1
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| | - Edward J Hollox
- Department of Genetics, Genomics and Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Vázquez-Coto D, Kimball C, Albaiceta GM, Amado-Rodríguez L, García-Clemente M, Gómez J, Coto E, Pandey JP. Immunoglobulin genes and severity of COVID-19. Immunogenetics 2024; 76:213-217. [PMID: 38602517 PMCID: PMC11087305 DOI: 10.1007/s00251-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.
Collapse
Affiliation(s)
- Daniel Vázquez-Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Christine Kimball
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta García-Clemente
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain.
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.
- Universidad de Oviedo, Oviedo, Spain.
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
4
|
Li P, Chen B, Zhao L, Yang F, Zhang Z, Cao Y, Hu Y. Correlations of FCGR2A 131R/H and FCGR3A 158V/F Polymorphisms with the Susceptibility of Peri-implantitis in Chinese Han Population. Mol Biotechnol 2024:10.1007/s12033-024-01193-8. [PMID: 38771420 DOI: 10.1007/s12033-024-01193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
The purpose of the study is to investigate the relationship of peri-implantitis (PI) with FCGR2A and FCGR3A gene polymorphisms. One hundred and forty-four patients with PI and 136 patients without PI infection were selected. Gingival crevicular fluid samples were collected from the two groups. The FCGR2A and FCGR3A polymorphism in the two groups were measured. All volunteers were evaluated for periodontal status. The effect of polymorphisms on PI susceptibility was investigated by chi-square analysis and logistic regression. The frequency of FCGR2A rs1801274 GG genotype of PI group was higher than that of the control group, while the GA and AA genotype carriers were less in PI group. After adjusting for other clinical indicators, rs1801274 GA genotype, AA genotype, and the A allele were still negatively correlated with the onset of PI. FCGR3A rs396991 polymorphism was not associated with PI. FCGR2A rs1801274 polymorphism was significantly associated with PI in the Chinese Han population, and GG genotype might be a genetic risk factor for PI.
Collapse
Affiliation(s)
- Peng Li
- Department One of Oral and Maxillofacial Surgery, Affiliated Hospital of Tangshan Vocational and Technical College, Tangshan, 063000, China
| | - Bingzhuo Chen
- Fifth Outpatient Department, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210019, China
| | - Liang Zhao
- Department of Stomatology, Central Hospital Affiliated to Shenyang Medical College, No.5, Nanqizi Road, Tiexi District, Shenyang, 110026, China
| | - Feng Yang
- Department of Stomatology, Central Hospital Affiliated to Shenyang Medical College, No.5, Nanqizi Road, Tiexi District, Shenyang, 110026, China
| | - Zhu Zhang
- Department of Stomatology, Central Hospital Affiliated to Shenyang Medical College, No.5, Nanqizi Road, Tiexi District, Shenyang, 110026, China
| | - Yuan Cao
- Department of Stomatology, Central Hospital Affiliated to Shenyang Medical College, No.5, Nanqizi Road, Tiexi District, Shenyang, 110026, China.
| | - Yang Hu
- Department of Oral Restoration and Implantation, First Affiliated Hospital of Xinjiang Medical University/Affiliated Stomatological Hospital, Urumqi, 830054, China.
- Xinjiang Uygur Autonomous Region, Institute of Stomatology, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830054, China.
| |
Collapse
|
5
|
Angulo-Aguado M, Carrillo-Martinez JC, Contreras-Bravo NC, Morel A, Parra-Abaunza K, Usaquén W, Fonseca-Mendoza DJ, Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population. Sci Rep 2024; 14:8497. [PMID: 38605121 PMCID: PMC11009356 DOI: 10.1038/s41598-024-57982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was considered a major public health burden worldwide. Multiple studies have shown that susceptibility to severe infections and the development of long-term symptoms is significantly influenced by viral and host factors. These findings have highlighted the potential of host genetic markers to identify high-risk individuals and develop target interventions to reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in Latin-American populations. Using a case-control design and a custom next-generation sequencing (NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID-19 severity and long-COVID, we analyzed 56 individuals with asymptomatic or mild COVID-19 and 56 severe and critical cases. In agreement with previous studies, our results support the association between several clinical variables, including male sex, obesity and common symptoms like cough and dyspnea, and severe COVID-19. Remarkably, thirteen genetic variants showed an association with COVID-19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36-86.51) located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05-69.45) located in CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27-4.94) in the IL10RB gene, were significantly associated with the presence of long-COVID. The results of the predictive model comparison showed that the mixed model, which incorporates genetic and non-genetic variables, outperforms clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin-America proposing a predictive model for COVID-19 severity and long-COVID based on genomic analysis. Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in specific populations. The methodology used allowed us to validate several genetic variants previously associated with COVID-19 severity and long-COVID. Finally, the integrated model illustrates the importance of considering genetic factors in precision medicine of infectious diseases.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Juan Camilo Carrillo-Martinez
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Nora Constanza Contreras-Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | | | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Oscar Ortega-Recalde
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia.
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| |
Collapse
|
6
|
Bermejo-Jambrina M, van der Donk LE, van Hamme JL, Wilflingseder D, de Bree G, Prins M, de Jong M, Nieuwkerk P, van Gils MJ, Kootstra NA, Geijtenbeek TB. Control of complement-induced inflammatory responses to SARS-CoV-2 infection by anti-SARS-CoV-2 antibodies. EMBO J 2024; 43:1135-1163. [PMID: 38418557 PMCID: PMC10987522 DOI: 10.1038/s44318-024-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lieve Eh van der Donk
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Godelieve de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
| | - Menno de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Pythia Nieuwkerk
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
- Department of Medical Psychology (J3-2019-1), Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis Bh Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Moghaddam N, Goodarzi MT, Moghaddam S, Sakhaee F, Ahmadi I, Anvari E, Fateh A. Relationship Between Human FCγ RIIA rs1801274 G Allele and Risk of Death Among Different SARS-CoV-2 Variants. Viral Immunol 2023; 36:678-685. [PMID: 38029355 DOI: 10.1089/vim.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and spread very quickly across the world. Different responses to infections have been related to fragment crystallizable gamma-receptor II alpha (FcγRIIA) polymorphisms. The purpose of this investigation was to determine if FCγRIIA rs1801274 polymorphism was related to COVID-19 mortality among different variants of SARS-CoV-2. The FCγRIIA rs1801274 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism technique in 1,734 recovered and 1,450 deceased patients. Deceased patients had significantly higher minor allele frequency of the FCγRIIA rs1801274 G allele than in the recovered cases. The COVID-19 mortality was associated with FCγRIIA rs1801274 GG and AG genotypes in the Delta variant and with FCγRIIA rs1801274 GG genotypes in the Alpha and Omicron BA.5 variants. The reverse transcription-quantitative polymerase chain reaction Ct values revealed statistically significant differences between individuals with a G allele and those with an A allele. In conclusion, among the several SARS-CoV-2 variants, there may be a correlation between the mortality rate of COVID-19 and the G allele of FCγRIIA rs1801274. To confirm our findings, thorough research is still required.
Collapse
Affiliation(s)
- Nazanin Moghaddam
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Sina Moghaddam
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Kozak K, Pavlyshyn H, Kamyshnyi O, Shevchuk O, Korda M, Vari SG. The Relationship between COVID-19 Severity in Children and Immunoregulatory Gene Polymorphism. Viruses 2023; 15:2093. [PMID: 37896870 PMCID: PMC10612096 DOI: 10.3390/v15102093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease (COVID-19) and its outcomes remain one of the most challenging problems today. COVID-19 in children could be asymptomatic, but can result in a fatal outcome; therefore, predictions of the disease severity are important. The goal was to investigate the human genetic factors that could be associated with COVID-19 severity in children. Single-nucleotide polymorphisms of the following genes were studied: ACE2 (rs2074192), IFNAR2 (rs2236757), TYK2 (rs2304256), OAS1 (rs10774671), OAS3 (rs10735079), CD40 (rs4813003), FCGR2A (rs1801274) and CASP3 (rs113420705). In the case-control study were 30 children with mild or moderate course of the disease; 30 with severe COVID-19 symptoms and multisystem inflammatory syndrome in children (MIS-C) and 15 who were healthy, and who did not have SARS-CoV-2 (PCR negative, Ig G negative). The study revealed that ACE2 rs2074192 (allele T), IFNAR2 rs2236757 (allele A), OAS1 rs10774671 (allele A), CD40 rs4813003 (allele C), CASP3 rs113420705 (allele C) and male sex contribute to severe COVID-19 course and MIS-C in 85.6% of cases. The World Health Organization reported that new SARS-CoV-2 variants may cause previously unseen symptoms in children. Although the study has limitations due to cohort size, the findings can help provide a better understanding of SARS-CoV-2 infection and proactive pediatric patient management.
Collapse
Affiliation(s)
- Kateryna Kozak
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Halyna Pavlyshyn
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
9
|
Chen Y, Qin Y, Fu Y, Gao Z, Deng Y. Integrated Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unravels the Influences of SARS-CoV-2 Infections to Cancer Patients. Int J Mol Sci 2022; 23:15698. [PMID: 36555339 PMCID: PMC9779348 DOI: 10.3390/ijms232415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious and pathogenic coronavirus that emerged in late 2019 and caused a pandemic of respiratory illness termed as coronavirus disease 2019 (COVID-19). Cancer patients are more susceptible to SARS-CoV-2 infection. The treatment of cancer patients infected with SARS-CoV-2 is more complicated, and the patients are at risk of poor prognosis compared to other populations. Patients infected with SARS-CoV-2 are prone to rapid development of acute respiratory distress syndrome (ARDS) of which pulmonary fibrosis (PF) is considered a sequelae. Both ARDS and PF are factors that contribute to poor prognosis in COVID-19 patients. However, the molecular mechanisms among COVID-19, ARDS and PF in COVID-19 patients with cancer are not well-understood. In this study, the common differentially expressed genes (DEGs) between COVID-19 patients with and without cancer were identified. Based on the common DEGs, a series of analyses were performed, including Gene Ontology (GO) and pathway analysis, protein-protein interaction (PPI) network construction and hub gene extraction, transcription factor (TF)-DEG regulatory network construction, TF-DEG-miRNA coregulatory network construction and drug molecule identification. The candidate drug molecules (e.g., Tamibarotene CTD 00002527) obtained by this study might be helpful for effective therapeutic targets in COVID-19 patients with cancer. In addition, the common DEGs among ARDS, PF and COVID-19 patients with and without cancer are TNFSF10 and IFITM2. These two genes may serve as potential therapeutic targets in the treatment of COVID-19 patients with cancer. Changes in the expression levels of TNFSF10 and IFITM2 in CD14+/CD16+ monocytes may affect the immune response of COVID-19 patients. Specifically, changes in the expression level of TNFSF10 in monocytes can be considered as an immune signature in COVID-19 patients with hematologic cancer. Targeting N6-methyladenosine (m6A) pathways (e.g., METTL3/SERPINA1 axis) to restrict SARS-CoV-2 reproduction has therapeutic potential for COVID-19 patients.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
10
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
11
|
IGHG3 hinge length variation was associated with the risk of critical disease and death in a Spanish COVID-19 cohort. Genes Immun 2022; 23:205-208. [PMID: 36088493 PMCID: PMC9463670 DOI: 10.1038/s41435-022-00179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66–4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.
Collapse
|