1
|
Klein CØ, Kragh ML, Andersen PJ, Agersnap N, Bryde-Jacobsen J, Hansen LT. Optical time-lapse microscopy for rapid assessment of microbial quality in hygroscopic food samples. J Microbiol Methods 2025; 229:107094. [PMID: 39880134 DOI: 10.1016/j.mimet.2025.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
In the food industry, time-to-result is crucial for faster release of products, minimising recalls, mitigation of microbial contamination problems and, ultimately, food safety. Carrageenan is isolated from red seaweed (Rhodophyta) and applied in various foods and beverages as a gelling, thickening, texturing, or stabilising agent due to its hygroscopic properties. Currently, the standard industry plate count method entails a one-hundred-fold dilution of the sample before mixing with molten agar for assessing the level of microbial contamination in carrageenan samples prior to business-to-business shipment. However, even at this dilution, carrageenan swells, forms clumps, clogs pipettes, and leaves thick gel structures, bubbles, and debris in agar plates causing microbial enumeration to be challenging and subject to human error. Here, we report, for the first time, the application of mini agar plates monitored by the automated time-lapse microscopy IntuGrow solution to assess the microbiological quality in the challenging food ingredient. Without dilution of the food sample, the carrageenan powder is scattered between two layers of Plate Count Agar to enumerate bacteria within 12-20 h, while enumeration by traditional plate counts requires 72 h. A DELAY algorithm for optical time-lapse microscopy was developed and added to IntuGrow analysis software to suppress the effects of swelling and enhance detection of the presence of growing microbial colonies by normalising the background using previous images. Time-lapse microscopy image-based monitoring made it possible to obtain results from carrageenan samples that could not be obtained by traditional plate counts due to swarming bacteria. Comparison between the two methods showed a nearly perfect Demings slope of 0.96, while an observed bias of -0.33 log CFU/g indicated that IntuGrow counts were lower than traditional plate counts. This is likely due to carrageenan artefacts being counted as colonies in the latter plates. The ability of IntuGrow to enumerate bacteria in challenging food ingredients such as carrageenan implies that the technology should be easy to apply for easy-to-dilute samples or non-hydrocolloid powders. Further testing in an industrial setting by different operators should be used to validate the reproducibility of the method.
Collapse
Affiliation(s)
- Caroline Østergaard Klein
- National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark
| | - Martin Laage Kragh
- National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark
| | | | | | | | - Lisbeth Truelstrup Hansen
- National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Cesaro A, Hoffman SC, Das P, de la Fuente-Nunez C. Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:2. [PMID: 39843587 PMCID: PMC11721440 DOI: 10.1038/s44259-024-00068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Artificial intelligence (AI) has transformed infectious disease control, enhancing rapid diagnosis and antibiotic discovery. While conventional tests delay diagnosis, AI-driven methods like machine learning and deep learning assist in pathogen detection, resistance prediction, and drug discovery. These tools improve antibiotic stewardship and identify effective compounds such as antimicrobial peptides and small molecules. This review explores AI applications in diagnostics, therapy, and drug discovery, emphasizing both strengths and areas needing improvement.
Collapse
Affiliation(s)
- Angela Cesaro
- Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel C Hoffman
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA
| | - Payel Das
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Durmuş MA, Kömeç S, Gülmez A. Artificial intelligence applications for immunology laboratory: image analysis and classification study of IIF photos. Immunol Res 2024; 72:1277-1287. [PMID: 39107556 DOI: 10.1007/s12026-024-09527-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 02/06/2025]
Abstract
Artificial intelligence (AI) is increasingly being used in medicine to enhance the speed and accuracy of disease diagnosis and treatment. AI-based image analysis is expected to play a crucial role in future healthcare facilities and laboratories, offering improved precision and cost-effectiveness. As technology advances, the requirement for specialized software knowledge to utilize AI applications is diminishing. Our study will examine the advantages and challenges of employing AI-based image analysis in the field of immunology and will investigate whether physicians without software expertise can use MS Azure Portal for ANA IIF test classification and image analysis. This is the first study to perform Hep-2 image analysis using MS Azure Portal. We will also assess the potential for AI applications to aid physicians in interpreting ANA IIF results in immunology laboratories. The study was designed in four stages by two specialists. Stage 1: creation of an image library, Stage 2: finding an artificial intelligence application, Stage 3: uploading images and training artificial intelligence, Stage 4: performance analysis of the artificial intelligence application. In the first training, the average pattern identification accuracy for 72 testing images was 81.94%. After the second training, this accuracy increased to 87.5%. Patterns Precision improved from 71.42 to 79.96% after the second training. As a result, the number of correctly identified patterns and their accuracy increased with the second training process. Artificial intelligence-based image analysis shows promising potential. This technology is expected to become essential in healthcare facility laboratories, offering higher accuracy rates and lower costs.
Collapse
Affiliation(s)
- Mehmet Akif Durmuş
- Medical Microbiology Laboratory, Çam and Sakura City Hospital, Istanbul, Türkiye.
| | - Selda Kömeç
- Medical Microbiology Laboratory, Çam and Sakura City Hospital, Istanbul, Türkiye
| | - Abdurrahman Gülmez
- Medical Microbiology Laboratory, Aydın Atatürk State Hospital, Aydın, Türkiye
| |
Collapse
|
4
|
Doganay MT, Chakraborty P, Bommakanti SM, Jammalamadaka S, Battalapalli D, Madabhushi A, Draz MS. Artificial intelligence performance in testing microfluidics for point-of-care. LAB ON A CHIP 2024; 24:4998-5008. [PMID: 39360887 PMCID: PMC11448392 DOI: 10.1039/d4lc00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Artificial intelligence (AI) is revolutionizing medicine by automating tasks like image segmentation and pattern recognition. These AI approaches support seamless integration with existing platforms, enhancing diagnostics, treatment, and patient care. While recent advancements have demonstrated AI superiority in advancing microfluidics for point of care (POC) diagnostics, a gap remains in comparative evaluations of AI algorithms in testing microfluidics. We conducted a comparative evaluation of AI models specifically for the two-class classification problem of identifying the presence or absence of bubbles in microfluidic channels under various imaging conditions. Using a model microfluidic system with a single channel loaded with 3D transparent objects (bubbles), we challenged each of the tested machine learning (ML) (n = 6) and deep learning (DL) (n = 9) models across different background settings. Evaluation revealed that the random forest ML model achieved 95.52% sensitivity, 82.57% specificity, and 97% AUC, outperforming other ML algorithms. Among DL models suitable for mobile integration, DenseNet169 demonstrated superior performance, achieving 92.63% sensitivity, 92.22% specificity, and 92% AUC. Remarkably, DenseNet169 integration into a mobile POC system demonstrated exceptional accuracy (>0.84) in testing microfluidics at under challenging imaging settings. Our study confirms the transformative potential of AI in healthcare, emphasizing its capacity to revolutionize precision medicine through accurate and accessible diagnostics. The integration of AI into healthcare systems holds promise for enhancing patient outcomes and streamlining healthcare delivery.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Purbali Chakraborty
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Sri Moukthika Bommakanti
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Soujanya Jammalamadaka
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | | | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44106, USA
| |
Collapse
|
5
|
Attaway C, Mathison BA, Misra A. No longer stuck in the past: new advances in artificial intelligence and molecular assays for parasitology screening and diagnosis. Curr Opin Infect Dis 2024; 37:357-366. [PMID: 39133581 DOI: 10.1097/qco.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW Emerging technologies are revolutionizing parasitology diagnostics and challenging traditional methods reliant on microscopic analysis or serological confirmation, which are known for their limitations in sensitivity and specificity. This article sheds light on the transformative potential of artificial intelligence and molecular assays in the field, promising more accurate and efficient detection methods. RECENT FINDINGS Artificial intelligence has emerged as a promising tool for blood and stool parasite review, when paired with comprehensive databases and expert oversight result in heightened specificity and sensitivity of diagnoses while also increasing efficiency. Significant strides have been made in nucleic acid testing for multiplex panels for enteric pathogen. Both multiplex and single target panels for Plasmodium , Babesia , filaria, and kinetoplastids have been developed and garnered regulatory approval, notably for blood donor screening in the United States. Additional technologies such as MALDI-TOF, metagenomics, flow cytometry, and CRISPR-Cas are under investigation for their diagnostic utility and are currently in the preliminary stages of research and feasibility assessment. SUMMARY Recent implementation of artificial intelligence and digital microscopy has enabled swift smear screening and diagnosis, although widespread implementation remains limited. Simultaneously, molecular assays - both targeted and multiplex panels are promising and have demonstrated promise in numerous studies with some assays securing regulatory approval recently. Additional technologies are under investigation for their diagnostic utility and are compelling avenues for future proof-of-concept diagnostics.
Collapse
Affiliation(s)
| | - Blaine A Mathison
- Scientist III, Institute for Clinical and Experimental Pathology, ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
6
|
Charizani E, Dushku E, Kyritsi M, Metallinou ET, Karathodorou A, Amanetidou E, Kokkaleniou MM, Passalis N, Tefas A, Staikou A, Yiangou M. Predicting the immunomodulatory activity of probiotic lactic acid bacteria using supervised machine learning in a Cornu aspersum snail model. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109788. [PMID: 39053586 DOI: 10.1016/j.fsi.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In the process of screening for probiotic strains, there are no clearly established bacterial phenotypic markers which could be used for the prediction of their in vivo mechanism of action. In this work, we demonstrate for the first time that Machine Learning (ML) methods can be used for accurately predicting the in vivo immunomodulatory activity of probiotic strains based on their cell surface phenotypic features using a snail host-microbe interaction model. A broad range of snail gut presumptive probiotics, including 240 new lactic acid bacterial strains (Lactobacillus, Leuconostoc, Lactococcus, and Enterococcus), were isolated and characterized based on their capacity to withstand snails' gastrointestinal defense barriers, such as the pedal mucus, gastric mucus, gastric juices, and acidic pH, in association with their cell surface hydrophobicity, autoaggregation, and biofilm formation ability. The implemented ML pipeline predicted with high accuracy (88 %) strains with a strong capacity to enhance chemotaxis and phagocytic activity of snails' hemolymph cells, while also revealed bacterial autoaggregation and cell surface hydrophobicity as the most important parameters that significantly affect host immune responses. The results show that ML approaches may be useful to derive a predictive understanding of host-probiotic interactions, while also highlighted the use of snails as an efficient animal model for screening presumptive probiotic strains in the light of their interaction with cellular innate immune responses.
Collapse
Affiliation(s)
- Elissavet Charizani
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Esmeralda Dushku
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kyritsi
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleftheria Theodora Metallinou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Argyro Karathodorou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni Amanetidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Marianthi-Maria Kokkaleniou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikolaos Passalis
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Tefas
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandra Staikou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
7
|
Jaiswal M, Mukhtar U, Shakya KS, Laddi A, Singha LA. Computerised assessment-a novel approach for calculation of percentage of hypomineralized lesion on incisors and its correlation with aesthetic concern. J Oral Biol Craniofac Res 2024; 14:570-577. [PMID: 39139516 PMCID: PMC11320481 DOI: 10.1016/j.jobcr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Molar-incisor hypomineralization (MIH) is a localized, qualitative, demarcated enamel defect that affects first permanent molars (FPMs) and/or permanent incisors. The aim of present study was to introduce a novel computerised assessment process to detect and quantify the percentage opacity associated with MIH affected maxillary central incisors. Methodology Children (8-16 years) enrolled in the primary study having mild (white/cream or yellow/brown) MIH lesion on fully erupted maxillary permanent central incisor. 50 standardised images of MIH lesions were captured in an artificially lit room with fixed parameters and were anonymized and securely stored. Images were analysed by AI-driven computerised software and generates output classifications via a sophisticated algorithm crafted using a meticulously annotated image dataset as reference through supervised machine learning (SML). For the validation of computerised assessment of MIH lesions, the percentage of demarked opacity was calculated using ADOBE PHOTOSHOP CS7. Results The percentage of MIH lesion was calculated through histogram plotting with the maxima ranging from 7.29 % to 71.21 % with the mean value of 34.51 %. The validation score ranged from 10.29 % to 67.27 % with the mean value of 35.32 %. The difference between the two was statistically not significant. Out of 50 patients; 11 patients had 1-30 % of surface affected with MIH and 2 had aesthetic concern; 24 had 30-60 % of surface affected and 13 had aesthetic concern; 15 had >60 % of surface affected and 12 had aesthetic concerns. Conclusions The proposed approach exhibit sufficient quality to be integrated into a dental software addressing practical challenges encountered in daily clinical settings.
Collapse
Affiliation(s)
- Manojkumar Jaiswal
- A Unit of Pediatric and Preventive Dentistry, Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Umer Mukhtar
- A Unit of Pediatric and Preventive Dentistry, Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Amit Laddi
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | - L Akash Singha
- A Unit of Pediatric and Preventive Dentistry, Oral Health Sciences Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
9
|
Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms 2024; 12:1051. [PMID: 38930432 PMCID: PMC11205376 DOI: 10.3390/microorganisms12061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI's significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI's utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI's potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI's versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.
Collapse
Affiliation(s)
- Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA;
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, Dearborn, MI 48126, USA;
| | - Rnda I. Ashgar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Arshad Jawed
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Mohammed Ahmed Hassani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Sajad Ahmad Dar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| |
Collapse
|
10
|
Gerada A, Harper N, Howard A, Reza N, Hope W. Determination of minimum inhibitory concentrations using machine-learning-assisted agar dilution. Microbiol Spectr 2024; 12:e0420923. [PMID: 38517194 PMCID: PMC11064640 DOI: 10.1128/spectrum.04209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Effective policy to address the global threat of antimicrobial resistance requires robust antimicrobial susceptibility data. Traditional methods for measuring minimum inhibitory concentration (MIC) are resource intensive, subject to human error, and require considerable infrastructure. AIgarMIC streamlines and standardizes MIC measurement and is especially valuable for large-scale surveillance activities. MICs were measured using agar dilution for n = 10 antibiotics against clinical Enterobacterales isolates (n = 1,086) obtained from a large tertiary hospital microbiology laboratory. Escherichia coli (n = 827, 76%) was the most common organism. Photographs of agar plates were divided into smaller images covering one inoculation site. A labeled data set of colony images was created and used to train a convolutional neural network to classify images based on whether a bacterial colony was present (first-step model). If growth was present, a second-step model determined whether colony morphology suggested antimicrobial growth inhibition. The ability of the AI to determine MIC was then compared with standard visual determination. The first-step model classified bacterial growth as present/absent with 94.3% accuracy. The second-step model classified colonies as "inhibited" or "good growth" with 88.6% accuracy. For the determination of MIC, the rate of essential agreement was 98.9% (644/651), with a bias of -7.8%, compared with manual annotation. AIgarMIC uses artificial intelligence to automate endpoint assessments for agar dilution and potentially increases throughput without bespoke equipment. AIgarMIC reduces laboratory barriers to generating high-quality MIC data that can be used for large-scale surveillance programs. IMPORTANCE This research uses modern artificial intelligence and machine-learning approaches to standardize and automate the interpretation of agar dilution minimum inhibitory concentration testing. Artificial intelligence is currently of significant topical interest to researchers and clinicians. In our manuscript, we demonstrate a use-case in the microbiology laboratory and present validation data for the model's performance against manual interpretation.
Collapse
Affiliation(s)
- Alessandro Gerada
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Infection and Immunity, Liverpool Clinical Laboratories, Clinical Support Services Building (CSSB), Liverpool University Hospitals NHS Foundation Trust—Royal Liverpool Site, Liverpool, United Kingdom
| | - Nicholas Harper
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alex Howard
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Infection and Immunity, Liverpool Clinical Laboratories, Clinical Support Services Building (CSSB), Liverpool University Hospitals NHS Foundation Trust—Royal Liverpool Site, Liverpool, United Kingdom
| | - Nada Reza
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Infection and Immunity, Liverpool Clinical Laboratories, Clinical Support Services Building (CSSB), Liverpool University Hospitals NHS Foundation Trust—Royal Liverpool Site, Liverpool, United Kingdom
| |
Collapse
|
11
|
Walter C, Weissert C, Gizewski E, Burckhardt I, Mannsperger H, Hänselmann S, Busch W, Zimmermann S, Nolte O. Performance evaluation of machine-assisted interpretation of Gram stains from positive blood cultures. J Clin Microbiol 2024; 62:e0087623. [PMID: 38506525 PMCID: PMC11005413 DOI: 10.1128/jcm.00876-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024] Open
Abstract
Manual microscopy of Gram stains from positive blood cultures (PBCs) is crucial for diagnosing bloodstream infections but remains labor intensive, time consuming, and subjective. This study aimed to evaluate a scan and analysis system that combines fully automated digital microscopy with deep convolutional neural networks (CNNs) to assist the interpretation of Gram stains from PBCs for routine laboratory use. The CNN was trained to classify images of Gram stains based on staining and morphology into seven different classes: background/false-positive, Gram-positive cocci in clusters (GPCCL), Gram-positive cocci in pairs (GPCP), Gram-positive cocci in chains (GPCC), rod-shaped bacilli (RSB), yeasts, and polymicrobial specimens. A total of 1,555 Gram-stained slides of PBCs were scanned, pre-classified, and reviewed by medical professionals. The results of assisted Gram stain interpretation were compared to those of manual microscopy and cultural species identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comparison of assisted Gram stain interpretation and manual microscopy yielded positive/negative percent agreement values of 95.8%/98.0% (GPCCL), 87.6%/99.3% (GPCP/GPCC), 97.4%/97.8% (RSB), 83.3%/99.3% (yeasts), and 87.0%/98.5% (negative/false positive). The assisted Gram stain interpretation, when compared to MALDI-TOF MS species identification, also yielded similar results. During the analytical performance study, assisted interpretation showed excellent reproducibility and repeatability. Any microorganism in PBCs should be detectable at the determined limit of detection of 105 CFU/mL. Although the CNN-based interpretation of Gram stains from PBCs is not yet ready for clinical implementation, it has potential for future integration and advancement.
Collapse
Affiliation(s)
- Christian Walter
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Weissert
- Division of Human Microbiology, Centre for Laboratory Medicine, St. Gall, Switzerland
| | - Eve Gizewski
- MetaSystems Hard & Software GmbH, Altlussheim, Germany
| | - Irene Burckhardt
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Nolte
- Division of Human Microbiology, Centre for Laboratory Medicine, St. Gall, Switzerland
| |
Collapse
|
12
|
Arshad MF, Burrai GP, Varcasia A, Sini MF, Ahmed F, Lai G, Polinas M, Antuofermo E, Tamponi C, Cocco R, Corda A, Parpaglia MLP. The groundbreaking impact of digitalization and artificial intelligence in sheep farming. Res Vet Sci 2024; 170:105197. [PMID: 38395008 DOI: 10.1016/j.rvsc.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The integration of digitalization and Artificial Intelligence (AI) has marked the onset of a new era of efficient sheep farming in multiple aspects ranging from the general well-being of sheep to advanced web-based management applications. The resultant improvement in sheep health and consequently better farming yield has already started to benefit both farmers and veterinarians. The predictive analytical models embedded with machine learning (giving sense to machines) has helped better decision-making and has enabled farmers to derive most out of their farms. This is evident in the ability of farmers to remotely monitor livestock health by wearable devices that keep track of animal vital signs and behaviour. Additionally, veterinarians now employ advanced AI-based diagnostics for efficient parasite detection and control. Overall, digitalization and AI have completely transformed traditional farming practices in livestock animals. However, there is a pressing need to optimize digital sheep farming, allowing sheep farmers to appreciate and adopt these innovative systems. To fill this gap, this review aims to provide available digital and AI-based systems designed to aid precision farming of sheep, offering an up-to-date understanding on the subject. Various contemporary techniques, such as sky shepherding, virtual fencing, advanced parasite detection, automated counting and behaviour tracking, anomaly detection, precision nutrition, breeding support, and several mobile-based management applications are currently being utilized in sheep farms and appear to be promising. Although artificial intelligence and machine learning may represent key features in the sustainable development of sheep farming, they present numerous challenges in application.
Collapse
Affiliation(s)
| | | | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | - Fahad Ahmed
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Giovanni Lai
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Claudia Tamponi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Corda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
13
|
Panner Selvam MK, Moharana AK, Baskaran S, Finelli R, Hudnall MC, Sikka SC. Current Updates on Involvement of Artificial Intelligence and Machine Learning in Semen Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:279. [PMID: 38399566 PMCID: PMC10890589 DOI: 10.3390/medicina60020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Infertility rates and the number of couples undergoing reproductive care have both increased substantially during the last few decades. Semen analysis is a crucial step in both the diagnosis and the treatment of male infertility. The accuracy of semen analysis results remains quite poor despite years of practice and advancements. Artificial intelligence (AI) algorithms, which can analyze and synthesize large amounts of data, can address the unique challenges involved in semen analysis due to the high objectivity of current methodologies. This review addresses recent AI advancements in semen analysis. Materials and Methods: A systematic literature search was performed in the PubMed database. Non-English articles and studies not related to humans were excluded. We extracted data related to AI algorithms or models used to evaluate semen parameters from the original studies, excluding abstracts, case reports, and meeting reports. Results: Of the 306 articles identified, 225 articles were rejected in the preliminary screening. The evaluation of the full texts of the remaining 81 publications resulted in the exclusion of another 48 articles, with a final inclusion of 33 original articles in this review. Conclusions: AI and machine learning are becoming increasingly popular in biomedical applications. The examination and selection of sperm by andrologists and embryologists may benefit greatly from using these algorithms. Furthermore, when bigger and more reliable datasets become accessible for training, these algorithms may improve over time.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | - Ajaya Kumar Moharana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Saradha Baskaran
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | | | | | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| |
Collapse
|
14
|
Chaturvedi N, Yadav MK, Sharma M. Applications of artificial intelligence and machine learning in microbial diagnostics and identification. METHODS IN MICROBIOLOGY 2024:213-230. [DOI: 10.1016/bs.mim.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Afonso CL, Afonso AM. Next-Generation Sequencing for the Detection of Microbial Agents in Avian Clinical Samples. Vet Sci 2023; 10:690. [PMID: 38133241 PMCID: PMC10747646 DOI: 10.3390/vetsci10120690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Direct-targeted next-generation sequencing (tNGS), with its undoubtedly superior diagnostic capacity over real-time PCR (RT-PCR), and direct-non-targeted NGS (ntNGS), with its higher capacity to identify and characterize multiple agents, are both likely to become diagnostic methods of choice in the future. tNGS is a rapid and sensitive method for precise characterization of suspected agents. ntNGS, also known as agnostic diagnosis, does not require a hypothesis and has been used to identify unsuspected infections in clinical samples. Implemented in the form of multiplexed total DNA metagenomics or as total RNA sequencing, the approach produces comprehensive and actionable reports that allow semi-quantitative identification of most of the agents present in respiratory, cloacal, and tissue samples. The diagnostic benefits of the use of direct tNGS and ntNGS are high specificity, compatibility with different types of clinical samples (fresh, frozen, FTA cards, and paraffin-embedded), production of nearly complete infection profiles (viruses, bacteria, fungus, and parasites), production of "semi-quantitative" information, direct agent genotyping, and infectious agent mutational information. The achievements of NGS in terms of diagnosing poultry problems are described here, along with future applications. Multiplexing, development of standard operating procedures, robotics, sequencing kits, automated bioinformatics, cloud computing, and artificial intelligence (AI) are disciplines converging toward the use of this technology for active surveillance in poultry farms. Other advances in human and veterinary NGS sequencing are likely to be adaptable to avian species in the future.
Collapse
|
16
|
Burns BL, Rhoads DD, Misra A. The Use of Machine Learning for Image Analysis Artificial Intelligence in Clinical Microbiology. J Clin Microbiol 2023; 61:e0233621. [PMID: 37395657 PMCID: PMC10575257 DOI: 10.1128/jcm.02336-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
The growing transition to digital microbiology in clinical laboratories creates the opportunity to interpret images using software. Software analysis tools can be designed to use human-curated knowledge and expert rules, but more novel artificial intelligence (AI) approaches such as machine learning (ML) are being integrated into clinical microbiology practice. These image analysis AI (IAAI) tools are beginning to penetrate routine clinical microbiology practice, and their scope and impact on routine clinical microbiology practice will continue to grow. This review separates the IAAI applications into 2 broad classification categories: (i) rare event detection/classification or (ii) score-based/categorical classification. Rare event detection can be used for screening purposes or for final identification of a microbe including microscopic detection of mycobacteria in a primary specimen, detection of bacterial colonies growing on nutrient agar, or detection of parasites in a stool preparation or blood smear. Score-based image analysis can be applied to a scoring system that classifies images in toto as its output interpretation and examples include application of the Nugent score for diagnosing bacterial vaginosis and interpretation of urine cultures. The benefits, challenges, development, and implementation strategies of IAAI tools are explored. In conclusion, IAAI is beginning to impact the routine practice of clinical microbiology, and its use can enhance the efficiency and quality of clinical microbiology practice. Although the future of IAAI is promising, currently IAAI only augments human effort and is not a replacement for human expertise.
Collapse
Affiliation(s)
- Bethany L. Burns
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel D. Rhoads
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anisha Misra
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Lewis JE, Pozdnyakova O. Digital assessment of peripheral blood and bone marrow aspirate smears. Int J Lab Hematol 2023. [PMID: 37211430 DOI: 10.1111/ijlh.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023]
Abstract
The diagnosis of benign and neoplastic hematologic disorders relies on analysis of peripheral blood and bone marrow aspirate smears. As demonstrated by the widespread laboratory adoption of hematology analyzers for automated assessment of peripheral blood, digital analysis of these samples provides many significant benefits compared to relying solely on manual review. Nonetheless, analogous instruments for digital bone marrow aspirate smear assessment have yet to be clinically implemented. In this review, we first provide a historical overview detailing the implementation of hematology analyzers for digital peripheral blood assessment in the clinical laboratory, including the improvements in accuracy, scope, and throughput of current instruments over prior generations. We also describe recent research in digital peripheral blood assessment, particularly in the development of advanced machine learning models that may soon be incorporated into commercial instruments. Next, we provide an overview of recent research in digital assessment of bone marrow aspirate smears and how these approaches could soon lead to development and clinical adoption of instrumentation for automated bone marrow aspirate smear analysis. Finally, we describe the relative advantages and provide our vision for the future of digital assessment of peripheral blood and bone marrow aspirate smears, including what improvements we can soon expect in the hematology laboratory.
Collapse
Affiliation(s)
- Joshua E Lewis
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Bunch DR, Durant TJ, Rudolf JW. Artificial Intelligence Applications in Clinical Chemistry. Clin Lab Med 2023; 43:47-69. [PMID: 36764808 DOI: 10.1016/j.cll.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Artificial intelligence (AI) applications are an area of active investigation in clinical chemistry. Numerous publications have demonstrated the promise of AI across all phases of testing including preanalytic, analytic, and postanalytic phases; this includes novel methods for detecting common specimen collection errors, predicting laboratory results and diagnoses, and enhancing autoverification workflows. Although AI applications pose several ethical and operational challenges, these technologies are expected to transform the practice of the clinical chemistry laboratory in the near future.
Collapse
Affiliation(s)
- Dustin R Bunch
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, 700 Children's Drive, C1923, Columbus, OH 43205-2644, USA; Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas Js Durant
- Department of Laboratory Medicine, Yale School of Medicine, 55 Park Street, Room PS 502A, New Haven, CT 06510, USA
| | - Joseph W Rudolf
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; ARUP Laboratories, 500 Chipeta Way, MC 115, Salt Lake City, UT 84108, USA.
| |
Collapse
|
19
|
Rabaan AA, Alhumaid S, Mutair AA, Garout M, Abulhamayel Y, Halwani MA, Alestad JH, Bshabshe AA, Sulaiman T, AlFonaisan MK, Almusawi T, Albayat H, Alsaeed M, Alfaresi M, Alotaibi S, Alhashem YN, Temsah MH, Ali U, Ahmed N. Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics (Basel) 2022; 11:antibiotics11060784. [PMID: 35740190 PMCID: PMC9220767 DOI: 10.3390/antibiotics11060784] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial intelligence (AI) is a branch of science and engineering that focuses on the computational understanding of intelligent behavior. Many human professions, including clinical diagnosis and prognosis, are greatly useful from AI. Antimicrobial resistance (AMR) is among the most critical challenges facing Pakistan and the rest of the world. The rising incidence of AMR has become a significant issue, and authorities must take measures to combat the overuse and incorrect use of antibiotics in order to combat rising resistance rates. The widespread use of antibiotics in clinical practice has not only resulted in drug resistance but has also increased the threat of super-resistant bacteria emergence. As AMR rises, clinicians find it more difficult to treat many bacterial infections in a timely manner, and therapy becomes prohibitively costly for patients. To combat the rise in AMR rates, it is critical to implement an institutional antibiotic stewardship program that monitors correct antibiotic use, controls antibiotics, and generates antibiograms. Furthermore, these types of tools may aid in the treatment of patients in the event of a medical emergency in which a physician is unable to wait for bacterial culture results. AI’s applications in healthcare might be unlimited, reducing the time it takes to discover new antimicrobial drugs, improving diagnostic and treatment accuracy, and lowering expenses at the same time. The majority of suggested AI solutions for AMR are meant to supplement rather than replace a doctor’s prescription or opinion, but rather to serve as a valuable tool for making their work easier. When it comes to infectious diseases, AI has the potential to be a game-changer in the battle against antibiotic resistance. Finally, when selecting antibiotic therapy for infections, data from local antibiotic stewardship programs are critical to ensuring that these bacteria are treated quickly and effectively. Furthermore, organizations such as the World Health Organization (WHO) have underlined the necessity of selecting the appropriate antibiotic and treating for the shortest time feasible to minimize the spread of resistant and invasive resistant bacterial strains.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (A.A.R.); (N.A.)
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alhassa, Al-Ahsa 36342, Saudi Arabia;
- Almoosa College of Health Sciences, Alhassa, Al-Ahsa 36342, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Yem Abulhamayel
- Specialty Internal Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia;
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia;
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK;
- Microbiology Department, Collage of Medicine, Jabriya 46300, Kuwait
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia;
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia;
| | | | - Tariq Almusawi
- Infectious Disease and Critical Care Medicine Department, Dr. Sulaiman Alhabib Medical Group, Alkhobar 34423, Saudi Arabia;
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Mohammed Alsaeed
- Infectious Disease Division, Department of Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia;
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates;
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Urooj Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (A.A.R.); (N.A.)
| |
Collapse
|
20
|
Fatima, Imran M, Ullah A, Arif M, Noor R. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network. Comput Biol Med 2022; 145:105424. [DOI: 10.1016/j.compbiomed.2022.105424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
21
|
Fleming KA, Horton S, Wilson ML, Atun R, DeStigter K, Flanigan J, Sayed S, Adam P, Aguilar B, Andronikou S, Boehme C, Cherniak W, Cheung AN, Dahn B, Donoso-Bach L, Douglas T, Garcia P, Hussain S, Iyer HS, Kohli M, Labrique AB, Looi LM, Meara JG, Nkengasong J, Pai M, Pool KL, Ramaiya K, Schroeder L, Shah D, Sullivan R, Tan BS, Walia K. The Lancet Commission on diagnostics: transforming access to diagnostics. Lancet 2021; 398:1997-2050. [PMID: 34626542 PMCID: PMC8494468 DOI: 10.1016/s0140-6736(21)00673-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Affiliation(s)
| | - Susan Horton
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada.
| | | | - Rifat Atun
- Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | | | | | | | - Bertha Aguilar
- Médicos e Investigadores de la Lucha Contra el Cáncer de Mama, Mexico City, Mexico
| | - Savvas Andronikou
- Perelman School of Medicine, University of Pennsylvania Philadelphia, Philadelphia, PA, USA
| | | | - William Cherniak
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Annie Ny Cheung
- The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Lluis Donoso-Bach
- Department of Medical Imaging, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | | | | | - Sarwat Hussain
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Hari S Iyer
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Mikashmi Kohli
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Alain B Labrique
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - John G Meara
- Program in Global Surgery and Social Change, Harvard Medical School, Boston, MA, USA
| | - John Nkengasong
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Madhukar Pai
- School of Population and Global Health, McGill University, Montreal, QC, Canada
| | | | | | - Lee Schroeder
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Devanshi Shah
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Kamini Walia
- Indian Council of Medical Research, Delhi, India
| |
Collapse
|
22
|
Sirohi M, Lall M, Yenishetti S, Panat L, Kumar A. Development of a Machine learning image segmentation-based algorithm for the determination of the adequacy of Gram-stained sputum smear images. Med J Armed Forces India 2021; 78:339-344. [DOI: 10.1016/j.mjafi.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
|
23
|
Herman DS, Rhoads DD, Schulz WL, Durant TJS. Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review. Clin Chem 2021; 67:1466-1482. [PMID: 34557917 DOI: 10.1093/clinchem/hvab165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Modern artificial intelligence (AI) and machine learning (ML) methods are now capable of completing tasks with performance characteristics that are comparable to those of expert human operators. As a result, many areas throughout healthcare are incorporating these technologies, including in vitro diagnostics and, more broadly, laboratory medicine. However, there are limited literature reviews of the landscape, likely future, and challenges of the application of AI/ML in laboratory medicine. CONTENT In this review, we begin with a brief introduction to AI and its subfield of ML. The ensuing sections describe ML systems that are currently in clinical laboratory practice or are being proposed for such use in recent literature, ML systems that use laboratory data outside the clinical laboratory, challenges to the adoption of ML, and future opportunities for ML in laboratory medicine. SUMMARY AI and ML have and will continue to influence the practice and scope of laboratory medicine dramatically. This has been made possible by advancements in modern computing and the widespread digitization of health information. These technologies are being rapidly developed and described, but in comparison, their implementation thus far has been modest. To spur the implementation of reliable and sophisticated ML-based technologies, we need to establish best practices further and improve our information system and communication infrastructure. The participation of the clinical laboratory community is essential to ensure that laboratory data are sufficiently available and incorporated conscientiously into robust, safe, and clinically effective ML-supported clinical diagnostics.
Collapse
Affiliation(s)
- Daniel S Herman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel D Rhoads
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Thomas J S Durant
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Comparison of an Automated Plate Assessment System (APAS Independence) and Artificial Intelligence (AI) to Manual Plate Reading of Methicillin-resistant and Methicillin-susceptible Staphylococcus aureus Chromagar Surveillance Cultures. J Clin Microbiol 2021; 59:e0097121. [PMID: 34379525 PMCID: PMC8525556 DOI: 10.1128/jcm.00971-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The automated plate assessment system (APAS Independence; Clever Culture System, Bäch, Switzerland) is an automated imaging station linked with interpretive software that detects target colonies of interest on chromogenic media and sorts samples as negative or presumptive positive. We evaluated the accuracy of the APAS to triage methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus cultures using chromogenic medium compared to that by human interpretation. Patient samples collected from the nares on ESwabs were plated onto BD BBL CHROMagar MRSA II and BD BBL CHROMagar Staph aureus and allowed to incubate for 20 to 24 h at 37°C in a non-CO2 incubator. Mauve colonies are suggestive of S. aureus and were confirmed with latex agglutination. Following incubation, samples were first interrogated by APAS before being read by a trained technologist blinded to the APAS interpretation. The triaging by both APAS and the technologists was compared for accuracy. Any discordant results required further analysis by a third reader. Over a 5-month period, 5,913 CHROMagar MRSA cultures were evaluated. Of those, 236 were read as concordantly positive, 5,525 were read as concordantly negative, and 152 required discordant analysis. Positive and negative percent agreements (PPA and NPA, respectively) were 100% and 97.3%, respectively. The APAS detected 5 positive cultures that were missed by manual reading and determined to be true positives. In a separate analysis, 744 CHROMagar Staph aureus plates were read in parallel. Of these, 133 were concordantly positive, 585 were concordantly negative, and 26 required discordant analysis. PPA and NPA were 95.7% and 96.7%, respectively. This study confirmed the high sensitivity of digital image analysis by the APAS Independence such that negative cultures can be reliably reported without technologist intervention (negative predictive values [NPVs] of 100% for CHROMagar MRSA and 99.0% for CHROMagar Staph aureus). Triaging using the APAS Independence may provide great efficiency in a laboratory with high throughput of MRSA and S. aureus surveillance cultures.
Collapse
|
25
|
Comparative Analysis of Machine Learning Methods to Predict Growth of F. sporotrichioides and Production of T-2 and HT-2 Toxins in Treatments with Ethylene-Vinyl Alcohol Films Containing Pure Components of Essential Oils. Toxins (Basel) 2021; 13:toxins13080545. [PMID: 34437416 PMCID: PMC8402422 DOI: 10.3390/toxins13080545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
The efficacy of ethylene-vinyl alcohol copolymer films (EVOH) incorporating the essential oil components cinnamaldehyde (CINHO), citral (CIT), isoeugenol (IEG), or linalool (LIN) to control growth rate (GR) and production of T-2 and HT-2 toxins by Fusarium sporotrichioides cultured on oat grains under different temperature (28, 20, and 15 °C) and water activity (aw) (0.99 and 0.96) regimes was assayed. GR in controls/treatments usually increased with increasing temperature, regardless of aw, but no significant differences concerning aw were found. Toxin production decreased with increasing temperature. The effectiveness of films to control fungal GR and toxin production was as follows: EVOH-CIT > EVOH-CINHO > EVOH-IEG > EVOH-LIN. With few exceptions, effective doses of EVOH-CIT, EVOH-CINHO, and EVOH-IEG films to reduce/inhibit GR by 50%, 90%, and 100% (ED50, ED90, and ED100) ranged from 515 to 3330 µg/culture in Petri dish (25 g oat grains) depending on film type, aw, and temperature. ED90 and ED100 of EVOH-LIN were >3330 µg/fungal culture. The potential of several machine learning (ML) methods to predict F. sporotrichioides GR and T-2 and HT-2 toxin production under the assayed conditions was comparatively analyzed. XGBoost and random forest attained the best performance, support vector machine and neural network ranked third or fourth depending on the output, while multiple linear regression proved to be the worst.
Collapse
|
26
|
Shanbhogue H M, Thirumaleshwar S, Kumar Tm P, Kumar S H. Artificial Intelligence in Pharmaceutical Field - A Critical Review. Curr Drug Deliv 2021; 18:1456-1466. [PMID: 34139981 DOI: 10.2174/1567201818666210617100613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence is an emerging sector in almost all fields. It is not confined only to a particular category and can be used in various fields like research, technology, and health. AI mainly concentrates on how computers analyze data and mimic the human thought process. As drug development involves high R & D costs and uncertainty in time consumption, artificial intelligence can serve as one of the promising solutions to overcome all these demerits. Due to the availability of enormous data, there are chances of missing out on some crucial details. For solving these issues, algorithms like machine learning, deep learning, and other expert systems are being used. On successful implementation of AI in the pharmaceutical field, the delays in drug development, and failure at the clinical and marketing level can be reduced. This review comprises information regarding the development of AI, its subfields, its overall implementation, and its application in the pharmaceutical sector and provides insights on challenges and limitations concerning AI.
Collapse
Affiliation(s)
- Maithri Shanbhogue H
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Shailesh Thirumaleshwar
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Pramod Kumar Tm
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| | - Hemanth Kumar S
- Department of Pharmaceutics, Industrial Pharmacy Group, JSS College of Pharmacy, Mysuru JSS Academy of Higher Education and Research Sri Shivarathreeshwara Nagara, Mysuru - 570015, Karnataka, India
| |
Collapse
|
27
|
Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 2021; 19:171-183. [PMID: 33057203 PMCID: PMC7556561 DOI: 10.1038/s41579-020-00461-z] [Citation(s) in RCA: 469] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
During the early phase of the coronavirus disease 2019 (COVID-19) pandemic, design, development, validation, verification and implementation of diagnostic tests were actively addressed by a large number of diagnostic test manufacturers. Hundreds of molecular tests and immunoassays were rapidly developed, albeit many still await clinical validation and formal approval. In this Review, we summarize the crucial role of diagnostic tests during the first global wave of COVID-19. We explore the technical and implementation problems encountered during this early phase in the pandemic, and try to define future directions for the progressive and better use of (syndromic) diagnostics during a possible resurgence of COVID-19 in future global waves or regional outbreaks. Continuous global improvement in diagnostic test preparedness is essential for more rapid detection of patients, possibly at the point of care, and for optimized prevention and treatment, in both industrialized countries and low-resource settings.
Collapse
Affiliation(s)
- Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universtaire de Bruxelles - Universitair Laboratorium Brussel, Université Libre de Bruxelles, Brussels, Belgium.
- Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium.
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, UK.
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles - Universitair Laboratorium Brussel, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Rochas
- Strategic Intelligence, Corporate Business Development, bioMérieux, Chemin de L'Orme, France
| | - Alex van Belkum
- Open Innovation and Partnerships, bioMérieux, La Balme Les Grottes, France.
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
28
|
Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010068. [PMID: 33445633 PMCID: PMC7826649 DOI: 10.3390/antibiotics10010068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount. Pleasant, Harare P.O. Box MP167, Zimbabwe
- Correspondence: or (W.G.); or (A.L.K.A.)
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Norah Muisa-Zikali
- Department of Environmental Sciences and Technology, School of Agricultural Sciences and Technology, Chinhoyi University of Technology, Private Bag, Chinhoyi 7724, Zimbabwe; or
| | - Charles Teta
- Future Water Institute, Faculty of Engineering & Built Environment, University of Cape Town, Cape Town 7700, South Africa;
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: or (W.G.); or (A.L.K.A.)
| |
Collapse
|
29
|
Systems and Precision Medicine in Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1294:187-207. [PMID: 33079370 DOI: 10.1007/978-3-030-57616-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Necrotizing soft tissue infections (NSTI) are multifactorial and characterized by dysfunctional, time dependent, highly varying hyper- to hypo-inflammatory host responses contributing to disease severity. Furthermore, host-pathogen interactions are diverse and difficult to identify and characterize, due to the many different disease endotypes. There is a need for both refined bedside diagnostics as well as novel targeted treatment options to improve outcome in NSTI. In order to achieve clinically relevant results and to guide preclinical and clinical research the vast amount of fragmented clinical and experimental datasets, which often include omics data at different levels (transcriptomics, proteomics, metabolomics, etc.), need to be organized, harmonized, integrated, and analyzed taking into account the Big Data nature of these datasets. In this chapter, we address these matters from a systems perspective and yet personalized approach. The chapter provides an overview on the increasingly more frequent use of Big Data and Artificial Intelligence (AI) to aggregate and generate knowledge from burgeoning clinical and biochemical information, addresses the challenges to manage this information, and summarizes current efforts to develop robust computer-aided clinical decision support systems so to tackle the serious challenges in NSTI diagnosis, stratification, and optimized tailored therapy.
Collapse
|