1
|
Sutter EN, Casey CP, Gillick BT. Single-pulse transcranial magnetic stimulation for assessment of motor development in infants with early brain injury. Expert Rev Med Devices 2024; 21:179-186. [PMID: 38166497 PMCID: PMC10947901 DOI: 10.1080/17434440.2023.2299310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
INTRODUCTION Single-pulse transcranial magnetic stimulation (TMS) has many applications for pediatric clinical populations, including infants with perinatal brain injury. As a noninvasive neuromodulation tool, single-pulse TMS has been used safely in infants and children to assess corticospinal integrity and circuitry patterns. TMS may have important applications in early detection of atypical motor development or cerebral palsy. AREAS COVERED The authors identified and summarized relevant studies incorporating TMS in infants, including findings related to corticospinal development and circuitry, motor cortex localization and mapping, and safety. This special report also describes methodologies and safety considerations related to TMS assessment in infants, and discusses potential applications related to diagnosis of cerebral palsy and early intervention. EXPERT OPINION Single-pulse TMS has demonstrated safety and feasibility in infants with perinatal brain injury and may provide insight into neuromotor development and potential cerebral palsy diagnosis. Additional research in larger sample sizes will more fully evaluate the utility of TMS biomarkers in early diagnosis and intervention. Methodological challenges to performing TMS in infants and technical/equipment limitations require additional consideration and innovation toward clinical implementation. Future research may explore use of noninvasive neuromodulation techniques as an intervention in younger children with perinatal brain injury to improve motor outcomes.
Collapse
Affiliation(s)
- Ellen N. Sutter
- Waisman Center, University of Wisconsin-Madison
- Department of Rehabilitation Medicine, University of Minnesota-Twin Cities
| | | | - Bernadette T. Gillick
- Waisman Center, University of Wisconsin-Madison
- Department of Pediatrics, University of Wisconsin-Madison
| |
Collapse
|
2
|
Surkar SM, Willson JD, Cassidy JM, Kantak S, Patterson CG. Remote ischaemic conditioning combined with bimanual task training to enhance bimanual skill learning and corticospinal excitability in children with unilateral cerebral palsy: a study protocol of a single centre, phase II randomised controlled trial. BMJ Open 2023; 13:e076881. [PMID: 37770277 PMCID: PMC10546168 DOI: 10.1136/bmjopen-2023-076881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/22/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Children with unilateral cerebral palsy (UCP) have difficulty in bimanual coordination that restricts the child's independence in daily activities. Although several efficacious interventions to improve bimanual coordination exist, these interventions often require higher training doses and have modest effect sizes. Thus, there is a critical need to find an effective priming agent that, when paired with task-specific training, will facilitate neurobiological processes to enhance the magnitude of training effects and subsequently improve functional capabilities of children with UCP. The aim of this study is to determine the effects of a novel priming agent, remote ischaemic conditioning (RIC), combined with bimanual training on bimanual skill learning and corticospinal excitability in children with UCP. METHODS AND ANALYSES 46 children, aged 8-16 years, will be randomly assigned to receive RIC or sham conditioning combined with 5 days of bimanual skill (cup stacking) training (15 trials per session). RIC or sham conditioning will be performed with a standard conditioning protocol of five cycles of alternative inflation and deflation of a pressure cuff on the affected arm with the pressure of at least 20 mm Hg above systolic blood pressure for RIC and 25 mm Hg for sham conditioning. Primary outcomes will be movement time and corticospinal excitability measures determined with a single-pulse transcranial magnetic stimulation (TMS). Secondary outcomes include Assisting Hand Assessment, spatio-temporal kinematic variables and paired pulse TMS measures. All measures will be conducted before and immediately after the intervention. A mixed model analysis of variance will test the group×time interaction for all outcomes with group (RIC and sham) as between-subject and time (preintervention, postintervention) as within-subject factors. ETHICS AND DISSEMINATION The study has been approved by the University Medical Centre Institutional Review Board (UMCIRB #21-001913). We will disseminate the study findings via peer-reviewed publications and presentations at professional conferences. TRIAL REGISTRATION NUMBER NCT05777070.
Collapse
Affiliation(s)
- Swati M Surkar
- Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - John D Willson
- Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - Jessica M Cassidy
- Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shailesh Kantak
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
- Department of Rehabilitation Medicine, Moss Rehabilitation Research Institute, Philadelphia, PA, USA
| | - Charity G Patterson
- Department of Physical Therapy and School of Health and Rehabilitation Sciences Data Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang H, Wei P, Lu C, Wang Z, Fan X, Shan Y, Zhao G. Assessing structural integrity of the pyramidal tracts with diffusion spectrum imaging to predict postoperative motor function in pediatric epilepsy patients with hemispherectomy. ACTA EPILEPTOLOGICA 2023. [DOI: 10.1186/s42494-022-00115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
Background
Hemispherectomy is an effective treatment option for patients with drug-resistant epilepsy caused by hemispheric lesions. However, patients often have deterioration of their motor functions postoperatively. Diffusion spectrum imaging (DSI) was reliable in presenting the natural shape of the white matter fibers. At the same time, the natural sprawl pyramid tract (PT) might be more intuitive for predicting postoperative motor functions. Therefore, we assessed the motor functions by the natural shape revealed by DSI tractography.
Methods
Ten children with drug-resistant epilepsy who were candidates for hemispherectomy performed DSI PTs tractography and transcranial magnetic stimulation (TMS) for motor mapping. The motor function was evaluated with muscle strength and hand grasping capability. Pyramidal tract (PT) structural integrity and TMS mapping results were compared between patients who remained stable and those with deteriorated motor functions. Receiver operating characteristic (ROC) curves with PTs asymmetric ratio were analyzed to evaluate DSI tractography diagnostic value.
Results
All patients underwent DSI acquisition, while four patients successfully performed TMS. One patient had no response to TMS until the maximal machine output was reached. Four patients failed to perform TMS due to lacking cooperation. One patient was contraindicated to TMS. DSI successfully reconstructed the sharp angle fan-shaped PTs within the hemisphere. The accurate fiber distribution with fiber termination and thickness within the lesioned hemisphere was replicated with DSI tractography. No significance was found in patients’ age, sex, seizure frequency, or medication between patients with stable or deteriorated postoperative motor functions. DSI effectively predicted postoperative motor function as stable with damaged PTs, mild deterioration with atrophied PTs, and intact PTs with contralateral innervation confirmed by intracranial stimulation. The area under the curve (AUC) of DSI tractography was 0.84. According to ROC, the cut-off value of PTs asymmetric ratio was 11.5% with 100% sensitivity and 75% specificity. The sensitivity and specificity of TMS were 2/3 and 1/2, respectively.
Conclusions
The anatomic integrity of PTs with DSI tractography could effectively predict postoperative motor function after hemispherectomy. This enables neurosurgeons to inform patients and relatives about postoperative motor functions with direct morphological evidence of PTs to help them with their surgical decisions.
Collapse
|
4
|
McClelland VM, Lin JP. Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:1-22. [PMID: 37338693 DOI: 10.1007/978-3-031-26220-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is now widely accepted as a network disorder, with multiple brain regions and their interconnections playing a potential role in the pathophysiology. This model reconciles what could previously have been viewed as conflicting findings regarding the neuroanatomical and neurophysiological characteristics of the disorder, but there are still significant gaps in scientific understanding of the underlying pathophysiology. One of the greatest unmet challenges is to understand the network model of dystonia in the context of the developing brain. This article outlines how research in childhood dystonia supports and contributes to the network theory and highlights aspects where data from paediatric studies has revealed novel and unique physiological insights, with important implications for understanding dystonia across the lifespan.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, UK
| |
Collapse
|
5
|
Nesterova JV, Karkashadze GA, Yatsik LM, Namazova-Baranova LS, Vishneva EA, Kaytukova EV, Bushueva DA, Gogberashvili TY, Konstantinidi TA, Sergeeva NE, Sadilloeva SH, Kurakina MA, Kazanceva JE, Povalyaeva IA, Ulkina NA, Salimgareeva TA, Sergienko NS, Mescheryakova OD, Altunin VV, Leonova EV, Zibrova ES. Management of Children with Speech Disorders via Transcranial Magnetic Stimulation: Non-Randomized Controlled Study. PEDIATRIC PHARMACOLOGY 2022. [DOI: 10.15690/pf.v19i5.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. Speech development impairment is urgent and common problem in pediatric neurology. Transcranial magnetic stimulation (TMS) is one of the promising treatment variants for children with speech disorders. Objective. The aim of the study is to evaluate efficacy and safety of the developed approaches to TMS usage in the management of children with speech disorders. Methods. It was non-randomized controlled study. It included 46 children with speech disorders aged from 3 to 6.5 years. All children were divided into two groups comparable by gender and age: 26 children of the treatment group received TMS course, 20 children of the control group received treatment with hopantenic acid. All patients with speech disorders underwent psychological and pedagogical evaluation of speech and cognitive development, electroencephalography (EEG) before and after treatment. Moreover, comparative analysis of TMS and nootropic therapy efficacy was carried out. Specialized examination of speech and cognitive development was also performed via E.A. Strebeleva method for psychological and pedagogical diagnosis of children development. Furthermore, we carried out side reactions / adverse events registration according to patients and/or their parents complaints confirmed by physical examination, patient’s behavior observation, data from specially developed questionnaire for assessing child’s behavior and well-being (filled up by parents). Finally, we evaluated brain bioelectric activity recorded by EEG. Results. The study results have shown that it is possible to achieve significant positive dynamics in cognitive and speech development in preschool children with speech disorders in both groups (TMS course and medical treatment). But hereby, TMS treatment has demonstrated significantly higher positive dynamics in two out of the three evaluated parameters. There were no cases of adverse events in TMS group leading to early course discontinuation. Conclusion. TMS is non-invasive and safe method for treatment of children with speech disorders. This study has demonstrated the efficacy of the method in the field of personalized management of children with impaired speech and cognitive development.
Collapse
Affiliation(s)
- Julia V. Nesterova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - George A. Karkashadze
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Leonid M. Yatsik
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Leila S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Belgorod National Research University
| | - Elena A. Vishneva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - Elena V. Kaytukova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - Daria A. Bushueva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tinatin Yu. Gogberashvili
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana A. Konstantinidi
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Natalia E. Sergeeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Safarbegim H. Sadilloeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Marina A. Kurakina
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Julia E. Kazanceva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Inessa A. Povalyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Nadezhda A. Ulkina
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana A. Salimgareeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Natalia S. Sergienko
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Oksana D. Mescheryakova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Viktor V. Altunin
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Elizaveta V. Leonova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Elena S. Zibrova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| |
Collapse
|
6
|
Braden AA, Weatherspoon SE, Boardman T, Williard T, Adkins A, Gibbs SK, Wheless JW, Narayana S. Image-guided TMS is safe in a predominately pediatric clinical population. Clin Neurophysiol 2022; 137:193-206. [DOI: 10.1016/j.clinph.2022.01.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
7
|
Tekgul H, Saz U, Polat M, Kose T, Tekgul N, Kitis O. A transcranial magnetic stimulation study for the characterization of corticospinal pathway plasticity in children with neurological disorders. J Clin Neurosci 2021; 96:1-7. [PMID: 34942536 DOI: 10.1016/j.jocn.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
We aimed to investigate cortical and radicular TMS-evoked motor evoked potentials (MEPs) in children with neurological disorders (n = 57, mean age: 5.45 years) and agematched healthy controls (n = 46). Four TMS parameters were analyzed: MEP amplitudes, the latencies of MEP, the latency jump (cortical MEP latency at rest - cortical active-MEP latency at with slightly contracted targeted muscle), and central motor conduction time. Children with neurological disorders were categorized according to the two major types of neuronal plasticity; excessive plasticity: 29 children with cerebral palsy and impaired plasticity: 28 children with neurodegenerative diseases, stroke, and central nervous system infections. The active-MEP abnormalities (absent and prolonged latencies) were correlated with the location of cortical involvement on MRI patterns. We obtained a significantly increased rate of abnormal cortical active-MEPs in children with impaired plasticity (21/28, 75%) compared with excessive plasticity (18/29, 62%). The rate of absent MEP response is three times more in children with impaired plasticity (43%) than in children with excessive plasticity (14%). A more reduced latency jump was measured in children with impaired plasticity compared to children with excessive plasticity. TMS-evoked active-MEPs and latency jumping are valuable parameters for characterizing neuronal plasticity in children with neurological disorders.
Collapse
Affiliation(s)
- Hasan Tekgul
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Child Neurology, Izmir, Turkey.
| | - Ulas Saz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey.
| | - Muzaffer Polat
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Child Neurology, Izmir, Turkey.
| | - Timur Kose
- Department of Biostatistics, Ege University, Faculty of Medicine, Izmir, Turkey.
| | - Nurdan Tekgul
- Izmir University of Health Sciences, Tepecik Training and Research Hospital, Clinic of Family Medicine, Izmir, Turkey.
| | - Omer Kitis
- Ege University Medical School, Department of Radiology, Division of Neuroradiology, Izmir, Turkey.
| |
Collapse
|
8
|
Tsuboyama M, Liu J, Kaye H, DiBacco M, Pearl PL, Rotenberg A. Transcranial Magnetic Stimulation in Succinic Semialdehyde Dehydrogenase Deficiency: A Measure of Maturational Trajectory of Cortical Excitability. J Child Neurol 2021; 36:1169-1176. [PMID: 34058900 PMCID: PMC8630082 DOI: 10.1177/08830738211008735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a disorder of GABA degradation with use-dependent downregulation of postsynaptic GABAA/B receptors. We aim to measure the resulting cortical excitation: inhibition ratio using transcranial magnetic stimulation. METHODS In this single-center observational study, 18 subjects with SSADHD and 8 healthy controls underwent transcranial magnetic stimulation. Resting motor threshold, cortical silent period, and long-interval intracortical inhibition were measured in both groups. Resting motor threshold in focal epilepsy patients from an institutional transcranial magnetic stimulation database were also included. RESULTS SSADHD subjects had higher resting motor threshold than healthy controls but lower relative to focal epilepsy patients. Resting motor threshold decreased with age in all groups. Cortical silent period was longer in SSADHD subjects than in healthy controls. No difference was detected in long-interval intracortical inhibition between the 2 groups. CONCLUSION Findings suggest abnormal corticospinal tract physiology in SSADHD, but with preserved developmental trajectory for corticospinal tract maturation. Defining features of these transcranial magnetic stimulation metrics in SSADHD will be better elucidated through this ongoing longitudinal study.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Jingjing Liu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, 1862Boston Children's Hospital, Boston, MA, USA
| | - Harper Kaye
- 12259Boston University School of Medicine, Behavioral Neuroscience Program, Boston, MA, USA
| | - Melissa DiBacco
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, 1862Boston Children's Hospital, Boston, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Schmidt J, Brown KE, Feldman SJ, Babul S, Zwicker JG, Boyd LA. Evidence of altered interhemispheric communication after pediatric concussion. Brain Inj 2021; 35:1143-1161. [PMID: 34384288 DOI: 10.1080/02699052.2021.1929485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES: To investigate neurophysiological alterations within the typical symptomatic period after concussion (1-month) and throughout recovery (6-months) in adolescents; and (2) to examine relationships between neurophysiological and upper limb kinematic outcomes.METHODS: 18 adolescents with concussion were compared to 17 healthy controls. Transcranial magnetic stimulation (TMS) was used to assess neurophysiological differences between groups including: short- and long-interval intracortical inhibition, intracortical facilitation, short- and long-latency afferent inhibition, afferent facilitation, and transcallosal inhibition (TCI). Behavioral measures of upper limb kinematics were assessed with a robotic device.RESULTS: Mixed model analysis of neurophysiological data identified two key findings. First, participants with concussion demonstrated delayed onset of interhemispheric inhibition, as indexed by TCI, compared to healthy controls. Second, our exploratory analysis indicated that the magnitude of TCI onset delay in adolescents with concussion was related to upper limb kinematics.CONCLUSIONS: Our findings indicate that concussion in adolescence alters interhemispheric communication. We note relationships between neurophysiological and kinematic data, suggesting an affinity for individuals with less concussion-related physiological change to improve their motor behavior over time. These data serve as an important step in future development of assessments (neurobiological and clinical) and interventions for concussion.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katlyn E Brown
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK.,Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samantha J Feldman
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelina Babul
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Emergency Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jill G Zwicker
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Sunny Hill Health Centre at BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Valkama AM, Rytky SO, Olsén PM. Bilateral Motor Responses to Transcranial Magnetic Stimulation in Preterm Children at 9 Years of Age. Neuropediatrics 2021; 52:268-273. [PMID: 33706405 DOI: 10.1055/s-0041-1726127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study was aimed to evaluate motor tracts integrity in nondisabled preterm-born (PT) children at 9 years of age. METHODS Overall, 18 PT and 13 term-born (T) children without motor disability were assessed by transcranial magnetic stimulation (TMS). Motor-evoked potentials (MEPs) were measured bilaterally from the abductor pollicis brevis (APB) and the tibialis anterior (TA) muscles. Muscle responses could be stimulated from all patients. RESULTS Overall, 83.3 and 23.1% of PT and T children, respectively, had mild clumsiness (p = 0.001). One PT and three T children had immediate bilateral responses in the upper extremities. Seven PT children had delayed ipsilateral APB responses after left and ten after right TMS. Three controls had delayed ipsilateral responses. Ipsilateral lower extremity responses were seen in one PT after right and two PT children and one T child after left TMS. The results did not correlate to groups, genders, clumsiness, or handedness. CONCLUSION Children of PT and T may have bilateral motor responses after TMS at 9 years of age. Ipsilateral conduction emerges immediately or more often slightly delayed and more frequently in upper than in lower extremities. SIGNIFICANCE Bilateral motor conduction reflects developmental and neurophysiological variability in children at 9 years of age. MEPs can be used as a measure of corticospinal tract integrity in PT children.
Collapse
Affiliation(s)
- A Marita Valkama
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Seppo O Rytky
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Päivi M Olsén
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
12
|
EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy. NEUROIMAGE-CLINICAL 2021; 30:102569. [PMID: 33583764 PMCID: PMC8044718 DOI: 10.1016/j.nicl.2021.102569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Dystonia is a disorder of sensorimotor integration associated with abnormal oscillatory activity within the basal ganglia-thalamo-cortical networks. Event-related changes in spectral EEG activity reflect cortical processing but are sparsely investigated in relation to sensorimotor processing in dystonia. This study investigates modulation of sensorimotor cortex EEG activity in response to a proprioceptive stimulus in children with dystonia and dystonic cerebral palsy (CP). Proprioceptive stimuli, comprising brief stretches of the wrist flexors, were delivered via a robotic wrist interface to 30 young people with dystonia (20 isolated genetic/idiopathic and 10 dystonic CP) and 22 controls (mean age 12.7 years). Scalp EEG was recorded using the 10-20 international system and the relative change in post-stimulus power with respect to baseline was calculated for the alpha (8-12 Hz) and beta (14-30 Hz) frequency bands. A clear developmental profile in event-related spectral changes was seen in controls. Controls showed a prominent early alpha/mu band event-related desynchronisation (ERD) followed by an event-related synchronisation (ERS) over the contralateral sensorimotor cortex following movement of either hand. The alpha ERD was significantly smaller in the dystonia groups for both dominant and non-dominant hand movement (ANCOVA across the 3 groups with age as covariate: dominant hand F(2,47) = 4.45 p = 0.017; non-dominant hand F(2,42) = 9.397 p < 0.001. Alpha ERS was significantly smaller in dystonia for the dominant hand (ANCOVA F(2,47) = 7.786 p = 0.001). There was no significant difference in ERD or ERS between genetic/idiopathic dystonia and dystonic CP. CONCLUSION: Modulation of alpha/mu activity by a proprioceptive stimulus is reduced in dystonia, demonstrating a developmental abnormality of sensorimotor processing which is common to isolated genetic/idiopathic and acquired dystonia/dystonic CP.
Collapse
|
13
|
The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation. Neural Plast 2020; 2020:8896423. [PMID: 32855633 PMCID: PMC7443018 DOI: 10.1155/2020/8896423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10-16 years) and 28 adults (20-30 years). Participants were stimulated four times with 20 Hz and 140 Hz tACS, tRNS, and sham stimulation (1 mA) for 10 minutes over the left M1HAND. Single-pulse MEPs (motor evoked potential), short-interval intracortical inhibition, and facilitation were measured by TMS before and after stimulation (baseline, 0, 30, 60 minutes). We also investigated aspects of tolerability. According to the individual MEPs response immediately after sham stimulation compared to baseline (Wilcoxon signed-rank test), subjects were regarded as responders or nonresponders to sham. We did not find a significant age effect. Regardless of age, 140 Hz tACS led to increased excitability. Incidence and intensity of side effects did not differ between age groups or type of stimulation. Analyses on responders and nonresponders to sham stimulation showed effects of 140 Hz, 20 Hz tACS, and tRNS on single-pulse MEPs only for nonresponders. In this study, children and adolescents responded to 1 mA tRNS and tACS comparably to adults regarding the modulation of motor cortex excitability. This study contributes to the findings that noninvasive brain stimulation is well tolerated in children and adolescents including tACS, which has not been studied before. Finally, our study supports a modulating role of sensitivity to sham stimulation on responsiveness to a broader stimulation and age range.
Collapse
|
14
|
A transcranial magnetic stimulation study for the investigation of corticospinal motor pathways in children with cerebral palsy. J Clin Neurosci 2020; 78:153-158. [DOI: 10.1016/j.jocn.2020.04.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
|
15
|
Andreasson AC, Sigurdsson GV, Pegenius G, Thordstein M, Hallböök T. Cortical excitability measured with transcranial magnetic stimulation in children with epilepsy before and after antiepileptic drugs. Dev Med Child Neurol 2020; 62:793-798. [PMID: 32064586 DOI: 10.1111/dmcn.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/01/2022]
Abstract
AIM To evaluate cortical excitability with transcranial magnetic stimulation (TMS) in children with new-onset epilepsy before and after antiepileptic drugs (AEDs). METHOD Fifty-five drug-naïve patients (29 females, 26 males; 3-18y), with new-onset epilepsy were recruited from 1st May 2014 to 31st October 2017 at the Child Neurology Department, Queen Silvia's Children's Hospital, Gothenburg, Sweden. We performed TMS in 48 children (23 females, 25 males; mean [SD] age 10y [3y], range 4-15y) with epilepsy (27 generalized and 21 focal) before and after the introduction of AEDs. We used single- and paired-pulse TMS. We used single-pulse TMS to record resting motor thresholds (RMTs), stimulus-response curves, and cortical silent periods (CSPs). We used paired-pulse TMS to record intracortical inhibition and facilitation at short, long, and intermediate intervals. RESULTS There were no differences in cortical excitability between children with generalized and focal epilepsy at baseline. After AED treatment, RMTs increased (p=0.001), especially in children receiving sodium valproate (p=0.005). CSPs decreased after sodium valproate was administered (p=0.050). As in previous studies, we noted a negative correlation between RMT and age in our study cohort. Paired-pulse TMS could not be performed in most children because high RMTs made suprathreshold stimulation impossible. INTERPRETATION Cortical excitability as measured with RMT decreased after the introduction of AEDs. This was seen in children with both generalized and focal epilepsy who were treated with sodium valproate, although it was most prominent in children with generalized epilepsy. We suggest that TMS might be used as a prognostic tool to predict AED efficacy. WHAT THIS PAPER ADDS Resting motor threshold (RMT) correlated negatively with age in children with epilepsy. No differences in cortical excitability were noted between patients with generalized and focal epilepsy. Treatment with antiepileptic drugs decreased cortical excitability as measured with transcranial magnetic stimulation (TMS). Decreased cortical excitability with increased RMT was recorded, especially after sodium valproate treatment. Paired-pulse TMS was difficult to perform because of high RMTs in children.
Collapse
Affiliation(s)
- Ann-Charlotte Andreasson
- Department of Pediatrics, Institute of Clinical Sciences, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Gudmundur V Sigurdsson
- Department of Pediatrics, Institute of Clinical Sciences, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Göran Pegenius
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Thordstein
- Department of Clinical Neurophysiology, Institute of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Tove Hallböök
- Department of Pediatrics, Institute of Clinical Sciences, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Hollis A, Zewdie E, Nettel-Aguirre A, Hilderley A, Kuo HC, Carlson HL, Kirton A. Transcranial Static Magnetic Field Stimulation of the Motor Cortex in Children. Front Neurosci 2020; 14:464. [PMID: 32508570 PMCID: PMC7248312 DOI: 10.3389/fnins.2020.00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-invasive neuromodulation is an emerging therapy for children with early brain injury but is difficult to apply to preschoolers when windows of developmental plasticity are optimal. Transcranial static magnetic field stimulation (tSMS) decreases primary motor cortex (M1) excitability in adults but effects on the developing brain are unstudied. OBJECTIVE/HYPOTHESIS We aimed to determine the effects of tSMS on cortical excitability and motor learning in healthy children. We hypothesized that tSMS over right M1 would reduce cortical excitability and inhibit contralateral motor learning. METHODS This randomized, sham-controlled, double-blinded, three-arm, cross-over trial enrolled 24 healthy children aged 10-18 years. Transcranial Magnetic Stimulation (TMS) assessed cortical excitability via motor-evoked potential (MEP) amplitude and paired pulse measures. Motor learning was assessed via the Purdue Pegboard Test (PPT). A tSMS magnet (677 Newtons) or sham was held over left or right M1 for 30 min while participants trained the non-dominant hand. A linear mixed effect model was used to examine intervention effects. RESULTS All 72 tSMS sessions were well tolerated without serious adverse effects. Neither cortical excitability as measured by MEPs nor paired-pulse intracortical neurophysiology was altered by tSMS. Possible behavioral effects included contralateral tSMS inhibiting early motor learning (p < 0.01) and ipsilateral tSMS facilitating later stages of motor learning (p < 0.01) in the trained non-dominant hand. CONCLUSION tSMS is feasible in pediatric populations. Unlike adults, tSMS did not produce measurable changes in MEP amplitude. Possible effects of M1 tSMS on motor learning require further study. Our findings support further exploration of tSMS neuromodulation in young children with cerebral palsy.
Collapse
Affiliation(s)
- Asha Hollis
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia Hilderley
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen L. Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Parvin S, Shahrokhi A, Tafakhori A, Irani A, Rasteh M, Mirbagheri MM. Therapeutic Effects of repetitive Transcranial Magnetic Stimulation on Corticospinal Tract Activities and Neuromuscular Properties in Children with Cerebral Palsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2218-2221. [PMID: 30440846 DOI: 10.1109/embc.2018.8512805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this research was to study the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on corticospinal tract (CST) activities, reflex hyper-excitability, muscle stiffness, and the clinical status of children with spastic hemiplegic cerebral palsy (CP). Three children participated in this study. The treatment lasted for 6 weeks. Two of the patients, the experimental group, received rTMS therapy 4 days a week during the first 3 weeks, and then received typical occupational therapy (OT) after each rTMS session during the second 3 weeks. One patient, the control group, received the same treatment except that a sham coil was used. Each rTMS session lasted for 20 minutes and each OT session lasted for 45 minutes. We evaluated CST activities by transcranial magnetic stimulation (TMS), reflex hyperexcitability by H-reflex response, and muscle stiffness by sonoelastography images. The tests were taken before and after the treatment. Major TMS parameters (i.e., motor evoked potential (MEP) latency, MEP p-p amplitude, cortical silent period (cSP), and intensity of pulse) for experimental patients were improved in comparison with the control patient. H response latency and max H response on max M-wave (H/M) were improved for the experimental group compared to the control group. Two parameters of texture analysis of the sonoelastography images (i.e., entropy and contrast) were improved for the experimental group. Clinical evaluations such as 10 meter walk test (10MWT), timed up and go (TUG), and 6 minute walk test (6MWT) were performed before and after the course of treatment and were improved for the experimental group compared to the control group. These results indicated that rTMS therapy can improve CST activities, reflexes, muscle stiffness, and walking capacity of spastic hemiplegic CP. Therefore, it can be considered as an effective therapeutic tool for enhancing neuromuscular abnormalities resulting from CP.
Collapse
|
18
|
Doruk Camsari D, Lewis CP, Sonmez AI, Nandakumar AL, Gresbrink MA, Daskalakis ZJ, Croarkin PE. Transcranial Magnetic Stimulation Markers of Antidepressant Treatment in Adolescents With Major Depressive Disorder. Int J Neuropsychopharmacol 2019; 22:435-444. [PMID: 31095686 PMCID: PMC6600470 DOI: 10.1093/ijnp/pyz021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The goal of this study was to examine baseline transcranial magnetic stimulation measures of cortical inhibition and excitability in depressed patients and characterize their longitudinal posttreatment changes. METHODS Fifteen adolescents (age 13-17 years) with moderate to severe major depressive disorder and 22 healthy controls (age 9-17) underwent single- and paired-pulse transcranial magnetic stimulation and clinical assessments. Transcranial magnetic stimulation measures included short-interval intracortical inhibition (2 and 4 milliseconds), long-interval intracortical inhibition (100, 150, and 200 milliseconds), cortical silent period, and intracortical facilitation (10, 15, and 20 milliseconds). Ten participants with major depressive disorder initiated antidepressant treatment or had dose adjustments. These participants were reassessed after treatment. Depression symptom severity was measured with the Children's Depression Rating Scale, Revised. Robust regression modeling compared healthy and depressed adolescents at baseline. Relationships between changes in cortical inhibition and changes in depressive symptom severity were assessed in the depressed adolescents receiving antidepressant treatment. RESULTS Our results revealed that at baseline, short-interval intracortical inhibition-2 was significantly reduced (Padj = .01) in depressed participants, suggesting impaired cortical inhibition compared with healthy controls. At follow-up, improvement in Children's Depression Rating Scale, Revised scores correlated with improvement in short-interval intracortical inhibition-4 amplitude (greater inhibition) after antidepressant treatment (R2 = 0.63; P = .01). CONCLUSIONS These results suggest that cortical inhibition measures may have promise as biomarkers in adolescents treated for depression.
Collapse
Affiliation(s)
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Ayse Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Neurophysiological Approaches to Understanding Motor Control in DCD: Current Trends and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00161-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Kim DS, Kim ED, Kim GW, Won YH, Ko MH, Seo JH, Park SH. Motor Evoked Potentials in the Upper Extremities of Children with Spastic Hemiplegic Cerebral Palsy. BRAIN & NEUROREHABILITATION 2019. [DOI: 10.12786/bn.2019.12.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Da-Sol Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
| | - Eu-Deum Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Jeon-Hwan Seo
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Sung-Hee Park
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
21
|
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by abnormalities of muscle tone, movement and motor skills, and is attributed to injury to the developing brain. The clinical features of this entity evolve over time and the specific CP syndrome may be recognizable only after 3-5 y of age; although suggestive signs and symptoms may be present at an earlier age. The management involves neurological rehabilitation (addressing muscle tonal abnormalities, and devising physical and occupational therapies) and diagnosis and management of co-morbidities (including epilepsy, impairment of cognition, vision, hearing, and disturbances of growth and gastrointestinal function). The management, therefore, is multidisciplinary involving the treating physician working with a team of rehabilitation-, orthopedic-, psychologic-, and social care- providers.
Collapse
|
22
|
Grab J, Zewdie E, Carlson H, Kuo HC, Ciechanski P, Hodge J, Giuffre A, Kirton A. Robotic TMS mapping of motor cortex in the developing brain. J Neurosci Methods 2018; 309:41-54. [DOI: 10.1016/j.jneumeth.2018.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
|
23
|
Sokhadze EM, Lamina EV, Casanova EL, Kelly DP, Opris I, Tasman A, Casanova MF. Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism. Front Syst Neurosci 2018; 12:20. [PMID: 29892214 PMCID: PMC5985329 DOI: 10.3389/fnsys.2018.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
There is no accepted pathology to autism spectrum disorders (ASD) but research suggests the presence of an altered excitatory/inhibitory (E/I) bias in the cerebral cortex. Repetitive transcranial magnetic stimulation (rTMS) offers a non-invasive means of modulating the E/I cortical bias with little in terms of side effects. In this study, 124 high functioning ASD children (IQ > 80, <18 years of age) were recruited and assigned using randomization to either a waitlist group or one of three different number of weekly rTMS sessions (i.e., 6, 12, and 18). TMS consisted of trains of 1.0 Hz frequency pulses applied over the dorsolateral prefrontal cortex (DLPFC). The experimental task was a visual oddball with illusory Kanizsa figures. Behavioral response variables included reaction time and error rate along with such neurophysiological indices such as stimulus and response-locked event-related potentials (ERP). One hundred and twelve patients completed the assigned number of TMS sessions. Results showed significant changes from baseline to posttest period in the following measures: motor responses accuracy [lower percentage of committed errors, slower latency of commission errors and restored normative post-error reaction time slowing in both early and later-stage ERP indices, enhanced magnitude of error-related negativity (ERN), improved error monitoring and post-error correction functions]. In addition, screening surveys showed significant reductions in aberrant behavior ratings and in both repetitive and stereotypic behaviors. These differences increased with the total number of treatment sessions. Our results suggest that rTMS, particularly after 18 sessions, facilitates cognitive control, attention and target stimuli recognition by improving discrimination between task-relevant and task-irrelevant illusory figures in an oddball test. The noted improvement in executive functions of behavioral performance monitoring further suggests that TMS has the potential to target core features of ASD.
Collapse
Affiliation(s)
- Estate M. Sokhadze
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
| | - Eva V. Lamina
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Emily L. Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Desmond P. Kelly
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Pediatrics, Greenville Health System, Greenville, SC, United States
| | - Ioan Opris
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Allan Tasman
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
| | - Manuel F. Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, United States
- Department of Pediatrics, Greenville Health System, Greenville, SC, United States
| |
Collapse
|
24
|
Reduced Cortical Excitability, Neuroplasticity, and Salivary Cortisol in 11-13-Year-Old Children Born to Women with Gestational Diabetes Mellitus. EBioMedicine 2018; 31:143-149. [PMID: 29709497 PMCID: PMC6014572 DOI: 10.1016/j.ebiom.2018.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
Abstract
Background Children exposed to gestational diabetes mellitus (GDM) in utero are at increased risk of neurodevelopmental difficulties, including autism and impaired motor control. However, the underlying neurophysiology is unknown. Methods Using transcranial magnetic stimulation, we assessed cortical excitability, long-term depression (LTD)-like neuroplasticity in 45 GDM-exposed and 12 control children aged 11–13 years. Data were analysed against salivary cortisol and maternal diabetes severity and treatment (insulin [N = 22] or metformin [N = 23]) during pregnancy. Findings GDM-exposed children had reduced cortical excitability (p = .003), LTD-like neuroplasticity (p = .005), and salivary cortisol (p < .001) when compared with control children. Higher maternal insulin resistance (IR) before and during GDM treatment was associated with a blunted neuroplastic response in children (p = .014) and this was not accounted for by maternal BMI. Additional maternal and neonatal measures, including fasting plasma glucose and inflammatory markers, predicted neurophysiological outcomes. The metformin and insulin treatment groups had similar outcomes. Interpretation These results suggest that GDM can contribute to subtle differences in child neurophysiology, and possibly cortisol secretion, persisting into early adolescence. Importantly, these effects appear to occur during second trimester, before pharmacologic treatment typically commences, and can be predicted by maternal insulin resistance. Therefore, earlier detection and treatment of GDM may be warranted. Metformin appears to be safe for these aspects of neurodevelopment. Children exposed to gestational diabetes (GDM) had lower cortical excitability, measured as higher resting motor thresholds. The GDM group also exhibited smaller LTD-like neuroplastic responses to repetitive brain stimulation. These were associated with lower salivary cortisol and with maternal diabetes severity, especially insulin resistance.
Our results suggest that gestational diabetes, even when detected and treated as per clinical guidelines, has subtle effects on important neurophysiological processes persisting into early adolescence, including neuroplasticity and possibly cortisol secretion. The extent of these effects is related to the severity of maternal diabetes, particularly insulin resistance, during mid pregnancy. These results may aid in understanding how insulin resistance and hyperglycemia affect the developing brain. Further, our results indicate that earlier detection and pharmacologic treatment of gestational diabetes may attenuate or prevent these changes to neurodevelopment, and that maternal metformin treatment does not influence these aspects of development.
Collapse
|
25
|
Poljak D, Cvetković M, Dorić V, Zulim I, Đogaš Z, Vidaković MR, Haueisen J, Drissi KEK. Integral Equation Formulations and Related Numerical Solution Methods in Some Biomedical Applications of Electromagnetic Fields. INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS 2018. [DOI: 10.4018/ijehmc.2018010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The paper reviews certain integral equation approaches and related numerical methods used in studies of biomedical applications of electromagnetic fields pertaining to transcranial magnetic stimulation (TMS) and nerve fiber stimulation. TMS is analyzed by solving the set of coupled surface integral equations (SIEs), while the numerical solution of governing equations is carried out via Method of Moments (MoM) scheme. A myelinated nerve fiber, stimulated by a current source, is represented by a straight thin wire antenna. The model is based on the corresponding homogeneous Pocklington integro-differential equation solved by means of the Galerkin Bubnov Indirect Boundary Element Method (GB-IBEM). Some illustrative numerical results for the TMS induced fields and intracellular current distribution along the myelinated nerve fiber (active and passive), respectively, are presented in the paper.
Collapse
Affiliation(s)
- Dragan Poljak
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, Split, Croatia
| | - Mario Cvetković
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, Split, Croatia
| | - Vicko Dorić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, Split, Croatia
| | - Ivana Zulim
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, Split, Croatia
| | - Zoran Đogaš
- School of Medicine, University of Split, Split, Croatia
| | | | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technical University Ilmenau, Ilmenau, Germany
| | | |
Collapse
|
26
|
Dlamini N, Wintermark M, Fullerton H, Strother S, Lee W, Bjornson B, Guilliams KP, Miller S, Kirton A, Filippi CG, Linds A, Askalan R, deVeber G. Harnessing Neuroimaging Capability in Pediatric Stroke: Proceedings of the Stroke Imaging Laboratory for Children Workshop. Pediatr Neurol 2017; 69:3-10. [PMID: 28259513 DOI: 10.1016/j.pediatrneurol.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
On June 5, 2015 the International Pediatric Stroke Study and the Stroke Imaging Laboratory for Children cohosted a unique workshop focused on developing neuroimaging research in pediatric stroke. Pediatric neurologists, neuroradiologists, interventional neuroradiologists, physicists, nurse practitioners, neuropsychologists, and imaging research scientists from around the world attended this one-day meeting. Our objectives were to (1) establish a group of experts to collaborate in advancing pediatric neuroimaging for stroke, (2) develop consensus clinical and research magnetic resonance imaging protocols for pediatric stroke patients, and (3) develop imaging-based research strategies in pediatric ischemic stroke. This article provides a summary of the meeting proceedings focusing on identified challenges and solutions and outcomes from the meeting. Further details on the workshop contents and outcomes are provided in three additional articles in the current issue of Pediatric Neurology.
Collapse
Affiliation(s)
- Nomazulu Dlamini
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Max Wintermark
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, California
| | - Heather Fullerton
- Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen Strother
- Department of Medical Biophysics, Rotman Research Institute at Baycrest, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Lee
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Bjornson
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kristin P Guilliams
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Steven Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Filippi
- Department of Radiology, Northwell Health, Manhasset, New York; Department of Neurology, University of Vermont Medical Center, Burlington, Vermont
| | - Alexandra Linds
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rand Askalan
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Seeger TA, Kirton A, Esser MJ, Gallagher C, Dunn J, Zewdie E, Damji O, Ciechanski P, Barlow KM. Cortical excitability after pediatric mild traumatic brain injury. Brain Stimul 2017; 10:305-314. [DOI: 10.1016/j.brs.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
|
28
|
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017; 21:23-48. [PMID: 27567276 DOI: 10.1016/j.ejpn.2016.07.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections. PURPOSE In this review, our primary goal is to highlight the essential role of neuroplasticity in brain development, and to draw attention to the complex relationship between different levels of the developing nervous system that are subjected to plasticity in health and disease. Another goal of this review is to explore the relationship between plasticity responses of the developing brain and how they are influenced by critical and sensitive periods of brain development. Finally, we aim to motivate researchers in the pediatric neuromodulation field to build on the current knowledge of normal and abnormal neuroplasticity, especially synaptic plasticity, and their dependence on "critical or sensitive periods" of neural development to inform the design, timing and sequencing of neuromodulatory interventions in order to enhance and optimize their translational applications in childhood disorders of the brain. METHODS literature review. RESULTS We discuss in details five patterns of neuroplasticity expressed by the developing brain: 1) developmental plasticity which is further classified into normal and impaired developmental plasticity as seen in syndromic autism spectrum disorders, 2) adaptive (experience-dependent) plasticity following intense motor skill training, 3) reactive plasticity to pre and post natal CNS injury or sensory deprivation, 4) excessive plasticity (loss of homeostatic regulation) as seen in dystonia and refractory epilepsy, 6) and finally, plasticity as the brain's "Achilles tendon" which induces brain vulnerability under certain conditions such as hypoxic ischemic encephalopathy and epileptic encephalopathy syndromes. We then explore the unique feature of "time-sensitive heightened plasticity responses" in the developing brain in the in the context of neuromodulation. CONCLUSION The different patterns of neuroplasticity and the unique feature of heightened plasticity during critical and sensitive periods are important concepts for researchers and clinicians in the field of pediatric neurology and neurodevelopmental disabilities. These concepts need to be examined systematically in the context of pediatric neuromodulation. We propose that critical and sensitive periods of brain development in health and disease can create "windows of opportunity" for neuromodulatory interventions that are not commonly seen in adult brain and probably augment plasticity responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Yousif Ismail
- Department of neurology and developmental medicine, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, MD, USA; Department of pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al- Ain, UAE.
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| | - Michael V Johnston
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| |
Collapse
|
29
|
Anninos P, Chatzimichael A, Adamopoulos A, Kotini A, Tsagas N. A combined study of MEG and pico-Tesla TMS on children with autism disorder. J Integr Neurosci 2016; 15:497-513. [PMID: 27875942 DOI: 10.1142/s0219635216500278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetoencephalographic (MEG) recordings from the brain of 10 children with autism (6 boys and 4 girls, with ages range from 5-12 years, mean[Formula: see text][Formula: see text][Formula: see text]SD: 8.3[Formula: see text][Formula: see text][Formula: see text]2.1) were obtained using a whole-head 122-channel MEG system in a magnetically shielded room of low magnetic noise. A double-blind experimental design was used in order to look for possible effect of external pico-Tesla Transcranial Magnetic Stimulation (pT-TMS). The pT-TMS was applied on the brain of the autistic children with proper field characteristics (magnetic field amplitude: 1-7.5[Formula: see text]pT, frequency: the alpha - rhythm of the patient 8-13[Formula: see text]Hz). After unblinding it was found a significant effect of an increase of frequencies in the range of 2-7[Formula: see text]Hz across the subjects followed by an improvement and normalization of their MEG recordings. The statistical analysis of our results showed a statistical significance at 6 out of 10 patients (60%). It is also observed an increase of alpha activity in autistic children at the end of one month after pT-TMS treatment at home. In conclusion, the application of pT-TMS has the prospective to be a noninvasive, safe and important modality in the management of autism children.
Collapse
Affiliation(s)
- Photios Anninos
- * Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Athanasios Chatzimichael
- † Department of Paediatrics, University Hospital of Alexandroupoli, Democritus University of Thrace, Alexandroupoli, Greece
| | - Adam Adamopoulos
- * Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Athanasia Kotini
- * Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Nicolaos Tsagas
- ‡ Department of Electrical Engineering, Polytechnic School, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
30
|
Corticospinal Excitability in Children with Congenital Hemiparesis. Brain Sci 2016; 6:brainsci6040049. [PMID: 27775599 PMCID: PMC5187563 DOI: 10.3390/brainsci6040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/20/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can be used as an assessment or intervention to evaluate or influence brain activity in children with hemiparetic cerebral palsy (CP) commonly caused by perinatal stroke. This communication report analyzed data from two clinical trials using TMS to assess corticospinal excitability in children and young adults with hemiparetic CP. The results of this communication revealed a higher probability of finding a motor evoked potential (MEP) on the non-lesioned hemisphere compared to the lesioned hemisphere (p = 0.005). The resting motor threshold (RMT) was lower on the non-lesioned hemisphere than the lesioned hemisphere (p = 0.013). There was a significantly negative correlation between age and RMT (rs = −0.65, p = 0.003). This communication provides information regarding MEP responses, motor thresholds (MTs) and the association with age during TMS assessment in children with hemiparetic CP. Such findings contribute to the development of future pediatric studies in neuroplasticity and neuromodulation to influence motor function and recovery after perinatal stroke.
Collapse
|
31
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
32
|
Moura RCF, Santos CA, Grecco LAC, Lazzari RD, Dumont AJL, Duarte NCDA, Braun LA, Lopes JBP, Santos LAD, Rodrigues ELS, Albertini G, Cimolin V, Galli M, Oliveira CS. Transcranial direct current stimulation combined with upper limb functional training in children with spastic, hemiparetic cerebral palsy: study protocol for a randomized controlled trial. Trials 2016; 17:405. [PMID: 27530758 PMCID: PMC4987976 DOI: 10.1186/s13063-016-1534-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/03/2016] [Indexed: 11/13/2022] Open
Abstract
Background The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy. Methods The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05). Discussion This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The results will be published and evidence found may contribute to the use of transcranial stimulation for this population. Trial registration ReBEC RBR-6V4Y3K. Registered on 11 February 2015.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luiz Alfredo Braun
- Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | - Giorgio Albertini
- Motion Analysis Laboratory, IRCCS San Raffaele Pisana, Pisana, Rome, Italy
| | - Veronica Cimolin
- Department of Electronic Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Manuela Galli
- Motion Analysis Laboratory, IRCCS San Raffaele Pisana, Pisana, Rome, Italy.,Department of Electronic Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Santos Oliveira
- Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil. .,Rua Itapicuru, 380 apto 111, Perdizes bairro, CEP 05006-000, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
The role of transcranial magnetic stimulation in evaluation of motor cortex excitability in Rett syndrome. Eur J Paediatr Neurol 2016; 20:597-603. [PMID: 27131828 DOI: 10.1016/j.ejpn.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 01/18/2023]
Abstract
UNLABELLED Rett syndrome (RTT) is a frequent neurodevelopmental disorder confirmed by clinical criteria and supported by the methyl-CpG-binding protein 2 gene (MECP2) mutation. A short central motor conduction time (CMCT) was reported in transcranial magnetic stimulation (TMS) studies performed in RTT. This was attributed to hyperexcitability of the motor cortex and/or spinal motor neurons, but was not studied further. AIM We performed TMS in RTT to evaluate motor cortex excitability by determining the cortical motor threshold (CMT) and motor cortex inhibition by the cortical silent period (CSP) besides measuring CMCT. METHODS Single-pulse TMS was performed in 17 Rett patients, diagnosed by clinical criteria and MECP2 mutation testing, and the same number of healthy controls. The outcome measures were compared between RTT groups with different antiepileptic drugs (AED) and those with and without the MECP2 mutation. RESULTS CMCT was shorter, but we found elevated CMT and shorter CSP, which suggests decreased excitatory and inhibitory motor cortical function. The outcome was independent of AED and the presence or absence of the MECP2 mutation. INTERPRETATION Decreased excitatory and inhibitory motor cortical function could explain the short CMCT, with higher stimulus intensities needed to excite pyramidal neurons.
Collapse
|
34
|
Simis M, Di Lazzaro V, Kirton A, Pennisi G, Bella R, Kim YH, Takeuchi N, Khedr EM, Rogers LM, Harvey R, Koganemaru S, Turman B, Tarlacı S, Gagliardi RJ, Fregni F. Neurophysiological measurements of affected and unaffected motor cortex from a cross-sectional, multi-center individual stroke patient data analysis study. Neurophysiol Clin 2016; 46:53-61. [PMID: 26970808 DOI: 10.1016/j.neucli.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) has been used to measure cortical excitability as a functional measurement of corticomotor pathways. Given its potential application as an assessment tool in stroke, we aimed to analyze the correlation of TMS parameters with clinical features in stroke using data from 10 different centers. METHODS Data of 341 patients with a clinical diagnosis of stroke were collected from studies assessing cortical excitability using TMS. We used a multivariate regression model in which the baseline cortical excitability parameter "resting Motor Threshold (rMT)" was the main outcome and the demographic, anatomic and clinical characteristics were included as independent variables. RESULTS The variable "severity of motor deficit" consistently remained significant in predicting rMT in the affected hemisphere, with a positive β coefficient, in the multivariate models after sensitive analyses and adjusting for important confounders such as site center. Additionally, we found that the correlations between "age" or "time since stroke" and the rMT in the affected hemisphere were significant, as well as the interaction between "time since stroke" and "severity of motor deficit". CONCLUSIONS We have shown that severity of motor deficit is an important predictor for rMT in the affected hemisphere. Additionally, time since stroke seems to be an effect modifier for the correlation between motor deficit and rMT. In the unaffected motor cortex, these correlations were not significant. We discuss these findings in the context of stroke rehabilitation.
Collapse
Affiliation(s)
- Marcel Simis
- Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Laboratory of Neuromodulation, Boston, USA; Santa Casa Medical School, Division of Neurology, Sao Paulo, Brazil; University of Sao Paulo Medical School General Hospital, Physical and Rehabilitation Medicine Institute, Sao Paulo, Brazil
| | | | - Adam Kirton
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary Pediatric Stroke Program, Calgary, Alberta, Canada
| | - Giovanni Pennisi
- University of Catania, Section of Neurosciences, Department GF Ingrassia, Catania, Italy
| | - Rita Bella
- University of Catania, Section of Neurosciences, Department GF Ingrassia, Catania, Italy
| | - Yun-Hee Kim
- Sungkyunkwan University, School of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Department of Physical and Rehabilitation Medicine, Seoul, Republic of Korea
| | - Naoyuki Takeuchi
- Tohoku University Graduates School of Medicine, Department of Physical Medicine and Rehabilitation, Sendai, Japan
| | - Eman M Khedr
- Assiut University Hospital, Faculty of Medicine, Department of Neurology, Assiut, Egypt
| | - Lynn M Rogers
- Rehabilitation Institute of Chicago, Sensory Motor Performance Program, Chicago, USA; Northwestern University Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Chicago, USA
| | - Richard Harvey
- Rehabilitation Institute of Chicago, Sensory Motor Performance Program, Chicago, USA; Northwestern University Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Chicago, USA
| | - Satoko Koganemaru
- Kyoto University Graduate School of Medicine, Human Brain Research Center, Kyoto, Japan
| | - Bulent Turman
- Bond University, School of Medicine, Robina, Australia
| | | | | | - Felipe Fregni
- Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Laboratory of Neuromodulation, Boston, USA.
| |
Collapse
|
35
|
Moliadze V, Andreas S, Lyzhko E, Schmanke T, Gurashvili T, Freitag CM, Siniatchkin M. Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: Self-reports and resting state EEG analysis. Brain Res Bull 2015; 119:25-33. [PMID: 26449209 DOI: 10.1016/j.brainresbull.2015.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising and well-tolerated method of non-invasive brain stimulation, by which cortical excitability can be modulated. However, the effects of tDCS on the developing brain are still unknown, and knowledge about its tolerability in children and adolescents is still lacking. Safety and tolerability of tDCS was assessed in children and adolescents by self-reports and spectral characteristics of electroencephalogram (EEG) recordings. Nineteen typically developing children and adolescents aged 11-16 years participated in the study. Anodal and cathodal tDCS as well as sham stimulation were applied for a duration of 10 min over the left primary motor cortex (M1), each with an intensity of 1 mA. Subjects were unable to identify whether they had received active or sham stimulation, and all participants tolerated the stimulation well with a low rate of adverse events in both groups and no serious adverse events. No pathological oscillations, in particular, no markers of epileptiform activity after 1mA tDCS were detected in any of the EEG analyses. In summary, our study demonstrates that tDCS with 1mA intensity over 10 min is well tolerated, and thus may be used as an experimental and treatment method in the pediatric population.
Collapse
Affiliation(s)
- Vera Moliadze
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany.
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Ekaterina Lyzhko
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany; Institute of Mathematical Problems of Biology, Pushchino, Moscow Region, Russia
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Tea Gurashvili
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Narayana S, Papanicolaou AC, McGregor A, Boop FA, Wheless JW. Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. J Child Neurol 2015; 30:1111-24. [PMID: 25342309 DOI: 10.1177/0883073814553274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/07/2014] [Indexed: 11/15/2022]
Abstract
Noninvasive brain stimulation is now an accepted technique that is used as a diagnostic aid and in the treatment of neuropsychiatric disorders in adults, and is being increasingly used in children. In this review, we will discuss the basic principles and safety of one noninvasive brain stimulation method, transcranial magnetic stimulation. Improvements in the spatial accuracy of transcranial magnetic stimulation are described in the context of image-guided transcranial magnetic stimulation. The article describes and provides examples of the current clinical applications of transcranial magnetic stimulation in children as an aid in the diagnosis and treatment of neuropsychiatric disorders and discusses future potential applications. Transcranial magnetic stimulation is a noninvasive tool that is safe for use in children and adolescents for functional mapping and treatment, and for many children it aids in the preoperative evaluation and the risk-benefit decision making.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amy McGregor
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Frederick A Boop
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James W Wheless
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
37
|
Kornfeld S, Delgado Rodríguez JA, Everts R, Kaelin-Lang A, Wiest R, Weisstanner C, Mordasini P, Steinlin M, Grunt S. Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome. BMC Neurol 2015; 15:90. [PMID: 26058895 PMCID: PMC4466862 DOI: 10.1186/s12883-015-0309-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. METHODS The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. DISCUSSION This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric population diagnosed with arterial ischaemic stroke. Thus, this study has the potential to uniquely contribute to the understanding of neuronal plasticity in the brains of healthy children and those with acute or chronic brain injury. It is expected that the results will lead to the development of optimal interventions after arterial ischaemic stroke.
Collapse
Affiliation(s)
- Salome Kornfeld
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | - Juan Antonio Delgado Rodríguez
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Regula Everts
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | | | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Christian Weisstanner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, University Hospital, Inselspital, Bern, Switzerland.
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland. .,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.
| | - Sebastian Grunt
- Division of Neuropaediatrics, Development and Rehabilitation, Children's University Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
38
|
Gillick BT, Krach LE, Feyma T, Rich TL, Moberg K, Menk J, Cassidy J, Kimberley T, Carey JR. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis. Arch Phys Med Rehabil 2015; 96:S104-13. [PMID: 25283350 PMCID: PMC4380609 DOI: 10.1016/j.apmr.2014.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the safety of combining a 6-Hz primed low-frequency repetitive transcranial magnetic stimulation (rTMS) intervention in the contralesional hemisphere with a modified constraint-induced movement therapy (mCIMT) program in children with congenital hemiparesis. DESIGN Phase 1 randomized, double-blinded, placebo-controlled pretest/posttest trial. SETTING University academic facility and pediatric specialty hospital. PARTICIPANTS Subjects (N = 19; age range, 8-17 y) with congenital hemiparesis caused by ischemic stroke or periventricular leukomalacia. No subject withdrew because of adverse events. All subjects included completed the study. INTERVENTIONS Subjects were randomized to 1 of 2 groups: either real rTMS plus mCIMT (n = 10) or sham rTMS plus mCIMT (n = 9). MAIN OUTCOME MEASURES Adverse events, physician assessment, ipsilateral hand function, stereognosis, cognitive function, subject report of symptoms assessment, and subject questionnaire. RESULTS No major adverse events occurred. Minor adverse events were found in both groups. The most common events were headaches (real: 50%, sham: 89%; P = .14) and cast irritation (real: 30%, sham: 44%; P = .65). No differences between groups in secondary cognitive and unaffected hand motor measures were found. CONCLUSIONS Primed rTMS can be used safely with mCIMT in congenital hemiparesis. We provide new information on the use of rTMS in combination with mCIMT in children. These findings could be useful in research and future clinical applications in advancing function in congenital hemiparesis.
Collapse
Affiliation(s)
- Bernadette T Gillick
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN.
| | - Linda E Krach
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN; Gillette Children's Specialty Healthcare, St Paul, MN
| | - Tim Feyma
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Tonya L Rich
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Kelli Moberg
- Gillette Children's Specialty Healthcare, St Paul, MN
| | - Jeremiah Menk
- University of Minnesota Clinical and Translational Science Institute Biostatistical Design and Analysis Center, Minneapolis, MN
| | - Jessica Cassidy
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - Teresa Kimberley
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| | - James R Carey
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
39
|
Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: randomized controlled preliminary study. Phys Ther 2015; 95:337-49. [PMID: 25413621 PMCID: PMC4348714 DOI: 10.2522/ptj.20130565] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation that has shown improved adult stroke outcomes. Applying tDCS in children with congenital hemiparesis has not yet been explored. OBJECTIVE The primary objective of this study was to explore the safety and feasibility of single-session tDCS through an adverse events profile and symptom assessment within a double-blind, randomized placebo-controlled preliminary study in children with congenital hemiparesis. A secondary objective was to assess the stability of hand and cognitive function. DESIGN A double-blind, randomized placebo-controlled pretest/posttest/follow-up study was conducted. SETTING The study was conducted in a university pediatric research laboratory. PARTICIPANTS Thirteen children, ages 7 to 18 years, with congenital hemiparesis participated. MEASUREMENTS Adverse events/safety assessment and hand function were measured. INTERVENTION Participants were randomly assigned to either an intervention group or a control group, with safety and functional assessments at pretest, at posttest on the same day, and at a 1-week follow-up session. An intervention of 10 minutes of 0.7 mA tDCS was applied to bilateral primary motor cortices. The tDCS intervention was considered safe if there was no individual decline of 25% or group decline of 2 standard deviations for motor evoked potentials (MEPs) and behavioral data and no report of adverse events. RESULTS No major adverse events were found, including no seizures. Two participants did not complete the study due to lack of MEP and discomfort. For the 11 participants who completed the study, group differences in MEPs and behavioral data did not exceed 2 standard deviations in those who received the tDCS (n=5) and those in the control group (n=6). The study was completed without the need for stopping per medical monitor and biostatisticial analysis. LIMITATIONS A limitation of the study was the small sample size, with data available for 11 participants. CONCLUSIONS Based on the results of this study, tDCS appears to be safe, feasible, and well tolerated in most children with hemiparesis. Future investigations of serial sessions of tDCS in conjunction with rehabilitation in pediatric hemiparesis are indicated to explore the benefit of a synergistic approach to improving hand function.
Collapse
|
40
|
Narayana S, Rezaie R, McAfee SS, Choudhri AF, Babajani-Feremi A, Fulton S, Boop FA, Wheless JW, Papanicolaou AC. Assessing motor function in young children with transcranial magnetic stimulation. Pediatr Neurol 2015; 52:94-103. [PMID: 25439485 DOI: 10.1016/j.pediatrneurol.2014.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Accurate noninvasive assessment of motor function using functional MRI (fMRI) and magnetoencephalography (MEG) is a challenge in patients who are very young or who are developmentally delayed. In such cases, passive mapping of the sensorimotor cortex is performed under sedation. We examined the feasibility of using transcranial magnetic stimulation (TMS) as a motor mapping tool in awake children younger than 3 years of age. METHODS Six children underwent motor mapping with TMS while awake as well as passive sensorimotor mapping under conscious sedation with MEG during tactile stimulation (n = 5) and fMRI during passive hand movements (n = 4). RESULTS Stimulation of the motor cortex via TMS successfully elicited evoked responses in contralateral hand muscles in 5 patients. The location of primary motor cortex in the precentral gyrus identified by TMS corresponded with the postcentral location of the primary sensory cortex identified by MEG in 2 patients and to the sensorimotor cortex identified by fMRI in 3 children. In this cohort, we demonstrate that TMS can illuminate abnormalities in motor physiology including motor reorganization. We also demonstrate the feasibility of using TMS-derived contralateral silent periods to approximate the location of motor cortex in the absence of an evoked response. When compared to chronological age, performance functioning level appears to be better in predicting successful mapping outcome with TMS. CONCLUSIONS Our findings indicate that awake TMS is a safe alternative to MEG and fMRI performed under sedation to localize the motor cortex and provides additional insight into the underlying pathophysiology and motor plasticity in toddlers.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Roozbeh Rezaie
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Samuel S McAfee
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Asim F Choudhri
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Abbas Babajani-Feremi
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Stephen Fulton
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frederick A Boop
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James W Wheless
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
41
|
Moliadze V, Schmanke T, Andreas S, Lyzhko E, Freitag CM, Siniatchkin M. Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol 2014; 126:1392-9. [PMID: 25468234 DOI: 10.1016/j.clinph.2014.10.142] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of the transcranial direct current stimulation (tDCS) on motor cortex excitability in healthy children and adolescents. METHODS We applied 1mA anodal or cathodal tDCS for 10min on the left primary motor cortex of 19 healthy children and adolescents (mean age 13.9±0.4years). In order to prove whether the effects of tDCS may be attributed to the stimulation intensity, 10 children and adolescents were studied again using 0.5mA anodal and cathodal tDCS. Sham stimulation was used as a control. RESULTS Compared with sham stimulation, both 1mA anodal and cathodal tDCS resulted in a significant increase of Motor evoked potentials (MEP) amplitudes which remained to be prominent even one hour after the end of stimulation. Interestingly, the 0.5mA cathodal tDCS decreased cortico-spinal excitability whereas the 0.5mA anodal stimulation did not result in any effect. CONCLUSION For the first time, the study demonstrates age-specific influences of tDCS on cortical excitability of the primary motor cortex. SIGNIFICANCE Thus, the stimulation protocols of the tDCS have to be optimized according to age by planning studies in pediatric population.
Collapse
Affiliation(s)
- Vera Moliadze
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany; Department of Medical Psychology and Medical Sociology, Schleswig-Holstein University Hospital (UK-SH), Campus Kiel, Schwanenweg 20, 24105 Kiel, Germany.
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Ekaterina Lyzhko
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University Frankfurt am Main, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany; Department of Medical Psychology and Medical Sociology, Schleswig-Holstein University Hospital (UK-SH), Campus Kiel, Schwanenweg 20, 24105 Kiel, Germany
| |
Collapse
|
42
|
Casanova MF, Hensley MK, Sokhadze EM, El-Baz AS, Wang Y, Li X, Sears L. Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder. Front Hum Neurosci 2014; 8:851. [PMID: 25374530 PMCID: PMC4204613 DOI: 10.3389/fnhum.2014.00851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 01/07/2023] Open
Abstract
The term autism spectrum disorder (ASD) describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. Autism spectrum disorder may also present with symptoms suggestive of autonomic nervous system (ANS) dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency (LF) repetitive transcranial magnetic stimulation (rTMS) on autonomic function in children with ASD by recording electrocardiogram (ECG) and electrodermal activity (EDA) pre- post- and during each rTMS session. The autonomic measures of interest in this study were R-R cardiointervals in EKG (R-R), time and frequency domain measures of heart rate variability (HRV) and skin conductance level (SCL). Heart rate variability measures such as R-R intervals, standard deviation of cardiac intervals, pNN50 (percentage of cardiointervals >50 ms different from preceding interval), power of high frequency (HF) and LF components of HRV spectrum, LF/HF ratio, were then derived from the recorded EKG. We expected that the course of 18 weekly inhibitory LF rTMS applied to the dorsolateral prefrontal cortex (DLPFC) would enhance autonomic balance by facilitating frontal inhibition of limbic activity thus resulting in decreased overall heart rate (HR), increased HRV (in a form of increased HF power), decreased LF power (resulting in decreased LF/HF ratio), and decreased SCL. Behavioral evaluations post-18 TMS showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings while autonomic measures indicated a significant increase in cardiac interval variability and a decrease of tonic SCL. The results suggest that 18 sessions of LF rTMS in ASD results in increased cardiac vagal control and reduced sympathetic arousal.
Collapse
Affiliation(s)
- Manuel Fernando Casanova
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA ; Department of Bioengineering, University of Louisville Louisville, KY, USA
| | - Marie K Hensley
- Department of Bioengineering, University of Louisville Louisville, KY, USA
| | - Estate M Sokhadze
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA ; Department of Bioengineering, University of Louisville Louisville, KY, USA
| | - Ayman S El-Baz
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA ; Department of Bioengineering, University of Louisville Louisville, KY, USA
| | - Yao Wang
- Department of Psychiatry and Behavioral Sciences, University of Louisville Louisville, KY, USA ; College of Brain and Cognitive Neurosciences, Bejing Normal University Bejing, China
| | - Xiaoli Li
- College of Brain and Cognitive Neurosciences, Bejing Normal University Bejing, China
| | - Lonnie Sears
- Department of Pediatrics, University of Louisville Louisville, KY, USA
| |
Collapse
|
43
|
Croarkin PE, Nakonezny PA, Lewis CP, Zaccariello MJ, Huxsahl JE, Husain MM, Kennard BD, Emslie GJ, Daskalakis ZJ. Developmental aspects of cortical excitability and inhibition in depressed and healthy youth: an exploratory study. Front Hum Neurosci 2014; 8:669. [PMID: 25228870 PMCID: PMC4151107 DOI: 10.3389/fnhum.2014.00669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/11/2014] [Indexed: 02/05/2023] Open
Abstract
Objectives: The objective of this post-hoc exploratory analysis was to examine the relationship between age and measures of cortical excitability and inhibition. Methods: Forty-six participants (24 with major depressive disorder and 22 healthy controls) completed MT, SICI, ICF, and CSP testing in a cross-sectional protocol. Of these 46 participants, 33 completed LICI testing. Multiple linear robust regression and Spearman partial correlation coefficient were used to examine the relationship between age and the TMS measures. Results: In the overall sample of 46 participants, age had a significant negative relationship with motor threshold (MT) in both the right (rs = −0.49, adjusted p = 0.007; β = −0.08, adjusted p = 0.001) and left (rs = −0.42, adjusted p = 0.029; β = −0.05, adjusted p = 0.004) hemispheres. This significant negative relationship of age with MT was also observed in the sample of depressed youth in both the right (rs = −0.70, adjusted p = 0.002; β = −0.09, adjusted p = 0.001) and left (rs = −0.54, adjusted p = 0.034; β = −0.05, adjusted p = 0.017) hemispheres, but not in healthy controls. In the sample of the 33 participants who completed LICI testing, age had a significant negative relationship with LICI (200 ms interval) in both the right (rs = −0.48, adjusted p = 0.05; β = −0.24, adjusted p = 0.007) and left (rs = −0.64, adjusted p = 0.002; β = −0.23, adjusted p = 0.001) hemispheres. This negative relationship between age and LICI (200 ms interval) was also observed in depressed youth in both the right (rs = −0.76, adjusted p = 0.034; β = −0.35, adjusted p = 0.004) and left (rs = −0.92, adjusted p = 0.002; β = −0.25, adjusted p = 0.001) hemispheres. Conclusion: These findings suggest that younger children have higher MTs. This is more pronounced in depressed youth than healthy controls. LICI inhibition may also increase with age in youth.
Collapse
Affiliation(s)
- Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Paul A Nakonezny
- Division of Biostatistics, Department of Clinical Sciences, UT Southwestern Medical Center Dallas, TX, USA ; Department of Psychiatry, UT Southwestern Medical Center Dallas, TX, USA
| | - Charles P Lewis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Michael J Zaccariello
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - John E Huxsahl
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Mustafa M Husain
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine Durham, NC, USA
| | - Betsy D Kennard
- Department of Psychiatry, UT Southwestern Medical Center Dallas, TX, USA
| | - Graham J Emslie
- Department of Psychiatry, UT Southwestern Medical Center Dallas, TX, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| |
Collapse
|
44
|
Duarte NDAC, Grecco LAC, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PLoS One 2014; 9:e105777. [PMID: 25171216 PMCID: PMC4149519 DOI: 10.1371/journal.pone.0105777] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022] Open
Abstract
Background Cerebral palsy refers to permanent, mutable motor development disorders stemming from a primary brain lesion, causing secondary musculoskeletal problems and limitations in activities of daily living. The aim of the present study was to determine the effects of gait training combined with transcranial direct-current stimulation over the primary motor cortex on balance and functional performance in children with cerebral palsy. Methods A double-blind randomized controlled study was carried out with 24 children aged five to 12 years with cerebral palsy randomly allocated to two intervention groups (blocks of six and stratified based on GMFCS level (levels I-II or level III).The experimental group (12 children) was submitted to treadmill training and anodal stimulation of the primary motor cortex. The control group (12 children) was submitted to treadmill training and placebo transcranial direct-current stimulation. Training was performed in five weekly sessions for 2 weeks. Evaluations consisted of stabilometric analysis as well as the administration of the Pediatric Balance Scale and Pediatric Evaluation of Disability Inventory one week before the intervention, one week after the completion of the intervention and one month after the completion of the intervention. All patients and two examiners were blinded to the allocation of the children to the different groups. Results The experimental group exhibited better results in comparison to the control group with regard to anteroposterior sway (eyes open and closed; p<0.05), mediolateral sway (eyes closed; p<0.05) and the Pediatric Balance Scale both one week and one month after the completion of the protocol. Conclusion Gait training on a treadmill combined with anodal stimulation of the primary motor cortex led to improvements in static balance and functional performance in children with cerebral palsy. Trial Registration Ensaiosclinicos.gov.br/RBR-9B5DH7
Collapse
Affiliation(s)
| | - Luanda André Collange Grecco
- Doctoral Program in Rehabilitation Sciences, Movement Analysis Lab, University Nove de Julho, São Paulo, São Paulo, Brazil
| | - Manuela Galli
- Dept. of Electronic Information and Bioengineering, Politecnico di Milano and IRCCS San Raffaele Pisana, Rome
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center of Clinical Research Learning, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cláudia Santos Oliveira
- Professor, Master and Doctoral Programs in Rehabilitation Sciences, Movement Analysis Lab, University Nove de Julho, São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Transcranial magnetic stimulation may improve symptoms of hemiparesis. J Pediatr 2014; 165:208-9. [PMID: 24973163 DOI: 10.1016/j.jpeds.2014.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Does the region of epileptogenicity influence the pattern of change in cortical excitability? Clin Neurophysiol 2014; 126:249-56. [PMID: 25002368 DOI: 10.1016/j.clinph.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate whether cortical excitability measures on transcranial magnetic stimulation (TMS) differed between groups of patients with different focal epilepsy syndromes. METHODS 85 Patients with focal epilepsy syndromes divided into temporal and extra-temporal lobe epilepsy were studied. The cohorts were further divided into drug naïve-new onset, refractory and seizure free groups. Motor threshold (MT) and paired pulse TMS at short (2, 5, 10, 15 ms) and long (100-300 ms) interstimulus intervals (ISIs) were measured. Results were compared to those of 20 controls. RESULTS Cortical excitability was higher at 2 & 5 ms and 250, 300 ms ISIs (p<0.01) in focal epilepsy syndromes compared to controls however significant inter-hemispheric differences in MT and the same ISIs were only seen in the drug naïve state early at onset and were much more prominent in temporal lobe epilepsy. CONCLUSION Disturbances in cortical excitability are more confined to the affected hemisphere in temporal lobe epilepsy but only early at onset in the drug naïve state. SIGNIFICANCE Group TMS studies show that cortical excitability measures are different in temporal lobe epilepsy and can be distinguished from other focal epilepsies early at onset in the drug naïve state. Further studies are needed to determine whether these results can be applied clinically as the utility of TMS in distinguishing between epilepsy syndromes at an individual level remains to be determined.
Collapse
|
47
|
Badawy RAB, Vogrin SJ, Lai A, Cook MJ. On the midway to epilepsy: is cortical excitability normal in patients with isolated seizures? Int J Neural Syst 2014; 24:1430002. [PMID: 24475895 DOI: 10.1142/s0129065714300022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paired pulse transcranial magnetic stimulation was used to investigate differences in cortical excitability between patients with isolated (unrecurrent, unprovoked) seizures and those with epilepsy. Compared to controls, cortical excitability was higher in the isolated seizure group at 250-300 ms. Compared to epilepsy, cortical excitability was lower in patients with isolated seizures also at 250 and 300 ms. Lowered seizure threshold caused by disturbances within inhibitory circuits is present in patients who experience a seizure even if no further seizures occur.
Collapse
Affiliation(s)
- Radwa A B Badawy
- Departments of Medicine and Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia , Department of Clinical Neurosciences, St Vincent's Hospital, 41 Victoria Parade Fitzroy, Victory 3065, Australia
| | | | | | | |
Collapse
|
48
|
Grecco LAC, Duarte NDAC, de Mendonça ME, Pasini H, Lima VLCDC, Franco RC, de Oliveira LVF, de Carvalho PDTC, Corrêa JCF, Collange NZ, Sampaio LMM, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: study protocol for a double-blind randomized controlled clinical trial. BMC Pediatr 2013; 13:168. [PMID: 24112817 PMCID: PMC3852945 DOI: 10.1186/1471-2431-13-168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The project proposes three innovative intervention techniques (treadmill training, mobility training with virtual reality and transcranial direct current stimulation that can be safely administered to children with cerebral palsy. The combination of transcranial stimulation and physical therapy resources will provide the training of a specific task with multiple rhythmic repetitions of the phases of the gait cycle, providing rich sensory stimuli with a modified excitability threshold of the primary motor cortex to enhance local synaptic efficacy and potentiate motor learning. METHODS/DESIGN A prospective, double-blind, randomized, controlled, analytical, clinical trial will be carried out.Eligible participants will be children with cerebral palsy classified on levels I, II and III of the Gross Motor Function Classification System between four and ten years of age. The participants will be randomly allocated to four groups: 1) gait training on a treadmill with placebo transcranial stimulation; 2) gait training on a treadmill with active transcranial stimulation; 3) mobility training with virtual reality and placebo transcranial stimulation; 4) mobility training with virtual reality and active transcranial stimulation. Transcranial direct current stimulation will be applied with the anodal electrode positioned in the region of the dominant hemisphere over C3, corresponding to the primary motor cortex, and the cathode positioned in the supraorbital region contralateral to the anode. A 1 mA current will be applied for 20 minutes. Treadmill training and mobility training with virtual reality will be performed in 30-minute sessions five times a week for two weeks (total of 10 sessions). Evaluations will be performed on four occasions: one week prior to the intervention; one week following the intervention; one month after the end of the intervention;and 3 months after the end of the intervention. The evaluations will involve three-dimensional gait analysis, analysis of cortex excitability (motor threshold and motor evoked potential), Six-Minute Walk Test, Timed Up-and-Go Test, Pediatric Evaluation Disability Inventory, Gross Motor Function Measure, Berg Balance Scale, stabilometry, maximum respiratory pressure and an effort test. DISCUSSION This paper offers a detailed description of a prospective, double-blind, randomized, controlled, analytical, clinical trial aimed at demonstrating the effect combining transcranial stimulation with treadmill and mobility training on functionality and primary cortex excitability in children with Cerebral Palsy classified on Gross Motor Function Classification System levels I, II and III. The results will be published and will contribute to evidence regarding the use of treadmill training on this population. TRIAL REGISTRATION ReBEC RBR-9B5DH7.
Collapse
Affiliation(s)
- Luanda André Collange Grecco
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Rua Diogo de Faria 775, Vila Mariana, CEP 04037-000 São Paulo, SP, Brazil
| | | | | | - Hugo Pasini
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Vânia Lúcia Costa de Carvalho Lima
- Master’s and Doctoral Programs in Communication disordes: Speech area, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Renata Calhes Franco
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | - João Carlos Ferrari Corrêa
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Nelci Zanon Collange
- 4th Pediatric Neurosurgery, University of São Paulo and the Federal Pediatric Neurosurgical Center (CENEPE), São Paulo, Brazil
| | - Luciana Maria Malosá Sampaio
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Manuela Galli
- Associate professor of Dipartimento di Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center of Clinical Research Learning, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia Santos Oliveira
- Master’s and Doctoral Programs in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
49
|
Cortical excitability changes correlate with fluctuations in glucose levels in patients with epilepsy. Epilepsy Behav 2013; 27:455-60. [PMID: 23603690 DOI: 10.1016/j.yebeh.2013.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/09/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We used transcranial magnetic stimulation (TMS) to investigate motor cortical excitability changes in relation to blood glucose levels. METHODS Twenty-two drug-naïve patients with epilepsy [11 generalized and 11 focal] and 10 controls were studied twice on the same day; first after 12h of fasting and then 2h postprandial. Motor threshold and paired-pulse TMS at a number of short and long interstimulus intervals were measured. Serum glucose levels were measured each time. RESULTS Decreased long intracortical inhibition was seen in patients and controls during fasting compared to postprandial studies. This effect was much more prominent in patients with generalized epilepsy (with effect sizes of up to 0.8) in whom there was also evidence of increased intracortical facilitation (effect size: 0.3). CONCLUSION Cortical excitability varies with fluctuations in blood glucose levels. This variation is more prominent in patients with epilepsy. Decreased glucose levels may be an important physiological seizure trigger.
Collapse
|
50
|
Badawy RAB, Vogrin SJ, Lai A, Cook MJ. Patterns of cortical hyperexcitability in adolescent/adult-onset generalized epilepsies. Epilepsia 2013; 54:871-8. [DOI: 10.1111/epi.12151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Simon J. Vogrin
- Department of Clinical Neurosciences; St Vincent's Hospital; Fitzroy; Victoria; Australia
| | - Alan Lai
- Bionics Institute; East Melbourne; Victoria; Australia
| | | |
Collapse
|