysiological changes is highlighted. Increasing evidence shows that microglia have a complex role in stroke pathophysiology, and they mediate both detrimental and beneficial effects on stroke outcome. So far, most of the pharmacological studies in experimental models of stroke have focused on neuroprotective strategies which are impractical for clinical applications. Post-ischemic inflammation is long lasting and thus, could provide a therapeutic target for novel delayed drug treatment. However, more studies are needed to elucidate the role of microglia in the recovery process from an ischemic stroke and to evaluate the therapeutic potential of modulating post-ischemic inflammation to promote functional recovery.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA; Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen, Proving Ground, MD 21005, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland.
| |
Collapse
|
26
|
Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol 2017; 8:508. [PMID: 28769820 PMCID: PMC5516312 DOI: 10.3389/fphys.2017.00508] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
The recognition of invading pathogens and endogenous molecules from damaged tissues by toll-like receptors (TLRs) triggers protective self-defense mechanisms. However, excessive TLR activation disrupts the immune homeostasis by sustained pro-inflammatory cytokines and chemokines production and consequently contributes to the development of many inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE), infection-associated sepsis, atherosclerosis, and asthma. Therefore, inhibitors/antagonists targeting TLR signals may be beneficial to treat these disorders. In this article, we first briefly summarize the pathophysiological role of TLRs in the inflammatory diseases. We then focus on reviewing the current knowledge in both preclinical and clinical studies of various TLR antagonists/inhibitors for the prevention and treatment of inflammatory diseases. These compounds range from conventional small molecules to therapeutic biologics and nanodevices. In particular, nanodevices are emerging as a new class of potent TLR inhibitors for their unique properties in desired bio-distribution, sustained circulation, and preferred pharmacodynamic and pharmacokinetic profiles. More interestingly, the inhibitory activity of these nanodevices can be regulated through precise nano-functionalization, making them the next generation therapeutics or “nano-drugs.” Although, significant efforts have been made in developing different kinds of new TLR inhibitors/antagonists, only limited numbers of them have undergone clinical trials, and none have been approved for clinical uses to date. Nevertheless, these findings and continuous studies of TLR inhibition highlight the pharmacological regulation of TLR signaling, especially on multiple TLR pathways, as future promising therapeutic strategy for various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Ye Xiong
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Hong Yang
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
27
|
Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017; 15:30. [PMID: 28399863 PMCID: PMC5387212 DOI: 10.1186/s12951-017-0264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neurological diseases of diverse aetiologies have significant effects on the quality of life of patients. The limited self-repairing capacity of the brain is considered to be the origin of the irreversible and progressive nature of many neurological diseases. Therefore, neuroprotection is an important goal shared by many clinical neurologists and neuroscientists. In this review, we discuss the main obstacles that have prevented the implementation of experimental neuroprotective strategies in humans and propose alternative avenues for the use of neuroprotection as a feasible therapeutic approach. Special attention is devoted to nanotechnology, which is a new approach for developing highly specific and localized biomedical solutions for the study of the multiple mechanisms involved in stroke. Nanotechnology is contributing to personalized neuroprotection by allowing us to identify mechanisms, determine optimal therapeutic windows, and protect patients from brain damage. In summary, multiple aspects of these new players in biomedicine should be considered in future in vivo and in vitro studies with the aim of improving their applicability to clinical studies.
Collapse
Affiliation(s)
- Andrés Da Silva-Candal
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Zulema Vargas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - José Rivas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Toll-Like Receptor 3 and Interferon β mRNA Expressions Were Increased in Peripheral Blood of Ischemic Stroke Patients with Good Outcome. J Stroke Cerebrovasc Dis 2017; 26:559-566. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
|
29
|
Gu L, Zhou J, Tan J, Yang J, Shen T, Jiang H, Tang Q. Association of TLR8 gene rs3764880 polymorphisms with susceptibility and lipid metabolism- and inflammation response-related quantitative traits of ischemic stroke in southern Chinese Han male population. J Neurol Sci 2016; 370:94-99. [DOI: 10.1016/j.jns.2016.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
30
|
Bustamante A, Simats A, Vilar-Bergua A, García-Berrocoso T, Montaner J. Blood/Brain Biomarkers of Inflammation After Stroke and Their Association With Outcome: From C-Reactive Protein to Damage-Associated Molecular Patterns. Neurotherapeutics 2016; 13:671-684. [PMID: 27538777 PMCID: PMC5081112 DOI: 10.1007/s13311-016-0470-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stroke represents one of the most important causes of disability and death in developed countries. However, there is a lack of prognostic tools in clinical practice to monitor the neurological condition and predict the final outcome. Blood biomarkers have been proposed and studied in this indication; however, no biomarker is currently used in clinical practice. The stroke-related neuroinflammatory processes have been associated with a poor outcome in stroke, as well as with poststroke complications. In this review, we focus on the most studied blood biomarkers of this inflammatory processes, cytokines, and C-reactive protein, evaluating its association with outcome and complications in stroke through the literature, and performing a systematic review on the association of C-reactive protein and functional outcome after stroke. Globally, we identified uncertainty with regard to the association of the evaluated biomarkers with stroke outcome, with little added value on top of clinical predictors such as age or stroke severity, which makes its implementation unlikely in clinical practice for global outcome prediction. Regarding poststroke complications, despite being more practical scenarios in which to make medical decisions following a biomarker prediction, not many studies have been performed, although there are now some candidates for prediction of poststroke infections. Finally, as potential new candidates, we reviewed the pathophysiological actions of damage-associated molecular patterns as triggers of the neuroinflammatory cascade of stroke, and their possible use as biomarkers.
Collapse
Affiliation(s)
- Alejandro Bustamante
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Andrea Vilar-Bergua
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016; 68:142-67. [PMID: 26721702 DOI: 10.1124/pr.114.010090] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
32
|
Gu L, Zhou J, Tan J, Su L, Wei Q, Jiang H, Liang B, Tang Q. TLR7 rs2897827 Polymorphism Affects TLR7 Gene mRNA Expression and Serum Apolipoprotein A1 Level of Ischemic Stroke Patients in a Chinese Han Population. J Mol Neurosci 2016; 59:397-403. [PMID: 27427388 DOI: 10.1007/s12031-016-0773-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/25/2016] [Indexed: 01/27/2023]
Abstract
Stroke is a multi-factorial disorder that has become the leading cause of death and disability worldwide. Previous studies reported that TLR7 mRNA expression is associated with poor outcome of ischemic stroke (IS). This study aimed to assess whether TLR7 mRNA expression affects IS occurrence, as well as the association of TLR7 rs2897827 with susceptibility to IS and TLR7 mRNA expression and serum apolipoprotein and lipid levels in a Chinese Han population. A total of 816 stroke patients and 816 healthy controls were included in this study. mRNA expression was determined by quantitative real-time PCR. The Sequenom MassARRAY iPLEX platform was used to genotype the TLR7 rs2897827 polymorphism. TLR7 mRNA expression of the IS cases was statistically significantly higher than that of the controls in the male or female group (male, P = 0.014; female, P = 0.025). In the male IS cases, TLR7 mRNA expression of the T allele carriers was statistically significantly higher than that of the C allele carriers (P = 0.018). However, a significant difference was not observed in the female cases (P = 0.545). In either the male or female group, the distribution of genotype or allele had no statistical significance (P > 0.050). The ApoA1 level of the T carriers was statistically significantly higher than the C carriers in males (t = -2.383, P = 0.020); however, the ApoB and lipid levels were not associated with rs2897827 (P > 0.050). In female patients, no significant difference was observed between different genotypic/allelic carriers in serum apolipoprotein and lipid levels (all P > 0.050). The expression of the TLR7 gene may affect IS occurrence. TLR7 gene rs2897827 may influence TLR7 mRNA expression and the plasma ApoA1 level in male IS patients.
Collapse
Affiliation(s)
- Lian Gu
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinying Zhou
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinjing Tan
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiugui Wei
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Haiyun Jiang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baoyun Liang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qianli Tang
- You Jiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi, 533000, China.
| |
Collapse
|
33
|
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol 2016; 142:23-44. [PMID: 27166859 DOI: 10.1016/j.pneurobio.2016.05.001] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/20/2016] [Accepted: 05/01/2016] [Indexed: 02/08/2023]
Abstract
Microglia/macrophages are the major immune cells involved in the defence against brain damage. Their morphology and functional changes are correlated with the release of danger signals induced by stroke. These cells are normally responsible for clearing away dead neural cells and restoring neuronal functions. However, when excessively activated by the damage-associated molecular patterns following stroke, they can produce a large number of proinflammatory cytokines that can disrupt neural cells and the blood-brain barrier and influence neurogenesis. These effects indicate the important roles of microglia/macrophages in the pathophysiological processes of stroke. However, the modifiable and adaptable nature of microglia/macrophages may also be beneficial for brain repair and not just result in damage. These distinct roles may be attributed to the different microglia/macrophage phenotypes because the M1 population is mainly destructive, while the M2 population is neuroprotective. Additionally, different gene expression signature changes in microglia/macrophages have been found in diverse inflammatory milieus. These biofunctional features enable dual roles for microglia/macrophages in brain damage and repair. Currently, it is thought that the proper inflammatory milieu may provide a suitable microenvironment for neurogenesis; however, detailed mechanisms underlying the inflammatory responses that initiate or inhibit neurogenesis remain unknown. This review summarizes recent progress concerning the mechanisms involved in brain damage, repair and regeneration related to microglia/macrophage activation and phenotype transition after stroke. We also argue that future translational studies should be targeting multiple key regulating molecules to improve brain repair, which should be accompanied by the concept of a "therapeutic time window" for sequential therapies.
Collapse
Affiliation(s)
- Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Xinqiao zhengjie No.183, Shapingba District Chongqing, 400037, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Xinqiao zhengjie No.183, Shapingba District Chongqing, 400037, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Xinqiao zhengjie No.183, Shapingba District Chongqing, 400037, China.
| |
Collapse
|
34
|
Shen YC, Lu CK, Liou KT, Hou YC, Lin YL, Wang YH, Sun HJ, Liao KH, Wang HW. Common and unique mechanisms of Chinese herbal remedies on ischemic stroke mice revealed by transcriptome analyses. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:370-382. [PMID: 26239152 DOI: 10.1016/j.jep.2015.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Four traditional Chinese herbal remedies (CHR) including Buyang Huanwu decoction (BHD), Xuefu Zhuyu decoction (XZD), Tianma Gouteng decoction (TGD) and Shengyu decoction (SYD) are popular used in treating brain-related dysfunction clinically with different syndrome/pattern based on traditional Chinese medicine (TCM) principles, yet their neuroprotective mechanisms are still unclear. MATERIALS AND METHODS Mice were subjected to an acute ischemic stroke to examine the efficacy and molecular mechanisms of action underlying these CHR. RESULTS CHR treatment significantly enhanced the survival rate of stroke mice, with BHD being the most effective CHR. All CHR were superior to recombinant tissue-type plasminogen activator (rt-PA) treatment in successfully ameliorating brain function, infarction, and neurological deficits in stroke mice that also paralleled to improvements in blood-brain barrier damage, inflammation, apoptosis, and neurogenesis. Transcriptome analyses reveals that a total of 774 ischemia-induced probe sets were significantly modulated by four CHR, including 52 commonly upregulated genes and 54 commonly downregulated ones. Among them, activation of neurogenesis-associated signaling pathways and down-regulating inflammation and apoptosis pathways are key common mechanisms in ischemic stroke protection by all CHR. Besides, levels of plasma CX3CL1 and S100a9 in patients could be used as biomarkers for therapeutic evaluation before functional recovery could be observed. CONCLUSION Our results suggest that using CHR, a combinatory cocktail therapy, is a better way than rt-PA for treating cerebral ischemic-associated diseases through modulating a common as well as a specific group of genes/pathways that may partially explain the syndrome differentiation and treatment principle in TCM.
Collapse
Affiliation(s)
- Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Taipei, Taiwan; Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan; National Taipei University of Nursing and Health Science, , Taipei,Taiwan.
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Kuo-Tong Liou
- Department of Chinese Martial Arts and Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Yu-Chang Hou
- Department of Traditional Medicine, Tao-yuan General Hospital, Department of Health, Tao-yuan, Taiwan; Department of Bioscience Technology, Chuan‑yuan Christian University, Taoyuan, Taiwan
| | - Yun-Lan Lin
- National Research Institute of Chinese Medicine, Taipei, Taiwan; School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yea-Hwey Wang
- Division of Neurovascular Disease, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; National Taipei University of Nursing and Health Science, , Taipei,Taiwan
| | - Hsing-Jen Sun
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ko-Hsun Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Cancer Research Center and Genome Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan; Departments of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Brand FJ, de Rivero Vaccari JC, Mejias NH, Alonso OF, de Rivero Vaccari JP. RIG-I contributes to the innate immune response after cerebral ischemia. JOURNAL OF INFLAMMATION-LONDON 2015; 12:52. [PMID: 26379474 PMCID: PMC4570046 DOI: 10.1186/s12950-015-0101-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 12/23/2022]
Abstract
Background Focal cerebral ischemia induces an inflammatory response that when exacerbated contributes to deleterious outcomes. The molecular basis regarding the regulation of the innate immune response after focal cerebral ischemia remains poorly understood. Methods In this study we examined the expression of retinoic acid-inducible gene (RIG)-like receptor-I (RIG-I) and its involvement in regulating inflammation after ischemia in the brain of rats subjected to middle cerebral artery occlusion (MCAO). In addition, we studied the regulation of RIG-I after oxygen glucose deprivation (OGD) in astrocytes in culture. Results In this study we show that in the hippocampus of rats, RIG-I and IFN-α are elevated after MCAO. Consistent with these results was an increased in RIG-I and IFN-α after OGD in astrocytes in culture. These data are consistent with immunohistochemical analysis of hippocampal sections, indicating that in GFAP-positive cells there was an increase in RIG-I after MCAO. In addition, in this study we have identified n-propyl gallate as an inhibitor of IFN-α signaling in astrocytes. Conclusion Our findings suggest a role for RIG-I in contributing to the innate immune response after focal cerebral ischemia.
Collapse
Affiliation(s)
- Frank J Brand
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Juan Carlos de Rivero Vaccari
- Louisiana State University School of Medicine/Ochsner Medical Center - Ophthalmology Department, New Orleans, LA 70112 USA
| | - Nancy H Mejias
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Ofelia F Alonso
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
36
|
Zhang XJ, Zhang P, Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015; 66:222-47. [PMID: 26077571 DOI: 10.1161/hypertensionaha.115.04898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.).
| |
Collapse
|
37
|
PPARγ-Dependent and -Independent Inhibition of the HMGB1/TLR9 Pathway by Eicosapentaenoic Acid Attenuates Ischemic Brain Damage in Ovariectomized Rats. J Stroke Cerebrovasc Dis 2015; 24:1187-95. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
|
38
|
Wang PF, Xiong XY, Chen J, Wang YC, Duan W, Yang QW. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment. J Neuroinflammation 2015; 12:80. [PMID: 25928750 PMCID: PMC4422156 DOI: 10.1186/s12974-015-0301-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury by regulating the TLR signaling pathway following ischemia in brain tissue (mainly, the inhibition of the TLR4/NF-κB signaling pathway and the enhancement of the interferon regulatory factor-dependent signaling), resulting in TLR ischemic tolerance. Additionally, recent studies found that postconditioning with TLR ligands after cerebral ischemia can also reduce ischemic damage through the regulation of the TLR signaling pathway, showing a significant therapeutic effect against cerebral ischemia. These studies suggest that the ischemic tolerance mediated by TLRs can serve as an important target for the prevention and treatment of cerebral ischemia. On the basis of describing the function and mechanism of TLRs in mediating cerebral ischemic damage, this review focuses on the mechanisms of cerebral ischemic tolerance induced by the preconditioning and postconditioning of TLRs and discusses the clinical application of TLRs for ischemic tolerance.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China. .,Department of Neurology, Weihai municipal Hospital, Weihai, 264200, China.
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Jing Chen
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
39
|
Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 2015; 12:73. [PMID: 25886362 PMCID: PMC4409750 DOI: 10.1186/s12974-015-0294-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/02/2015] [Indexed: 11/14/2022] Open
Abstract
Background Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. Methods Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. Results Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. Conclusions Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.
Collapse
|
40
|
Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front Cell Neurosci 2014; 8:319. [PMID: 25352781 PMCID: PMC4196547 DOI: 10.3389/fncel.2014.00319] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/23/2014] [Indexed: 12/31/2022] Open
Abstract
Post-ischemic inflammation is important in ischemic stroke pathology. However, details of the inflammation process, its resolution after stroke and its effect on pathology and neural damage have not been clarified. Brain swelling, which is often fatal in ischemic stroke patients, occurs at an early stage of stroke due to endothelial cell injury and severe inflammation by infiltrated mononuclear cells including macrophages, neutrophils, and lymphocytes. At early stage of inflammation, macrophages are activated by molecules released from necrotic cells [danger-associated molecular patterns (DAMPs)], and inflammatory cytokines and mediators that increase ischemic brain damage by disruption of the blood–brain barrier are released. After post-ischemic inflammation, macrophages function as scavengers of necrotic cell and brain tissue debris. Such macrophages are also involved in tissue repair and neural cell regeneration by producing tropic factors. The mechanisms of inflammation resolution and conversion of inflammation to neuroprotection are largely unknown. In this review, we summarize information accumulated recently about DAMP-induced inflammation and the neuroprotective effects of inflammatory cells, and discuss next generation strategies to treat ischemic stroke.
Collapse
Affiliation(s)
- Takashi Shichita
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
41
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
42
|
Li Q, Wang S, Huang CC, Yu M, Shao J. Meta-analysis based variable selection for gene expression data. Biometrics 2014; 70:872-80. [PMID: 25196635 DOI: 10.1111/biom.12213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022]
Abstract
Recent advance in biotechnology and its wide applications have led to the generation of many high-dimensional gene expression data sets that can be used to address similar biological questions. Meta-analysis plays an important role in summarizing and synthesizing scientific evidence from multiple studies. When the dimensions of datasets are high, it is desirable to incorporate variable selection into meta-analysis to improve model interpretation and prediction. According to our knowledge, all existing methods conduct variable selection with meta-analyzed data in an "all-in-or-all-out" fashion, that is, a gene is either selected in all of studies or not selected in any study. However, due to data heterogeneity commonly exist in meta-analyzed data, including choices of biospecimens, study population, and measurement sensitivity, it is possible that a gene is important in some studies while unimportant in others. In this article, we propose a novel method called meta-lasso for variable selection with high-dimensional meta-analyzed data. Through a hierarchical decomposition on regression coefficients, our method not only borrows strength across multiple data sets to boost the power to identify important genes, but also keeps the selection flexibility among data sets to take into account data heterogeneity. We show that our method possesses the gene selection consistency, that is, when sample size of each data set is large, with high probability, our method can identify all important genes and remove all unimportant genes. Simulation studies demonstrate a good performance of our method. We applied our meta-lasso method to a meta-analysis of five cardiovascular studies. The analysis results are clinically meaningful.
Collapse
Affiliation(s)
- Quefeng Li
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, U.S.A
| | | | | | | | | |
Collapse
|
43
|
Bustamante A, Sobrino T, Giralt D, García-Berrocoso T, Llombart V, Ugarriza I, Espadaler M, Rodríguez N, Sudlow C, Castellanos M, Smith CJ, Rodríguez-Yánez M, Waje-Andreassen U, Tanne D, Oto J, Barber M, Worthmann H, Wartenberg KE, Becker KJ, Chakraborty B, Oh SH, Whiteley WN, Castillo J, Montaner J. Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol 2014; 274:215-24. [PMID: 25091431 DOI: 10.1016/j.jneuroim.2014.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/24/2022]
Abstract
We aimed to quantify the association of blood interleukin-6 (IL-6) concentrations with poor outcome after stroke and its added predictive value over clinical information. Meta-analysis of 24 studies confirmed this association with a weighted mean difference of 3.443 (1.592-5.294) pg/mL, despite high heterogeneity and publication bias. Individual participant data including 4112 stroke patients showed standardized IL-6 levels in the 4th quartile were independently associated with poor outcome (OR=2.346 (1.814-3.033), p<0.0001). However, the additional predictive value of IL-6 was moderate (IDI=1.5%, NRI=5.35%). Overall these results indicate an unlikely translation of IL-6 into clinical practice for this purpose.
Collapse
Affiliation(s)
- Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain; Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Victor Llombart
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | | | - Marc Espadaler
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | | | - Cathie Sudlow
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Mar Castellanos
- Department of Neurology, Hospital Universitario Dr. Josep Trueta of Girona, Biomedical Research Institute of Girona, Spain
| | - Craig J Smith
- Stroke and Vascular Research Centre, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, UK
| | - Manuel Rodríguez-Yánez
- Department of Neurology, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - David Tanne
- Sagol Neuroscience Center, Chaim Sheba Medical Center and Tel Aviv University, Israel
| | - Jun Oto
- University of Tokushima Graduate School, Japan
| | - Mark Barber
- Stroke Managed Clinical Network, NHS Lanarkshire, UK
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Katja E Wartenberg
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Kyra J Becker
- Department of Neurology and Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | | | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain; Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
44
|
Abstract
Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of inflammatory response during infections. In addition, TLRs influence the body's response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation before ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of the reprogramming of TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain barrier. Pharmacologic modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and immediate therapies targeting ischemic brain injury.
Collapse
|
45
|
Roquilly A, Braudeau C, Cinotti R, Dumonte E, Motreul R, Josien R, Asehnoune K. Impaired blood dendritic cell numbers and functions after aneurysmal subarachnoid hemorrhage. PLoS One 2013; 8:e71639. [PMID: 23951210 PMCID: PMC3739744 DOI: 10.1371/journal.pone.0071639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
Previous Presentation Portions of this study were presented at the Annual Congress of Société Française d’Anesthésie et de Réanimation in Paris, September 2012. Background Toll-like receptor (TLR) agonists are promising therapy for the prevention of nosocomial infections in critical ill patients. We aimed to analyze the TLR-reactivity of circulating dendritic cells (DC) as assessed by cytokine production after an ex vivo challenge with TLR agonists in aneurysmal subarachnoid hemorrhage (SAH) patients. Methods and Findings A single-center prospective observational study took place in one intensive care unit of a teaching hospital. Blood samples were harvested on days 2, 5 and 10 in 21 severe SAH patients requiring mechanical ventilation and 17 healthy controls. DC production of cytokines (Tumour Necrosis Factor, TNF-α; Interleukin, IL-12; and Interferon, IFN-α) was assessed by intracellular immunostaining on TLR-3, 4, 7/8 and 9 stimulations. SAH patients had decreased numbers of blood myeloid (mDCs) and plasmacytoid DCs (pDCs) on days 2, 5 and 10. Compared with the healthy controls, the frequency of mDCs producing TNF-α after TLR-3 stimulation was decreased in the SAH patients. The frequency of myeloid DCs producing IL-12 after TLR-3 and 4 stimulations was also decreased in the SAH patients. In contrast, the mDCs response to TLR-7/8 was not impaired in the SAH patients. The frequency of pDCs producing TNF-α+ and IFN-α+ on TLR-7/8 stimulation were reduced at all of the tested times in the SAH patients, whereas reactivity to TLR-9 was preserved. On day 2, the pDCs from non-survivor patients (n = 8) had a decreased ability to produce IFN-α on TLR-9 stimulation compared with the survivors. Conclusions These data suggest functional abnormalities of circulating pDCs and mDCs that could be important for immunomodulation after SAH.
Collapse
Affiliation(s)
- Antoine Roquilly
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
| | - Cécile Braudeau
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Raphael Cinotti
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Erwan Dumonte
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Rémi Motreul
- Service d’Anesthésie Réanimation chirurgicale, Hôpital Guillaume et René Laennec, Centre Hospitalier Universitaire, Nantes, France
| | - Régis Josien
- INSERM Unité Mixte de Recherche 1064 “Centre de Recherche en Transplantation et Immunologie”, Nantes, France
- Institut de Transplantation –Urologie – Néphrologie, Centre Hospitalier Universitaire, Nantes, France
- Laboratoire d’Immunologie, Centre d’Immunomonitorage Nantes Atlantique, Centre Hospitalier Universitaire, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 "Thérapeutiques cliniques et expérimentales des infections", Faculté de Médecine, Université de Nantes, Nantes, France
- Service d’Anesthésie Réanimation chirurgicale - Hôtel Dieu, Centre Hospitalier Universitaire, Nantes, France
- * E-mail:
| |
Collapse
|
46
|
Cui G, Ye X, Zuo T, Zhao H, Zhao Q, Chen W, Hua F. Chloroquine pretreatment inhibits toll-like receptor 3 signaling after stroke. Neurosci Lett 2013; 548:101-4. [DOI: 10.1016/j.neulet.2013.02.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/28/2022]
|
47
|
Olsen KS, Fenton C, Frøyland L, Waaseth M, Paulssen RH, Lund E. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort. PLoS One 2013; 8:e67270. [PMID: 23825649 PMCID: PMC3692510 DOI: 10.1371/journal.pone.0067270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 05/16/2013] [Indexed: 11/23/2022] Open
Abstract
High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a “physiological switch” towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ) signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may influence the onset and progression of disease.
Collapse
|
48
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
49
|
Campos F, Pérez-Mato M, Agulla J, Blanco M, Barral D, Almeida Á, Brea D, Waeber C, Castillo J, Ramos-Cabrer P. Glutamate excitoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke. PLoS One 2012; 7:e44191. [PMID: 22952923 PMCID: PMC3429451 DOI: 10.1371/journal.pone.0044191] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Glutamate excitotoxicity, metabolic rate and inflammatory response have been associated to the deleterious effects of temperature during the acute phase of stroke. So far, the association of temperature with these mechanisms has been studied individually. However, the simultaneous study of the influence of temperature on these mechanisms is necessary to clarify their contributions to temperature-mediated ischemic damage. We used non-invasive Magnetic Resonance Spectroscopy to simultaneously measure temperature, glutamate excitotoxicity and metabolic rate in the brain in animal models of ischemia. The immune response to ischemia was measured through molecular serum markers in peripheral blood. We submitted groups of animals to different experimental conditions (hypothermia at 33°C, normothermia at 37°C and hyperthermia at 39°C), and combined these conditions with pharmacological modulation of glutamate levels in the brain through systemic injections of glutamate and oxaloacetate. We show that pharmacological modulation of glutamate levels can neutralize the deleterious effects of hyperthermia and the beneficial effects of hypothermia, however the analysis of the inflammatory response and metabolic rate, demonstrated that their effects on ischemic damage are less critical than glutamate excitotoxity. We conclude that glutamate excitotoxicity is the key molecular mechanism which is influenced by body temperature during the acute phase of brain stroke.
Collapse
Affiliation(s)
- Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
- * E-mail: (PRC); (FC)
| | - María Pérez-Mato
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Jesús Agulla
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Miguel Blanco
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - David Barral
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Ángeles Almeida
- Research Unit, Hospital Universitario de Salamanca and Institute of Health Sciences of Castilla and León, Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - David Brea
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Christian Waeber
- Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Pedro Ramos-Cabrer
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Universitario de Santiago, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
- * E-mail: (PRC); (FC)
| |
Collapse
|
50
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|