1
|
Li C, Lin X, Lin Q, Lin Y, Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155137. [PMID: 37856991 DOI: 10.1016/j.phymed.2023.155137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a series of reactions to bone homeostasis dysregulation mediated by estrogen deficiency in elderly women. Jiangu granules, a traditional Chinese medicine formula, has been proven as an effective treatment approach for PMOP, which still needs more research iin its complex regulatory mechanisms. PURPOSE Our study aimed to identify the putative targets and regulatory mechanisms of Jiangu granules in PMOP treating. METHODS We utilized the NHANES database to compare the clinical information of normal population and PMOP patients. Associated with transcriptomics and proteomic data, we identified the PMOP-related genes, and further studied them with bioinformatic methods including and prognosis model. Network pharmacology was applied for confirming the action targets of Jiangu granules in PMOP. We verified the safety and effectiveness in PMOP treatments of Jiangu granules, and also demonstrated our hypothesis in rats. RESULTS We discovered that the PMOP patients had higher monocytes than the normal women. Moreover, the transcriptomics and proteomic analysis suggested that the dysregulation of PMOP-related genes expression was associated with monocytes, and the Notch pathway were the critical targets representing bone homeostasis imbalance highly involved in the occurrence of PMOP. We also ascertained network pharmacology results further revealing that Jiangu granules might treat PMOP via recovering the bone homeostasis imbalance identified above. In vivo experiments, we confirmed the high efficacy which mainly resulted from function in mitigating the imbalance in bone homeostasis by recovering the normal expression of PMOP-related genes associated with monocytes, Notch, and steroid pathway in the rat models. CONCLUSION Our finding underscored the clinical potential of Jiangu granules in treating PMOP, and enriched the comprehension of the related pathogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Chaoxiong Li
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qin Lin
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China; Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Yanping Lin
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiming Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, 1st Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Mikhailova L, Minchenko A, Soroko I, Khlusov I, Litvinova L. Adipocyte- and Monocyte-Mediated Vicious Circle of Inflammation and Obesity (Review of Cellular and Molecular Mechanisms). Int J Mol Sci 2023; 24:12259. [PMID: 37569635 PMCID: PMC10418857 DOI: 10.3390/ijms241512259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Monocytes play a key role in the development of metabolic syndrome, and especially obesity. Given the complex features of their development from progenitor cells, whose regulation is mediated by their interactions with bone marrow adipocytes, the importance of a detailed study of the heterogeneous composition of monocytes at the molecular and systemic levels becomes clear. Research argues for monocytes as indicators of changes in the body's metabolism and the possibility of developing therapeutic strategies to combat obesity and components of metabolic syndrome based on manipulations of the monocyte compound of the immune response. An in-depth study of the heterogeneity of bone-marrow-derived monocytes and adipocytes could provide answers to many questions about the pathogenesis of obesity and reveal their therapeutic potential.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Larisa Mikhailova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Anastasia Minchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Irina Soroko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (L.M.); (A.M.); (I.S.); (I.K.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence:
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Jing P, Song X, Xiong L, Wang B, Wang Y, Wang L. Angelica sinensis polysaccharides prevents hematopoietic regression in D-Galactose-Induced aging model via attenuation of oxidative stress in hematopoietic microenvironment. Mol Biol Rep 2023; 50:121-132. [PMID: 36315330 DOI: 10.1007/s11033-022-07898-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Extrinsic molecular mechanisms that regulate hematopoietic stem/progenitor cell (HSPC) aging are still poorly understood, and a potential protective medication needs to be explored. MATERIALS AND METHODS The senescent parameters of hematopoietic cells and bone marrow stromal cells (BMSCs) including cell cycle analysis, senescence-associated SA-β-gal staining and signals, hematopoietic factors and cellular junction were analyzed in femur and tibia of rats. Furthermore, Sca-1+ HSPCs and BMSCs co-culture system was established to evaluate the direct effects of BMSC feeder layer to HSPCs. Oxidative DNA damage indicators in Sca-1+ HSCs and senescence-associated secretory phenotype (SASP) of BMSCs, gap junction intercellular communication between BMSCs, osteogenesis/adipogenisis differentiation balance of BMSCs were detected. RESULTS In the D-gal pre-administrated rats, ASP treatment rescued senescence of hematopoietic cells and BMSCs, reserved CFU-GEMM; also, ASP treatment attenuated stromal oxidative load, ameliorated SCF, CXCL12, and GM-CSF production, increased Connexin-43 (Cx43) expression. BMSCs and Sca-1+ HSPCs co-cultivation demonstrated that ASP treatment prevented oxidative DNA damage response in co-cultured Sca-1+ HSPCs induced by D-gal pre-administration of feeder layer and the underlying mechanism may be related to ASP ameliorating feeder layer dysfunction due to D-gal induced senescence via inhibiting secretion of IL-1, IL-6, TNF-α, and RANTES, enhancing Cx43-mediated intercellular communication, improving Runx2 expression whereas decreasing PPARγ expression in BMSCs. CONCLUSION The antioxidant property of ASP may provide a stroma-mediated potential therapeutic strategy for HSPC aging.
Collapse
Affiliation(s)
- Pengwei Jing
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xiaoying Song
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,The People's Hospital of Jiajiang, 614100, Leshan, China
| | - Lirong Xiong
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China. .,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
5
|
Lin H, Zhang W, Xu Y, You Z, Zheng M, Liu Z, Li C. 4D label-free quantitative proteomics analysis to screen potential drug targets of Jiangu Granules treatment for postmenopausal osteoporotic rats. Front Pharmacol 2022; 13:1052922. [PMID: 36386173 PMCID: PMC9663813 DOI: 10.3389/fphar.2022.1052922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Background: Postmenopausal osteoporosis (PMOP) is a disease with a high prevalence in postmenopausal women and is characterized by an imbalance in bone metabolism, reduced bone mass, and increased risk of fracture due to estrogen deficiency. Jiangu granules (JG) is a compound prescription used in traditional Chinese medicine to treat PMOP. However, its definitive mechanism in PMOP is unclear. This study used a 4D label-free quantitative proteomics method to explore the potential therapeutic mechanism of JG in an ovariectomy (OVX) rats' model. Materials and methods: A rat model of PMOP was established by removing the ovaries bilaterally. Nine 3-month-old specific-pathogen-free female SD rats. The nine rats were randomly divided into 3 groups (n = 3 in each group): the sham-operated group (J), the ovariectomy group (NC), and the JG treatment (ZY) group. Proteins extracted from the bone tissue of the lumbar spine (L3, L4) of three groups of rats were analyzed by 4D label-free quantitative proteomics, and proteins differentially expressed after JG treatment and proteins differentially expressed after de-ovulation were intersected to identify proteins associated with the mechanism of PMOP by JG treatment. Result: There were 104 up-regulated and 153 down-regulated differentially expressed proteins (DEPs) in the J group vs. NC group, 107 up-regulated and 113 down-regulated DEPs in the J group vs. ZY group, and 15 up-regulated and 32 down-regulated DEPs in the NC group vs. ZY group. Six potential target proteins for JG regulation of osteoblast differentiation in OVX rats were identified by taking intersections of differential proteins in the J group vs. NC group and NC group vs. ZY group. Conclusion: JG may exert therapeutic effects by modulating the expression levels of target proteins associated with osteoblast differentiation to enhance osteoblast differentiation in OVX rats. These results further uncovered the target proteins and specific mechanisms of JG in treating PMOP, providing an experimental basis for the clinical application of JG in treating PMOP.
Collapse
Affiliation(s)
- Haiming Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yashi Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zexing You
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minlin Zheng
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhentao Liu
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chaoxiong Li
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China,The Third Clinical Medical College, Fujian Medical University, Fuzhou, China,Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, China,*Correspondence: Chaoxiong Li,
| |
Collapse
|
6
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania
| |
Collapse
|
7
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
8
|
Atmar K, Tulling AJ, Lankester AC, Bartels M, Smiers FJ, van der Burg M, Mohseny AB. Functional and Immune Modulatory Characteristics of Bone Marrow Mesenchymal Stromal Cells in Patients With Aplastic Anemia: A Systematic Review. Front Immunol 2022; 13:859668. [PMID: 35355996 PMCID: PMC8959635 DOI: 10.3389/fimmu.2022.859668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background In most patients with aplastic anemia (AA), the diagnosis is limited to a description of the symptoms. Lack of understanding of the underlying pathophysiological mechanisms causing bone marrow failure (BMF), hampers tailored treatment. In these patients, auto-immune cell-mediated destruction of the bone marrow is often presumed to be the causative mechanism. The status of the bone marrow microenvironment, particularly the mesenchymal stromal cell (MSC) component, was recently suggested as a potential player in the pathophysiology of AA. Therefore, functional, and immune modulatory characteristics of bone marrow MSCs might represent important parameters for AA. Objective To conduct a systematic review to evaluate in vitro functional properties of MSCs derived from patients with AA compared to healthy controls. Methods According to PRISMA guidelines, a comprehensive search strategy was performed by using online databases (Pubmed, ISI Web of Science, Embase, and the Cochrane Library). Studies reporting on phenotypical characterization, proliferation potential, differentiation capacity, immunomodulatory potential, and ability to support hematopoiesis were identified and screened using the Rayyan software tool. Results 23 articles were included in this systematic review, describing a total of 324 patients with AA and 285 controls. None of the studies identified a significant difference in expression of any MSC surface marker between both groups. However, AA-MSCs showed a decreased proliferation potential, an increased tendency to differentiate into the adipogenic lineage and decreased propensity towards osteogenic differentiation. Importantly, AA-MSCs show reduced capacity of immunosuppression and hematopoietic support in comparison to healthy controls. Conclusion We conclude that there are indications for a contribution of MSCs in the pathophysiology of AA. However, the current evidence is of poor quality and requires better defined study populations in addition to a more robust methodology to study MSC biology at a cellular and molecular level. Future studies on bone marrow microenvironment should aim at elucidating the interaction between MSCs, hematopoietic stem cells (HSCs) and immune cells to identify impairments associated with/causing BMF in patients with AA.
Collapse
Affiliation(s)
- Khaled Atmar
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Adam J Tulling
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C Lankester
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Alexander B Mohseny
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Natsuki Y, Morioka T, Fukumoto S, Kakutani Y, Yamazaki Y, Ochi A, Kurajoh M, Mori K, Shoji T, Imanishi Y, Inaba M, Emoto M. Role of adiponectin in the relationship between visceral adiposity and fibroblast growth factor 23 in non-diabetic men with normal kidney function. Endocr J 2022; 69:121-129. [PMID: 34497173 DOI: 10.1507/endocrj.ej21-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a key regulator of phosphate metabolism. Circulating FGF23 levels are associated with obesity, metabolic syndrome, and cardiovascular disease in the general population, but the underlying mechanism remains unclear. Therefore, we aimed to determine the associations between serum FGF23 levels and visceral adiposity as well as serum adiponectin levels in 189 adults without diabetes and with normal kidney function who were selected from the MedCity21 health examination registry. The exclusion criteria included diabetes mellitus or impaired kidney function (estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m2). Levels of serum FGF23 and total adiponectin, and visceral fat area (VFA) on computed tomography images were measured. Serum FGF23 levels were higher and VFA was greater, whereas serum adiponectin levels were lower in men than in women. Serum FGF23 levels positively correlated with VFA in men; they remained marginally significant after adjusting for age, eGFR, and serum levels of calcium, phosphate, intact parathyroid hormone, and 1,25-dihydroxyvitamin D. Importantly, when serum adiponectin levels were included as a covariate, serum adiponectin levels comprised an independent determinant of serum FGF23 levels in men, whereas VFA did not. In conclusion, lower serum adiponectin, rather than a greater VFA, was associated with higher serum FGF23 levels in non-diabetic men with normal kidney function. These findings suggest that adiponectin plays a role in the relationship between visceral adiposity and FGF23 in men.
Collapse
Affiliation(s)
- Yuka Natsuki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinya Fukumoto
- Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
10
|
Aaron N, Costa S, Rosen CJ, Qiang L. The Implications of Bone Marrow Adipose Tissue on Inflammaging. Front Endocrinol (Lausanne) 2022; 13:853765. [PMID: 35360075 PMCID: PMC8962663 DOI: 10.3389/fendo.2022.853765] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is now regarded as a metabolically active organ that plays versatile roles in endocrine function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy conservation. While the regulation of BMAT is inadequately understood, it is recognized as a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to influence the microenvironment. This process is conceivably signaled by the secretion of adipocyte-derived factors including pro-inflammatory cytokines and adipokines. Adipokines participate in the development of a chronic state of low-grade systemic inflammation (inflammaging), which trigger changes in the immune system that are characterized by declining fidelity and efficiency and cause an imbalance between pro-inflammatory and anti-inflammatory networks. In this review, we discuss the local effects of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory changes associated with BMAT accrual, and the downstream effect on endocrine function, energy expenditure, and metabolism. Furthermore, we address therapeutic strategies to prevent BMAT accumulation and associated dysfunction during aging. In sum, BMAT is emerging as a critical player in aging and its explicit characterization still requires further research.
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pharmacology, Columbia University, New York, NY, United States
| | - Samantha Costa
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology, Columbia University, New York, NY, United States
- *Correspondence: Clifford J. Rosen, ; Li Qiang,
| |
Collapse
|
11
|
FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation. Biomed Pharmacother 2021; 146:112524. [PMID: 34906775 DOI: 10.1016/j.biopha.2021.112524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Human fibroblast growth factor 19 (FGF19) has become a potential therapeutic target for metabolic-related diseases. However, the effects of FGF19 on obesity-induced bone loss have not been completely elucidated. The aim of this study was to investigate the protective effects of FGF19 in high-fat diet (HFD)-fed obese mice and palmitic acid (PA)-treated osteoblasts and to further explore its underlying mechanisms. In vivo, we found that FGF19 alleviated the decreased bone mineral density (BMD) induced by HFD. Micro-CT analysis of femur samples and histological analysis indicated that FGF19 alleviated HFD-induced loss of bone trabeculae and damage to the bone trabecular structure. In vitro, the results suggested that FGF19 ameliorated the PA-induced decline in osteoblast proliferation, increased cell death and impaired cell morphology. Additionally, FGF19 protected against the decline in activation of alkaline phosphatase (ALP) and protein expression of Collagen-1, Runx-2, and osteopontin (OPN) induced by PA. Furthermore, FGF19 might enhance osteogenic differentiation via the Wnt/β-catenin pathway and inhibit osteoclastogenesis by regulating the osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) axis, thus attenuating the negative effect of PA in osteoblasts. In conclusion, our results suggested that FGF19 might promote osteogenic differentiation partially through activation of the Wnt/β-catenin pathway and alleviate obesity-induced bone loss.
Collapse
|
12
|
Aljohani H, Stains JP, Majumdar S, Srinivasan D, Senbanjo L, Chellaiah MA. Peptidomimetic inhibitor of L-plastin reduces osteoclastic bone resorption in aging female mice. Bone Res 2021; 9:22. [PMID: 33837180 PMCID: PMC8035201 DOI: 10.1038/s41413-020-00135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
L-plastin (LPL) was identified as a potential regulator of the actin-bundling process involved in forming nascent sealing zones (NSZs), which are precursor zones for mature sealing zones. TAT-fused cell-penetrating small molecular weight LPL peptide (TAT- MARGSVSDEE, denoted as an inhibitory LPL peptide) attenuated the formation of NSZs and impaired bone resorption in vitro in osteoclasts. Also, the genetic deletion of LPL in mice demonstrated decreased eroded perimeters and increased trabecular bone density. In the present study, we hypothesized that targeting LPL with the inhibitory LPL peptide in vivo could reduce osteoclast function and increase bone density in a mice model of low bone mass. We injected aging C57BL/6 female mice (36 weeks old) subcutaneously with the inhibitory and scrambled peptides of LPL for 14 weeks. Micro-CT and histomorphometry analyses demonstrated an increase in trabecular bone density of femoral and tibial bones with no change in cortical thickness in mice injected with the inhibitory LPL peptide. A reduction in the serum levels of CTX-1 peptide suggests that the increase in bone density is associated with a decrease in osteoclast function. No changes in bone formation rate and mineral apposition rate, and the serum levels of P1NP indicate that the inhibitory LPL peptide does not affect osteoblast function. Our study shows that the inhibitory LPL peptide can block osteoclast function without impairing the function of osteoblasts. LPL peptide could be developed as a prospective therapeutic agent to treat osteoporosis.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Kingdom of Saudi Arabia
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Deepa Srinivasan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Linda Senbanjo
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
13
|
Li H, Xu X, Wang D, Zeng L, Li B, Zhang Y, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model. Cell Cycle 2020; 19:2460-2471. [PMID: 32840137 PMCID: PMC7553565 DOI: 10.1080/15384101.2020.1807081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to reveal the mechanism of miR-146b-5p in the differentiation of bone marrow mesenchymal stem cells (BMSCs) derived from children with aplastic anemia (AA). Here, we found that miR-146b-5p was highly expressed in BMSCs from children with AA, and the BMSCs surface markers expressions in BMSCs derived from children with AA and the healthy controls exerted no significant differences. Besides, the overexpression of miR-146b-5p in normal human-derived BMSCs promoted the adipogenic differentiation of BMSCs. Furthermore, miR-146b-5p negatively regulated SIAH2 luciferase activity, and the interference with miR-146b-5p reduced the stability of PPARγ protein and inhibited SIAH2-mediated ubiquitination of PPARγ protein. Besides, the interference with miR-146b-5p was beneficial for ameliorating AA in a mouse model of AA. Overall, our results found that miR-146b-5p was highly expressed in BMSCs from children with AA, and our further studies indicated that miR-146b-5p improved AA via promoting SIAH2-mediated ubiquitination of PPARγ protein.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueju Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zeng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bai Li
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shufang Su
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Shao BY, Wang L, Yu Y, Chen L, Gan N, Huang WM. Effects of CD4 + T lymphocytes from ovariectomized mice on bone marrow mesenchymal stem cell proliferation and osteogenic differentiation. Exp Ther Med 2020; 20:84. [PMID: 32968441 PMCID: PMC7500006 DOI: 10.3892/etm.2020.9212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The present study was designed to investigate the effects of T cells on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). BMMSCs were co-cultured with CD4+ T cells that had been pretreated with anti-TNF-α or controls and were derived from ovariectomized (OVX) mice or sham control mice. MTT was used to assess the proliferative ability of BMMSCs and flow cytometry was used to analyze the BMMSC cell cycle. Following the induction of osteogenic differentiation in BMMSCs, calcium nodules were observed using alizarin red staining and alkaline phosphatase (ALP) staining. The expression levels of the osteogenesis-associated genes, runt related transcription factor 2 (Runx2) and osteocalcin (OCN) in BMMSCs were quantified using reverse transcription-quantitative PCR and western blotting. Osteogenesis-related signaling pathways, including ERK, JNK and p38 MAPK were also examined by western blotting. BMMSCs co-cultured with CD4+ T cells from OVX mice exhibited reduced proliferative ability compared with sham mice and the cell cycle was arrested at the G2/M phase. Additionally, BMMSCs co-cultured with CD4+ T cells from OVX mice presented with reduced levels of osteogenic differentiation and lower ALP activity, less calcium deposition and reduced expression of Runx2 and OCN compared with sham mice. The reduced levels of proliferation and osteogenic differentiation of BMMSCs induced by CD4+ T cells were not seen when the T cells were had been pretreated with anti-TNF-α. The results indicated that CD4+ T cells from OVX mice inhibited the proliferation and osteogenic differentiation of BMMSCs by producing high levels of TNF-α and may provide a novel insight into the dysfunction of BMMSCs caused by estrogen deficiency.
Collapse
Affiliation(s)
- Bing-Yi Shao
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| | - Lan Wang
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| | - Yang Yu
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| | - Liang Chen
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| | - Ning Gan
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| | - Wen-Ming Huang
- Department of Operative Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China.,Department of Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 400047, P.R. China
| |
Collapse
|
15
|
Picke AK, Campbell GM, Blüher M, Krügel U, Schmidt FN, Tsourdi E, Winzer M, Rauner M, Vukicevic V, Busse B, Salbach-Hirsch J, Tuckermann JP, Simon JC, Anderegg U, Hofbauer LC, Saalbach A. Thy-1 (CD90) promotes bone formation and protects against obesity. Sci Transl Med 2019; 10:10/453/eaao6806. [PMID: 30089635 DOI: 10.1126/scitranslmed.aao6806] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/02/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Osteoporosis and obesity result from disturbed osteogenic and adipogenic differentiation and present emerging challenges for our aging society. Because of the regulatory role of Thy-1 in mesenchyme-derived fibroblasts, we investigated the impact of Thy-1 expression on mesenchymal stem cell (MSC) fate between osteogenic and adipogenic differentiation and consequences for bone formation and adipose tissue development in vivo. MSCs from Thy-1-deficient mice have decreased osteoblast differentiation and increased adipogenic differentiation compared to MSCs from wild-type mice. Consistently, Thy-1-deficient mice exhibited decreased bone volume and bone formation rate with elevated cortical porosity, resulting in lower bone strength. In parallel, body weight, subcutaneous/epigonadal fat mass, and bone fat volume were increased. Thy-1 deficiency was accompanied by reduced expression of specific Wnt ligands with simultaneous increase of the Wnt inhibitors sclerostin and dickkopf-1 and an altered responsiveness to Wnt. We demonstrated that disturbed bone remodeling in osteoporosis and dysregulated adipose tissue accumulation in patients with obesity were mirrored by reduced serum Thy-1 concentrations. Our findings provide new insights into the mutual regulation of bone formation and obesity and open new perspectives to monitor and to interfere with the dysregulated balance of adipogenesis and osteogenesis in obesity and osteoporosis.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Graeme M Campbell
- Institute of Biomechanics, Hamburg University of Technology, 21073 Hamburg, Germany
| | | | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Elena Tsourdi
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Maria Winzer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Vladimir Vukicevic
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
16
|
Oh JH, Ahn BN, Karadeniz F, Kim JA, Lee JI, Seo Y, Kong CS. Phlorofucofuroeckol A from Edible Brown Alga Ecklonia Cava Enhances Osteoblastogenesis in Bone Marrow-Derived Human Mesenchymal Stem Cells. Mar Drugs 2019; 17:E543. [PMID: 31546680 PMCID: PMC6836260 DOI: 10.3390/md17100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
The deterioration of bone formation is a leading cause of age-related bone disorders. Lack of bone formation is induced by decreased osteoblastogenesis. In this study, osteoblastogenesis promoting effects of algal phlorotannin, phlorofucofuroeckol A (PFF-A), were evaluated. PFF-A was isolated from brown alga Ecklonia cava. The ability of PFF-A to enhance osteoblast differentiation was observed in murine pre-osteoblast cell line MC3T3-E1 and human bone marrow-derived mesenchymal stem cells (huBM-MSCs). Proliferation and alkaline phosphatase (ALP) activity of osteoblasts during differentiation was assayed following PFF-A treatment along extracellular mineralization. In addition, effect of PFF-A on osteoblast maturation pathways such as Runx2 and Smads was analyzed. Treatment of PFF-A was able to enhance the proliferation of differentiating osteoblasts. Also, ALP activity was observed to be increased. Osteoblasts showed increased extracellular mineralization, observed by Alizarin Red staining, following PFF-A treatment. In addition, expression levels of critical proteins in osteoblastogenesis such as ALP, bone morphogenetic protein-2 (BMP-2), osteocalcin and β-catenin were stimulated after the introduction of PFF-A. In conclusion, PFF-A was suggested to be a potential natural product with osteoblastogenesis enhancing effects which can be utilized against bone-remodeling imbalances and osteoporosis-related complications.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Byul-Nim Ahn
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| |
Collapse
|
17
|
Guerra JM, Hanes MA, Rasa C, Loganathan N, Innis-Whitehouse W, Gutierrez E, Nair S, Banu J. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. J Bone Miner Metab 2019; 37:780-795. [PMID: 30756174 DOI: 10.1007/s00774-018-0983-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/03/2018] [Indexed: 12/25/2022]
Abstract
In women, age-related bone loss is associated with increased risk of bone fracture. Existing therapies are associated with severe side effects; thus, there is a need to find alternative medicines with less or optimal side effects. Cissus quadrangularis (CQ), an Ayurvedic medicine used to enhance fracture healing, was tested for its bone protective properties and studied to discern the mechanism by which it is beneficial to bone. Female Sprague Dawley rats were either sham operated or ovariectomized and were fed CQ for 3 months. Several biochemical markers, cytokines and hormones were assayed. Femur, tibia and lumbar vertebrae were subjected to pQCT and µCT densitometry. MC3T3 cells were cultured, treated with CQ and used to analyze miRNA content and subjected to qPCR for gene expression analysis related to bone metabolism. CQO rats showed protected bone mass and microarchitecture of trabecular bone in the distal femoral metaphysis and the proximal tibial metaphysis. The lumbar vertebrae, however, showed no significant changes. Serum protein expression levels of P1NP increased and Trap5b and CTX levels decreased with in vivo CQ treatment. Some influence on the anti- and pro-inflammatory markers was also observed. Significantly high level of estradiol in the CQO rats was observed. In vitro expression of a few genes related to bone metabolism showed that osteocalcin increased significantly. The other genes-collagen I expression, SPP1, BMP2, DCAT1-decreased significantly. Certain miRNA that regulate bone turnover using the BMP pathway and Wnt signaling pathways were upregulated by CQ. qPCR after acute treatment with CQ showed significantly increased levels of osteocalcin and decreased levels of Wnt/β catenin antagonist DCAT1. Overall, CQ protected the microarchitecture of the long bones from ovariectomy-induced bone loss. This may be because of decreased inflammation and modulation through the BMP and Wnt signaling pathways. We conclude that CQ is a potential therapeutic agent to treat postmenopausal osteoporosis with no side effects.
Collapse
Affiliation(s)
- Juan M Guerra
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA
- Department of Biology, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA
| | - Martha A Hanes
- Department of Lab Animal Resources, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Cordelia Rasa
- Department of Lab Animal Resources, University of Texas Rio Grande Valley, 1201, W University Dr, Edinburg, TX 78539, USA
| | | | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX, 78539, USA
| | - Ednia Gutierrez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA
| | - Saraswathy Nair
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA
| | - Jameela Banu
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA.
- Department of Biology, University of Texas Rio Grande Valley, 1201, W University Dr., Edinburg, TX, 78539, USA.
| |
Collapse
|
18
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
19
|
Riera-Heredia N, Lutfi E, Gutiérrez J, Navarro I, Capilla E. Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS One 2019; 14:e0215926. [PMID: 31017945 PMCID: PMC6481918 DOI: 10.1371/journal.pone.0215926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/01/2023] Open
Abstract
Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil (EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evaluated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a morphological level, cells adopted a round shape upon all treatments, losing their fibroblastic form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished and those of relevant osteogenic genes remained stable after incubation with all fatty acids, suggesting that the osteogenic process might be compromised. On the other hand, transcript levels of the main adipogenesis-inducer factor, pparg increased in response to EPA. Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, significantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, supporting the elevated lipid content found in the cells treated with those fatty acids. Overall, this study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This process seems to be promoted via different pathways depending on the fatty acid source, being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic phenotypes.
Collapse
Affiliation(s)
- Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
20
|
Del Rocío Cruz-Guzmán O, Rodríguez-Cruz M, Almeida-Becerril T, Maldonado-Hernández J, Baeza CW. Muscle function and age are associated with loss of bone mineral density in Duchenne muscular dystrophy. Muscle Nerve 2019; 59:417-421. [DOI: 10.1002/mus.26416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Oriana Del Rocío Cruz-Guzmán
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría; Centro Médico Nacional Siglo XXI-IMSS; Av. Cuauhtémoc No. 330, Col. Doctores, Delegación, Cuauhtémoc, 06725 Ciudad de México México
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; Ciudad de México Mexico
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría; Centro Médico Nacional Siglo XXI-IMSS; Av. Cuauhtémoc No. 330, Col. Doctores, Delegación, Cuauhtémoc, 06725 Ciudad de México México
| | - Tomas Almeida-Becerril
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría; Centro Médico Nacional Siglo XXI-IMSS; Av. Cuauhtémoc No. 330, Col. Doctores, Delegación, Cuauhtémoc, 06725 Ciudad de México México
| | - Jorge Maldonado-Hernández
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría; Centro Médico Nacional Siglo XXI-IMSS; Av. Cuauhtémoc No. 330, Col. Doctores, Delegación, Cuauhtémoc, 06725 Ciudad de México México
| | - Carlos Wong Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; Ciudad de México Mexico
| |
Collapse
|
21
|
Piao C, Li Z, Ding J, Kong D. Bone Viscoelastic Properties in an Animal Model with Osteoporosis after BMSC-Alendronate Sodium Intervention. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chengdong Piao
- Department of Orthopaedics, Second Hospital of Jilin University
| | - Zhengwei Li
- Department of Orthopaedics, Second Hospital of Jilin University
| | - Jie Ding
- Department of Stomatology, Affiliated Hospital of Changchun University of Chinese Medicine
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University
| |
Collapse
|
22
|
Pierce JL, Begun DL, Westendorf JJ, McGee-Lawrence ME. Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019; 118:2-7. [PMID: 29782940 PMCID: PMC6240509 DOI: 10.1016/j.bone.2018.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for hematopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pathological and aging conditions. Histone deacetylase 3 (Hdac3) and other epigenetic regulators suppress lipid storage in preosteoblasts and/or control marrow adiposity. Establishing a better understanding of fat storage in bone marrow cells, as well as the osteoblast-adipocyte relationship within the bone marrow niche is necessary to understand the mechanisms underlying disease- and aging-related marrow fat storage and may lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.
Collapse
Affiliation(s)
- J L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - D L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
23
|
Allegra A, Innao V, Gerace D, Allegra AG, Vaddinelli D, Bianco O, Musolino C. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention. Eur J Intern Med 2018; 53:12-20. [PMID: 29859797 DOI: 10.1016/j.ejim.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Oriana Bianco
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| |
Collapse
|
24
|
Yang YJ, Zhu Z, Wang DT, Zhang XL, Liu YY, Lai WX, Mo YL, Li J, Liang YL, Hu ZQ, Yu YJ, Cui L. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin 2018; 39:633-641. [PMID: 29323335 PMCID: PMC5888681 DOI: 10.1038/aps.2017.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (β-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.
Collapse
Affiliation(s)
- Ya-jun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dong-tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Xin-le Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-yu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wen-xiu Lai
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-lin Mo
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan-long Liang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhuo-qing Hu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yong-jie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for R&D of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
25
|
Sequetto PL, Gonçalves RV, Pinto AS, Oliveira MGA, Maldonado IRSC, Oliveira TT, Novaes RD. Low Doses of Simvastatin Potentiate the Effect of Sodium Alendronate in Inhibiting Bone Resorption and Restore Microstructural and Mechanical Bone Properties in Glucocorticoid-Induced Osteoporosis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:989-1001. [PMID: 28743325 DOI: 10.1017/s1431927617012363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By using an experimental model of dexamethasone-induced osteoporosis we investigated the effects of different therapeutic schemes combining sodium alendronate (SA) and simvastatin on bone mineral and protein composition, microstructural and mechanical remodeling. Wistar rats were randomized into eight groups: G1: non-osteoporotic; G2: osteoporotic; G3, G4, and G5: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively); G6, G7, and G8: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively)+simvastatin (0.4, 0.6, and 1 mg/kg, respectively). Osteoporosis was induced by dexamethasone (7 mg/kg, i.m.) once a week for 5 weeks. All treatments were administered for 8 weeks. Dexamethasone increased serum levels of alkaline phosphatase, calcium, phosphorus, and urea, especially in non-treated animals, which showed severe osteoporosis. Dexamethasone also induced bone microstructural fragility and reduced mechanical resistance, which were associated with a marked depletion in mineral mass, collagenous and non-collagenous protein levels in cortical and cancellous bone. Although SA has attenuated osteoporosis severity, the effectiveness of drug therapy was enhanced combining alendronate and simvastatin. The restoration in serum parameters, organic and inorganic bone mass, and mechanical behavior showed a dose-dependent effect that was potentially related to the complementary mechanisms by which each drug acts to induce bone anabolism, accelerating tissue repair.
Collapse
Affiliation(s)
- Priscila L Sequetto
- Department of Pharmaceutical Sciences - Health Area, Universidade Federal de Juiz de Fora, Governador Valadares, 35020-220, MG, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | | | - Aloísio S Pinto
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | - Maria G A Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | - Izabel R S C Maldonado
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | - Tânia T Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | - Rômulo D Novaes
- Institute of Biomedical Sciences, Department Structural Biology, Universidade Federal de Alfenas, Alfenas, 37130-001, MG, Brazil
| |
Collapse
|
26
|
Zaheer S, de Boer IH, Allison M, Brown JM, Psaty BM, Robinson-Cohen C, Michos ED, Ix JH, Kestenbaum B, Siscovick D, Vaidya A. Fibroblast Growth Factor 23, Mineral Metabolism, and Adiposity in Normal Kidney Function. J Clin Endocrinol Metab 2017; 102:1387-1395. [PMID: 28323987 PMCID: PMC5460732 DOI: 10.1210/jc.2016-3563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
Context Obesity is associated with poor bone mineralization and quality. Fibroblast growth factor 23 (FGF23) plays an important role in skeletal physiology. Objective To test hypothesis that greater adiposity results in higher FGF23 levels among individuals with normal estimated glomerular filtration rate (eGFR). Design, Setting, Participants Cross-sectional analyses among participants with eGFR ≥60 mL/min/1.73m2. We assessed the association between crude [body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR); n = 5610] and refined (abdominal adipose tissue area by computed tomography; n = 1313) measures of adiposity and FGF23 using multivariable linear regression. Main Outcome Measure Serum FGF23. Results FGF23 was higher across BMI categories (BMI <25: 37.7; BMI 25 to 29.99: 38.7; BMI 30 to 39.99: 39.8; BMI ≥40: 40.9 pg/mL, unadjusted P trend < 0.0001). The association between BMI and FGF23 was independent of known confounders of FGF23 (adjusted β = +7.2% higher FGF23 per 10 kg/m2; P < 0.0001). Similar results were observed using WC and WHR. Abdominal adipose tissue area was also independently associated with higher FGF23 (P < 0.01). Notably, the positive associations between FGF23 and adiposity were observed despite the fact that eGFR did not decline and serum phosphate levels did not increase with adiposity. Conclusion In a large cohort with normal kidney function, adiposity was associated with higher FGF23 levels independent of known confounders, including eGFR and phosphate. Further studies are needed to evaluate the causes of higher FGF23 in settings of greater adiposity and the potential impact on skeletal health.
Collapse
Affiliation(s)
- Sarah Zaheer
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Matthew Allison
- Division of Preventive Medicine, University of California, San Diego, San Diego, California 92093
| | - Jenifer M. Brown
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington 98195
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101
| | - Cassianne Robinson-Cohen
- Division of Nephrology, Department of Medicine, and
- Kidney Research Institute, University of Washington, Seattle, Washington 98104
| | - Erin D. Michos
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Joachim H. Ix
- Division of Nephrology-Hypertension, University of California, San Diego, San Diego, California 92161
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, and
- Kidney Research Institute, University of Washington, Seattle, Washington 98104
| | | | - Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
27
|
Ahn BN, Karadeniz F, Kong CS, Nam KH, Jang MS, Seo Y, Kim HS. Dioxinodehydroeckol Enhances the Differentiation of Osteoblasts by Regulating the Expression of Phospho-Smad1/5/8. Mar Drugs 2016; 14:E168. [PMID: 27649211 PMCID: PMC5039539 DOI: 10.3390/md14090168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
Lack of bone formation-related health problems are a major problem for the aging population in the modern world. As a part of the ongoing trend of developing natural substances that attenuate osteoporotic bone loss conditions, dioxinodehydroeckol (DHE) from edible brown alga Ecklonia cava was tested for its effects on osteoblastogenic differentiation in MC3T3-E1 pre-osteoblasts. DHE was observed to successfully enhance osteoblast differentiation, as indicated by elevated cell proliferation, alkaline phosphatase activity, intracellular cell mineralization, along with raised levels of osteoblastogenesis indicators at the concentration of 20 μM. Results suggested a possible intervening of DHE on the bone morphogenetic protein (BMP) signaling pathway, according to elevated protein levels of BMP-2, collagen-I, and Smads. In addition, the presence of DHE was also able to raise the phosphorylated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) levels which are also activated by the BMP signaling pathway. In conclusion, DHE is suggested to be a potential bioactive compound against bone loss that could enhance osteoblastogenesis with a suggested BMP pathway interaction.
Collapse
Affiliation(s)
- Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Korea.
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea.
| | - Ki-Ho Nam
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Mi-Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea.
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea.
| | - Han Seong Kim
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
28
|
Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1640-9. [PMID: 27287253 DOI: 10.1016/j.bbadis.2016.06.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 01/01/2023]
Abstract
Osteogenic differentiation of multipotent mesenchymal stem cells (MSCs) plays a crucial role in bone remodeling. Numerous studies have described the deleterious effect of iron overload on bone density and microarchitecture. Excess iron decreases osteoblast activity, leading to impaired extracellular matrix (ECM) mineralization. Additionally, iron overload facilitates osteoclast differentiation and bone resorption. These processes contribute to iron overload-associated bone loss. In this study we investigated the effect of iron on osteogenic differentiation of human bone marrow MSCs (BMSCs), the third player in bone remodeling. We induced osteogenic differentiation of BMSCs in the presence or absence of iron (0-50μmol/L) and examined ECM mineralization, Ca content of the ECM, mRNA and protein expressions of the osteogenic transcription factor runt-related transcription factor 2 (Runx2), and its targets osteocalcin (OCN) and alkaline phosphatase (ALP). Iron dose-dependently attenuated ECM mineralization and decreased the expressions of Runx2 and OCN. Iron accomplished complete inhibition of osteogenic differentiation of BMSCs at 50μmol/L concentration. We demonstrated that in response to iron BMSCs upregulated the expression of ferritin. Administration of exogenous ferritin mimicked the anti-osteogenic effect of iron, and blocked the upregulation of Runx2, OCN and ALP. Iron overload in mice was associated with elevated ferritin and decreased Runx2 mRNA levels in compact bone osteoprogenitor cells. The inhibitory effect of iron is specific toward osteogenic differentiation of MSCs as neither chondrogenesis nor adipogenesis were influenced by excess iron. We concluded that iron and ferritin specifically inhibit osteogenic commitment and differentiation of BMSCs both in vitro and in vivo.
Collapse
|
29
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
30
|
Kim JA, Karadeniz F, Ahn BN, Kwon MS, Mun OJ, Bae MJ, Seo Y, Kim M, Lee SH, Kim YY, Mi-Soon J, Kong CS. Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:783-90. [PMID: 25720987 DOI: 10.1002/jsfa.7148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 02/19/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Health problems related to the lack of bone formation are a major problem for ageing populations in the modern world. As a part of the ongoing trend to develop natural substances that attenuate bone loss in osteoporosis, the effects of the edible brown alga Sargassum thunbergii and its active contents on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts were evaluated. RESULTS Treatment with S. thunbergii significantly reduced lipid accumulation and expression of adipogenic differentiation markers such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and sterol regulatory element binding protein 1c. In addition, S. thunbergii successfully enhanced osteoblast differentiation as indicated by increased alkaline phosphatase activity along raised levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin and collagen type I. Two compounds, sargaquinoic and sargahydroquinoic acid, were isolated from active extract and shown to be active by means of osteogenesis inducement. CONCLUSION S. thunbergii could be a source for functional food ingredients for improved treatment of osteoporosis and obesity.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 617-736, Republic of Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 617-736, Republic of Korea
| | - Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Myeong Sook Kwon
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
| | - Ok-Ju Mun
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
| | - Min Joo Bae
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
| | - Youngwan Seo
- Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
- Ocean Science & Technology School, Korea Marine University, Busan 606-791, Republic of Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
| | - Sang-Hyeon Lee
- Bioscience and Biotechnology Department, Graduate School, Silla University, Busan 617-736, Republic of Korea
| | - Yuck Yong Kim
- IS Food Co., Marine Bio-industry Department Center, Busan 619-912, Republic of Korea
| | - Jang Mi-Soon
- National Fisheries Research & Development Institute, Food and Safety Research Center, Busan 619-705, Republic of Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Republic of Korea
| |
Collapse
|
31
|
Karadeniz F, Ahn BN, Kim JA, Seo Y, Jang MS, Nam KH, Kim M, Lee SH, Kong CS. Phlorotannins suppress adipogenesis in pre-adipocytes while enhancing osteoblastogenesis in pre-osteoblasts. Arch Pharm Res 2015; 38:2172-82. [PMID: 26202444 DOI: 10.1007/s12272-015-0637-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/17/2015] [Indexed: 02/08/2023]
Abstract
Osteoporosis, a prevalent bone disease in an aging population, is considered to be closely related to osteoblastogenesis and adipogenesis. As a part of an ongoing trend to develop natural substances that attenuate osteoporotic conditions, edible brown algae E. cava and its bioactive constituents were tested for their effects on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts. Following an activity-based isolation, three phlorotannin derivatives, triphlorethol-A (1), eckol (2) and dieckol (3), were isolated. Anti-adipogenesis effect of phlorotannins at the concentration of 20 µM was observed by reduced lipid accumulation and the suppressed expression of adipogenic differentiation markers. In addition, isolated phlorotannins successfully enhanced the osteoblast differentiation as indicated by increased alkaline phosphatase activity along with raised levels of osteoblastogenesis indicators and intracellular calcification at the concentration of 20 µM. In conclusion, E. cava is suggested as a source for functional food ingredients, especially phlorotannin derivatives that can be utilized for extenuating osteoporosis and obesity.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Pusan, 617-736, Republic of Korea
| | - Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Pusan, 609-735, Republic of Korea
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Pusan, 617-736, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience; Ocean Science & Technology School, Korea Maritime and Ocean University, Pusan, 606-791, Republic of Korea
| | - Mi-Soon Jang
- Food and Safety Research Center, National Fisheries Research and Development Institute, Pusan, 619-705, Republic of Korea
| | - Ki-Ho Nam
- Food and Safety Research Center, National Fisheries Research and Development Institute, Pusan, 619-705, Republic of Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea
| | - Sang-Hyeon Lee
- Department of Bioscience, Graduate School, Silla University, Pusan, 617-736, Republic of Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Pusan, 617-736, Republic of Korea.
| |
Collapse
|
32
|
Metzger TA, Kreipke TC, Vaughan TJ, McNamara LM, Niebur GL. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng 2015; 137:1926231. [PMID: 25363343 DOI: 10.1115/1.4028985] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation.
Collapse
|
33
|
An Q, Wu D, Ma Y, Zhou B, Liu Q. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med 2015; 36:1615-22. [PMID: 26497332 DOI: 10.3892/ijmm.2015.2385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 10/14/2015] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis (OP) is considered a complex disease with a strong genetic impact, mainly affecting post-menopausal women and is also a common cause of fracture. Elucidating the molecular mechanisms that regulate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is crucial to developing treatment strategies to combat OP. In the present study, we found that ectopic viral integration site‑1 (Evi1) was highly expressed during the process of adipogenesis of rat BMSCs. Notably, Evi1 levels markedly increased on day 3 of adipogenic differentiation following the addition of adipogenic induction supplements. In addition, we interfered with the expression of the Evi1 gene in the adipogenesis of BMSCs by supplementing adenoviral plasmids and measured the expression levels of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), peroxisome proliferator‑activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) by RT-qPCR and western blot analysis. The mRNA and protein levels of osteogenic and adipogenic markers in the BMSCs were up‑ and downregulated, respectively following the silencing of siEvi1. Our experimental results substantiate that the suppression of Evi1 in BMSCs by RNA interference inhibits adipogenic differentiation, while it promotes osteogenic differentiation. The results from our study demonstrated that the Evi1 gene may be targeted as a therapeutic strategy for promoting bone formation.
Collapse
Affiliation(s)
- Qijun An
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dou Wu
- Department of Orthopaedics, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| | - Yuehong Ma
- Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Biao Zhou
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Liu
- Department of Orthopaedics, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
34
|
Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, Sondergaard R, Escudero AVV, Baraghithy S, Attar-Namdar M, Friedlander-Barenboim S, Mathavan N, Isaksson H, Mechoulam R, Müller R, Bajayo A, Gabet Y, Bab I. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J Bone Miner Res 2015; 30:1905-13. [PMID: 25801536 DOI: 10.1002/jbmr.2513] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
Abstract
Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes.
Collapse
Affiliation(s)
- Natalya M Kogan
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Melamed
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Wasserman
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bitya Raphael
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Breuer
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathryn S Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | - Saja Baraghithy
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Alon Bajayo
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itai Bab
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
35
|
Le Blanc S, Simann M, Jakob F, Schütze N, Schilling T. Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3D collagen gels. Exp Cell Res 2015; 338:136-48. [PMID: 26384550 DOI: 10.1016/j.yexcr.2015.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/24/2015] [Accepted: 09/13/2015] [Indexed: 01/22/2023]
Abstract
Multipotent human bone marrow stromal cells (hBMSCs) are the common progenitors of osteoblasts and adipocytes. A shift in hBMSC differentiation in favor of adipogenesis may contribute to the bone loss and marrow fat accumulation observed in aging and osteoporosis. Hence, the identification of factors modulating marrow adipogenesis is of great therapeutic interest. Fibroblast growth factors 1 (FGF1) and 2 (FGF2) play important roles in several cellular processes including differentiation. Their role in adipogenesis is, however, still unclear given the contradictory reports found in the literature. In this work, we investigated the effect of FGF signaling on hBMSC adipogenesis in a 3D collagen gel system to mimic the natural microenvironment. We successfully established adipogenic differentiation of hBMSC embedded in type I collagen gels. We found that exogenous FGF1 and FGF2 exerted an inhibitory effect on lipid droplet accumulation and gene expression of adipogenic markers, which was abolished by pharmacological blocking of FGF receptor (FGFR) signaling. FGF treatment also affected the expression of the matrix metalloproteinase 13 (MMP13) and the tissue inhibitor of metalloproteinases 1 (TIMP1), altering the MMP/TIMP balance, which modulates collagen processing and turnover. FGF1- and FGF2-mediated inhibition of differentiation was, however, not restricted to adipogenesis since FGF1 and FGF2 treatment also resulted in the inhibition of the osteogenic differentiation in collagen gels. We conclude that FGFR signaling inhibits the in vitro adipogenic commitment of hBMSCs, downregulating core differentiation markers and altering ECM composition.
Collapse
Affiliation(s)
- Solange Le Blanc
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Meike Simann
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
36
|
Simann M, Schneider V, Le Blanc S, Dotterweich J, Zehe V, Krug M, Jakob F, Schilling T, Schütze N. Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion. Bone 2015; 78:102-13. [PMID: 25959412 DOI: 10.1016/j.bone.2015.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/26/2015] [Accepted: 04/25/2015] [Indexed: 01/22/2023]
Abstract
Heparins are broadly used for the prevention and treatment of thrombosis and embolism. Yet, osteoporosis is considered to be a severe side effect in up to one third of all patients on long-term treatment. However, the mechanisms underlying this clinical problem are only partially understood. To investigate if heparin affects differentiation of skeletal precursors, we examined the effects of heparin on the osteogenic and adipogenic lineage commitment and differentiation of primary human bone marrow stromal cells (hBMSCs). Due to the known inverse relationship between adipogenesis and osteogenesis and the capacity of pre-differentiated cells to convert into the respective other lineage, we also determined heparin effects on osteogenic conversion and adipogenic differentiation/conversion. Interestingly, heparin did not only significantly increase mRNA expression and enzyme activity of the osteogenic marker alkaline phosphatase (ALP), but it also promoted mineralization during osteogenic differentiation and conversion. Furthermore, the mRNA expression of the osteogenic marker bone morphogenic protein 4 (BMP4) was enhanced. In addition, heparin administration partly prevented adipogenic differentiation and conversion demonstrated by reduced lipid droplet formation along with a decreased expression of adipogenic markers. Moreover, luciferase reporter assays, inhibitor experiments and gene expression analyses revealed that heparin had putative permissive effects on osteogenic signaling via the BMP pathway and reduced the mRNA expression of the Wnt pathway inhibitors dickkopf 1 (DKK1) and sclerostin (SOST). Taken together, our data show a rather supportive than inhibitory effect of heparin on osteogenic hBMSC differentiation and conversion in vitro. Further studies will have to investigate the net effects of heparin administration on bone formation versus bone resorption in vivo to unravel the molecular mechanisms of heparin-associated osteoporosis and reconcile conflicting experimental data with clinical observations.
Collapse
Affiliation(s)
- Meike Simann
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany.
| | - Verena Schneider
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Solange Le Blanc
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Viola Zehe
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
38
|
Song NJ, Kwon SM, Kim S, Yoon HJ, Seo CR, Jang B, Chang SH, Ku JM, Lee JS, Park KM, Hong JW, Kim GH, Park KW. Sulfuretin induces osteoblast differentiation through activation of TGF-β signaling. Mol Cell Biochem 2015; 410:55-63. [PMID: 26260053 DOI: 10.1007/s11010-015-2537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
The identification and examination of potential determinants controlling the progression of cell fate toward osteoblasts can be intriguing subjects. In this study, the effects of sulfuretin, a major compound isolated from Rhus verniciflua Stokes, on osteoblast differentiation were investigated. Treatments of sulfuretin induced alkaline phosphatase (ALP) activity in mesenchymal C3H10T1/2 cells and mineralization in preosteoblast MC3T3-E1 cells. Pro-osteogenic effects of sulfuretin were consistently observed in freshly isolated primary bone marrow cells. In mechanical studies, sulfuretin specifically induced expression of TGF-β target genes, such as SMAD7 and PAI-1, but not other signaling pathway-related genes. Similar to the results of gene expression analysis, reporter assays further demonstrated TGF-β-specific induction by sulfuretin. Furthermore, disruption of TGF-β signaling using treatment with TGF-β-specific inhibitor, SB-431542, and introduction of SMAD2/3 small interfering RNA impaired the effects of sulfuretin in inducing ALP activity and expression of ALP mRNA. Together, these data indicate that the pro-osteogenic effects of sulfuretin are mediated through activation of TGF-β signaling, further supporting the potential of sulfuretin in the prevention of bone-related diseases such as bone fracture and osteoporosis.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - So-Mi Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Suji Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyang-Jin Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Cho-Rong Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Byunghyun Jang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin-Mo Ku
- Natural Product Research Team, Gyeonggi Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, 443-270, Republic of Korea
| | - Jeong-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Ki-Moon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
39
|
Bao J, Cui X, Huang Y, Zhong J, Chen Z. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences. Phys Med Biol 2015; 60:6391-406. [DOI: 10.1088/0031-9155/60/16/6391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Blogowski W, Dolegowska K, Deskur A, Dolegowska B, Starzyńska T. An Attempt to Evaluate Selected Aspects of "Bone-Fat Axis" Function in Healthy Individuals and Patients With Pancreatic Cancer. Medicine (Baltimore) 2015; 94:e1303. [PMID: 26266370 PMCID: PMC4616689 DOI: 10.1097/md.0000000000001303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, much attention has been paid to a potential biochemical cross-talk between the metabolism of the adipose tissue (AT) and bone (marrow), termed "bone-fat axis." We hypothesized that selected substances, participating in this "dialog," are associated with body mass and peripheral trafficking of bone marrow-derived stem cells (BMSCs) in both healthy individuals and patients with obesity-associated malignancies such as pancreatic adenocarcinoma.We performed an analysis of the systemic levels of selected substances involved in the regulation of bone (marrow) homeostasis (parathormone, calcitonin, osteopontin, osteonectin, stem cell factor [SCF], and fibroblast growth factor-23) in 35 generally healthy volunteers and 35 patients with pancreatic cancer. Results were correlated with the absolute number of circulating BMSCs and body mass values. Additionally, subcutaneous and visceral/omental AT levels of the aforementioned molecules were analyzed in lean and overweight/obese individuals.Intensified steady-state trafficking of only Lin-CD45 + CD133 + hematopoietic stem/progenitor cells was observed in overweight/obese individuals and this was associated with BMI values and elevated levels of both osteonectin and SCF, which also correlated with BMI. In comparison to healthy individuals, patients with cancer had significantly higher osteopontin levels and lower values of both osteonectin and osteonectin/osteopontin ratio. While no significant correlation was observed between BMI and the number of circulating BMSCs in patients with cancer, peripheral trafficking of CD34 + KDR + CD31 + CD45-endothelial progenitor cells and CD105 + STRO-1 + CD45-mesenchymal stem cells was associated with the osteonectin/osteopontin ratio, which also correlated with BMI (r = 0.52; P < 0.05). AT levels of the examined substances were similar to those measured in the plasma, except for osteonectin, which was about 10 times lower.Our study highlights the potential role of osteonectin, osteopontin, and SCF as communication signals between the bone (marrow) and AT in both healthy individuals and patients with pancreatic cancer. We postulate that these molecules may be overlooked biochemical players linking body mass and BMSCs with obesity-associated cancer development and/or progression in humans.
Collapse
Affiliation(s)
- Wojciech Blogowski
- From the Department of Internal Medicine, University of Zielona Góra, Zielona Góra, Poland (WB); Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland (KD); Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland (AD); Department of Microbiology and Immunological Diagnostics, Pomeranian Medical University in Szczecin, Szczecin, Poland (BD); and Department of Gastroenterology and Internal Medicine, Warsaw Medical University, Warsaw, Poland (TS)
| | | | | | | | | |
Collapse
|
41
|
Abbott MJ, Roth TM, Ho L, Wang L, O’Carroll D, Nissenson RA. Negative Skeletal Effects of Locally Produced Adiponectin. PLoS One 2015; 10:e0134290. [PMID: 26230337 PMCID: PMC4521914 DOI: 10.1371/journal.pone.0134290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/07/2015] [Indexed: 01/15/2023] Open
Abstract
Epidemiological studies show that high circulating levels of adiponectin are associated with low bone mineral density. The effect of adiponectin on skeletal homeostasis, on osteoblasts in particular, remains controversial. We investigated this issue using mice with adipocyte-specific over-expression of adiponectin (AdTg). MicroCT and histomorphometric analysis revealed decreases (15%) in fractional bone volume in AdTg mice at the proximal tibia with no changes at the distal femur. Cortical bone thickness at mid-shafts of the tibia and at the tibiofibular junction was reduced (3–4%) in AdTg mice. Dynamic histomorphometry at the proximal tibia in AdTg mice revealed inhibition of bone formation. AdTg mice had increased numbers of adipocytes in close proximity to trabecular bone in the tibia, associated with increased adiponectin levels in tibial marrow. Treatment of BMSCs with adiponectin after initiation of osteoblastic differentiation resulted in reduced mineralized colony formation and reduced expression of mRNA of osteoblastic genes, osterix (70%), Runx2 (52%), alkaline phosphatase (72%), Col1 (74%), and osteocalcin (81%). Adiponectin treatment of differentiating osteoblasts increased expression of the osteoblast genes PPARγ (32%) and C/ebpα (55%) and increased adipocyte colony formation. These data suggest a model in which locally produced adiponectin plays a negative role in regulating skeletal homeostasis through inhibition of bone formation and by promoting an adipogenic phenotype.
Collapse
Affiliation(s)
- Marcia J. Abbott
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, United States of America
| | - Theresa M. Roth
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Linh Ho
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Liping Wang
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Dylan O’Carroll
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Robert A. Nissenson
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Periyasamy-Thandavan S, Herberg S, Arounleut P, Upadhyay S, Dukes A, Davis C, Johnson M, McGee-Lawrence M, Hamrick MW, Isales CM, Hill WD. Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells. Mol Cell Endocrinol 2015; 410:64-72. [PMID: 25779533 PMCID: PMC4706462 DOI: 10.1016/j.mce.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 12/24/2022]
Abstract
Growing evidence suggests that the chemokine stromal cell-derived factor-1 (SDF-1) is essential in regulating bone marrow (BM) derived mesenchymal stromal/stem cell (BMSC) survival, and differentiation to either a pro-osteogenic or pro-adipogenic fate. This study investigates the effects of caloric restriction (CR) and leptin on the SDF-1/CXCR4 axis in bone and BM tissues in the context of age-associated bone loss. For in vivo studies, we collected bone, BM cells and BM interstitial fluid from 12 and 20 month-old C57Bl6 mice fed ad-libitum (AL), and 20-month-old mice on long-term CR with, or without, intraperitoneal injection of leptin for 10 days (10 mg/kg). To mimic conditions of CR in vitro, 18 month murine BMSCs were treated with (1) control (Ctrl): normal proliferation medium, (2) nutrient restriction (NR): low glucose, low serum medium, or (3) NR + leptin: NR medium + 100 ng/ml leptin for 6-48 h. In BMSCs both protein and mRNA expression of SDF-1 and CXCR4 were increased by CR and CR + leptin. In contrast, the alternate SDF-1 receptor CXCR7 was decreased, suggesting a nutrient signaling mediated change in SDF-1 axis signaling in BMSCs. However, in bone SDF-1, CXCR4 and 7 gene expression increase with age and this is reversed with CR, while addition of leptin returns this to the "aged" level. Histologically bone formation was lower in the calorically restricted mice and BM adipogenesis increased, both effects were reversed with the 10 day leptin treatment. This suggests that in bone CR and leptin alter the nutrient signaling pathways in different ways to affect the local action of the osteogenic cytokine SDF-1. Studies focusing on the molecular interaction between nutrient signaling by CR, leptin and SDF-1 axis may help to address age-related musculoskeletal changes.
Collapse
Affiliation(s)
| | | | - Phonepasong Arounleut
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Sunil Upadhyay
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Amy Dukes
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Colleen Davis
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Biostatistics, Georgia Regents University, Augusta, GA, USA
| | - Meghan McGee-Lawrence
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA; Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
43
|
Ytteborg E, Todorcevic M, Krasnov A, Takle H, Kristiansen IØ, Ruyter B. Precursor cells from Atlantic salmon (Salmo salar) visceral fat holds the plasticity to differentiate into the osteogenic lineage. Biol Open 2015; 4:783-91. [PMID: 25948755 PMCID: PMC4571100 DOI: 10.1242/bio.201411338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the potential plasticity of Atlantic salmon (Salmo salar) precursor cells (aSPCs) from the adipogenic mesenchyme cell lineage to differentiate to the osteogenic lineage, aSPCs were isolated and cultivated under either osteogenic or adipogenic promoting conditions. The results strengthen the hypothesis that aSPCs most likely are predestined to the adipogenic lineage, but they also hold the flexibility to turn into other lineages given the right stimuli. This assumption is supported by the fact that the transcription factor pparγ , important for regulation of adiopogenesis, was silent in aSPCs grown in osteogenic media, while runx2, important for osteogenic differentiation, was not expressed in aSPCs cultivated in adipogenic media. After 2 weeks in osteogenic promoting conditions the cells started to deposit extracellular matrix and after 4 weeks, the cells started mineralizing secreted matrix. Microarray analyses revealed large-scale transcriptome responses to osteogenic medium after 2 days, changes remained stable at day 15 and decreased by magnitude at day 30. Induction was observed in many genes involved in osteogenic differentiation, growth factors, regulators of development, transporters and production of extracellular matrix. Transcriptome profile in differentiating adipocytes was markedly different from differentiating osteoblasts with far fewer genes changing activity. The number of regulated genes slowly increased at the mature stage, when adipocytes increased in size and accumulated lipids. This is the first report on in vitro differentiation of aSPCs from Atlantic salmon to mineralizing osteogenic cells. This cell model system provides a new valuable tool for studying osteoblastogenesis in fish.
Collapse
|
44
|
Lombardi G, Perego S, Luzi L, Banfi G. A four-season molecule: osteocalcin. Updates in its physiological roles. Endocrine 2015; 48:394-404. [PMID: 25158976 DOI: 10.1007/s12020-014-0401-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/19/2014] [Indexed: 12/28/2022]
Abstract
Osteocalcin (OC) is the main non-collagenous hydroxyapatite-binding protein synthesized by osteoblasts, odontoblasts, and hypertrophic chondrocytes. It has a regulatory role in mineralization and it is considered a marker of bone cell metabolism. Recent findings evidenced new extra-skeletal roles for OC, depicting it as a real hormone. OC shares many functional features with the common hormones, such as tissue-specific expression, circadian rhythm, and synthesis as a pre-pro-molecule. However, it has some peculiar features making it a unique molecule: OC exists in different forms based on the degree of carboxylation. Indeed, OC has three glutamic acid residues, in position 17, 21, and 24, which are subject to γ-carboxylation, through the action of a vitamin K-dependent γ-glutamyl carboxytransferase. The degree of carboxylation, and thus the negative charge density, determines the affinity for the calcium ions deposited in the extracellular matrix of the bone. The modulation of the carboxylation could, thus, represent the mechanism by which the body controls the circulating levels, and hence the hormonal function, of OC. There are evidences linking OC, and the bone metabolism, with a series of endocrine (glucose metabolism, energy metabolism, fertility) physiological (muscle activity) and pathological functions (ectopic calcification). Aim of this review is to give a full overview of the physiological roles of OC by collecting the newest experimental findings on this intriguing molecule.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161, Milan, Italy,
| | | | | | | |
Collapse
|
45
|
Dominguez JM, Yorek MA, Grant MB. Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats. Diabetes 2015; 64:643-53. [PMID: 25204979 PMCID: PMC4876792 DOI: 10.2337/db14-0433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously showed that peripheral neuropathy of the bone marrow was associated with loss of circadian rhythmicity of stem/progenitor cell release into the circulation. Bone marrow neuropathy results in dramatic changes in hematopoiesis that lead to microvascular complications, inflammation, and reduced endothelial repair. This series of events represents early pathogenesis before development of diabetic retinopathy. In this study we characterized early alterations within the bone marrow of streptozotocin (STZ)-induced diabetic rats following treatments that prevent experimental peripheral neuropathy. We asked whether bone marrow neuropathy and the associated bone marrow pathology were reversed with treatments that prevent peripheral neuropathy. Three strategies were tested: inhibition of neutral endopeptidase, inhibition of aldose reductase plus lipoic acid supplementation, and insulin therapy with antioxidants. All strategies prevented loss of nerve conduction velocity resulting from STZ-induced diabetes and corrected the STZ-induced diabetes-associated increase of immunoreactivity of neuropeptide Y, tyrosine hydroxylase, and somatostatin. The treatments also reduced concentrations of interleukin-1β, granulocyte colony-stimulating factor, and matrix metalloproteinase 2 in STZ-induced diabetic bone marrow supernatant and decreased the expression of NADPH oxidase 2, nitric oxide synthase 2, and nuclear factor-κB1 mRNA in bone marrow progenitor cells. These therapies represent novel approaches to attenuate the diabetic phenotype within the bone marrow and may constitute an important therapeutic strategy for diabetic microvascular complications.
Collapse
Affiliation(s)
- James M Dominguez
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL
| | - Mark A Yorek
- Department of Veterans Affairs, Iowa City VA Health Care System, Iowa City, IA Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
46
|
Filip R, Possemiers S, Heyerick A, Pinheiro I, Raszewski G, Davicco MJ, Coxam V. Twelve-month consumption of a polyphenol extract from olive (Olea europaea) in a double blind, randomized trial increases serum total osteocalcin levels and improves serum lipid profiles in postmenopausal women with osteopenia. J Nutr Health Aging 2015; 19:77-86. [PMID: 25560820 DOI: 10.1007/s12603-014-0480-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Osteoporosis is a skeletal disorder characterized by impaired bone turnover and compromised bone strength, thereby predisposing to increased risk of fracture. Preclinical research has shown that compounds produced by the olive tree (Olea europaea), may protect from bone loss, by increasing osteoblast activity at the expense of adipocyte formation. The aim of this exploratory study was to obtain a first insight on the effect of intake of an olive extract on bone turnover in postmenopausal women with decreased bone mass (osteopenia). DESIGN AND SETTING For that, a double blind, placebo-controlled study was performed in which participants were randomly allocated to either treatment or placebo groups. PARTICIPANTS 64 osteopenic patients, with a mean bone mineral density (BMD) T-score between -1.5 and -2.5 in the lumbar spine (L2-L4) were included in the study. INTERVENTION AND MEASUREMENTS PARTICIPANTS received for 12 months daily either 250 mg/day of olive extract and 1000 mg Ca (treatment) or 1000 mg Ca alone (placebo). Primary endpoints consisted of evaluation of bone turnover markers. Secondary endpoints included BMD measurements and blood lipid profiles. RESULTS After 12 months, the levels of the pro-osteoblastic marker osteocalcin were found to significantly increase in the treatment group as compared to placebo. Simultaneously, BMD decreased in the placebo group, while remaining stable in the treatment group. In addition, improved lipid profiles were observed, with significant decrease in total- and LDL-cholesterol in the treatment group. CONCLUSION This exploratory study supports preclinical observations and warrants further research by showing that a specific olive polyphenol extract (Bonolive®) affects serum osteocalcin levels and may stabilize lumbar spine BMD. Moreover, the improved blood lipid profiles suggest additional health benefits associated to the intake of the olive polyphenol extract.
Collapse
Affiliation(s)
- R Filip
- Sam Possemiers (Ph.D.), BioActor BV, Oxfordlaan 70, 6229-EV Maastricht, The Netherlands; Tel.: +31437114555; FAX: +31433885889;
| | | | | | | | | | | | | |
Collapse
|
47
|
Mori K, Suzuki K, Hozumi A, Goto H, Tomita M, Koseki H, Yamashita S, Osaki M. Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells. Biomed Res 2014; 35:153-9. [PMID: 24759183 DOI: 10.2220/biomedres.35.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are the indispensable component of the bone marrow, being the common precursors for adipocytes and osteoblasts. We show here that adipogenic differentiation resulted in increase in the production of adipocyte markers, such as adiponectin,fatty-acid binding proteins (FABP4), peroxisome proliferator-activated receptor γ (PPARγ), as well as the receptor activator of nuclear-κB ligand (RANKL). Co-culture of osteoclast precursors (OCPs) with BMSCs-derived adipocytes significantly enhanced osteoclast differentiation with low-dose RANKL, whose levels alone could not promote osteoclastogenesis. These results demonstrate for the first time that adipogenic differentiation of BMSCs plays a pivotal role in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Keisuke Mori
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Karadeniz F, Kim JA, Ahn BN, Kim M, Kong CS. Anti-adipogenic and Pro-osteoblastogenic Activities of Spergularia marina Extract. Prev Nutr Food Sci 2014; 19:187-93. [PMID: 25320716 PMCID: PMC4195624 DOI: 10.3746/pnf.2014.19.3.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/14/2014] [Indexed: 11/28/2022] Open
Abstract
For decades, Spergularia marina, a local food that is popular in South Korea, has been regarded as a nutritious source of amino acids, vitamins, and minerals. While several halophytes are reported to possess distinct bioactivities, S. marina has yet to be promoted as a natural source of bioactives. In this study, the effects of S. marina on the adipogenic differentiation of 3T3-L1 fibroblasts and the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts and C2C12 myoblast cells were evaluated. The anti-adipogenic effect of S. marina was assessed by measuring lipid accumulation and adipogenic differentiation marker expression. S. marina treatment significantly reduced lipid accumulation and notably decreased the gene levels of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and sterol regulatory element binding protein 1c. In addition, S. marina enhanced osteoblast differentiation, as indicated by increased alkaline phosphatase activity and increased levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin, and type I collagen. In conclusion, S. marina could be a source of functional food ingredients that improve osteoporosis and obesity. Further studies, including activity-based fractionation, will elucidate the mechanism of action and active ingredients of S. marina, which would provide researchers with a better understanding of the nutraceutical and therapeutic applications of S. marina.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 617-736, Korea
| | - Jung-Ae Kim
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 617-736, Korea ; Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Korea
| | - Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 609-735, Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Korea
| |
Collapse
|
49
|
Jöhrer K, Ploner C, Thangavadivel S, Wuggenig P, Greil R. Adipocyte-derived players in hematologic tumors: useful novel targets? Expert Opin Biol Ther 2014; 15:61-77. [PMID: 25308972 DOI: 10.1517/14712598.2015.970632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Adipocytes and their products play essential roles in tumor establishment and progression. As the main cellular component of the bone marrow, adipocytes may contribute to the development of hematologic tumors. AREAS COVERED This review summarizes experimental data on adipocytes and their interaction with various cancer cells. Special focus is set on the interactions of bone marrow adipocytes and normal and transformed cells of the hematopoietic system such as myeloma and leukemia cells. Current in vitro and in vivo data are summarized and the potential of novel therapeutic targets is critically discussed. EXPERT OPINION Targeting lipid metabolism of cancer cells and adipocytes in combination with standard therapeutics might open novel therapeutic avenues in these cancer entities. Adipocyte-derived products such as free fatty acids and specific adipokines such as adiponectin may be vital anti-cancer targets in hematologic malignancies. However, available data on lipid metabolism is currently mostly referring to peripheral fat cell/cancer cell interactions and results need to be evaluated specifically for the bone marrow niche.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute , Innrain 66, 6020 Innsbruck , Austria
| | | | | | | | | |
Collapse
|
50
|
Casazza K, Hanks LJ, Fields DA. The relationship between bioactive components in breast milk and bone mass in infants. BONEKEY REPORTS 2014; 3:577. [PMID: 25328673 DOI: 10.1038/bonekey.2014.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Human breast milk (HBM) contains numerous bioactive components, recently shown to be associated with growth and body composition in breastfed offspring. Reciprocity in adipogenic and osteogenic pathways suggests bone mass may also be influenced by these components. The association between bioactive components found in HBM and bone mineral content (BMC), to our knowledge, is unknown. The purpose of this proof-of-principle study was to evaluate the association between specific bioactive components in HBM in exclusively breastfed infants and skeletal health in the first 6 months of life and examine potential gender differences in these associations. Thirty-five mother-infant dyads were followed from 1 to 6 months. The contents of a single breast expression were used for analyses of bioactive components (insulin, glucose, leptin, interleukin-6 and tumor necrosis factor-α (TNFα), whereas BMC was evaluated by dual-energy X-ray absorptiometry. In the total sample, there was a positive association between TNFα and BMC at 1 (P=0.004) and 6 months (P=0.007). When stratified by sex, females exhibited a positive association between BMC and glucose and an inverse relationship between BMC and TNF-α at 1 month with TNF-α strengthening (P=0.006) at 6 months. In males, at 6 months a positive relationship between BMC and HBM glucose and an inverse relationship with HBM leptin were observed with no associations observed at 1 month. Although preliminary, the associations between bioactive components in HBM highlight the importance HBM has on bone accretion. It is critically important to identify factors in HBM that contribute to optimal bone health.
Collapse
Affiliation(s)
- Krista Casazza
- Department of Nutrition Sciences, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Lynae J Hanks
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham , Birmingham, AL, USA
| | - David A Fields
- Section of Endocrinology and Diabetes, Department of Pediatrics and Children's Hospital Foundation Metabolic Research Program, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
| |
Collapse
|