1
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2024:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarises the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Kwon CH, Ha MW. Pharmacogenetic Approach to Tramadol Use in the Arab Population. Int J Mol Sci 2024; 25:8939. [PMID: 39201627 PMCID: PMC11354576 DOI: 10.3390/ijms25168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.
Collapse
Affiliation(s)
- Chan-Hyuk Kwon
- Seoul Shingil Rehabilitation Medicine Clinic, 162 Shingil-ro, Yeongdeungpo-gu, Seoul 07362, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
| |
Collapse
|
3
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03326-x. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Hochrainer N, Serafin P, D’Ingiullo S, Mollica A, Granica S, Brytan M, Kleczkowska P, Spetea M. In Vitro and In Vivo Pharmacological Profiles of LENART01, a Dermorphin-Ranatensin Hybrid Peptide. Int J Mol Sci 2024; 25:4007. [PMID: 38612817 PMCID: PMC11012005 DOI: 10.3390/ijms25074007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.
Collapse
Affiliation(s)
- Nadine Hochrainer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | - Sara D’Ingiullo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marek Brytan
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
6
|
Gu S, Luo Q, Wen C, Zhang Y, Liu L, Liu L, Liu S, Chen C, Lei Q, Zeng S. Application of Advanced Technologies-Nanotechnology, Genomics Technology, and 3D Printing Technology-In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics 2023; 15:2289. [PMID: 37765258 PMCID: PMC10535504 DOI: 10.3390/pharmaceutics15092289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There has been increasing interest and rapid developments in precision medicine, which is a new medical concept and model based on individualized medicine with the joint application of genomics, bioinformatics engineering, and big data science. By applying numerous emerging medical frontier technologies, precision medicine could allow individualized and precise treatment for specific diseases and patients. This article reviews the application and progress of advanced technologies in the anesthesiology field, in which nanotechnology and genomics can provide more personalized anesthesia protocols, while 3D printing can yield more patient-friendly anesthesia supplies and technical training materials to improve the accuracy and efficiency of decision-making in anesthesiology. The objective of this manuscript is to analyze the recent scientific evidence on the application of nanotechnology in anesthesiology. It specifically focuses on nanomedicine, precision medicine, and clinical anesthesia. In addition, it also includes genomics and 3D printing. By studying the current research and advancements in these advanced technologies, this review aims to provide a deeper understanding of the potential impact of these advanced technologies on improving anesthesia techniques, personalized pain management, and advancing precision medicine in the field of anesthesia.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingyong Luo
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Li Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liu Liu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
7
|
Schaffer J, Fogelman N, Seo D, Sinha R. Chronic pain, chronic stress and substance use: overlapping mechanisms and implications. FRONTIERS IN PAIN RESEARCH 2023; 4:1145934. [PMID: 37415830 PMCID: PMC10320206 DOI: 10.3389/fpain.2023.1145934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic pain is among the most common reasons adults in the U.S. seek medical care. Despite chronic pain's substantial impact on individuals' physical, emotional, and financial wellness, the biologic underpinnings of chronic pain remain incompletely understood. Such deleterious impact on an individuals' wellness is also manifested in the substantial co-occurrence of chronic stress with chronic pain. However, whether chronic stress and adversity and related alcohol and substance misuse increases risk of developing chronic pain, and, if so, what the overlapping psychobiological processes are, is not well understood. Individuals suffering with chronic pain find alleviation through prescription opioids as well as non-prescribed cannabis, alcohol, and other drugs to control pain, and use of these substances have grown significantly. Substance misuse also increases experience of chronic stress. Thus, given the evidence showing a strong correlation between chronic stress and chronic pain, we aim to review and identify overlapping factors and processes. We first explore the predisposing factors and psychologic features common to both conditions. This is followed by examining the overlapping neural circuitry of pain and stress in order to trace a common pathophysiologic processes for the development of chronic pain and its link to substance use. Based on the previous literature and our own findings, we propose a critical role for ventromedial prefrontal cortex dysfunction, an overlapping brain area associated with the regulation of both pain and stress that is also affected by substance use, as key in the risk of developing chronic pain. Finally, we identify the need for future research in exploring the role of medial prefrontal circuits in chronic pain pathology. Critically, in order to alleviate the enormous burden of chronic pain without exacerbating the co-occurring substance misuse crisis, we emphasize the need to find better approaches to treat and prevent chronic pain.
Collapse
Affiliation(s)
| | | | | | - R. Sinha
- Department of Psychiatry and the Yale Stress Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Grimsrud KN, Davis RR, Tepper CG, Palmieri TL. Pharmacogenetic Gene-Drug Associations in Pediatric Burn and Surgery Patients. J Burn Care Res 2022; 43:987-996. [PMID: 35639664 PMCID: PMC9435482 DOI: 10.1093/jbcr/irac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Management of critically ill patients requires simultaneous administration of many medications. Treatment for patient comorbidities may lead to drug-drug interactions which decrease drug efficacy or increase adverse reactions. Current practices rely on a one-size-fits-all dosing approach. Pharmacogenetic testing is generally reserved for addressing problems rather than used proactively to optimize care. We hypothesized that burn and surgery patients will have one or more genetic variants in drug metabolizing pathways used by one or more medications administered during the patient's hospitalization. The aim of this study was to determine the frequency of variants with abnormal function in the primary drug pathways and identify which medications may be impacted. Genetic (19 whole exome and 11 whole genome) and medication data from 30 pediatric burn and surgery patients were analyzed to identify pharmacogene-drug associations. Nineteen patients were identified with predicted altered function in one or more of the following genes: CYP2C9, CYP2C19, CYP2D6, and CYP3A4. The majority had decreased function, except for several patients with CYP2C19 rapid or ultrarapid variants. Some drugs administered during hospitalization that rely on these pathways include hydrocodone, oxycodone, methadone, ibuprofen, ketorolac, celecoxib, diazepam, famotidine, diphenhydramine, and glycopyrrolate. Approximately one-third of the patients tested had functionally impactful genotypes in each of the primary drug metabolizing pathways. This study suggests that genetic variants may in part explain the vast variability in drug efficacy and suggests that future pharmacogenetics research may optimize dosing regimens.
Collapse
Affiliation(s)
- Kristin N Grimsrud
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, USA
| | - Tina L Palmieri
- Department of Surgery, School of Medicine, University of California, Davis, USA
| |
Collapse
|
9
|
Opioids for chronic pain management in patients with dialysis-dependent kidney failure. Nat Rev Nephrol 2022; 18:113-128. [PMID: 34621058 PMCID: PMC8792317 DOI: 10.1038/s41581-021-00484-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Chronic pain is highly prevalent among adults treated with maintenance haemodialysis (HD) and has profound negative effects. Over four decades, research has demonstrated that 50-80% of adult patients treated with HD report having pain. Half of patients with HD-dependent kidney failure (HDKF) have chronic moderate-to-severe pain, which is similar to the burden of pain in patients with cancer. However, pain management in patients with HDKF is often ineffective as most patients report that their pain is inadequately treated. Opioid analgesics are prescribed more frequently for patients receiving HD than for individuals in the general population with chronic pain, and are associated with increased morbidity, mortality and health-care resource use. Furthermore, current opioid prescribing patterns are frequently inconsistent with guideline-recommended care. Evidence for the effectiveness of opioids in pain management in general, and in patients with HDKF specifically, is lacking. Nonetheless, long-term opioid therapy has a role in the treatment of some patients when used selectively, carefully and combined with an ongoing assessment of risks and benefits. Here, we provide a comprehensive overview of the use of opioid therapy in patients with HDKF and chronic pain, including a discussion of buprenorphine, which has potential as an analgesic option for patients receiving HD owing to its unique pharmacological properties.
Collapse
|
10
|
Wilson SH, Hellman KM, James D, Adler AC, Chandrakantan A. Mechanisms, Diagnosis, and Medical Management of Hyperalgesia: an Educational Review. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Eller OC, Glidden N, Knight B, McKearney N, Perry M, Bernier Carney KM, Starkweather A, Young EE, Baumbauer KM. A Role for Global DNA Methylation Level and IL2 Expression in the Transition From Acute to Chronic Low Back Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:744148. [PMID: 35295525 PMCID: PMC8915771 DOI: 10.3389/fpain.2021.744148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The transition from acute low back pain (aLBP) to chronic LBP (cLBP) results from a variety of factors, including epigenetic modifications of DNA. The aim of this study was to (1) compare global DNA (gDNA) methylation and histone acetylation at LBP onset between the aLBP and cLBP participants, (2) compare mRNA expression of genes with known roles in the transduction, maintenance, and/or modulation of pain between the aLBP and cLBP participants, (3) compare somatosensory function and pain ratings in our participants, and (4) determine if the aforementioned measurements were associated.Methods: A total of 220 participants were recruited for this prospective observational study following recent onset of an episode of LBP. We retained 45 individuals whose gDNA was of sufficient quality for analysis. The final sample included 14 participants whose pain resolved within 6 weeks of onset (aLBP),15 participants that reported pain for 6 months (cLBP), and 16 healthy controls. Participants were subjected to quantitative sensory testing (QST), blood was drawn via venipuncture, gDNA isolated, and global DNA methylation and histone acetylation, as well as mRNA expression of 84 candidate genes, were measured.Results: Individuals that develop cLBP display multimodal somatosensory hypersensitivity relative to aLBP participants. cLBP participants also had significantly lower global DNA methylation, which was negatively correlated with interleukin-2 (IL2) mRNA expression.Discussion: cLBP is characterized by somatosensory hypersensitivity, lower global DNA methylation, and higher IL2 expression level compared to those whose pain will resolve quickly (aLBP). These results suggest potential diagnostic and therapeutic relevance for global DNA methylation and IL2 expression in the pathology underlying the transition from acute to chronic LBP.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Nicole Glidden
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Brittany Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Noelle McKearney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Mallory Perry
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Katherine M. Bernier Carney
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Angela Starkweather
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Erin E. Young
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Spetea M, Schmidhammer H. Recent Chemical and Pharmacological Developments on 14-Oxygenated- N-methylmorphinan-6-ones. Molecules 2021; 26:5677. [PMID: 34577147 PMCID: PMC8464912 DOI: 10.3390/molecules26185677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Adequate pain management, particularly chronic pain, remains a major challenge associated with modern-day medicine. Current pharmacotherapy offers unsatisfactory long-term solutions due to serious side effects related to the chronic administration of analgesic drugs. Morphine and structurally related derivatives (e.g., oxycodone, oxymorphone, buprenorphine) are highly effective opioid analgesics, mediating their effects via the activation of opioid receptors, with the mu-opioid receptor subtype as the primary molecular target. However, they also cause addiction and overdose deaths, which has led to a global opioid crisis in the last decades. Therefore, research efforts are needed to overcome the limitations of present pain therapies with the aim to improve treatment efficacy and to reduce complications. This review presents recent chemical and pharmacological advances on 14-oxygenated-N-methylmorphinan-6-ones, in the search of safer pain therapeutics. We focus on drug design strategies and structure-activity relationships on specific modifications in positions 5, 6, 14 and 17 on the morphinan skeleton, with the goal of aiding the discovery of opioid analgesics with more favorable pharmacological properties, potent analgesia and fewer undesirable effects. Targeted molecular modifications on the morphinan scaffold can afford novel opioids as bi- or multifunctional ligands targeting multiple opioid receptors, as attractive alternatives to mu-opioid receptor selective analgesics.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | | |
Collapse
|
13
|
SEN KAUSIK, PAL SAURABH. ALTERNATIVE METHOD FOR PAIN ASSESSMENT USING EMG AND GSR. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most of the existing pain estimation techniques depend on the response of the subject through verbal or nonverbal communication which does not suit infants, senseless and injured persons, and subjects with cognitive impairment. To bridge this gap, researchers have explored the potential of facial video- and image-based pain recognition methods. However, it provides limited classification performance with complex computation and costly frameworks including a large storage capacity. The dependence of autonomic nervous system (ANS) activities on stimulus like pain provides an alternative pathway to assess pain subjected to external stimuli through ANS-related biosignals. In this article, processing and analysis technique of electromyogram and galvanic skin response signals for assessment of pain for noncooperative subjects are presented and validated against BioVid heat pain database. Different intensities of pain are considered and characterized with the statistical features extracted from the said biosignals. It is noticed that the accuracy level of pain estimation increases with the rise in pain intensity. For highest pain level, 80% detection accuracy is achieved which outperforms the performances of facial expression-based pain assessment techniques.
Collapse
Affiliation(s)
- KAUSIK SEN
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal, India
| | - SAURABH PAL
- Department of Applied Physics, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
14
|
McEvoy L, Carr DF, Pirmohamed M. Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Front Pharmacol 2021; 12:684162. [PMID: 34234675 PMCID: PMC8256335 DOI: 10.3389/fphar.2021.684162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are widely used globally for the treatment of pain and inflammation, and in the case of aspirin, for secondary prevention of cardiovascular disease. Chronic non-steroidal anti-inflammatory drug use is associated with potentially serious upper gastrointestinal adverse drug reactions (ADRs) including peptic ulcer disease and gastrointestinal bleeding. A few clinical and genetic predisposing factors have been identified; however, genetic data are contradictory. Further research is needed to identify clinically relevant genetic and non-genetic markers predisposing to NSAID-induced peptic ulceration.
Collapse
Affiliation(s)
- L McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - D F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - M Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Naujokaitis D, Asmoniene V, Kadusevicius E. Cytochrome P450 2C19 enzyme, Cytochrome P450 2C9 enzyme, and Cytochrome P450 2D6 enzyme allelic variants and its possible effect on drug metabolism: A retrospective study. Medicine (Baltimore) 2021; 100:e24545. [PMID: 33725937 PMCID: PMC7982200 DOI: 10.1097/md.0000000000024545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The objective of the present study was to assess the allelic variations of Cytochrome P450 (CYP) enzymes Cytochrome P450 2C19 (CYP2C19), Cytochrome P450 2C9 (CYP2C9), and Cytochrome P450 2D6 (CYP2D6) as they play a major role in drug metabolism. The interindividual genetic variabilities of these enzymes can account for different responsiveness as well as concentration fluctuations for a particular drug.During the period of 2017 to 2018 a total of 54 patients have received pharmacogenetic testing at the Department of Genetics and Molecular Medicine at Kaunas Clinics. According to the genotype-metabolic phenotypes of CYP2C19, CYP2D6, CYP2C9 enzymes patients were classified according to the guidelines by Clinical Pharmacogenetics Implementation Consortium (CPIC): normal metabolizers (NMs), intermediate metabolizers (IMs), rapid metabolizers (RMs), ultrarapid metabolizers (UMs), and poor metabolizers (PMs).CYP2C19 enzyme allelic distribution: 18 patients (33.33%) with ∗1/∗1 genotype were NMs; 14 patients (25.93%) with ∗1/∗2; ∗2/∗17 genotypes were classified as IMs; 15 patients (27.78%) possessed ∗1/∗17 genotype and were RMs; 4 patients (7.4%) had ∗17/∗17 genotype with increased enzyme activity compared with RMs, were classified as UMs; 3 patients (5.56%) had ∗2/∗2 genotype and were marked as PMs. CYP2D6 enzyme allelic distribution: 26 patients (48.148%) contained ∗1/∗1,∗2/∗2,∗1/∗2,∗1/∗41,∗2/∗41 genotypes with normal enzymatic function so were accounted as NMs; 21 patients (38.89%) with ∗1/∗5, ∗2/∗4, ∗10/∗41, ∗1/∗4, ∗1/∗3, ∗2/∗5, ∗2/∗4, ∗2/∗6 genotypes were accounted as IMs; 2 patients (3.7%) possessed ∗2XN genotype and were accounted as UMs and 5 patients (9.26%) possessed ∗4/∗5,∗4/∗10,∗4/∗9,∗4/∗41 genotypes and had non-functional enzymatic activity so were accounted as PMs; CYP2C9 enzyme allelic distribution: 44 patients (81.48%) with∗1/∗1 genotype were NMs; 10 patients (18.52%) with ∗1/∗2;∗1/∗3 genotypes were IMs.The results of our study indicate that deviations from the normal enzymatic activity is common amongst Lithuanian people and combinatory genotyping of CYP2D6, CYP2C9, and CYP2C19 has to be promoted as an advanced method because of most commonly prescribed medicines like analgesics, antihypertensive, antidepressants are metabolized by multiple pathways involving enzymes in the CYP450 family.
Collapse
Affiliation(s)
| | - Virginija Asmoniene
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
A functional polymorphism in the ATP-Binding Cassette B1 transporter predicts pharmacologic response to combination of nortriptyline and morphine in neuropathic pain patients. Pain 2021; 161:619-629. [PMID: 31738228 DOI: 10.1097/j.pain.0000000000001750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many genetic markers have been associated with variations in treatment response to analgesics, but none have been assessed in the context of combination therapies. In this study, the treatment effects of nortriptyline and morphine were tested for an association with genetic markers relevant to pain pathways. Treatment effects were determined for single and combination therapies. A total of 24 functional single nucleotide polymorphisms were tested within the gene loci of mu-opioid receptor (OPRM1) gene locus, ATP-Binding Cassette B1 Transporter (ABCB1), Cytochrome P450 gene family (CYP2C19 and CYP2D6), catecholamine inactivator Catechol-O-Methyl Transferase (COMT), and serotonin receptor 2A (HTR2A). Genotyping was performed in a population of neuropathic pain patients who previously participated in a clinical trial. For monotherapy, neither nortriptyline nor morphine responses were associated with single nucleotide polymorphisms. However, for nortriptyline + morphine combination therapy, the single nucleotide polymorphism rs1045642 within the drug efflux pump ABCB1 transporter significantly predicted analgesic response. The presence of the C allele accounted for 51% of pain variance in this subgroup in response to combination treatment. The T-allele homozygotes demonstrated only 20% improvement in pain scores, whereas the C-allele homozygotes 88%. There was no significant contribution of rs1045642 to the medication side effects under all treatment conditions. The UK Biobank data set was then used to validate this genetic association. Here, patients receiving similar combination therapy (opioid + tricyclic antidepressant) carrying the C allele of rs1045642 displayed 33% fewer body pain sites than patients without that allele, suggesting better pain control. In all, our results show a robust effect of the rs1045642 polymorphism in response to chronic pain treatment with a nortriptyline + morphine combination.
Collapse
|
17
|
Singh A, Zai C, Mohiuddin AG, Kennedy JL. The pharmacogenetics of opioid treatment for pain management. J Psychopharmacol 2020; 34:1200-1209. [PMID: 32715846 DOI: 10.1177/0269881120944162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Opioids are widely used as an analgesic for the treatment of moderate to severe pain. However, there are interindividual variabilities in opioid response. Current evidence suggests that these variabilities can be attributed to single nucleotide polymorphisms in genes involved in opioid pharmacodynamics and pharmacokinetics. Knowledge of these genetic factors through pharamacogenetic (PGx) testing can help clinicians to more consistently prescribe opioids that can provide patients with maximal clinical benefit and minimal risk of adverse effects. AIM The research outlined in this literature review identifies variants involved in opioid PGx, which may be an important tool to achieving the goal of personalized pain management. RESULTS Cytochrome P450 (CYP) 2D6, CYP3A4, CYP3A5, catechol-o-methyltransferase (COMT), adenosine triphosphate binding cassette transporter B1 (ABCB1), opioid receptor mu 1 (OPRM1), and opioid receptor delta 1 (OPRD1) are all important genes involved in opioid drug response, side effect profile and risk of dependence; these are important genetic factors that should be included in potential opioid PGx tests for pain management. CONCLUSIONS Employing a PGx-guided strategy for prescribing opioids can improve response rate, reduce side effects and increase adherence to treatment plans for pain; more research is needed to explore opioid-related PGx factors for the development and validation of an opioid genetic panel. Optimal prescriptions could also provide healthcare payers with beneficial savings, while reducing the risk of propagating the current opioid crisis.
Collapse
Affiliation(s)
- Ashley Singh
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement Zai
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ayeshah G Mohiuddin
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Kaye AD, Koress CM, Novitch MB, Jung JW, Urits I, Viswanath O, Renschler JS, Alpaugh ES, Cornett EM. Pharmacogenomics, concepts for the future of perioperative medicine and pain management: A review. Best Pract Res Clin Anaesthesiol 2020; 34:651-662. [PMID: 33004174 DOI: 10.1016/j.bpa.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Pharmacogenomics is the study of how genetic differences between individuals affect pharmacokinetics and pharmacodynamics. These differences are apparent to clinicians when taking into account the wide range of responses to medications given in clinical practice. A review of literature involving pharmacogenomics and pain management was performed. The implementation of preoperative pharmacogenomics will allow us to better care for our patients by delivering personalized, safer medicine. This review describes the current state of pharmacogenomics as it relates to many aspects of clinical practice and how clinicians can use these tools to improve patient outcomes.
Collapse
Affiliation(s)
- Alan D Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA.
| | - Cody M Koress
- Tulane University School of Medicine, Department of Internal Medicine, New Orleans, LA, USA.
| | - Matthew B Novitch
- University of Washington, Department of Anesthesiology, Seattle, WA, USA; Mount Sinai Medical Center, Department of Anesthesiology, Miami Beach, FL, USA.
| | - Jai Won Jung
- Georgetown University School of Medicine, Washington, DC, USA.
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA; Valley Pain Consultants - Envision Physician Services, Phoenix, AZ, USA; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA; University of Arizona College of Medicine-Phoenix, Department of Anesthesiology Phoenix, AZ, USA.
| | | | - Edward S Alpaugh
- Louisiana State University Health Sciences Center, Department of Anesthesiology, Orleans, LA, USA.
| | - Elyse M Cornett
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA.
| |
Collapse
|
19
|
Kapur BM, Aleksa K. What the lab can and cannot do: clinical interpretation of drug testing results. Crit Rev Clin Lab Sci 2020; 57:548-585. [PMID: 32609540 DOI: 10.1080/10408363.2020.1774493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Urine drug testing is one of the objective tools available to assess adherence. To monitor adherence, quantitative urinary results can assist in differentiating "new" drug use from "previous" (historical) drug use. "Spikes" in urinary concentration can assist in identifying patterns of drug use. Coupled chromatographic-mass spectrometric methods are capable of identifying very small amounts of analyte and can make clinical interpretation rather challenging, specifically for drugs that have a longer half-life. Polypharmacy is common in treatment and rehabilitation programs because of co-morbidities. Medications prescribed for comorbidities can cause drug-drug interaction and phenoconversion of genotypic extensive metabolizers into phenotypic poor metabolizers of the treatment drug. This can have significant impact on both pharmacokinetic (PK) and pharmacodynamic properties of the treatment drug. Therapeutic drug monitoring (TDM) coupled with PKs can assist in interpreting the effects of phenoconversion. TDM-PKs reflects the cumulative effects of pathophysiological changes in the patient as well as drug-drug interactions and should be considered for treatment medications/drugs used to manage pain and treat substance abuse. Since only a few enzyme immunoassays for TDM are available, this is a unique opportunity for clinical laboratory scientists to develop TDM-PK protocols that can have a significant impact on patient care and personalized medicine. Interpretation of drug screening results should be done with caution while considering pharmacological properties and the presence or absence of the parent drug and its metabolites. The objective of this manuscript is to review and address the variables that influence interpretation of different drugs analyzed from a rehabilitation and treatment programs perspective.
Collapse
Affiliation(s)
- Bhushan M Kapur
- Clini Tox Inc., Oakville, Canada.,Seroclinix Corporation, Mississauga, Canada
| | | |
Collapse
|
20
|
Murgasova R, Carreras ET, Suetterlin-Hachmann M, da Silva Torrao LR, Kittelmann M, Alexandra V, Fredenhagen A. Non-clinical characterization of the disposition of EMA401, a novel small molecule angiotensin II type 2 receptor (AT2R) antagonist. Biopharm Drug Dispos 2020; 41:166-183. [PMID: 32190910 DOI: 10.1002/bdd.2226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
EMA401, (the S-enantiomer of 5-(benzyloxy)-2-(2,2-diphenylacetyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), also known as Olodanrigan, is an orally active selective angiotensin II type 2 receptor (AT2 R) antagonist that is in Phase IIb clinical development as a novel analgesic for the relief of chronic pain. The main purpose of the present work was to investigate the disposition of a single 14 C- labeled EMA401 in non-clinical studies. The in vitro metabolism studies of EMA401 were undertaken to understand the hepatic biotransformation pathways in animal species used in toxicology studies and how they compare to human. Furthermore, investigation of EMA401's PK was carried out in vivo in rats. The study demonstrates the rapid absorption and distribution of drug-related material mainly to the tissues associated with absorption and elimination (GI tract, liver, and kidney). EMA401was then readily eliminated metabolically via the bile (95% of dose) predominantly in the form of the direct acylglucuronide (40% of dose), which was further hydrolysed by the intestinal flora to the active parent drug. Other metabolic pathways such as dealkylations and hydroxylation were also involved in the elimination of EMA401 to a lesser extent. EMA401 was metabolically unstable in hepatocytes of all species investigated and the key metabolites produced in the in vitro model were also detected in vivo. Independent of the dosing route, the S-enantiomer EMA401 showed a good in vivo chiral stability. Overall, the present study provides the first full characterization of the disposition of EMA401 in preclinical species.
Collapse
Affiliation(s)
- Renata Murgasova
- PK Sciences, Novartis Institute for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - Ester Tor Carreras
- PK Sciences, Novartis Institute for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | | | | | - Matthias Kittelmann
- PK Sciences, Novartis Institute for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - Vargas Alexandra
- PK Sciences, Novartis Institute for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | - Andreas Fredenhagen
- PK Sciences, Novartis Institute for Biomedical Research, Novartis Pharma, Basel, Switzerland
| |
Collapse
|
21
|
|
22
|
Parbhoo P. Biopsychosocial outcome indicators in traumatic brain injuries. NeuroRehabilitation 2020; 46:157-166. [PMID: 32083600 DOI: 10.3233/nre-192969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a silent and global epidemic which creates an aftermath of convoluted dynamics. Despite significant incidence rates and increasing awareness over the long-term catastrophic implications, there remain marked contrasts between acute vs. post-acute rehabilitation processes in the United States. OBJECTIVE To explore existing research and highlight the complexity of TBIs to inform vital changes needed to reduce the significant differences and inconsistencies across post-acute treatment settings. To highlight how psychologists/neuropsychologists and other rehabilitation professionals maintain a prominent operational presence in post-acute settings resulting in key leadership opportunities to support a more efficient longitudinal continuation of care model. METHODS Literature search of various health science databases was completed for articles between 1987 to 2019 to explore the range and depth of post-acute treatment, model, and outcomes research. RESULTS Despite progressive medical advancements, translation of relevant rehabilitation research and practices into post-acute treatment settings remains inconsistent. CONCLUSIONS Significant barriers remain for objective and comprehensive evaluation(s) of post-acute program quality and purported patient outcomes in the United States. There remains a lack of consensually relevant and objective metrics. Further investigation is recommended for: consensus on longitudinal post-acute brain injury outcome measures; functional relevance of program accreditations/certifications; outcome differences based on team composition and program resources; and patient/stakeholder variables/input to support optimal post-acute service access and delivery.
Collapse
Affiliation(s)
- Pritesh Parbhoo
- NeuroInternational Healthcare, LLC, 1876 Barber Rd, Building A, Sarasota, FL 34240, USA. Tel.: +1 (813) 401 6728; E-mail:
| |
Collapse
|
23
|
Fanelli A, Palazzo C, Balzani E, Iuvaro A, Pelotti S, Melotti RM. An Explorative Study of CYP2D6’s Polymorphism in a Sample of Chronic Pain Patients. PAIN MEDICINE 2019; 21:1010-1017. [DOI: 10.1093/pm/pnz265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
A proper antalgic treatment is based on the use of titrated drugs to provide adequate relief and a good tolerability profile. Therapies have a variable effectiveness among subjects depending on medical and genetic conditions. CYP2D6 variations determine a different clinical response to most analgesic drugs commonly used in daily clinical practice by influencing the drugs’ pharmacokinetics. This study was a monocentric clinical trial exploring the CYP2D6 variants in 100 patients with a diagnosis of chronic pain.
Methods
DNA was extracted to evaluate the genotype and to classify patients as normal-fast (gNMs-F), normal-slow (gNMs-S), ultrarapid (gUMs), intermediate (gIMs), and poor metabolizers (gPMs) using the Activity Score (AS). Information on therapies and general side effects experienced by patients was collected. Nongenetic co-factors were evaluated to examine the discrepancy between metabolic profile predicted from genotype (gPh) and metabolic profile (phenocopying).
Results
The distribution of our data underlined the prevalence of the gNMs-F (67%), whereas gNMs-S were 24%, gIMs 6%, gPMs 3%, and no gUMs were found, resulting in 33% of patients with reduced metabolic activity. In the analyzed population sample, 86% and 56% of patients, respectively, took at least one or two drugs inhibiting in vitro activity of the CYP2D6 enzyme.
Conclusions
Over one-third of the enrolled patients showed altered CYP2D6 enzymatic metabolic activity, with a risk of phenocopying potentially due to polypharmacology.
Trial registration
ClinicalTrials.gov ID: NCT03411759.
Collapse
Affiliation(s)
- Andrea Fanelli
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Chiara Palazzo
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Alessandra Iuvaro
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Maria Melotti
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
- University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Electroacupuncture Relieves CCI-Induced Neuropathic Pain Involving Excitatory and Inhibitory Neurotransmitters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6784735. [PMID: 31772598 PMCID: PMC6854981 DOI: 10.1155/2019/6784735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Neuropathic pain caused by peripheral tissue injuries to the higher brain regions still has no satisfactory therapy. Disruption of the balance of excitatory and inhibitory neurotransmitters is one of the underlying mechanisms that results in chronic neuropathic pain. Targeting neurotransmitters and related receptors may constitute a novel approach for treating neuropathic pain. We investigated the effects of electroacupuncture (EA) on chronic constriction injury- (CCI-) induced neuropathic pain. The mechanical allodynia and thermal hyperalgesia pain behaviors were relieved by 15 Hz EA but not by 2 and 50 Hz. These phenomena were associated with increasing γ-amino-butyric acid (GABA) receptors in the hippocampus and periaqueductal gray (PAG) but not N-methyl-D-aspartate receptors. Furthermore, excitatory neurotransmitter glutamate was decreased in the hippocampus and inhibitory neurotransmitter GABA was increased in the PAG under treatment with EA. These data provide novel evidence that EA modulates neurotransmitters and related receptors to reduce neuropathic pain in the higher brain regions. This suggests that EA may be a useful therapy option for treating neuropathic pain.
Collapse
|
25
|
Awad H, Ahmed A, Urman RD, Stoicea N, Bergese SD. Potential role of pharmacogenomics testing in the setting of enhanced recovery pathways after surgery. Pharmgenomics Pers Med 2019; 12:145-154. [PMID: 31440074 PMCID: PMC6666379 DOI: 10.2147/pgpm.s198224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
In 2001, a group of European academic surgeons created the Enhanced Recovery After Surgery (ERAS) study group and established the first official ERAS protocol. One of the most significant challenges during ERAS implementation is variability of drugs used throughout the perioperative period. Pharmacogenomic testing (blood or saliva) results (obtained within approximately 48 hrs) provide guidelines on how to prescribe the optimal drug with the optimal dosage to each patient based on an individual's unique genetic profile. Pharmacogenomic testing of various methods of multimodal analgesia is an essential element of ERAS protocols spanning the entire perioperative period to ultimately optimize postoperative pain control. The key goal for anesthetic management in ERAS protocols is to facilitate rapid emergence by using the shortest acting agents available, thus accelerating recovery and reducing length of stay, hospital expenses, and postoperative complications. Postoperative nausea and vomiting (PONV) is an additional challenge that should be overcome to ensure an enhanced recovery and shorter length of stay with the use of antiemetics. Postoperative ileus (POI) can result in longer hospital stay with increasing susceptibility to associated morbidities along with an increase in associated hospitalization costs. Genetics-guided pharmacotherapy and its impact on clinical outcomes should be thoroughly studied for better understanding and managing drug administration in the settings of ERAS.
Collapse
Affiliation(s)
- Hamdy Awad
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Ahmed
- Department of Anesthesiology, The University of Texas, Houston, TX, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicoleta Stoicea
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sergio D Bergese
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
26
|
Kaye AD, Garcia AJ, Hall OM, Jeha GM, Cramer KD, Granier AL, Kallurkar A, Cornett EM, Urman RD. Update on the pharmacogenomics of pain management. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:125-143. [PMID: 31308726 PMCID: PMC6613192 DOI: 10.2147/pgpm.s179152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Pharmacogenomics is the study of genetic variants that impact drug effects through changes in a drug’s pharmacokinetics and pharmacodynamics. Pharmacogenomics is being integrated into clinical pain management practice because variants in individual genes can be predictive of how a patient may respond to a drug treatment. Pain is subjective and is considered challenging to treat. Furthermore, pain patients do not respond to treatments in the same way, which makes it hard to issue a consistent treatment regimen for all pain conditions. Pharmacogenomics would bring consistency to the subjective nature of pain and could revolutionize the field of pain management by providing personalized medical care tailored to each patient based on their gene variants. Additionally, pharmacogenomics offers a solution to the opioid crisis by identifying potentially opioid-vulnerable patients who could be recommended a nonopioid treatment for their pain condition. The integration of pharmacogenomics into clinical practice creates better and safer healthcare practices for patients. In this article, we provide a comprehensive history of pharmacogenomics and pain management, and focus on up to date information on the pharmacogenomics of pain management, describing genes involved in pain, genes that may reduce or guard against pain and discuss specific pain management drugs and their genetic correlations.
Collapse
Affiliation(s)
- Alan David Kaye
- Department of Anesthesiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Andrew Jesse Garcia
- Department of Anesthesiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - O Morgan Hall
- Department of Anesthesiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - George M Jeha
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Kelsey D Cramer
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Amanda L Granier
- Department of Anesthesiology, LSU Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Anusha Kallurkar
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Spetea M, Schmidhammer H. Unveiling 7-Hydroxymitragynine as the Key Active Metabolite of Mitragynine and the Promise for Creating Novel Pain Relievers. ACS CENTRAL SCIENCE 2019; 5:936-938. [PMID: 31263752 PMCID: PMC6598155 DOI: 10.1021/acscentsci.9b00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
28
|
Acquati A, Uberti S, Aquino A, Cerasetti E, Castagna C, Rovere-Querini P, Pisa V. Do empathic osteopaths achieve better clinical results? An observational feasibility study. INT J OSTEOPATH MED 2019. [DOI: 10.1016/j.ijosm.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Genetic Variants Associated with Cancer Pain and Response to Opioid Analgesics: Implications for Precision Pain Management. Semin Oncol Nurs 2019; 35:291-299. [PMID: 31085105 DOI: 10.1016/j.soncn.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To review the current knowledge on the association of genetic variants with cancer pain. DATA SOURCES Data-based publications and review articles retrieved from PubMed, CINAHL, and Web of Science, as well as an additional search in Google Scholar. CONCLUSION Genetic variability can influence differential pain perception and response to opioids in cancer patients, which will have implications in the optimal personalized treatment of cancer pain. More studies are warranted to replicate findings. IMPLICATIONS FOR NURSING PRACTICE Nurses are poised to educate patients on biomarker testing and interpretation and to use precision pain management strategies based on this information.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The current review will discuss the current literature on genetics of pain and analgesia, with special emphasis on perioperative setting. We will also discuss pharmacogenetics-based management guidelines, current clinical status and future perspectives. RECENT FINDINGS Recent literature suggests that the interindividual variability in pain and postoperative analgesic response is at least in part because of one's genetic make-up. Some of the well characterized polymorphisms that are associated with surgical pain and opioid-related postoperative adverse outcomes are described in catechol-O-methyl transferase, CYP2D6 and μ-opioid receptor (OPRM1), ATP-binding cassette subfamily B member 1, ABCC3, organic cation transporter 1 genes. Clinical Pharmacogenetics Implementation Consortium has put forth recommendations on CYP2D6 genotype-based opioid selection and dosing. The list of drug-gene pairs studied continue to expand. SUMMARY Pharmacogenetic approach marks the dawn of personalized pain medicine both in perioperative and chronic pain settings.
Collapse
|
31
|
Lucenteforte E, Vannacci A, Crescioli G, Lombardi N, Vagnoli L, Giunti L, Cetica V, Coniglio ML, Pugi A, Bonaiuti R, Aricò M, Giglio S, Messeri A, Barale R, Giovannelli L, Mugelli A, Maggini V. Opioid response in paediatric cancer patients and the Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene: an Italian study on 87 cancer children and a systematic review. BMC Cancer 2019; 19:113. [PMID: 30704436 PMCID: PMC6357360 DOI: 10.1186/s12885-019-5310-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Genetic polymorphisms in genes involved in pain modulation have been reported to be associated to opioid efficacy and safety in different clinical settings. Methods The association between COMT Val158Met polymorphism (rs4680) and the inter-individual differences in the response to opioid analgesic therapy was investigated in a cohort of 87 Italian paediatric patients receiving opioids for cancer pain (STOP Pain study). Furthermore, a systematic review of the association between opioid response in cancer patients and the COMT polymorphism was performed in accordance with the Cochrane Handbook and the Prisma Statement. Results In the 87 paediatric patients, pain intensity (total time needed to reach the lowest possible level) was significantly higher for G/G than A/G and A/A carriers (p-value = 0.042). In the 60 patients treated only with morphine, the mean of total dose to reach the same pain intensity was significantly higher for G/G than A/G and A/A carriers (p-value = 0.010). Systematic review identified five studies on adults, reporting that opioid dose (mg after 24 h of treatment from the first pain measurement) was higher for G/G compared to A/G and A/A carriers. Conclusions Present research suggests that the A allele in COMT polymorphism could be a marker of opioid sensitivity in paediatric cancer patients (STOP Pain), as well as in adults (Systematic Review), indicating that the polymorphism impact could be not age-dependent in the cancer pain context. Trial registration Registration number: CRD42017057831. Electronic supplementary material The online version of this article (10.1186/s12885-019-5310-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Alfredo Vannacci
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Giada Crescioli
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Niccolò Lombardi
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Laura Vagnoli
- Pain and Palliative Care Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Paediatric Oncohematology, Meyer Children's University Hospital, Florence, Italy
| | - Alessandra Pugi
- Clinical Trial Office, Meyer Children's University Hospital, Florence, Italy
| | - Roberto Bonaiuti
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Maurizio Aricò
- Direzione Generale, Azienda Sanitaria Provinciale, Ragusa, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy.,Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Messeri
- Pain and Palliative Care Unit, Meyer Children's University Hospital, Florence, Italy
| | | | - Lisa Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy
| | - Valentina Maggini
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence, Florence, Italy. .,Center for Integrative Medicine, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Largo Brambilla, 3 -, 50134, Florence, Italy.
| |
Collapse
|
32
|
Spetea M, Rief SB, Haddou TB, Fink M, Kristeva E, Mittendorfer H, Haas S, Hummer N, Follia V, Guerrieri E, Asim MF, Sturm S, Schmidhammer H. Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14- O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives. J Med Chem 2019; 62:641-653. [PMID: 30571123 PMCID: PMC6348443 DOI: 10.1021/acs.jmedchem.8b01327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Herein, the synthesis
and pharmacological characterization of an
extended library of differently substituted N-methyl-14-O-methylmorphinans with natural and unnatural amino acids
and three dipeptides at position 6 that emerged as potent μ/δ
opioid receptor (MOR/DOR) agonists with peripheral antinociceptive
efficacy is reported. The current study adds significant value to
our initial structure–activity relationships on a series of
zwitterionic analogues of 1 (14-O-methyloxymorphone)
by targeting additional amino acid residues. The new derivatives showed
high binding and potent agonism at MOR and DOR in vitro. In vivo,
the new 6-amino acid- and 6-dipeptide-substituted derivatives of 1 were highly effective in inducing antinociception in the
writhing test in mice after subcutaneous administration, which was
antagonized by naloxone methiodide demonstrating activation of peripheral
opioid receptors. Such peripheral opioid analgesics may represent
alternatives to presently available drugs for a safer pain therapy.
Collapse
|
33
|
Grimsrud KN, Ivanova X, Sherwin CM, Palmieri TL, Tran NK. Identification of Cytochrome P450 Polymorphisms in Burn Patients and Impact on Fentanyl Pharmacokinetics: A Pilot Study. J Burn Care Res 2019; 40:91-96. [PMID: 30371861 PMCID: PMC6939828 DOI: 10.1093/jbcr/iry053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pain management is critical for burn care. Unfortunately, interindividual variation in pharmacokinetics (PK) due to burn hypermetabolism and genetic polymorphisms can lead to treatment failures in this at-risk population. Analgesics may be affected by genetic polymorphisms affecting cytochrome P450 (CYP) drug metabolizing enzymes. Fentanyl is a common opiate primarily metabolized by CYP3A4 subtypes. Recent studies demonstrate CYP2D6 variants, affecting fentanyl PK. Functional CYP polymorphisms can significantly alter opiate levels resulting in inadequate analgesia or life-threatening toxicity. The goal of our study was to evaluate fentanyl PK and assess associations with CYP polymorphisms. We obtained samples from the previously banked blood of 13 patients (eight males and five females) with >20% TBSA burns. Mean (SD) patient age was 41.7 (14.5) years, and mean burn size was 25.8 (15.3) %TBSA. Plasma fentanyl was quantified, and CYP genotyping was performed. Pharmacokinetic analysis was performed using Monolix software (Lixsoft, France) with a two-compartment population model best-representing fentanyl profiles. Three CYP slow-metabolizing genotypes were identified, which included CYP2D6*9, CYP2D6*29, and CYP3A4*1B. All three patients with variant polymorphisms had increased serum fentanyl concentrations due to impaired clearance. This pilot study supports the need for further research in this topic, and CYP genotyping of individual patients prior to receiving opiate analgesics to inform precision-guided decisions, improve therapeutic efficacy, and, most importantly, increase patient well-being and safety.
Collapse
Affiliation(s)
- Kristin N Grimsrud
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis
| | - Xenia Ivanova
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis
| | - Catherine M Sherwin
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City
| | - Tina L Palmieri
- Division of Burn Surgery, Department of Surgery, School of Medicine, University of California, Davis
| | - Nam K Tran
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis
| |
Collapse
|
34
|
Bach-Rojecky L, Vađunec D, Žunić K, Kurija J, Šipicki S, Gregg R, Mikula I, Primorac D. Continuing war on pain: a personalized approach to the therapy with nonsteroidal anti-inflammatory drugs and opioids. Per Med 2018; 16:171-184. [PMID: 30484741 DOI: 10.2217/pme-2018-0116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Successful pain management requires the delivery of analgesia with minimal risk of adverse drug reactions. Nonsteroidal anti-inflammatory drugs and opioids remain the mainstay of treatment for the majority of patients. Unfortunately, almost 50% of all patients experience inadequate pain relief and serious side effects. Allelic variants in genes coding for target proteins, transporters and enzymes, which govern analgesic drugs action and their fate in the organism, might explain inter-individual variability in pain severity and in drug-induced pain relief and toxicities. Additionally, it seems that epigenetic changes contribute to the highly variable response to pain treatment. Therefore, pharmacogenomic testing might be a valuable tool for personalization of pain treatment, with a multidisciplinary team approach involved.
Collapse
Affiliation(s)
- Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, A Kovačića 1, 10000 Zagreb, Croatia
| | - Dalia Vađunec
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, A Kovačića 1, 10000 Zagreb, Croatia
| | - Katarina Žunić
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, A Kovačića 1, 10000 Zagreb, Croatia
| | - Jelena Kurija
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, A Kovačića 1, 10000 Zagreb, Croatia
| | - Sara Šipicki
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy & Biochemistry, A Kovačića 1, 10000 Zagreb, Croatia
| | - Ryan Gregg
- OneOme LLC, 807 Broadway St NE #100, Minneapolis, MN 55413, USA
| | - Ivan Mikula
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia
| | - Dragan Primorac
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,Department of Forensic Sciences, Eberly College of Science, 517 Thomas St, State College, Penn State University, PA 16803, USA.,Department of Pediatrics, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia.,Department of Pediatrics, School of Medicine, University of Osijek, Ulica Cara Hadrijana 10, 31000 Osijek, Croatia.,Department of Pediatrics, Faculty of Dental Medicine and Health, University ofOsijek, Crkvena 21, 31000 Osijek, Croatia.,Children's Hospital Srebrnjak, Srebrnjak 100, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Packiasabapathy S, Sadhasivam S. Gender, genetics, and analgesia: understanding the differences in response to pain relief. J Pain Res 2018; 11:2729-2739. [PMID: 30519077 PMCID: PMC6235329 DOI: 10.2147/jpr.s94650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic variations and gender contribute significantly to the large interpatient variations in opioid-related serious adverse effects and differences in pain relief with other analgesics. Opioids are the most commonly used analgesics to relieve moderate-to-severe postoperative pain. Narrow therapeutic index and unexplained large interpatient variations in opioid-related serious adverse effects and analgesia negatively affect optimal perioperative outcomes. In surgical, experimental, chronic, and neuropathic pain models, females have been reported to have more pain than males. This review focuses on literature evidence of differences in pain relief due to multiple genetic variations and gender of the patient.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA,
| |
Collapse
|
36
|
Martin C, Dumitrascuta M, Mannes M, Lantero A, Bucher D, Walker K, Van Wanseele Y, Oyen E, Hernot S, Van Eeckhaut A, Madder A, Hoogenboom R, Spetea M, Ballet S. Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. J Med Chem 2018; 61:9784-9789. [DOI: 10.1021/acs.jmedchem.8b01282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Dominik Bucher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Katja Walker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yannick Van Wanseele
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edith Oyen
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
37
|
Sadik OA, Yazgan I, Eroglu O, Liu P, Olsen ST, Moser AM, Sander PG, Tsiagbe C, Harada K, Bajwa S, Tvetenstrand CD, Yin L, Gerhardstein P. Objective clinical pain analysis using serum cyclooxygenase-2 and inducible nitric oxide synthase in American patients. Clin Chim Acta 2018; 484:278-283. [PMID: 29885320 DOI: 10.1016/j.cca.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/20/2018] [Accepted: 06/02/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Pain is a multidimensional condition of multiple origins. Determining both intensity and underlying cause are critical for effective management. Utilization of painkillers does not follow any guidelines relying on biomarkers, which effectively eliminates objective treatment. The aim of this study was to evaluate the use of serum cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as pain biomarkers. This work could significantly advance the diagnosis and treatment of pain. METHODS We assessed the potential utility of serum COX-2 and iNOS as objective measures of pain in a sample of American patients. Pain was scaled between level 0-5 in accordance with the level reported by the patients. Blood samples were collected from 102 patients in the emergency room. Sandwich ELISA was used to determine the COX-2 and iNOS levels in the blood serum while statistical analysis was performed using Pearson product-moment correlation coefficients, Regression and Receiver Operating Characteristics (ROC) analyses. The biomarker results were also compared with self-reports of pain by the patients using conventional pain ratings and patients were asked to report the cause of the pain. Pain levels were clustered into four groups as 0 [self-reported 0], 1 [self-reported as 1], 2 [self-reported as 2 and 3] and 3 [self-reported as 4 and 5]. Co-expression of COX-2 and iNOS could significantly alter pain development and its sensitization. Therefore, iNOS dependent COX-2 levels were employed as categorized level. RESULTS Self-reported pain levels did not show a correlation with the serum level of COX-2 and iNOS. The lack of correlation is attributed to multiple reasons including patients' intake of painkillers prior to participation, painkiller intake habit, chronic diseases, and subjectivity of self-reported pain. Increased serum COX-2 levels were reported in relation to the subtypes of these health issues. Further, 83% of the patients who reported pain also showed the presence of COX-2 in serum, while only 53% of the patients showed the presence of iNOS in serum. Moderate relation was found between the clustered pain level and categorized COX-2 and iNOS- levels. CONCLUSIONS The findings support the requirement of further studies to use COX-2 and iNOS as prognostic biomarkers for objective quantification of pain at the clinical level.
Collapse
Affiliation(s)
- Omowunmi A Sadik
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), SUNY-Binghamton, Binghamton, NY, United States.
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), SUNY-Binghamton, Binghamton, NY, United States
| | - Orhan Eroglu
- Electrical and Computer Engineering Department, Mississippi State University, Starkville, MS, United States
| | - Peng Liu
- Department of Computer Science, Binghamton University-SUNY, Binghamton, NY, United States
| | - Sarah T Olsen
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Alecia M Moser
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Phillip G Sander
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), SUNY-Binghamton, Binghamton, NY, United States
| | - Courage Tsiagbe
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), SUNY-Binghamton, Binghamton, NY, United States
| | - Kei Harada
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), SUNY-Binghamton, Binghamton, NY, United States
| | - Saeed Bajwa
- SUNY Upstate Medical University at Syracuse and Clinical Campus at Binghamton, United States; United Health Services Hospital, Johnson City, NY, United States
| | | | - Lijun Yin
- Department of Computer Science, Binghamton University-SUNY, Binghamton, NY, United States
| | - Peter Gerhardstein
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
38
|
Knezevic NN, Tverdohleb T, Knezevic I, Candido KD. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int J Mol Sci 2018; 19:E1707. [PMID: 29890676 PMCID: PMC6032204 DOI: 10.3390/ijms19061707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023] Open
Abstract
It is estimated that the total annual financial cost for pain management in the U.S. exceeds 100 billion dollars. However, when indirect costs are included, such as functional disability and reduction in working hours, the cost can reach more than 300 billion dollars. In chronic pain patients, the role of pharmacogenetics is determined by genetic effects on various pain types, as well as the genetic effect on drug safety and efficacy. In this review article, we discuss genetic polymorphisms present in different types of chronic pain, such as fibromyalgia, low back pain, migraine, painful peripheral diabetic neuropathy and trigeminal neuralgia. Furthermore, we discuss the role of CYP450 enzymes involved in metabolism of drugs, which have been used for treatment of chronic pain (amitriptyline, duloxetine, opioids, etc.). We also discuss how pharmacogenetics can be applied towards improving drug efficacy, shortening the time required to achieve therapeutic outcomes, reducing risks of side effects, and reducing medical costs and reliance upon polypharmacy.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | - Tatiana Tverdohleb
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Ivana Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Kaye AD, Mahakian T, Kaye AJ, Pham AA, Hart BM, Gennuso S, Cornett EM, Gabriel RA, Urman RD. Pharmacogenomics, precision medicine, and implications for anesthesia care. Best Pract Res Clin Anaesthesiol 2018; 32:61-81. [DOI: 10.1016/j.bpa.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023]
|
40
|
Thümmler S, Dor E, David R, Leali G, Battista M, David A, Askenazy F, Verstuyft C. Pharmacoresistant Severe Mental Health Disorders in Children and Adolescents: Functional Abnormalities of Cytochrome P450 2D6. Front Psychiatry 2018; 9:2. [PMID: 29472872 PMCID: PMC5810290 DOI: 10.3389/fpsyt.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe mental health disorders in children and adolescents represent a major public health problem. Despite adequate drug treatment, some patients develop pharmacoresistant disease. As a consequence, physicians are confronted with prescribing challenges, prolonged hospitalization and increased risk of adverse events, thus aggravating short-, medium-, and long-term prognosis. The majority of psychotropic treatments, particularly antipsychotics and antidepressants, are metabolized at hepatic level by cytochrome P450 (CYP), particularly by CYP3A4 and CYP2D6. Several CYP2D6 genetic polymorphisms are described to be associated with ultrarapid (UM) or poor drug metabolism (PM), inducing clinical resistance and/or adverse events, and might therefore be related to pharmacoresistant severe mental health disease. CASE PRESENTATION A total of nine pharmacoresistant patients (four females, five males) aged 11-16 (mean 14.1) years have been genotyped for CYP2D6 between January, 2015 and April, 2016. Patients were diagnosed with schizophrenia (n = 5), autism spectrum disorders (n = 2), intellectual disability with challenging behavior (n = 2), oppositional defiant disorder (n = 1), and post-traumatic stress and borderline personality disorders (n = 1). They had a treatment history with on average 6.1 (3-9) psychotropic, 5 (3-7) antipsychotic, and 3.4 (2-5) CYP2D6-metabolized antipsychotic and antidepressant molecules. Five patients (56%) presented functional anomalies of the CYP2D6 gene: three patients were UM metabolizers with gene duplication and two patients were PM with *4/*41 and *3/*4 polymorphisms. CONCLUSION Functional anomalies of CYP2D6 concerned more than half of our pediatric inpatient sample with pharmacoresistant disease. However, our case reports are limited by the low sample size. Nevertheless, knowledge of individual metabolism and in particular CYP2D6 genotyping should be considered for clinical workup and therapy adjustment in resistant patients in child and adolescent psychiatry and might permit better treatment outcome, increased treatment adherence and diminished adverse events.
Collapse
Affiliation(s)
- Susanne Thümmler
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Emmanuelle Dor
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | | | - Graziella Leali
- Department of Child Psychiatry, Nice Children's Hospitals CHU-Lenval, Nice, France
| | - Michele Battista
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice CHU-Lenval, Nice, France.,Department of Child and Adolescent Psychiatry, Hospital of Fréjus, Fréjus, France
| | - Alexia David
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice CHU-Lenval, Nice, France
| | - Florence Askenazy
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Céline Verstuyft
- Service de génétique moléculaire, pharmacogénétique et hormonologie, Centre de Ressource Biologie Paris-Sud, Hôpital Bicêtre, Groupe Hospitalier Paris Sud, AP-HP, Le Kremlin Bicêtre, Nice, France.,Université Paris-Sud, UMR 1184, Faculté de médecine, Paris, France
| |
Collapse
|
41
|
Dragic LL, Wegrzyn EL, Schatman ME, Fudin J. Pharmacogenetic guidance: individualized medicine promotes enhanced pain outcomes. J Pain Res 2017; 11:37-40. [PMID: 29317847 PMCID: PMC5743122 DOI: 10.2147/jpr.s144560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of pharmacogenomics has become more prevalent over the past several years in treating many disease states. Several cytochrome P450 enzymes play a role in the metabolism of many pain medications including opioids and antidepressants. Noncytochrome P450 enzymes such as methylenetetrahydrofolate reductase (MTHFR) and catechol-O-methyl transferase (COMT) also play a role in the explanation of opioid dosage requirements as well as in response to certain antidepressants. We present the case of a patient with reduced COMT and MTHFR expression treated with leucovorin 10 mg daily for the management of chronic pain. The use of leucovorin in this patient decreased pain scores, which were clinically significant and increased functionality. This case demonstrates the importance of pharmacogenetics testing in patients, as this can help direct providers to better therapeutic options for their patients.
Collapse
Affiliation(s)
- Lisa Lynn Dragic
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Erica L Wegrzyn
- Department of Pharmacy, Albany Stratton VA Medical Center, Albany, NY, USA
| | - Michael E Schatman
- Research and Network Development, Boston Pain Care, Waltham, MA, USA.,Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Jeffrey Fudin
- Department of Pharmacy, Albany Stratton VA Medical Center, Albany, NY, USA.,Scientific and Clinical Affairs, Remitigate, LLC, Delmar, NY, USA
| |
Collapse
|
42
|
Jonsson-Schmunk K, Schafer SC, Croyle MA. Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0376-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Peiró AM, Planelles B, Juhasz G, Bagdy G, Libert F, Eschalier A, Busserolles J, Sperlagh B, Llerena A. Pharmacogenomics in pain treatment. Drug Metab Pers Ther 2017; 31:131-42. [PMID: 27662648 DOI: 10.1515/dmpt-2016-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
Abstract
The experience of chronic pain is one of the commonest reasons for seeking medical attention, being a major issue in clinical practice. While pain is a universal experience, only a small proportion of people who felt pain develop pain syndromes. In addition, painkillers are associated with wide inter-individual variability in the analgesic response. This may be partly explained by the presence of single nucleotide polymorphisms in genes encoding molecular entities involved in pharmacodynamics and pharmacokinetics. However, uptake of this information has been slow due in large part to the lack of robust evidences demonstrating clinical utility. Furthermore, novel therapies, including targeting of epigenetic changes and gene therapy-based approaches are further broadening future options for the treatment of chronic pain. The aim of this article is to review the evidences behind pharmacogenetics (PGx) to individualize therapy (boosting the efficacy and minimizing potential toxicity) and genes implicated in pain medicine, in two parts: (i) genetic variability with pain sensitivity and analgesic response; and (ii) pharmacological concepts applied on PGx.
Collapse
|
44
|
Sekhri NK, Cooney MF. Opioid Metabolism and Pharmacogenetics: Clinical Implications. J Perianesth Nurs 2017; 32:497-505. [PMID: 28938988 DOI: 10.1016/j.jopan.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
|
45
|
Wood P, Small C, Lewis S, Mahoney P. Neuropathic pain treatment and research: experiences from the United Kingdom mission to Afghanistan and future prospects. J ROY ARMY MED CORPS 2017; 164:207-212. [DOI: 10.1136/jramc-2017-000820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 11/04/2022]
Abstract
The Defence Medical Services (DMS) of the United Kingdom (UK) assumed command of the Role 3 Medical Treatment Facility field hospital during Operation HERRICK in Afghanistan from April 2006 until the final drawdown in November 2014. The signature injury sustained by coalition personnel during this period was traumatic amputation from improvised explosive devices. Many patients who had suffered extensive tissue damage experienced both nociceptive and neuropathic pain (NeuP). This presented as a heterogeneous collection of symptoms that are resistant to treatment. This paper discusses the relationship of NeuP in the context of ballistic injury, drawing in particular on clinical experience from the UK mission to Afghanistan, Operation HERRICK. The role of this paper is to describe the difficulties of assessment, treatment and research of NeuP and make recommendations for future progress within the DMS.
Collapse
|
46
|
Carson HJ. Anatomical changes correlated with chronic pain in forensic medicine. Forensic Sci Res 2017; 2:145-151. [PMID: 30483633 PMCID: PMC6197126 DOI: 10.1080/20961790.2017.1341364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 11/14/2022] Open
Abstract
This study was performed to determine the relationships between chronic pain and anatomic changes that may occur in the body. Autopsies were performed on fatalities that required death investigation in Linn County, IA, or adjacent and nearby areas. Persons with chronic pain were older than the control population at the time of death. Diabetes, hypertension and depression were more common in persons with chronic pain. Certain causes of death may also have been related to chronic pain. The heart, lungs, liver, spleen and kidneys were significantly heavier in persons with chronic pain; emphysema and pleural and abdominal adhesions were more common in persons with chronic pain. There appear to have been diffuse changes in the body related to chronic pain. These changes may have been mediated by a number of systemic mechanisms that are involved with chronic pain, including cardiovascular activity, the immune system, the neuroendocrine system and others.
Collapse
Affiliation(s)
- Henry J Carson
- Linn County Medical Examiner's Office (retired), Cedar Rapids, IA, USA
| |
Collapse
|
47
|
Suzuki S, Ohira Y, Noda K, Ikusaka M. A-MUPS score to differentiate patients with somatic symptom disorder from those with medical disease for complaints of non-acute pain. J Pain Res 2017; 10:1411-1423. [PMID: 28652807 PMCID: PMC5476605 DOI: 10.2147/jpr.s137482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To develop a clinical score to discriminate patients with somatic symptom disorder (SSD) from those with medical disease (MD) for complaints of non-acute pain. Methods We retrospectively examined the clinical records of consecutive patients with pain for a duration of ≥1 month in our department from April 2003 to March 2015. We divided the subjects according to the diagnoses of definite SSD (as diagnosed and tracked by psychiatrists in our hospital), probable SSD (without evaluation by psychiatrists in our hospital), matched MD (randomly matched two patients by age, sex, and pain location for each definite SSD patient), unmatched MD, other mental disease, or functional somatic syndrome (FSS). We investigated eight clinical factors for definite SSD and matched MD, and developed a diagnostic score to identify SSD. We subsequently validated the model with cases of probable SSD and unmatched MD. Results The number of patients with definite SSD, probable SSD, matched MD, unmatched MD, other mental disease, and FSS was 104 (3.5%), 214 (7.3%), 197 (6.7%), 742 (25%), 708 (24%), and 978 (33%), respectively. In a conditional logistic regression analysis, the following five factors were included as independent predictors of SSD: Analgesics ineffective, Mental disorder history, Unclear provocative/palliative factors, Persistence without cessation, and Stress feelings/episodes (A-MUPS). The area under the receiver operating characteristic curve (AUC) of the model was 0.900 (95% CI: 0.864–0.937, p<0.001), and the McFadden’s pseudo-R-squared was 0.709. For internal validation, the AUC between probable SSD and unmatched MD was 0.930 (95% CI: 0.910–0.950, p<0.001). The prevalence and the likelihood ratio of SSD increased as the score increased. Conclusion The A-MUPS score was useful for discriminating patients with SSD from those with MD for complaints of non-acute pain, although external validation and refinement should be needed.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of General Medicine, Chiba University Hospital, Chiba, Japan
| | - Yoshiyuki Ohira
- Department of General Medicine, Chiba University Hospital, Chiba, Japan
| | - Kazutaka Noda
- Department of General Medicine, Chiba University Hospital, Chiba, Japan
| | - Masatomi Ikusaka
- Department of General Medicine, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
48
|
Pierson RC, Gufford BT, Desta Z, Eadon MT. Clinical and educational impact of pharmacogenomics testing: a case series from the INGENIOUS trial. Pharmacogenomics 2017; 18:835-841. [PMID: 28594278 DOI: 10.2217/pgs-2017-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pharmacogenomic testing has become increasingly widespread. However, there remains a need to bridge the gap between test results and providers lacking the expertise required to interpret these results. The Indiana Genomics Implementation trial is underway at our institution to examine total healthcare cost and patient outcomes after genotyping in a safety-net healthcare system. As part of the study, trial investigators and clinical pharmacology fellows interpret genotype results, review patient histories and medication lists and evaluate potential drug-drug interactions. We present a case series of patients in whom pharmacogenomic consultations aided providers in appropriately applying pharmacogenomic results within the clinical context. Formal consultations not only provide valuable patient care information but educational opportunities for the fellows to cement pharmacogenomic concepts.
Collapse
Affiliation(s)
- Rebecca C Pierson
- Department of Obstetrics, Gynecology & Women's Health, University of Louisville, KY 40202, USA
| | - Brandon T Gufford
- Department of Medicine, Division of Clinical Pharmacology, Indiana University, IN 46202, USA
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indiana University, IN 46202, USA
| | - Michael T Eadon
- Department of Medicine, Division of Clinical Pharmacology, Indiana University, IN 46202, USA.,Department of Medicine, Division of Nephrology, Indiana University, IN 46202, USA
| |
Collapse
|
49
|
Abstract
A significant number of commonly administered medications in anesthesia show wide clinical interpatient variability. Some of these include neuromuscular blockers, opioids, local anesthetics, and inhalation anesthetics. Individual genetic makeup may account for and predict cardiovascular outcomes after cardiac surgery. These interactions can manifest at any point in the perioperative period and may also only affect a specific system. A better understanding of pharmacogenomics will allow for more individually tailored anesthetics and may ultimately lead to better outcomes, decreased hospital stays, and improved patient satisfaction.
Collapse
Affiliation(s)
- Ramsey Saba
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Alan D Kaye
- Department of Anesthesiology and Pain Medicine, LSU Health Science Center, Louisiana State University School of Medicine, 1542 Tulane Avenue, Room 659, New Orleans, LA 70112, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Abstract
There is interpatient variability to analgesic administration. Much can be traced to pharmacogenomics variations between individuals. Certain ethnicities are more prone to reduced function of CYP2D6. Weak opioids are subject to interpatient variation based on their CYP2D6 type. Strong opioids have variations based on their transport and individual metabolism. Several cytochrome enzymes have been found to be involved with ketamine but there is no strong evidence of individual polymorphisms manifesting in clinical outcomes. Nonsteroidal anti-inflammatory drugs have adverse outcomes that certain CYP variants are more prone toward. There are now recommendations for dosing based on specific genomic makeup.
Collapse
Affiliation(s)
- Ramsey Saba
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Alan D Kaye
- Department of Anesthesiology and Pain Medicine, Louisiana State University School of Medicine, LSU Health Science Center, 1542 Tulane Avenue, Room 659, New Orleans, LA 70112, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|