1
|
Chatterjee S, Bhattacharya M, Saxena S, Lee SS, Chakraborty C. Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. Rev Med Virol 2024; 34:e2583. [PMID: 39289528 DOI: 10.1002/rmv.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | | | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Tirupati, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
2
|
Arévalo-Cortés A, Rodriguez-Pinto D, Aguilar-Ayala L. Evidence for Molecular Mimicry between SARS-CoV-2 and Human Antigens: Implications for Autoimmunity in COVID-19. Autoimmune Dis 2024; 2024:8359683. [PMID: 39247752 PMCID: PMC11380714 DOI: 10.1155/2024/8359683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As for other viral diseases, the mechanisms behind the apparent relationship between COVID-19 and autoimmunity are yet to be clearly defined. Molecular mimicry, the existence of sequence and/or conformational homology between viral and human antigens, could be an important contributing factor. Here, we review the accumulated evidence supporting the occurrence of mimicry between SARS-CoV-2 and human proteins. Both bioinformatic approaches and antibody cross-reactions have yielded a significant magnitude of mimicry events, far more common than expected to happen by chance. The clinical implication of this phenomenon is ample since many of the identified antigens may participate in COVID-19 pathophysiology or are targets of autoimmune diseases. Thus, autoimmunity related to COVID-19 may be partially explained by molecular mimicry and further research designed specifically to address this possibility is needed.
Collapse
Affiliation(s)
| | - Daniel Rodriguez-Pinto
- Department of Health Sciences Faculty of Health Sciences Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Leonardo Aguilar-Ayala
- Department of Health Sciences Faculty of Health Sciences Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| |
Collapse
|
3
|
Mellor-Pita S, Tutor-Ureta P, Velasco P, Plaza A, Diego I, Vázquez-Comendador J, Vionnet AP, Durán-del Campo P, Moreno-Torres V, Vargas JA, Castejon R. IgA Anti-β2-Glycoprotein I Antibodies as Markers of Thrombosis and Severity in COVID-19 Patients. Viruses 2024; 16:1071. [PMID: 39066233 PMCID: PMC11281419 DOI: 10.3390/v16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with COVID-19 may develop a hypercoagulable state due to tissue and endothelial injury, produced by an unbalanced immune response. Therefore, an increased number of thromboembolic events has been reported in these patients. The aim of this study is to investigate the presence of antiphospholipid antibodies (aPL) in COVID-19 patients, their role in the development of thrombosis and their relationship with the severity of the disease. In this retrospective study, serum samples from 159 COVID-19 patients and 80 healthy donors were analysed for the presence of aPL. A total of 29 patients (18.2%) and 14 healthy donors (17.5%) were positive for aPL. Nineteen COVID-19 patients (12%) but no healthy donor presented a positive percentage of the IgA isotype aPL. IgA anti-β2-glycoprotein I antibodies (anti-β2GPI) were the most frequent type (6.3%) in patients but was not detected in any healthy donor. The positivity of this antibody was found to be significantly elevated in patients with thromboembolic events (25% vs. 5%, p = 0.029); in fact, patients with positive IgA anti-β2GPI had an incidence of thrombosis over six times higher than those who had normal antibody concentrations [OR (CI 95%) of 6.67 (1.5-30.2), p = 0.014]. Additionally, patients with moderate-severe disease presented a higher aPL positivity than patients with mild disease according to the Brescia (p = 0.029) and CURB-65 (p = 0.011) severity scales. A multivariate analysis showed that positivity for IgA anti-β2GPI is significantly associated with disease severity measured by CURB-65 [OR (CI 95%) 17.8 (1.7-187), p = 0.0016]. In conclusion, COVID-19 patients have a significantly higher positive percentage of the IgA isotype aPL than healthy donors. IgA anti-β2GPI antibodies were the most frequently detected aPL in COVID-19 patients and were associated with thrombosis and severe COVID-19 and are thus proposed as a possible marker to identify high-risk patients.
Collapse
Affiliation(s)
- Susana Mellor-Pita
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Pablo Tutor-Ureta
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Paula Velasco
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| | - Aresio Plaza
- Department of Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (A.P.); (A.P.V.)
| | - Itziar Diego
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| | - José Vázquez-Comendador
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| | - Ana Paula Vionnet
- Department of Immunology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (A.P.); (A.P.V.)
| | - Pedro Durán-del Campo
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| | - Víctor Moreno-Torres
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| | - Juan Antonio Vargas
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Raquel Castejon
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, IDIPHIM (Puerta de Hierro University Hospital Research Institute), Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (S.M.-P.); (P.T.-U.); (P.V.); (I.D.); (J.V.-C.); (P.D.-d.C.); (V.M.-T.); (J.A.V.)
| |
Collapse
|
4
|
Castelli R, Gidaro A, Manetti R, Castiglia P, Delitala AP, Mannucci PM, Pasca S. Acquired Hemophilia A after SARS-CoV-2 Immunization: A Narrative Review of a Rare Side Effect. Vaccines (Basel) 2024; 12:709. [PMID: 39066347 PMCID: PMC11281676 DOI: 10.3390/vaccines12070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Acquired hemophilia A (AHA) is a rare bleeding disorder (1.4 per million inhabitants per year) caused by neutralizing antibodies against factor VIII. Although uncommon, these autoantibodies can cause a high rate of morbidity and mortality. Several conditions are linked with AHA; based on an EACH2 study, 3.8% of AHA could be connected to infection. In the last four years, most humans have contracted the SARS-CoV-2 infection or have been vaccinated against it. Whether or not COVID-19 immunization might induce AHA remains controversial. This review aims to evaluate the evidence about this possible association. Overall, 18 manuscripts (2 case series and 16 case reports) were included. The anti-SARS-CoV-2 vaccination, as also happens with other vaccines, may stimulate an autoimmune response. However, older individuals with various comorbidities are both at risk of developing AHA and of COVID-19-related morbidity and mortality. Therefore, the COVID-19 vaccine must always be administered because the benefits still outweigh the risks. Yet, we should consider the rare possibility that the activation of an immunological response through vaccination may result in AHA. Detailed registries and prospective studies would be necessary to analyze this post-vaccine acquired bleeding disorder, looking for possible markers and underlying risk factors for developing the disease in association with vaccination.
Collapse
Affiliation(s)
- Roberto Castelli
- Department of Medical Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.); (P.C.); (A.P.D.)
| | - Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Roberto Manetti
- Department of Medical Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.); (P.C.); (A.P.D.)
| | - Paolo Castiglia
- Department of Medical Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.); (P.C.); (A.P.D.)
| | - Alessandro Palmerio Delitala
- Department of Medical Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.); (P.C.); (A.P.D.)
| | - Pier Mannuccio Mannucci
- Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi, Hemophilia and Thrombosis, 20122 Milan, Italy;
| | - Samantha Pasca
- U.O. Immunohematology and Transfusion—APSS of Trento, 38122 Trento, Italy;
| |
Collapse
|
5
|
Mizuno Y, Nakasone W, Nakamura M, Otaki JM. In Silico and In Vitro Evaluation of the Molecular Mimicry of the SARS-CoV-2 Spike Protein by Common Short Constituent Sequences (cSCSs) in the Human Proteome: Toward Safer Epitope Design for Vaccine Development. Vaccines (Basel) 2024; 12:539. [PMID: 38793790 PMCID: PMC11125730 DOI: 10.3390/vaccines12050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Spike protein sequences in SARS-CoV-2 have been employed for vaccine epitopes, but many short constituent sequences (SCSs) in the spike protein are present in the human proteome, suggesting that some anti-spike antibodies induced by infection or vaccination may be autoantibodies against human proteins. To evaluate this possibility of "molecular mimicry" in silico and in vitro, we exhaustively identified common SCSs (cSCSs) found both in spike and human proteins bioinformatically. The commonality of SCSs between the two systems seemed to be coincidental, and only some cSCSs were likely to be relevant to potential self-epitopes based on three-dimensional information. Among three antibodies raised against cSCS-containing spike peptides, only the antibody against EPLDVL showed high affinity for the spike protein and reacted with an EPLDVL-containing peptide from the human unc-80 homolog protein. Western blot analysis revealed that this antibody also reacted with several human proteins expressed mainly in the small intestine, ovary, and stomach. Taken together, these results showed that most cSCSs are likely incapable of inducing autoantibodies but that at least EPLDVL functions as a self-epitope, suggesting a serious possibility of infection-induced or vaccine-induced autoantibodies in humans. High-risk cSCSs, including EPLDVL, should be excluded from vaccine epitopes to prevent potential autoimmune disorders.
Collapse
Affiliation(s)
- Yuya Mizuno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Wataru Nakasone
- Computer Science and Intelligent Systems Unit, Department of Engineering, Faculty of Engineering, University of the Ryukyus, Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Morikazu Nakamura
- Computer Science and Intelligent Systems Unit, Department of Engineering, Faculty of Engineering, University of the Ryukyus, Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
6
|
Zhou YJ, Jin QF, Wang C, Zhang XJ, Liu H, Bao J. Onset of acute severe autoimmune hepatitis after severe acute respiratory syndrome coronavirus 2 infection: a case report. J Int Med Res 2024; 52:3000605241233450. [PMID: 38502002 PMCID: PMC10953009 DOI: 10.1177/03000605241233450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can trigger autoimmune inflammation in the liver, leading to acute autoimmune hepatitis (AIH). We herein report a case involving a 39-year-old woman with a 23-day history of yellow skin and urine. Using the revised original scoring system of the International AIH Group, we definitively diagnosed the patient with acute severe AIH (AS-AIH). She began treatment with 80 mg/day intravenous methylprednisolone, which was gradually reduced and followed by eventual transition to oral methylprednisolone. The patient finally achieved a biochemical response after 30 days of therapy, and liver transplantation was avoided. Clinicians should be aware that the onset of AS-AIH after SARS-CoV-2 infection differs from the onset of conventional AIH with respect to its clinical and pathological features. Early diagnosis and timely glucocorticoid treatment are crucial in improving outcomes.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qiao-Fei Jin
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chen Wang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiao-Jing Zhang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hong Liu
- Department of Pathology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianfeng Bao
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Yum SO, Park H, Park E. Case Report of COVID-19 and Pneumocystis coinfection in a pediatric patient with a history of receiving high dose steroid therapy. Heliyon 2024; 10:e23477. [PMID: 38169903 PMCID: PMC10758787 DOI: 10.1016/j.heliyon.2023.e23477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
We report the first case of a critically ill pediatric patient coinfected with coronavirus disease 2019 (COVID-19) and Pneumocystis jirovecii pneumonia (PCP). Instances of coinfection of COVID-19 and PCP are being increasingly reported as the COVID-19 pandemic continues. Because the combination can be life-threatening, timely diagnosis and treatment for PCP is necessary in cases where an immunocompromised patient contracts COVID-19.
Collapse
Affiliation(s)
- Sun Oh Yum
- Department of Pediatrics, Jeonbuk National University Children's Hospital, Jeonju, South Korea
| | - Hwanhee Park
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Esther Park
- Department of Pediatrics, Jeonbuk National University Children's Hospital, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
8
|
Deniz MS, Dindar M. Examining the impact of several factors including COVID-19 on thyroid fine-needle aspiration biopsy. Diagn Cytopathol 2024; 52:42-49. [PMID: 37823334 DOI: 10.1002/dc.25239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE The study explores various factors, including coronavirus disease 2019 (COVID-19) history and vaccination status, that influence the classification value of ultrasonography-guided thyroid fine needle aspiration biopsy (TFNAB) by comparing non-diagnostic (Bethesda-I) and diagnostic (Bethesda II-VI) results. METHODS We conducted a retrospective observational study in a high-volume tertiary care center involving patients who underwent TFNAB from November 2022 to April 2023. The study retrospectively analyzed the cytopathology of 482 thyroid nodules. Patients were categorized into non-diagnostic (n = 136) and Diagnostic groups (n = 346) based on TFNAB. A comprehensive set of parameters was examined, including demographic, anthropometric and clinical data, thyroid ultrasonography findings, COVID-19 history and immunization status. RESULTS The mean age was 55.1 ± 12.1 years in the non-diagnostic group and 53.5 ± 13 years in the Diagnostic group (p = .223). 75.7% (n = 103) of the non-Diagnostic group and 82.9% (n = 287) of the Diagnostic group were male (p = .070). The mean nodule longitudinal diameter of the Diagnostic group was significantly higher than that of the non-diagnostic group (p = .015). The TIRADS score of the nodules showed a statistical difference between the groups (p = .048). The groups had no significant differences regarding other ultrasonographic parameters and COVID-19-related variables. CONCLUSION It can be assumed that when the longitudinal diameter of the thyroid nodule is small and in TIRADS categories other than the TIRADS3 category, TFNAB is less likely to be diagnostic. However, future research may be needed to confirm these findings and uncover any long-term effects of COVID-19 or vaccines on thyroid nodule diagnostics.
Collapse
Affiliation(s)
- Muzaffer Serdar Deniz
- Department of Endocrinology, Faculty of Medicine, Education and Research Hospital, Karabük University, Karabük, Turkey
| | - Merve Dindar
- Department of Internal Medicine, Faculty of Medicine, Education and Research Hospital, Karabük University, Karabük, Turkey
| |
Collapse
|
9
|
Tawk K, Tawk A, Abouzari M. Sudden Hearing Loss Waves: The Effect of COVID-19 Infection and Vaccination on the Inner Ear. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:265-283. [PMID: 39283432 DOI: 10.1007/978-3-031-61939-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Sudden sensorineural hearing loss (SSNHL) has emerged as a potential complication of COVID-19 infection and vaccination. Various mechanisms by which the SARS-CoV-2 virus can cause hearing loss have been reported, including direct viral invasion, neuroinflammation, blood flow disturbances, and immune-mediated response. However, the temporal relationship between COVID-19 infection and SSNHL remains unclear, with mixed findings and conflicting results reported in different studies. Similarly, while anecdotal reports have linked COVID-19 vaccination to SSNHL, evidence remains scarce. Establishing a correlation between COVID-19 vaccines and SSNHL implies a complex and multifactorial pathogenesis involving interactions between the immune system and the body's stress response. Nevertheless, it is important to consider the overwhelming evidence of the vaccines' safety and efficacy in limiting the spread of the disease and remains the primordial tool in reducing death.
Collapse
Affiliation(s)
- Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, 333 City Blvd. West, Suite 525, Orange, CA, 92868, USA
| | - Anthony Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, 333 City Blvd. West, Suite 525, Orange, CA, 92868, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, 333 City Blvd. West, Suite 525, Orange, CA, 92868, USA.
| |
Collapse
|
10
|
Tsumura K, Zaizen Y, Umemoto S, Tsuneyoshi S, Matama G, Okamoto M, Tominaga M, Hoshino T. Acute exacerbation of idiopathic pulmonary fibrosis after bivalent {tozinameran and famtozinameran} mRNA COVID-19 vaccination. Respir Med Case Rep 2023; 46:101960. [PMID: 38178926 PMCID: PMC10765099 DOI: 10.1016/j.rmcr.2023.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
An 82-year-old man diagnosed with interstitial lung disease through computed tomography (CT) 1 year prior received a bivalent (tozinameran and famtozinameran) mRNA COVID-19 vaccine. He developed respiratory symptoms 1.5 months later, and chest high-resolution CT revealed new ground-glass opacities showing traction bronchiectasis. Transbronchial lung cryobiopsy revealed organizing acute lung injury and fibrosis with architectural destruction. The patient was diagnosed with an acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). The bivalent mRNA COVID-19 vaccination was determined as the cause of the AE-IPF based on detailed medical history and examination findings. High-dose corticosteroid therapy improved the patient's symptoms and radiological findings.
Collapse
Affiliation(s)
- Kenji Tsumura
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yoshiaki Zaizen
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shushi Umemoto
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Shingo Tsuneyoshi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Goushi Matama
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
- Department of Respirology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyouhama, Chuo-ku, Fukuoka 810-8563, Japan
| | - Masaki Tominaga
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
- Department of Community Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
11
|
Vamshidhar IS, Rani SSS, Kalpana M, Gaur A, Umesh M, Ganji V, Saluja R, Taranikanti M, John NA. Impact of COVID-19 on thyroid gland functions with reference to Graves' disease: A systematic review. J Family Med Prim Care 2023; 12:1784-1789. [PMID: 38024874 PMCID: PMC10657079 DOI: 10.4103/jfmpc.jfmpc_2246_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 12/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both immediate and long-term adverse effects arise out of this disease's aftermath. It involves various organs, which include endocrine glands, nervous system, musculoskeletal system, and other organs. The long-term outcomes of the SARS-CoV-2 infection are influenced by preexisting comorbidities. Genetic, environmental, and immunological factors contribute to the development of various autoimmune diseases, which include Graves' disease (GD). The growing mystery surrounding this virus is exacerbated by auto-inflammatory diseases, such as pediatric inflammatory multisystemic syndrome (PIMS) or multisystem inflammatory syndrome in children (MIS-C), which raises concerns about the nature of the virus' connection to the autoimmune and auto-inflammatory sequelae. There is a need to understand the underlying mechanisms of developing GD in post-COVID-19 patients. There are limited data regarding the pathogenesis involved in post-COVID-19 GD. Our goal was to understand the various mechanisms involved in post-COVID-19 GD among patients with confirmed COVID-19 infection. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for 2020, a literature search of medical databases (PubMed, Cochrane Central Register of Controlled Trials, and Scopus) from February 2021 to February 2022 was performed by five authors. The keywords used were "Post COVID-19," "Grave's disease," "Cytokine storm," "Autoimmunity," and "Molecular mimicry." This review revealed three underlying mechanisms that resulted in post-COVID GD, which included cytokine storm, molecular mimicry, ACE2 receptor concentration, and cell-mediated immunity. The full spectrum of the effects of COVID-19 needs to be researched.
Collapse
Affiliation(s)
- I. S. Vamshidhar
- Department of Physiology, Government Medical College, Mahabubabad, Telangana, India
| | - S. S. Sabitha Rani
- Department of Pathology, Government Medical College, Bhadradri Kothagudem, Telangana, India
| | - Medala Kalpana
- Department of Physiology, AIIMS Bibinagar, Telangana, India
| | - Archana Gaur
- Department of Physiology, AIIMS Bibinagar, Telangana, India
| | | | - Vidya Ganji
- Department of Physiology, AIIMS Bibinagar, Telangana, India
| | - Rohit Saluja
- Department of Biochemistry, AIIMS Bibinagar, Telangana, India
| | | | - Nitin A. John
- Department of Physiology, AIIMS Bibinagar, Telangana, India
| |
Collapse
|
12
|
Adiguzel Y, Mahroum N, Muller S, Blank M, Halpert G, Shoenfeld Y. Shared Pathogenicity Features and Sequences between EBV, SARS-CoV-2, and HLA Class I Molecule-binding Motifs with a Potential Role in Autoimmunity. Clin Rev Allergy Immunol 2023; 65:206-230. [PMID: 37505416 DOI: 10.1007/s12016-023-08962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Epstein-Barr virus (EBV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are extraordinary in their ability to activate autoimmunity as well as to induce diverse autoimmune diseases. Here we reviewed the current knowledge on their relation. Further, we suggested that molecular mimicry could be a possible common mechanism of autoimmunity induction in the susceptible individuals infected with SARS-CoV-2. Molecular mimicry between SARS-CoV-2 and human proteins, and EBV and human proteins, are present. Besides, relation of the pathogenicity associated with both coronavirus diseases and EBV supports the notion. As a proof-of-the-concept, we investigated 8mer sequences with shared 5mers of SARS-CoV-2, EBV, and human proteins, which were predicted as epitopes binding to the same human leukocyte antigen (HLA) supertype representatives. We identified significant number of human peptide sequences with predicted-affinities to the HLA-A*02:01 allele. Rest of the peptide sequences had predicted-affinities to the HLA-A*02:01, HLA-B*40:01, HLA-B*27:05, HLA-A*01:01, and HLA-B*39:01 alleles. Carriers of these serotypes can be under a higher risk of autoimmune response induction upon getting infected, through molecular mimicry-based mechanisms common to SARS-CoV-2 and EBV infections. We additionally reviewed established associations of the identified proteins with the EBV-related pathogenicity and with the autoimmune diseases.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Medical Biology, School of Medicine, Atilim University, Kizilcasar Mah. 06836 Incek, Golbasi, Ankara, Turkey.
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul, 34810, Turkey
| | - Sylviane Muller
- Centre National de la Recherche scientifique-Université de Strasbourg, Biotechnology and Cell Signalling Unit, Neuroimmunology and Peptide Therapeutics Team, Strasbourg Drug Discovery and Development Institute, Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Tel-Hashomer, 52621, Israel
- Reichman University, Herzliya, 4610101, Israel
| |
Collapse
|
13
|
Abstract
At the end of 2019, the world began to fight the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2. Many vaccines have quickly been developed to control the epidemic, and with the widespread use of vaccines globally, several vaccine-related adverse events have been reported. This review mainly focused on COVID-19 vaccination-associated thyroiditis and summarized the current evidence regarding vaccine-induced subacute thyroiditis, silent thyroiditis, Graves' disease, and Graves' orbitopathy. The main clinical characteristics of each specific disease were outlined, and possible pathophysiological mechanisms were discussed. Finally, areas lacking evidence were specified, and a research agenda was proposed.
Collapse
Affiliation(s)
- Süleyman Nahit Şendur
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oğuz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Uğur Ünlütürk
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
14
|
Safary A, Akbarzadeh-Khiavi M, Barar J, Omidi Y. SARS-CoV-2 vaccine-triggered autoimmunity: Molecular mimicry and/or bystander activation of the immune system. BIOIMPACTS : BI 2023; 13:269-273. [PMID: 37645029 PMCID: PMC10460773 DOI: 10.34172/bi.2023.27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 08/31/2023]
Abstract
Induced autoimmunity or autoinflammatory-like conditions as a rare vaccine-related adverse event have been reported following COVID-19 vaccination. Such inadvertent adverse reactions have raised somewhat concerns about the long-term safety of the developed vaccines. Such multifactorial phenomena may be related to the cross-reactivity between the viral-specific antigens with the host self-proteins through molecular mimicry mechanism and/or nonspecific bystander activation of the non-target antigen-independent immunity by the entities of the vaccine products. However, due to the low incidence of the reported/identified individuals and insufficient evidence, autoimmunity following the COVID-19 vaccination has not been approved. Thereby, it seems that further designated studies might warrant post-monitoring of the inevitable adverse immunologic reactions in the vaccinated individuals, especially among hypersensitive cases, to address possible immunological mechanisms induced by the viral vaccines, incorporated adjuvants, and even vaccine delivery systems.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Dadgar F, Casseb J, Keikha M. Autoimmune diseases related to post-SARS-CoV-2 vaccination; a rheumatology perspective. VACUNAS 2023:S1576-9887(23)00052-3. [PMID: 37362831 PMCID: PMC10266499 DOI: 10.1016/j.vacun.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Farhad Dadgar
- Department of Internal Medicine, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Jorge Casseb
- Laboratory of Medical Investigation (LIM56) of the Faculty of Medicine - Department of Dermatology, São Paulo University, São Paulo, Brazil
| | - Masoud Keikha
- Department of Medical Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
16
|
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023; 11:1472. [PMID: 37374974 DOI: 10.3390/microorganisms11061472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of molecular mimicry describes situations in which antigen sharing between parasites and hosts could benefit pathogen evasion from host immune responses. However, antigen sharing can generate host responses to parasite-derived self-like peptides, triggering autoimmunity. Since its conception, molecular mimicry and the consequent potential cross-reactivity following infections have been repeatedly described in humans, raising increasing interest among immunologists. Here, we reviewed this concept focusing on the challenge of maintaining host immune tolerance to self-components in parasitic diseases. We focused on the studies that used genomics and bioinformatics to estimate the extent of antigen sharing between proteomes of different organisms. In addition, we comparatively analyzed human and murine proteomes for peptide sharing with proteomes of pathogenic and non-pathogenic organisms. We conclude that, although the amount of antigenic sharing between hosts and both pathogenic and non-pathogenic parasites and bacteria is massive, the degree of this antigen sharing is not related to pathogenicity or virulence. In addition, because the development of autoimmunity in response to infections by microorganisms endowed with cross-reacting antigens is rare, we conclude that molecular mimicry by itself is not a sufficient factor to disrupt intact self-tolerance mechanisms.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Department of Anesthesiology, Saint Louis University School of Medicine, St. Louis, MO 63110, USA
| | - Arnon Dias Jurberg
- Instituto de Educação Médica, Campus Vista Carioca, Universidade Estácio de Sá, Rio de Janeiro 20071-004, RJ, Brazil
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária and Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21041-250, RJ, Brazil
| |
Collapse
|
17
|
Salgado C, Cue R, Yuste V, Montalvillo-Jiménez L, Prendes P, Paz S, Vázquez-Calvo Á, Alcamí A, García C, Martínez-Campos E, Bosch P. Clear polyurethane coatings with excellent virucidal properties: Preparation, characterization and rapid inactivation of human coronaviruses 229E and SARS-CoV-2. APPLIED MATERIALS TODAY 2023; 32:101828. [PMID: 37317691 PMCID: PMC10147448 DOI: 10.1016/j.apmt.2023.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/16/2023]
Abstract
Commercial polyurethane (PU) coating formulations have been modified with 1-(hydroxymethyl)-5,5-dimethylhydantoin (HMD) both in bulk (0.5 and 1% w/w) and onto the coatings surface as an N-halamine precursor, to obtain clear coatings with high virucidal activity. Upon immersion in diluted chlorine bleaching, the hydantoin structure on the grafted PU membranes was transformed into N-halamine groups, with a high surface chlorine concentration (40-43μg/cm2). Fourier transform infrared spectroscopy (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and iodometric titration were used to characterize the coatings and quantify the chlorine contents of the PU membranes after chlorination. Biological evaluation of their activity against Staphylococcus aureus (Gram-positive bacteria) and human coronaviruses HCoV-229E and SARS-CoV-2 was performed, and high inactivation of these pathogens was observed after short contact times. The inactivation of HCoV-229E was higher than 98% for all modified samples after just 30 minutes, whereas it was necessary 12 hours of contact time for complete inactivation of SARS-CoV-2. The coatings were fully rechargeable by immersion in diluted chlorine bleach (2% v/v) for at least 5 chlorination-dechlorination cycles. Moreover, the performance of the antivirus efficiency of the coatings is considered as long-lasting, because experiments of reinfection of the coatings with HCoV-229E coronavirus did not show any loss of the virucidal activity after three consecutive infection cycles without reactivation of the N-halamine groups.
Collapse
Affiliation(s)
- Cástor Salgado
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Raquel Cue
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al ICTP, IQM (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Vanesa Yuste
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Laura Montalvillo-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Pilar Prendes
- GAIRESA, Lugar Outeiro 8, 15551 Valdoviño, A Coruña, Spain
| | - Senén Paz
- GAIRESA, Lugar Outeiro 8, 15551 Valdoviño, A Coruña, Spain
| | - Ángela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Carolina García
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Enrique Martínez-Campos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Unidad Asociada al ICTP, IQM (CSIC), Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Paula Bosch
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Department of Applied Macromolecular Chemistry, Juan de la Cierva 3, Madrid, 28006, Spain
| |
Collapse
|
18
|
Ture HY, Kim NR, Nam EJ. New-onset retroperitoneal fibrosis following COVID-19 mRNA vaccination: Coincidental or vaccine-induced phenomenon? Int J Rheum Dis 2023. [PMID: 36814401 DOI: 10.1111/1756-185x.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
The Pfizer-BioNTech mRNA vaccine is a US Food and Drug Administration-approved coronavirus disease 2019 (COVID-19) vaccine. Although it is reported to be safe and effective, immune dysregulation leading to autoimmunity has become an area of concern. Retroperitoneal fibrosis (RPF) is an immune-mediated fibroinflammatory disease characterized by the deposition of fibrous tissues, primarily around the abdominal aorta and iliac arteries. Herein, we report a case of RPF following Pfizer BioNTech COVID-19 mRNA vaccination. To the best of our knowledge, there have been no published reports on RPF after COVID-19 mRNA vaccination. A 58-year-old woman with no history of autoimmune diseases presented with acute onset of epigastric pain 5 weeks after the second dose of the Pfizer-BioNTech vaccine. She had been diagnosed with stage I breast cancer 9 years ago and was in complete remission on admission. Abdominal computed tomography showed preaortic soft-tissue infiltration around the origin of the superior mesenteric artery but no evidence of breast cancer recurrence. Considering the temporal relationship between current symptoms and vaccination and the absence of other possible causes, she was diagnosed with RPF secondary to Pfizer-BioNTech vaccine-induced autoimmunity. This case may raise awareness of the possibility of RPF development following COVID-19 mRNA vaccination.
Collapse
Affiliation(s)
- Hirut Yadeta Ture
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Na Ri Kim
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| |
Collapse
|
19
|
Nair GS, Khan IA, Rizvi SWA, Shahid S. A Case of Neuroretinitis following Inactivated Virion COVID-19 Vaccination. Ocul Immunol Inflamm 2023:1-4. [PMID: 36780589 DOI: 10.1080/09273948.2023.2173244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
PURPOSE We report a rare presentation of neuroretinitis following vaccination with inactivated virion vaccine (COVAXIN). METHODS Interventional Case Report. OBSERVATION A 14-year-old female presented with sudden unilateral vision loss 3 days following COVID-19 vaccination. The clinical and radiological evaluation was consistent with classical neuroretinitis; the serological and immunological workup was negative. The patient responded well to the pulse steroid therapy and regained complete vision. CONCLUSION The COVID-19 vaccine related adverse ocular events are beginning to emerge slowly and thus warrants close monitoring of all such cases. Also, ophthalmologists should be encouraged to seek vaccination status of patients presenting with inflammatory ocular conditions.
Collapse
Affiliation(s)
- Gayathry S Nair
- Institute of Ophthalmology, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Iraj Alam Khan
- Department of Pediatrics, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Saima Shahid
- Institute of Ophthalmology, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| |
Collapse
|
20
|
Zebardast A, Hasanzadeh A, Ebrahimian Shiadeh SA, Tourani M, Yahyapour Y. COVID-19: A trigger of autoimmune diseases. Cell Biol Int 2023; 47:848-858. [PMID: 36740221 DOI: 10.1002/cbin.11997] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/20/2022] [Accepted: 01/14/2023] [Indexed: 02/07/2023]
Abstract
The SARS-coronavirus-2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19), has spread worldwide and caused a global health emergency. SARS-CoV-2 is a coronaviridae virus that infects target cells by interacting with the plasma membrane-expressed angiotensin-converting enzyme 2 (ACE2) via the S1 component of the S protein. Effective host immune response to SARS-CoV-2 infection, which includes both innate and adaptive immunity, is critical for virus management and elimination. The intensity and outcome of COVID-19 may be related to an overabundance of pro-inflammatory cytokines, which results in a "cytokine storm" and acute respiratory distress syndrome. After SARS-CoV-2 infection, the immune system's hyperactivity and production of autoantibodies may result in autoimmune diseases such as autoimmune hemolytic anemia, autoimmune thrombocytopenia, Guillain-Barré syndrome, vasculitis, multiple sclerosis, pro-thrombotic state, and diffuse coagulopathy, as well as certain autoinflammatory conditions such as Kawasaki disease in children. We have reviewed the association between COVID-19 and autoimmune disorders in this article.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mehdi Tourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Yahyapour
- Infectious Diseases & Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Slouma M, Abbes M, Mehmli T, Dhahri R, Metoui L, Gharsallah I, Louzir B. Reactive arthritis occurring after COVID-19 infection: a narrative review. Infection 2023; 51:37-45. [PMID: 35655110 PMCID: PMC9162104 DOI: 10.1007/s15010-022-01858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Reactive arthritis is acute aseptic arthritis occurring 1 to 4 weeks after a distant infection in a genetically predisposed individual. It may occur after COVID-19 infection. We summarize, in this article, the current findings of reactive arthritis following COVID-19 infection. METHODS A literature search has been performed from December 2019 to December 2021. We included case reports of reactive arthritis occurring after COVID-19 infection. We collected demographic, clinical, and paraclinical data. RESULTS A total of 22 articles were reviewed. There were 14 men and 11 women with a mean age of 44.96 + 17.47 years. Oligoarticular involvement of the lower limbs was the most frequent clinical presentation. The time between arthritis and COVID infection ranged from 6 to 48 days. The diagnosis was based on clinical and laboratory findings. The pharmacological management was based on non-steroidal anti-inflammatory drugs in 20 cases. Systemic or local steroid therapy was indicated in 13 patients. Sulfasalazine was indicated in two cases. Alleviation of symptoms and recovery were noted in 22 cases. The mean duration of the clinical resolution was 16 + 57 days. CONCLUSION The diagnosis of reactive arthritis should be considered in patients with a new onset of arthritis following COVID-19 infection. Its mechanism is still unclear.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Maissa Abbes
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia.
- Tunis El Manar University, Tunis, Tunisia.
| | - Takoua Mehmli
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rim Dhahri
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Leila Metoui
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Bassem Louzir
- Department of Internal Medicine, Military Hospital, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
22
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Tirelli C, De Amici M, Albrici C, Mira S, Nalesso G, Re B, Corsico AG, Mondoni M, Centanni S. Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. BIOLOGY 2023; 12:biology12020177. [PMID: 36829456 PMCID: PMC9953200 DOI: 10.3390/biology12020177] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease 19 (COVID-19). COVID-19 can manifest with a heterogenous spectrum of disease severity, from mild upper airways infection to severe interstitial pneumonia and devastating acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection may induce an over activation of the immune system and the release of high concentrations of pro-inflammatory cytokines, leading to a "cytokine storm", a recognized pathogenetic mechanism in the genesis of SARS-CoV-2-induced lung disease. This overproduction of inflammatory cytokines has been recognized as a poor prognostic factor, since it can lead to disease progression, organ failure, ARDS and death. Moreover, the immune system shows dysregulated activity, particularly through activated macrophages and T-helper cells and in the co-occurrent exhaustion of lymphocytes. We carried out a non-systematic literature review aimed at providing an overview of the current knowledge on the pathologic mechanisms played by the immune system and the inflammation in the genesis of SARS-CoV-2-induced lung disease. An overview on potential treatments for this harmful condition and for contrasting the "cytokine storm" has also been presented. Finally, a look at the experimented experimental vaccines against SARS-CoV-2 has been included.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Mara De Amici
- Immuno-Allergology Laboratory of Clinical Chemistry and Department of Pediatrics, IRCCS Policlinico San Matteo University Hospital, 27100 Pavia, Italy
| | - Cristina Albrici
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giulia Nalesso
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Beatrice Re
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Angelo Guido Corsico
- Pulmonology Unit, Department of Medical Sciences and Infectious Diseases, IRCCS Policlinico San Matteo University Hospital, 27100 Pavia, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
24
|
Sinnberg T, Lichtensteiger C, Ali OH, Pop OT, Jochum AK, Risch L, Brugger SD, Velic A, Bomze D, Kohler P, Vernazza P, Albrich WC, Kahlert CR, Abdou MT, Wyss N, Hofmeister K, Niessner H, Zinner C, Gilardi M, Tzankov A, Röcken M, Dulovic A, Shambat SM, Ruetalo N, Buehler PK, Scheier TC, Jochum W, Kern L, Henz S, Schneider T, Kuster GM, Lampart M, Siegemund M, Bingisser R, Schindler M, Schneiderhan-Marra N, Kalbacher H, McCoy KD, Spengler W, Brutsche MH, Maček B, Twerenbold R, Penninger JM, Matter MS, Flatz L. Pulmonary Surfactant Proteins Are Inhibited by Immunoglobulin A Autoantibodies in Severe COVID-19. Am J Respir Crit Care Med 2023; 207:38-49. [PMID: 35926164 PMCID: PMC9952873 DOI: 10.1164/rccm.202201-0011oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies,,Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Omar Hasan Ali
- Institute of Immunobiology,,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada;,Department of Dermatology
| | | | | | - Lorenz Risch
- Center of Laboratory Medicine, Vaduz, Liechtenstein;,Center of Laboratory Medicine, University Institute of Clinical Chemistry, University Hospital Bern, University of Bern, Bern, Switzerland;,Faculty of Medical Sciences, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Ana Velic
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology
| | - David Bomze
- Institute of Immunobiology,,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Christian R. Kahlert
- Division of Infectious Diseases and Hospital Epidemiology,,Department of Infectious Diseases and Hospital Epidemiology, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | | | | | | | - Heike Niessner
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies
| | - Carl Zinner
- Pathology, Institute of Medical Genetics and Pathology
| | - Mara Gilardi
- Pathology, Institute of Medical Genetics and Pathology
| | | | - Martin Röcken
- Department of Dermatology,,Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies
| | | | | | | | - Philipp K. Buehler
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Gabriela M. Kuster
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB)
| | - Maurin Lampart
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB)
| | - Martin Siegemund
- Intensive Care Unit, Department of Acute Medicine,,Department of Clinical Research, and
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Hubert Kalbacher
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Kathy D. McCoy
- Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Werner Spengler
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
| | - Martin H. Brutsche
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris Maček
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology
| | - Raphael Twerenbold
- Division of Pneumology, and,University Center of Cardiovascular Science and Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Partner Site Hamburg-Kiel-Lübeck, Hamburg, Germany; and
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada;,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | | | - Lukas Flatz
- Department of Dermatology,,Institute of Immunobiology,,Department of Dermatology, Venereology, and Allergology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland;,Department of Dermatology
| |
Collapse
|
25
|
Richmond BW, Dela Cruz CS. Adding Insult to Injury: Does COVID-19 Promote Acute Respiratory Distress Syndrome by Inhibiting Surfactant? Am J Respir Crit Care Med 2023; 207:5-6. [PMID: 35976979 PMCID: PMC9952871 DOI: 10.1164/rccm.202208-1549ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Bradley W Richmond
- Department of Veterans Affairs Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University Medical Center Nashville, Tennessee
- Department of Cell and Developmental Biology Vanderbilt University Nashville, Tennessee
| | - Charles S Dela Cruz
- Department of Internal Medicine
- Department of Microbial Pathogenesis Yale University New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Systems West Haven, Connecticut
| |
Collapse
|
26
|
Natung T, Singh T, Devi O, Pandey I. A rare case of bilateral optic neuritis post-Covishield (ChAdOx1-S [recombinant]) vaccination. Oman J Ophthalmol 2023; 16:157-160. [PMID: 37007264 PMCID: PMC10062071 DOI: 10.4103/ojo.ojo_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/08/2022] [Accepted: 11/19/2022] [Indexed: 02/25/2023] Open
Abstract
Multiple adverse effects have been reported in people receiving the COVID-19 vaccinations including few reports of optic neuritis. However, there is no report till date, of bilateral optic neuritis post-ChAdOx1-S (recombinant) vaccination. We report here, for the first time, such a case in a previously healthy woman. Although a direct causal relationship cannot be proven, there was a temporal association between the vaccination and the onset of optic neuritis. Some vaccine adjuvants inciting disproportionate systemic inflammation, molecular mimicry, and the hypercoagulable state seen after COVID-19 vaccination could be the possible causes for the development of optic neuritis. Clinicians should be aware of this adverse effect apart from various other adverse effects of COVID-19 vaccination.
Collapse
|
27
|
Chaudhary S, Dogra V, Walia R. Four cases of Graves' disease following viral vector severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) vaccine. Endocr J 2022; 69:1431-1435. [PMID: 35979558 DOI: 10.1507/endocrj.ej22-0208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mass immunization has led to a decrease in the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) worldwide. At the same time, awareness regarding possible adverse effects of newly developed vaccines is critical. The present study was undertaken to report the cases of Graves' disease occurring after administration of viral vector vaccine (ChAdox1nCoV-19) and describe the clinical profile, response to treatment, and effect of administration of a second dose in patients developing Graves' disease. Four cases of Graves' disease after administration of the vaccine were noted. Two of these had a mild thyroid eye disease. Three cases were female and had a family/self-history of autoimmune disease. All cases responded well to treatment and became euthyroid within two to four months. Two patients exhibited worsening thyrotoxicosis after receiving a second dose of the vaccine. We propose that the temporal relationship between administration of the vaccine and the onset of symptoms establishes Graves' disease as an adverse event after the SARS-CoV-2 viral vector vaccine. Close follow-up is advisable in individuals developing Graves' disease after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Shakun Chaudhary
- Department of Endocrinology, Dr Rajendra Prasad Government Medical College Kangra at Tanda, Himachal Pradesh 176001, India
| | - Vinay Dogra
- Department of Endocrinology, Dr Rajendra Prasad Government Medical College Kangra at Tanda, Himachal Pradesh 176001, India
| | - Rama Walia
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
28
|
Vaccine-Related Autoimmune Hepatitis: Emerging Association with SARS-CoV-2 Vaccination or Coincidence? Vaccines (Basel) 2022; 10:vaccines10122073. [PMID: 36560483 PMCID: PMC9783100 DOI: 10.3390/vaccines10122073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND There is an increasing number of liver injury cases resembling autoimmune hepatitis (AIH) following SARS-CoV-2 vaccination; however, an association has not yet been established. METHODS/MATERIALS A literature review was performed to identify articles regarding the association of AIH with vaccination, emphasizing on SARS-CoV-2 vaccines, and the proposed mechanisms. We then performed a literature search for AIH-like cases following SARS-CoV-2 vaccination, and we evaluated the included cases for AIH diagnosis using simplified diagnostic criteria (SDC), and for vaccination causality using the Naranjo score for adverse drug reactions. RESULTS We identified 51 AIH-like cases following SARS-CoV-2 vaccination. Forty cases (80%) were characterized as "probable", "at least probable", or "definite" for AIH diagnosis according to SDC. Forty cases (78.4%) were characterized as "probable", four (7.8%) as "possible", and three (5.8%) as "definite" for vaccine-related AIH according to the Naranjo score. CONCLUSION SARS-CoV-2 vaccine-related AIH carries several phenotypes and, although most cases resolve, immunosuppressive therapy seems to be necessary. Early diagnosis is mandatory and should be considered in any patient with acute or chronic hepatitis after SARS-CoV-2 vaccination, especially in those with pre-existing liver disease.
Collapse
|
29
|
Acute Exacerbation of Interstitial Lung Disease After SARS-CoV-2 Vaccination: A Case Series. Chest 2022; 162:e311-e316. [PMID: 36494131 PMCID: PMC9723271 DOI: 10.1016/j.chest.2022.08.2213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
CASE PRESENTATION An acute exacerbation of interstitial lung disease (ILD) is an acute deterioration that can occur at any time and is associated with significant morbidity and mortality rates. We herein report three patients with ILD who experienced acute respiratory failure after SARS-CoV-2 messenger RNA vaccination. All the patients were male; the mean age was 77 years. They had a smoking history that ranged from 10 to 30 pack-years. Duration from the vaccination to the onset of respiratory failure was 1 day in two patients and 9 days in one patient. In an autopsied case, lung pathologic evidence indicated diffuse alveolar damage superimposed on usual interstitial pneumonia. In the other two cases, CT scans showed diffuse ground-glass opacities and subpleural reticulation, which suggests acute exacerbation of ILD. Two patients were treated successfully with high-dose methylprednisolone. Although benefits of vaccination outweigh the risks associated with uncommon adverse events, patients with chronic lung diseases should be observed carefully after SARS-CoV-2 vaccination.
Collapse
|
30
|
Ruggeri RM, Giovanellla L, Campennì A. SARS-CoV-2 vaccine may trigger thyroid autoimmunity: real-life experience and review of the literature. J Endocrinol Invest 2022; 45:2283-2289. [PMID: 35829989 PMCID: PMC9277984 DOI: 10.1007/s40618-022-01863-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/03/2022] [Indexed: 10/27/2022]
Abstract
PURPOSE SARS-CoV-2 infection can be associated with destructive thyroiditis and triggers thyroid autoimmunity. More recent evidence suggests that SARS-CoV-2 vaccines may also be associated with permanent or transient thyroid dysfunction in susceptible individuals. METHODS We observed three patients who developed/exacerbated autoimmune thyroid diseases (AITDs) shortly after receiving mRNA-based vaccines against SARS-CoV2. Clinical histories are reported, and relevant literature in the field is summarized. RESULTS Our case series gives a description of the full spectrum of autoimmune disorders that may occur after SARS-CoV-2 vaccines administration, ranging from a case of new-onset Graves' disease to autoimmune hypothyroidism in two patients with pre-existing AITDs. Our three patients had a personal and/or family history of autoimmune disorders, suggesting that genetic predisposition is an important risk factor for the development of AITDs following vaccination. Moreover, our real-life experience demonstrates that persistent hypothyroidism may occur in the long run and should be overlooked; subjects with a previous AITDs are at risk of developing it. Reviewing the pertinent literature up to date Graves' disease is the most common vaccine-related AITDs with up to 51 cases reported in the literature, occurring mainly in female patients with no personal history of AIDTs, while only a case of autoimmune hypothyroidism has been reported so far. CONCLUSIONS SARS-CoV-2 vaccines can trigger autoimmune reactions and the present case series contributes to make clinicians aware of full spectrum of AITDs that may occur following vaccination. Thyroid function monitoring is recommended, mainly in subjects with a personal/family history of AITDs.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - L Giovanellla
- Clinic for Nuclear Medicine and Competence Centre for Thyroid Diseases, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinic for Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - A Campennì
- Unit of Nuclear Medicine, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Zheng H, Zhang T, Xu Y, Lu X, Sang X. Autoimmune hepatitis after COVID-19 vaccination. Front Immunol 2022; 13:1035073. [PMID: 36505482 PMCID: PMC9732229 DOI: 10.3389/fimmu.2022.1035073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Vaccination is one of the most vigorous ways to intervene in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cases of autoimmune hepatitis (AIH) after coronavirus disease (COVID-19) vaccination have been increasingly reported. Twenty-seven cases of AIH are summarized in this study, providing emerging evidence of autoimmune reactions in response to various COVID-19 vaccines, including in patients with special disease backgrounds such as primary sclerosing cholangitis (PSC), liver transplantation, and previous hepatitis C virus (HCV) treatment. Molecular mimicry, adjuvants, epitope spreading, bystander activation, X chromosome, and sceptical hepatotropism of SARS-CoV-2 may account for, to some extent, such autoimmune phenomena. Immunosuppressive corticosteroids perform well with or without azathioprine in such post-COVID-19-vaccination AIH. However, determination of the exact mechanism and establishment of causality require further confirmation.
Collapse
|
32
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
33
|
Adiguzel Y, Shoenfeld Y. Shared 6mer Peptides of Human and Omicron (21K and 21L) at SARS-CoV-2 Mutation Sites. Antibodies (Basel) 2022; 11:68. [PMID: 36412834 PMCID: PMC9680445 DOI: 10.3390/antib11040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
We investigated the short sequences involving Omicron 21K and Omicron 21L variants to reveal any possible molecular mimicry-associated autoimmunity risks and changes in those. We first identified common 6mers of the viral and human protein sequences present for both the mutant (Omicron) and nonmutant (SARS-CoV-2) versions of the same viral sequence and then predicted the binding affinities of those sequences to the HLA supertype representatives. We evaluated change in the potential autoimmunity risk, through comparative assessment of the nonmutant and mutant viral sequences and their similar human peptides with common 6mers and affinities to the same HLA allele. This change is the lost and the new, or de novo, autoimmunity risk, associated with the mutations in the Omicron 21K and Omicron 21L variants. Accordingly, e.g., the affinity of virus-similar sequences of the Ig heavy chain junction regions shifted from the HLA-B*15:01 to the HLA-A*01:01 allele at the mutant sequences. Additionally, peptides of different human proteins sharing 6mers with SARS-CoV-2 proteins at the mutation sites of interest and with affinities to the HLA-B*07:02 allele, such as the respective SARS-CoV-2 sequences, were lost. Among all, any possible molecular mimicry-associated novel risk appeared to be prominent in HLA-A*24:02 and HLA-B*27:05 serotypes upon infection with Omicron 21L. Associated disease, pathway, and tissue expression data supported possible new risks for the HLA-B*27:05 and HLA-A*01:01 serotypes, while the risks for the HLA-B*07:02 serotypes could have been lost or diminished, and those for the HLA-A*03:01 serotypes could have been retained, for the individuals infected with Omicron variants under study. These are likely to affect the complications related to cross-reactions influencing the relevant HLA serotypes upon infection with Omicron 21K and Omicron 21L.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Gan 52621, Israel
| |
Collapse
|
34
|
Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022; 30:1517-1531. [PMID: 36028612 PMCID: PMC9417079 DOI: 10.1007/s10787-022-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
The immune response plays a crucial role in preventing diseases, such as infections. There are two types of immune responses, specific and innate immunity, each of which consists of two components: cellular immunity and humoral immunity. Dysfunction in any immune system component increases the risk of developing certain diseases. Systemic lupus erythematosus (SLE), an autoimmune disease in the human body, develops an immune response against its own components. In these patients, due to underlying immune system disorders and receipt of immunosuppressive drugs, the susceptibility to infections is higher than in the general population and is the single largest cause of mortality in this group. COVID-19 infection, which first appeared in late 2019, has caused several concerns in patients with SLE. However, there is no strong proof of additional risk of developing COVID-19 in patients with SLE, and in some cases, studies have shown less severity of the disease in these individuals. This review paper discusses the immune disorders in SLE and COVID-19.
Collapse
Affiliation(s)
- Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Sakayori M, Hagiwara E, Baba T, Kitamura H, Sekine A, Ikeda S, Tabata E, Yamada S, Fujimoto K, Ogura T. Incidence of acute exacerbation in patients with interstitial lung disease after COVID-19 vaccination. J Infect Chemother 2022; 29:105-108. [PMID: 36113847 PMCID: PMC9468306 DOI: 10.1016/j.jiac.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 10/26/2022]
Abstract
Acute exacerbations due to COVID-19 vaccination in patients with interstitial lung disease (ILD) have been reported, but their incidence is unknown. We investigated the incidence of exacerbations of ILD and respiratory symptoms due to the mRNA COVID-19 vaccines. A questionnaire survey was conducted on adverse reactions to the mRNA COVID-19 vaccination in 545 patients with ILD attending our hospital and retrospectively examined whether the eligible patients actually developed acute exacerbations of ILD induced by the vaccine. Of the 545 patients, 17 (3.1%) patients were aware of the exacerbation of respiratory symptoms, and four (0.7%) patients developed an acute ILD exacerbation after vaccination. Of the four patients who experienced exacerbations, two had collagen vascular disease-associated ILD, one had nonspecific interstitial pneumonia, another had unclassifiable idiopathic pneumonia, and none had idiopathic pulmonary fibrosis. Four patients were treated using steroid pulse therapy with a steroid taper, and two of the four also received intravenous cyclophosphamide pulse therapy. Tacrolimus was started in one patient with myositis-associated interstitial lung disease. Eventually, all patients exhibited improvement with immunosuppressive treatment and were discharged. COVID-19 vaccination for patients with ILD should be noted for developing acute exacerbations of ILD with low incidence, although manageable with early diagnosis and treatment.
Collapse
Affiliation(s)
- Masashi Sakayori
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Eri Hagiwara
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Hideya Kitamura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Akimasa Sekine
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Erina Tabata
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Sho Yamada
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Kazushi Fujimoto
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| |
Collapse
|
36
|
Churilov LP, Normatov MG, Utekhin VJ. Molecular Mimicry between SARS-CoV-2 and Human Endocrinocytes: A Prerequisite of Post-COVID-19 Endocrine Autoimmunity? PATHOPHYSIOLOGY 2022; 29:486-494. [PMID: 36136066 PMCID: PMC9504401 DOI: 10.3390/pathophysiology29030039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
Molecular mimicry between human and microbial/viral/parasite peptides is common and has long been associated with the etiology of autoimmune disorders provoked by exogenous pathogens. A growing body of evidence accumulated in recent years suggests a strong correlation between SARS-CoV-2 infection and autoimmunity. The article analyzes the immunogenic potential of the peptides shared between the SARS-CoV-2 spike glycoprotein (S-protein) and antigens of human endocrinocytes involved in most common autoimmune endocrinopathies. A total of 14 pentapeptides shared by the SARS-CoV-2 S-protein, thyroid, pituitary, adrenal cortex autoantigens and beta-cells of the islets of Langerhans were identified, all of them belong to the immunoreactive epitopes of SARS-CoV-2. The discussion of the findings relates the results to the clinical correlates of COVID-19-associated autoimmune endocrinopathies. The most common of these illnesses is an autoimmune thyroid disease, so the majority of shared pentapeptides belong to the marker autoantigens of this disease. The most important in pathogenesis of severe COVID-19, according to the authors, may be autoimmunity against adrenals because their adequate response prevents excessive systemic action of the inflammatory mediators causing cytokine storm and hemodynamic shock. A critique of the antigenic mimicry concept is given with an assertion that peptide sharing is not a guarantee but only a prerequisite for provoking autoimmunity based on the molecular mimicry. The latter event occurs in carriers of certain HLA haplotypes and when a shared peptide is only used in antigen processing
Collapse
Affiliation(s)
- Leonid P. Churilov
- The Laboratory of the Mosaic of Autoimmunity, Department of Pathology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- The St. Petersburg Research Institute of Phthisiopulmonology, 194064 Saint Petersburg, Russia
- Correspondence: (L.P.C.); (M.G.N.); (V.J.U.)
| | - Muslimbek G. Normatov
- The Laboratory of the Mosaic of Autoimmunity, Department of Pathology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (L.P.C.); (M.G.N.); (V.J.U.)
| | - Vladimir J. Utekhin
- The Laboratory of the Mosaic of Autoimmunity, Department of Pathology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- The Department of Pathophysiology, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
- Correspondence: (L.P.C.); (M.G.N.); (V.J.U.)
| |
Collapse
|
37
|
Darmarajan T, Paudel KR, Candasamy M, Chellian J, Madheswaran T, Sakthivel LP, Goh BH, Gupta PK, Jha NK, Devkota HP, Gupta G, Gulati M, Singh SK, Hansbro PM, Oliver BGG, Dua K, Chellappan DK. Autoantibodies and autoimmune disorders in SARS-CoV-2 infection: pathogenicity and immune regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54072-54087. [PMID: 35657545 PMCID: PMC9163295 DOI: 10.1007/s11356-022-20984-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 04/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.
Collapse
Affiliation(s)
- Thiviya Darmarajan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Subang Jaya, Bandar Sunway, Selangor, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lakshmana Prabu Sakthivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, 620024, India
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Adam R, Duong T, Hodges L, Staeger-Hirsch C, Maldjian T. Mammographic findings of diffuse axillary tail trabecular thickening following immunization with mRNA COVID-19 vaccines: Case series study. Radiol Case Rep 2022; 17:2841-2849. [PMID: 35702669 PMCID: PMC9186537 DOI: 10.1016/j.radcr.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Axillary lymphadenopathy has been reported after ipsilateral COVID-19 vaccination and can cause confusion for possible malignancy [1]. Intrinsic findings isolated to the breast has not been previously reported. This is the first case series of ipsilateral reversible changes of diffuse axillary tail trabecular thickening on screening mammography in totally asymptomatic patients in connection with COVID vaccination, 3 of which were isolated findings, confirmed by complete resolution of all imaging findings on follow up. In all instances, imaging was performed within 1 week of the first or third dose of an mRNA COVID-19 vaccine. These findings can be confused with breast cancer. Spontaneous resolution distinguishes vaccine-related findings from breast cancer.
Collapse
|
39
|
Type 2 alveolar epithelial cell-derived circulating extracellular vesicle-encapsulated surfactant protein C as a mediator of cardiac inflammation in COVID-19. Inflamm Res 2022; 71:1003-1009. [PMID: 35909187 PMCID: PMC9340698 DOI: 10.1007/s00011-022-01612-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022] Open
Abstract
Among the countless endeavours made at elucidating the pathogenesis of COVID-19, those aimed at the histopathological alterations of type 2 alveolar epithelial cells (AT2) are of outstanding relevance to the field of lung physiology, as they are the building blocks of the pulmonary alveoli. A merit of high regenerative and proliferative capacity, exocytotic activity resulting in the release of extracellular vesicles (EVs) is particularly high in AT2 cells, especially in those infected with SARS-CoV-2. These AT2 cell-derived EVs, containing the genetic material of the virus, might enter the bloodstream and make their way into the cardiovascular system, where they may infect cardiomyocytes and bring about a series of events leading to heart failure. As surfactant protein C, a marker of AT2 cell activity and a constituent of the lung surfactant complex, occurs abundantly inside the AT2-derived EVs released during the inflammatory stage of COVID-19, it could potentially be used as a biomarker for predicting impending heart failure in those patients with a history of cardiovascular disease.
Collapse
|
40
|
Al-Beltagi M, Saeed NK, Bediwy AS. COVID-19 disease and autoimmune disorders: A mutual pathway. World J Methodol 2022; 12:200-223. [PMID: 36159097 PMCID: PMC9350728 DOI: 10.5662/wjm.v12.i4.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a real challenge for humanity with high morbidity and mortality. Despite being primarily a respiratory illness, COVID-19 can affect nearly every human body tissue, causing many diseases. After viral infection, the immune system can recognize the viral antigens presented by the immune cells. This immune response is usually controlled and terminated once the infection is aborted. Nevertheless, in some patients, the immune reaction becomes out of control with the development of autoimmune diseases. Several human tissue antigens showed a strong response with antibodies directed against many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins, such as SARS-CoV-2 S, N, and autoimmune target proteins. The immunogenic effects of SARS-CoV-2 are due to the sizeable viral RNA molecules with interrupted transcription increasing the pool of epitopes with increased chances of molecular mimicry and interaction with the host immune system, the overlap between some viral and human peptides, the viral induced-tissue damage, and the robust and complex binding between sACE-2 and SARS-CoV-2 S protein. Consequently, COVID-19 and its vaccine may trigger the development of many autoimmune diseases in a predisposed patient. This review discusses the mutual relation between COVID-19 and autoimmune diseases, their interactive effects on each other, the role of the COVID-19 vaccine in triggering autoimmune diseases, the factors affecting the severity of COVID-19 in patients suffering from autoimmune diseases, and the different ways to minimize the risk of COVID-19 in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
41
|
SARS-CoV-2-Induced Pathology-Relevance to COVID-19 Pathophysiology. PATHOPHYSIOLOGY 2022; 29:281-297. [PMID: 35736649 PMCID: PMC9229620 DOI: 10.3390/pathophysiology29020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
In spite of intensive studies of different aspects of a new coronavirus infection, many issues still remain unclear. In a screening analysis of histopathology in l200 lethal cases, authors succeeded in performing a wide spectrum of immune histochemical reactions (CD2, CD 3, CD 4, CD 5, CD 7, CD 8, CD14, CD 20, CD 31, CD 34, CD 56, CD 57, CD 68, CD 163, collagen 1,3, spike protein SARS-CoV-2, caspase-3, MLCM; ACE2 receptor, occludin, and claudin-1 and -3) and electron microscopy. The results of the histological and IHC studies of deceased people with varying degrees of severity of coronavirus infection confirmed the ability of these pathogens to cause cytoproliferative changes, primarily in epithelial and endothelial cells. Lesions of various organs are possible, while the reasons for significant differences in organotropy remain unclear. Severe respiratory failure in COVID-19 in humans is associated with a very peculiar viral pneumonia. In the pathogenesis of COVID-19, the most important role is played by lesions of the microcirculatory bed, the genesis of which requires further study, but direct viral damage is most likely. Endothelial damage can be associated with both thrombosis in vessels of various calibers, leading to characteristic complications, and the development of DIC syndrome with maximal kidney damage. Such lesions can be the basis of clinically diagnosed septic shock, while usually there are no morphological data in favor of classical sepsis caused by bacteria or fungi. A massive infiltration of the lung tissue and other organs, mainly by T lymphocytes, including those with suppressor properties, makes it necessary to conduct a differential diagnosis between the morphological manifestation of the protective cellular immune response and direct viral lesions but does not exclude the hypothesis of an immunopathological component of pathogenesis. In many of the deceased, even in the absence of clear clinical symptoms, a variety of extrapulmonary lesions were also detected. The mechanism of their development probably has a complex nature: direct lesions associated with the generalization of viral infection and vascular disorders associated with endothelial damage and having an autoimmune nature. Many aspects of the pathogenesis of coronavirus infection require further comprehensive study.
Collapse
|
42
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
43
|
Ghimire A, Platnich J, Chauhan U. Warm Autoimmune Hemolytic Anemia and Pure Red Cell Aplasia during a Severe COVID-19 B.1.1.7 Infection. Infect Dis Rep 2022; 14:413-419. [PMID: 35735754 PMCID: PMC9223138 DOI: 10.3390/idr14030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Warm autoimmune hemolytic anemia (AIHA) is a rare complication of COVID-19 infection. We report a case of warm AIHA in a patient with COVID-19 pneumonia treated with methylprednisolone and several red blood cell transfusions. Despite treatment of the warm AIHA, the patient’s reticulocyte count remained low, and his biochemical markers were suggestive of pure red cell aplasia, which was later attributed to a concurrent parvovirus B19 infection. This case highlights an unusual situation of two separate hematological processes caused by two separate and simultaneous viral infections.
Collapse
Affiliation(s)
- Anukul Ghimire
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
- Correspondence:
| | - Jaye Platnich
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Utkarsh Chauhan
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| |
Collapse
|
44
|
Richardson-May J, Purcaru E, Campbell C, Hillier C, Parkin B. Guillain-Barré Syndrome and Unilateral Optic Neuritis Following Vaccination for COVID-19: A Case Report and Literature Review. Neuroophthalmology 2022; 46:413-419. [PMID: 36544589 PMCID: PMC9762767 DOI: 10.1080/01658107.2022.2048861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A 71-year-old woman presented 2 weeks after vaccination with the first dose of Vaxzevria (AstraZeneca, Oxford) for COVID-19 with a left lower motor neuron facial nerve palsy, which progressed to bilateral involvement. This was accompanied by bilateral proximal leg weakness. She was diagnosed with the 'facial diplegia with paraesthesia' variant of Guillain-Barré syndrome. Seven weeks post vaccination she developed painless loss of vision in the right eye. The visual acuity in that eye was light perception only with a right relative afferent pupillary defect and right optic disc swelling. A diagnosis of optic neuritis was made and she received pulsed intravenous methylprednisolone for 3 days, followed by oral prednisolone. The optic neuritis recurred following initial cessation of steroids requiring an extended course of steroids. Despite this, she made a good visual recovery to 6/6 in the affected eye. We present this case and a review of the literature surrounding vaccination and the development of these conditions.
Collapse
Affiliation(s)
- J Richardson-May
- Ophthalmology, University Hospital Southampton, Southampton, United Kingdom,CONTACT J Richardson-May Ophthalmology, University Hospital Southampton, Tremona Road, SouthamptonSO16 6YD, United Kingdom
| | - E Purcaru
- Neurology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - C Campbell
- Ophthalmology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - C Hillier
- Consultant Neurologist, University Hospitals Dorset, Bournemouth, United Kingdom
| | - B Parkin
- Consultant Ophthalmologist, University Hospitals Dorset, Bournemouth, United Kingdom
| |
Collapse
|
45
|
García-Estrada C, Gómez-Figueroa E, Alban L, Arias-Cárdenas A. Optic neuritis after COVID-19 vaccine application. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2022; 13:72-74. [PMID: 34900001 PMCID: PMC8653244 DOI: 10.1111/cen3.12682] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
As the COVID‐19 pandemic continues to rise, the development of effective vaccines is of crucial importance to prevent further morbidity and mortality. In parallel, some rare adverse events related to COVID‐19 vaccines, have been reported, most of them mild. Here we report the case of a previously healthy 19‐year‐old woman who developed optic neuritis 1 week after single dose of Ad26.COV2.S vaccine with marked improvement after management with steroids. Although causality cannot be confirmed due to lack of a biological marker, this case may help to guide further research for potential pathogenic mechanism.
Collapse
Affiliation(s)
| | | | - Lennyn Alban
- Radiology Department Metropolitan Hospital Quito Ecuador
| | | |
Collapse
|
46
|
Matsunaga A, Tsuzuki S, Morioka S, Ohmagari N, Ishizaka Y. Long COVID: current status in Japan and knowledge about its molecular background. Glob Health Med 2022; 4:83-93. [PMID: 35586759 PMCID: PMC9066464 DOI: 10.35772/ghm.2022.01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Even after recovering from coronavirus disease 2019 (COVID-19), patients can experience prolonged complaints, referred to as "long COVID". Similar to reports in Caucasians, a follow-up study in Japan revealed that fatigue, dyspnea, cough, anosmia/dysgeusia, and dyssomnia are common symptoms. Although the precise mode of long COVID remains elusive, multiple etiologies such as direct organ damage by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), autoimmunity, prolonged inflammatory reactions, and psychiatric impairment seem to be involved. Notably, SARS-CoV-2 is neurotropic, and viral RNA and proteins are continuously detectable in multiple organs, including the brain. Viral proteins exert a number of different toxic effects on cells, suggesting that persistent infection is a key element for understanding long COVID. Here, we first reviewed the current status of long COVID in Japan, and then summarized literature that help us understand the molecular background of the symptoms. Finally, we discuss the feasibility of vaccination as a treatment for patients with long COVID.
Collapse
Affiliation(s)
- Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- AMR Clinical Reference Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Shinichiro Morioka
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy 2022; 77:1114-1128. [PMID: 34582050 PMCID: PMC8652765 DOI: 10.1111/all.15112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic started in March 2020 and caused over 5 million confirmed deaths worldwide as far August 2021. We have been recently overwhelmed by a wide literature on how the immune system recognizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to COVID-19 pathogenesis. Although originally considered a respiratory viral disease, COVID-19 is now recognized as a far more complex, multi-organ-, immuno-mediated-, and mostly heterogeneous disorder. Though efficient innate and adaptive immunity may control infection, when the patient fails to mount an adequate immune response at the start, or in advanced disease, a high innate-induced inflammation can lead to different clinical outcomes through heterogeneous compensatory mechanisms. The variability of viral load and persistence, the genetic alterations of virus-driven receptors/signaling pathways and the plasticity of innate and adaptive responses may all account for the extreme heterogeneity of pathogenesis and clinical patterns. As recently applied to some inflammatory disorders as asthma, rhinosinusitis with polyposis, and atopic dermatitis, herein we suggest defining different endo-types and the related phenotypes along COVID-19. Patients should be stratified for evolving symptoms and tightly monitored for surrogate biomarkers of innate and adaptive immunity. This would allow to preventively identify each endo-type (and its related phenotype) and to treat patients precisely with agents targeting pathogenic mechanisms.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | | | | | - Lorenzo Moretta
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| |
Collapse
|
48
|
Power JR, Keyt LK, Adler ED. Myocarditis following COVID-19 vaccination: incidence, mechanisms, and clinical considerations. Expert Rev Cardiovasc Ther 2022; 20:241-251. [PMID: 35414326 PMCID: PMC9115793 DOI: 10.1080/14779072.2022.2066522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Vaccines have demonstrated protection against the morbidity and mortality of COVID-19, but concerns regarding the rare side effect of acute myocarditis have stymied immunization efforts. This review aims to describe the incidence and theorized mechanisms of COVID vaccine-associated myocarditis and review relevant principles for management of vaccine-associated myocarditis. AREAS COVERED Epidemiologic studies of myocarditis after COVID vaccination are reviewed, which show an incidence of approximately 20-30 per million patients. The vast majority of these cases are seen with mRNA vaccines especially in male patients under 30 years of age. Mechanisms are largely theoretical, but molecular mimicry and dysregulated innate immune reactions have been proposed. While studies suggest that this subtype of myocarditis is mild and self-limited, long-term evidence is lacking. Principles of myocarditis treatment and surveillance are outlined as they apply to COVID vaccine-associated myocarditis. EXPERT OPINION COVID vaccine-associated myocarditis is rare but well described in certain at-risk groups. Better understanding of its pathogenesis is key to mitigating this complication and advancing vaccination efforts. Risk-benefit analyses demonstrate that individual- and population-level benefits of vaccination exceed the risks of this rare and mild form of myocarditis.
Collapse
Affiliation(s)
- John R. Power
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, California, United States
| | - Lucas K. Keyt
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, California, United States
| | - Eric D. Adler
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, California, United States
| |
Collapse
|
49
|
Abstract
Coronavirus disease 2019 (COVID-19) is associated with autoimmunity and systemic inflammation. Patients with autoimmune rheumatic and musculoskeletal disease (RMD) may be at high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this review, based on evidence from the literature, as well as international scientific recommendations, we review the relationships between COVID-19, autoimmunity and patients with autoimmune RMDs, as well as the basics of a multisystemic inflammatory syndrome associated with COVID-19. We discuss the repurposing of pharmaceutics used to treat RMDs, the principles for the treatment of patients with autoimmune RMDs during the pandemic and the main aspects of vaccination against SARS-CoV-2 in autoimmune RMD patients.
Collapse
|
50
|
Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, Freire PP, Filgueiras IS, Zyskind I, Lattin MT, Tran F, Schreiber S, Marques AHC, Plaça DR, Fonseca DLM, Humrich JY, Müller A, Giil LM, Graßhoff H, Schumann A, Hackel A, Junker J, Meyer C, Ochs HD, Lavi YB, Scheibenbogen C, Dechend R, Jurisica I, Schulze-Forster K, Silverberg JI, Amital H, Zimmerman J, Heidecke H, Rosenberg AZ, Riemekasten G, Shoenfeld Y. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun 2022; 13:1220. [PMID: 35264564 PMCID: PMC8907309 DOI: 10.1038/s41467-022-28905-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sao Paulo, Brazil.
| | - Gilad Halpert
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yuri Ostrinski
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Saint Petersburg State University, Saint-Petersburg, Russia
- Ariel University, Ariel, Israel
| | - Aristo Vojdani
- Department of Immunology, Immunosciences Laboratory, Inc., Los Angeles, CA, United States
- Cyrex Laboratories, LLC 2602S. 24th St., Phoenix, AZ, 85034, USA
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Miriam T Lattin
- Department of Biology, Yeshiva University, Manhatten, NY, USA
| | - Florian Tran
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexandre H C Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jens Y Humrich
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Hanna Graßhoff
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Anja Schumann
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Alexander Hackel
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Juliane Junker
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Carlotta Meyer
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Yael Bublil Lavi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, and HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, 13125, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN; Data Science Discovery Centre, Krembil Research Institute, UHN, Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kai Schulze-Forster
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Jonathan I Silverberg
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Harry Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.
- Saint Petersburg State University, Saint-Petersburg, Russia.
- Ariel University, Ariel, Israel.
| |
Collapse
|