1
|
Monteiro PHM, Marcori AJ, da Conceição NR, Monteiro RLM, Coelho DB, Teixeira LA. Cortical activity in body balance tasks as a function of motor and cognitive demands: A systematic review. Eur J Neurosci 2024. [PMID: 39429043 DOI: 10.1111/ejn.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Technological tools, like electroencephalography and functional near-infrared spectroscopy, have deepened our understanding of cortical regions involved in balance control. In this systematic literature review, we aimed to identify the prevalent cortical areas activated during balance tasks with specific motor or cognitive demands. Our search strategy encompassed terms related to balance control and cortical activity, yielding 2250 results across five databases. After screening, 67 relevant articles were included in the review. Results indicated that manipulations of visual and/or somatosensory information led to prevalent activity in the parietal, frontal and temporal regions; manipulations of the support base led to prevalent activity of the parietal and frontal regions; both balance-cognitive dual-tasking and reactive responses to extrinsic perturbations led to prevalent activity in the frontal and central regions. These findings deepen our comprehension of the cortical regions activated to manage the complex demands of maintaining body balance in the performance of tasks posing specific requirements. By understanding these cortical activation patterns, researchers and clinicians can develop targeted interventions for balance-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
2
|
Shiozawa K, Russo M, Lee J, Hogan N, Sternad D. Human foot force informs balance control strategies when standing on a narrow beam. J Neurophysiol 2024; 132:1302-1314. [PMID: 39258774 PMCID: PMC11495210 DOI: 10.1152/jn.00089.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Despite the abundance of studies on the control of standing balance, insights about the roles of biomechanics and neural control have been limited. Previous work introduced an analysis combining the direction and orientation of foot-ground forces. The "intersection point" of the lines of actions of these forces exhibited a consistent pattern across healthy, young subjects when computed for different frequency components of the center of pressure signal. To investigate the control strategy of quiet stance, we applied this intersection point analysis to experimental data of 15 healthy, young subjects balancing in tandem stance on a narrow beam and on the ground. Data from the sagittal and frontal planes were analyzed separately. The task was modeled as a double-inverted pendulum controlled by an optimal controller with torque-actuated ankle and hip joints and additive white noise. To test our prediction that the controller that minimized overall joint effort would yield the best fit across the tested conditions and planes of analyses, experimental results were compared with simulation outcomes. The controller that minimized overall effort produced the best fit in both balance conditions and planes of analyses. For some conditions, the relative penalty on the hip and ankle joints varied in a way relevant to the balance condition or to the plane of analysis. These results suggest that unimpaired quiet balance in a challenging environment can be best described by a controller that maintains minimal effort through the adjustment of relative ankle and hip joint torques. NEW & NOTEWORTHY This study explored balance control in humans during a challenging task using the novel intersection point analysis, based on foot-ground force direction and point of application. Experimental data of subjects standing on a narrow beam in tandem stance were compared with modeling results of a double-inverted pendulum. The analysis showed that individuals minimized effort by adjusting ankle and hip torques, shedding light on the interplay of biomechanics and neural control in maintaining balance.
Collapse
Affiliation(s)
- Kaymie Shiozawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Marta Russo
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| | - Jongwoo Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Neville Hogan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Dagmar Sternad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States
- Department of Physics, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Almasoudi AO, Seyam MK, Sanchez F. The effect of trunk exercises with hip strategy training to maximize independence level and balance for patient with stroke: Randomized controlled study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2142. [PMID: 39425530 DOI: 10.1002/pri.2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Balance while seated and the capacity to conduct selective trunk movements are significant predictors of functional outcomes following stroke. Patients with inappropriate muscle activation and inadequate movement control in the trunk muscles cause mobility and daily function difficulties. Stroke patients have weak leg muscles and decreased balance, resulting in compensatory changes. Functional postural strategy training is necessary to restore balance in these patients. Few studies have examined the effect of physical therapy trunk exercises with hip strategy training on improving balance and increasing independence after stroke. PURPOSE This study aimed to explore the effect of selective trunk exercises (STE) with hip strategy training in improving balance in patients with stroke as well as independence levels. METHOD A multicenter inpatient stroke treatment randomized pre- and post-test control trial. Forty-six stroke survivors were randomly allocated to experimental or control groups (n = 23 each). The experimental group received hip strategy training and trunk exercises. All groups received Neuro-Developmental Treatment (NDT)-based physical therapy four times a week for 6 weeks. Trunk impairment scale, Berg Balance Scale (BBS), and functional independence measure (FIM) measured static and dynamic seated balance, functional balance, and trunk movement coordination pre- and post-therapy. RESULTS The experimental group's post-therapeutic measures were substantially higher than the control group. The experimental group's TIS score, and subscale improved more than the control group. The experimental group considerably increased the BBS score. The experimental group also showed greater FIM gains. CONCLUSIONS This study demonstrated that adding STE in conjunction with hip strategy training to patients after has a positive impact on trunk control while maintaining static and dynamic sitting balance, functional balance, and independence levels which are effective in stroke rehabilitation.
Collapse
Affiliation(s)
- Alanoud O Almasoudi
- Department of Physical Therapy and Rehabilitation, King Khalid Hospital, Second Health Cluster, Ministry of Health, Majmaah, Saudi Arabia
| | - Mohamed K Seyam
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Al Majmaah University, Al Majmaah, Saudi Arabia
| | - Froiland Sanchez
- Rehab Program & Services, Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Nakagawa K, Kanai S, Kitakaze S, Okamura H. Discriminant Accuracy of Standing Balance Tests for the Level of Gait Dependency in Hospitalized Patients with Alzheimer's Disease. Dement Geriatr Cogn Disord 2024; 53:135-142. [PMID: 38599186 DOI: 10.1159/000538541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION When determining the level of gait independence in patients with Alzheimer's disease (AD), detailed functional assessment is difficult in some patients. The previous literature has suggested simple standing balance tests for patients with AD due to their ease of implementation in clinical practice and relevance to gait. However, their usefulness for discriminating the level of gait independence remains unclear. This study aimed to investigate the discrimination accuracy of a simple standing balance test in the level of gait independence among hospitalized patients with AD. METHODS This cross-sectional study was a post hoc analysis of a study conducted on 63 inpatients with AD in a single hospital. Participants were divided into three groups according to their level of gait independence: independent, modified independent (independent, walking with walking aids), and dependent groups (supervision). Gait independence was determined using the Functional Independence Measure. Four standing balance tests were used - closed-leg, semi-tandem, tandem, and one-leg standings - and the discrimination accuracy of each test was calculated by receiver operating characteristic analysis. RESULTS One-leg standing was best at discriminating between the independent and modified independent groups (positive predictive value = 80.0%, negative predictive value = 94.1%). Tandem standing was best at discriminating between the modified independent and dependent groups (positive predictive value = 74.1%, negative predictive value = 93.3%). CONCLUSION A simple standing balance test may assist in the determining level of gait independence in patients with AD when it is difficult to perform a mobility assessment.
Collapse
Affiliation(s)
- Keita Nakagawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Shusaku Kanai
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Sosuke Kitakaze
- Department of Rehabilitation, Maple-Hill Hospital, Hiroshima, Japan
| | - Hitoshi Okamura
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Mitsutake T, Nakazono H, Taniguchi T, Yoshizuka H, Sakamoto M. Effects of transcranial electrical stimulation of the right posterior parietal cortex on physical control responses. Neurosci Lett 2024; 818:137565. [PMID: 37996051 DOI: 10.1016/j.neulet.2023.137565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The posterior parietal cortex plays an important role in postural stability by adapting to changes in input from the visual, vestibular, and proprioceptive systems. However, little is known regarding whether transcranial electrical stimulation of the posterior parietal cortex affects reactive postural responses. This study aimed to investigate changes in physical control responses to anodal and cathodal transcranial direct current stimulation and transcranial random noise stimulation of the right posterior parietal cortex using a simultaneous inertial measurement unit. The joint movements of the lower limb of 33 healthy volunteers were measured while standing on a soft-foam surface with eyes closed during various stimulation modalities. These modalities included anodal, cathodal transcranial direct current stimulation, and sham stimulation in Experiment 1, and transcranial random noise and sham stimulations in Experiment 2. The results showed that cathodal stimulation significantly decreased the joint angular velocity in the hip rotation, ankle inversion-eversion, and abduction-adduction directions compared to anodal or sham stimulation in Experiment 1. In contrast, there were no significant differences in physical control responses with transcranial random noise stimulation coeducation in Experiment 2. These findings suggest that transcranial electrical stimulation of the right posterior parietal cortex may modulate physical control responses; however, the effect depends on the stimulus modality.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan.
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan.
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan.
| | - Hisayoshi Yoshizuka
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan.
| | - Maiko Sakamoto
- Education and Research Centre for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
6
|
Oliveira FAF, Martins CP, de Oliveira LAS, Rodrigues EC, Ferreira AS, Lemos T. Poststroke consequences upon optimization properties of postural sway during upright stance: a cross-sectional study. Top Stroke Rehabil 2023; 30:663-671. [PMID: 36196904 DOI: 10.1080/10749357.2022.2130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/24/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND The understanding of human postural control has advanced with the introduction of optimization process modeling. These models, however, only provide control parameters, rather than analytical descriptors of optimization processes. Here, we use a newly developed direct (pattern) search algorithm to investigate changes in postural optimization process in poststroke individuals. OBJECTIVE This cross-sectional study investigated the optimization properties of postural stability during upright standing in poststroke individuals. METHODS Twenty-nine poststroke and 15 healthy age-matched individuals underwent posturography with a force platform while standing for 60 s for acquisition of center-of-pressure data. Poststroke individuals were grouped depending on their weight-bearing (WB) pattern and their balance capability assessed through Berg Balance Scale (BBS). The optimization properties of postural stability were computed assuming the minimization of postural sway as cost function. RESULTS The asymmetric WB poststroke group showed larger convergence rate toward the local minimum of postural sway than the symmetric WB group. Additionally, the low-balance capability group exhibited smaller values for averaged local minima and global minimum of postural sway coordinates compared with high-balance capability group. Significant correlations were found for BBS and the local minima and global minimum (Pearson's r ranged 0.378-0.424, P < 0.05). CONCLUSIONS In summary, the optimization properties describing postural dynamic stability, steadiness, and global reference are altered in poststroke individuals with asymmetric WB pattern and low-balance capability.
Collapse
Affiliation(s)
- Flávia A F Oliveira
- Graduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - Camilla P Martins
- Graduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - Laura A S de Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil
| | - Erika C Rodrigues
- Graduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
- Instituto D'Or de Ensino e Pesquisa - IDOR, Rio de Janeiro, Brazil
| | - Arthur S Ferreira
- Graduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - Thiago Lemos
- Graduate Program in Rehabilitation Sciences, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Sozzi S, Ghai S, Schieppati M. The 'Postural Rhythm' of the Ground Reaction Force during Upright Stance and Its Conversion to Body Sway-The Effect of Vision, Support Surface and Adaptation to Repeated Trials. Brain Sci 2023; 13:978. [PMID: 37508910 PMCID: PMC10377030 DOI: 10.3390/brainsci13070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
The ground reaction force (GRF) recorded by a platform when a person stands upright lies at the interface between the neural networks controlling stance and the body sway deduced from centre of pressure (CoP) displacement. It can be decomposed into vertical (VGRF) and horizontal (HGRF) vectors. Few studies have addressed the modulation of the GRFs by the sensory conditions and their relationship with body sway. We reconsidered the features of the GRFs oscillations in healthy young subjects (n = 24) standing for 90 s, with the aim of characterising the possible effects of vision, support surface and adaptation to repeated trials, and the correspondence between HGRF and CoP time-series. We compared the frequency spectra of these variables with eyes open or closed on solid support surface (EOS, ECS) and on foam (EOF, ECF). All stance trials were repeated in a sequence of eight. Conditions were randomised across different days. The oscillations of the VGRF, HGRF and CoP differed between each other, as per the dominant frequency of their spectra (around 4 Hz, 0.8 Hz and <0.4 Hz, respectively) featuring a low-pass filter effect from VGRF to HGRF to CoP. GRF frequencies hardly changed as a function of the experimental conditions, including adaptation. CoP frequencies diminished to <0.2 Hz when vision was available on hard support surface. Amplitudes of both GRFs and CoP oscillations decreased in the order ECF > EOF > ECS ≈ EOS. Adaptation had no effect except in ECF condition. Specific rhythms of the GRFs do not transfer to the CoP frequency, whereas the magnitude of the forces acting on the ground ultimately determines body sway. The discrepancies in the time-series of the HGRF and CoP oscillations confirm that the body's oscillation mode cannot be dictated by the inverted pendulum model in any experimental conditions. The findings emphasise the robustness of the VGRF "postural rhythm" and its correspondence with the cortical theta rhythm, shed new insight on current principles of balance control and on understanding of upright stance in healthy and elderly people as well as on injury prevention and rehabilitation.
Collapse
Affiliation(s)
| | - Shashank Ghai
- Department of Political, Historical, Religious and Cultural Studies, Karlstad University, 65188 Karlstad, Sweden
- Centre for Societal Risk Research, Karlstad University, 65188 Karlstad, Sweden
| | | |
Collapse
|
8
|
Lee EY, Na Y, Cho M, Hwang YM, Kim HS, An H, Pyun SB. Short-term and long-term predictors of balance function in stroke patients: a 6-month follow-up study. Int J Rehabil Res 2023; 46:163-169. [PMID: 36867012 DOI: 10.1097/mrr.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We aimed to determine early predictors of balance function (Berg Balance Scale, BBS) at 3 and 6 months after stroke using clinical, neurophysiological, and neuroimaging variables. Seventy-nine patients with hemiparesis after a stroke were included. Demographics, stroke characteristics, and clinical variables [Mini-Mental State Examination, BBS, strength in the hemiparetic hip, knee, and ankle muscles, and Fugl-Meyer Assessment Lower Extremity (FMA-LE)] were evaluated 2 weeks post-stroke, on average. Somatosensory-evoked potentials (SEP) from both tibial nerves and diffusion tensor imaging data were collected respectively within 3 weeks and 4 weeks post-onset to calculate the SEP amplitude ratio and the laterality index of fractional anisotropy of the corticospinal tract. In multiple linear regression analysis, younger age, higher FMA-LE score, and stronger hemiparetic hip extensors were independent predictors of higher BBS at 3 months post-stroke (adjusted R2 = 0.563, P < 0.001). At 6 months post-stroke, significant predictors of higher BBS were younger age, higher FMA-LE, stronger hemiparetic hip extensors, and larger SEP amplitude ratio (adjusted R2 = 0.552, P < 0.001), although the incremental contribution of the latter was rather small ( R2 = 0.019). We conclude that age and the initial motor impairment of the affected lower limb can inform the state of balance function at 3 and 6 months after stroke.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine
- Brain Convergence Research Center, Korea University
| | - Yoonhye Na
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine
- Brain Convergence Research Center, Korea University
| | - Minjae Cho
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine
- Brain Convergence Research Center, Korea University
| | - Yu Mi Hwang
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine
- Brain Convergence Research Center, Korea University
| | - Hyun-Soo Kim
- Department of Anatomy, Korea University College of Medicine
| | - Hyonggin An
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine
- Brain Convergence Research Center, Korea University
| |
Collapse
|
9
|
Mear E, Gladwell V, Pethick J. Knee extensor force control as a predictor of dynamic balance in healthy adults. Gait Posture 2023; 100:230-235. [PMID: 36638669 DOI: 10.1016/j.gaitpost.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Previous research has demonstrated that force control in various muscles of the lower limb (measured according to the magnitude of force fluctuations) explains significant variance in static balance. Given the dynamic nature of many functional activities and sports, assessment of balance and its determinants under dynamic conditions is of importance. RESEARCH QUESTION Does muscle force control explain significant variance in dynamic balance, as measured using the Y balance test (YBT)? METHODS YBT performance and knee extensor muscle force control were measured in 28 healthy participants. The YBT involved stance on the right leg and attempting maximal reach with the left leg in the anterior, posteromedial, and posterolateral directions. Force control was assessed during isometric knee extension contractions of the right leg at 10%, 20% and 40% maximal voluntary contraction (MVC) and was quantified according to the magnitude (using the coefficient of variation [CV]), and the temporal structure (using sample entropy, SampEn; and detrended fluctuation analysis α), of force fluctuations. RESULTS Significant correlations were observed for YBT anterior reach and muscle force CV (r = -0.44, P = 0.02) and SampEn (r = 0.47, P = 0.012) during contractions at 40% MVC. A subsequent regression model demonstrated that muscle force CV and SampEn at 40% MVC significantly explained 54% of variance in YBT anterior reach. Significant correlations were also observed for YBT posteromedial reach and MVC (r = 0.39, P = 0.043) and muscle force CV during contractions at 40% MVC (r = -0.51, P = 0.006). The regression model demonstrated that MVC and muscle force CV at 40% MVC significantly explained 53.9% of variance in YBT posteromedial reach. SIGNIFICANCE These results are the first to indicate that a moderate amount of variance in dynamic balance can be explained by measures of isometric force control.
Collapse
Affiliation(s)
- Emily Mear
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | - Valerie Gladwell
- Institute of Health and Wellbeing, University of Suffolk, Suffolk, UK
| | - Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
10
|
Sozzi S, Do MC, Schieppati M. Vertical ground reaction force oscillation during standing on hard and compliant surfaces: The “postural rhythm”. Front Neurol 2022; 13:975752. [PMID: 36119676 PMCID: PMC9475112 DOI: 10.3389/fneur.2022.975752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/14/2022] Open
Abstract
When a person stands upright quietly, the position of the Centre of Mass (CoM), the vertical force acting on the ground and the geometrical configuration of body segments is accurately controlled around to the direction of gravity by multiple feedback mechanisms and by integrative brain centres that coordinate multi-joint movements. This is not always easy and the postural muscles continuously produce appropriate torques, recorded as ground reaction force by a force platform. We studied 23 young adults during a 90 s period, standing at ease on a hard (Solid) and on a compliant support (Foam) with eyes open (EO) and with eyes closed (EC), focusing on the vertical component of the ground reaction force (VGRF). Analysis of VGRF time series gave the amplitude of their rhythmic oscillations (the root mean square, RMS) and of their frequency spectrum. Sway Area and Path Length of the Centre of Pressure (CoP) were also calculated. VGRF RMS (as well as CoP sway measures) increased in the order EO Solid ≈ EC Solid < EO Foam < EC Foam. The VGRF frequency spectra featured prevailing frequencies around 4–5 Hz under all tested conditions, slightly higher on Solid than Foam support. Around that value, the VGRF frequencies varied in a larger range on hard than on compliant support. Sway Area and Path Length were inversely related to the prevailing VGRF frequency. Vision compared to no-vision decreased Sway Area and Path Length and VGRF RMS on Foam support. However, no significant effect of vision was found on VGRF mean frequency for either base of support condition. A description of the VGRF, at the interface between balance control mechanisms and sway of the CoP, can contribute information on how upright balance is maintained. Analysis of the frequency pattern of VGRF oscillations and its role in the maintenance of upright stance should complement the traditional measures of CoP excursions in the horizontal plane.
Collapse
Affiliation(s)
- Stefania Sozzi
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
| | - Manh-Cuong Do
- Complexité, Innovation, Activités Motrices et Sportives (CIAMS), Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives (CIAMS), Université d'Orléans, Orléans, France
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
- *Correspondence: Marco Schieppati ;
| |
Collapse
|
11
|
Alizadehsaravi L, Bruijn SM, Muijres W, Koster RAJ, van Dieën JH. Improvement in gait stability in older adults after ten sessions of standing balance training. PLoS One 2022; 17:e0242115. [PMID: 35895709 PMCID: PMC9328559 DOI: 10.1371/journal.pone.0242115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Balance training aims to improve balance and transfer acquired skills to real-life tasks. How older adults adapt gait to different conditions, and whether these adaptations are altered by balance training, remains unclear. We hypothesized that reorganization of modular control of muscle activity is a mechanism underlying adaptation of gait to training and environmental constraints. We investigated the transfer of standing balance training, shown to enhance unipedal balance control, to gait and adaptations in neuromuscular control of gait between normal and narrow-base walking in twenty-two older adults (72.6 ± 4.2 years). At baseline, after one, and after ten training sessions, kinematics and EMG of normal and narrow-base treadmill walking were measured. Gait parameters and temporal activation profiles of five muscle synergies were compared between time-points and gait conditions. Effects of balance training and an interaction between training and gait condition on step width were found, but not on synergies. After ten training sessions step width decreased in narrow-base walking, while step width variability decreased in both conditions. Trunk center of mass displacement and velocity, and the local divergence exponent, were lower in narrow-base compared to normal walking. Activation duration in narrow-base compared to normal walking was shorter for synergies associated with dominant leg weight acceptance and non-dominant leg stance, and longer for the synergy associated with non-dominant heel-strike. Time of peak activation associated with dominant leg stance occurred earlier in narrow-base compared to normal walking, while it was delayed in synergies associated with heel-strikes and non-dominant leg stance. The adaptations of synergies to narrow-base walking may be interpreted as related to more cautious weight transfer to the new stance leg and enhanced control over center of mass movement in the stance phase. The improvement of gait stability due to standing balance training is promising for less mobile older adults.
Collapse
Affiliation(s)
- Leila Alizadehsaravi
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sjoerd M. Bruijn
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Muijres
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ruud A. J. Koster
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap H. van Dieën
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Sozzi S, Ghai S, Schieppati M. Incongruity of Geometric and Spectral Markers in the Assessment of Body Sway. Front Neurol 2022; 13:929132. [PMID: 35923830 PMCID: PMC9339954 DOI: 10.3389/fneur.2022.929132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 01/15/2023] Open
Abstract
Different measurements of body oscillations in the time or frequency domain are being employed as markers of gait and balance abnormalities. This study investigates basic relationships within and between geometric and spectral measures in a population of young adult subjects. Twenty healthy subjects stood with parallel feet on a force platform with and without a foam pad. Adaptation effects to prolonged stance were assessed by comparing the first and last of a series of eight successive trials. Centre of Foot Pressure (CoP) excursions were recorded with Eyes Closed (EC) and Open (EO) for 90s. Geometric measures (Sway Area, Path Length), standard deviation (SD) of the excursions, and spectral measure (mean power Spectrum Level and Median Frequency), along the medio-lateral (ML) and antero-posterior (AP) direction were computed. Sway Area was more strongly associated than Path Length with CoP SD and, consequently, with mean Spectrum Level for both ML and AP, and both visual and surface conditions. The squared-SD directly specified the mean power Spectrum Level of CoP excursions (ML and AP) in all conditions. Median Frequency was hardly related to Spectrum Level. Adaptation had a confounding effect, whereby equal values of Sway Area, Path Length, and Spectrum Level corresponded to different Median Frequency values. Mean Spectrum Level and SDs of the time series of CoP ML and AP excursions convey the same meaning and bear an acceptable correspondence with Sway Area values. Shifts in Median Frequency values represent important indications of neuromuscular control of stance and of the effects of vision, support conditions, and adaptation. The Romberg Quotient EC/EO for a given variable is contingent on the compliance of the base of support and adaptation, and different between Sway Area and Path Length, but similar between Sway Area and Spectrum Level (AP and ML). These measures must be taken with caution in clinical studies, and considered together in order to get a reliable indication of overall body sway, of modifications by sensory and standing condition, and of changes with ageing, medical conditions and rehabilitation treatment. However, distinct measures shed light on the discrete mechanisms and complex processes underpinning the maintenance of stance.
Collapse
Affiliation(s)
- Stefania Sozzi
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
| | - Shashank Ghai
- Department of Physical Therapy, Rsgbiogen, New Delhi, India
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
- *Correspondence: Marco Schieppati
| |
Collapse
|
13
|
Otomi Y, Irahara S, Inoue H, Shinya T, Otsuka H, Harada M. Increased 18F-FDG Uptake in the Axillary Lymph Nodes of the Vaccinated Side Associated with COVID-19 Vaccination. Mol Imaging Radionucl Ther 2022; 31:169-171. [PMID: 35771098 PMCID: PMC9246311 DOI: 10.4274/mirt.galenos.2021.22590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A 50-year-old female patient underwent (18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) following modified radical mastectomy for cancer of the left breast. Ten days before the PET/CT, the coronavirus disease-2019 (COVID-19) vaccine was injected intramuscularly into the right deltoid muscle. Increased (18F-FDG uptake of maximum standardized uptake value (11.0) was observed in the lymph nodes of the right axilla, which had not been observed in the previous PET/CT. The size of the oval-shaped lymph nodes was up to approximately 11×9 mm; however, it was larger than that observed on the previous PET/CT. We contemplate that the increased (18F-FDG uptake was a reactive change in the lymph nodes associated with the COVID-19 vaccine.
Collapse
Affiliation(s)
- Yoichi Otomi
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Saho Irahara
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Hiroaki Inoue
- Tokushima University, Department of Thoracic and Endocrine Surgery and Oncology, Tokushima, Japan
| | | | - Hideki Otsuka
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Masafumi Harada
- Tokushima University, Department of Radiology, Tokushima, Japan
| |
Collapse
|
14
|
Contributions of Intrinsic and Extrinsic Foot Muscles during Functional Standing Postures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7708077. [PMID: 35572731 PMCID: PMC9098302 DOI: 10.1155/2022/7708077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022]
Abstract
Purpose. Maintaining balance during static standing postures requires the coordination of many neuromuscular mechanisms. The role of the intrinsic and extrinsic foot muscles in this paradigm has yet to be clearly defined. The purpose of this study was to explore foot muscle activation during static phases on common weight-bearing tasks of varying loads and balance demands. Methods. Twenty healthy young adults performed 6 standing postures (single-limb and double-limb stand, squat, and heel raise) with one foot on a force plate. Muscle activity was recorded from the abductor hallucis, flexor hallucis longus and brevis, and tibialis posterior using intramuscular electrodes; surface electrodes were used to record activity from the peroneus longus and tibialis anterior. Two-way repeated measures ANOVA (2 loading conditions × 3 postures) were run to compare muscle activation and center of pressure velocity. Results. Intrinsic foot muscle activity increased as loading and postural demand increased; however, the specific effects varied for each of the extrinsic foot muscles. Conclusions. These results suggest that the intrinsic foot muscles play an important role in maintaining static balance. Strengthening intrinsic and extrinsic foot muscles may help increase stability in people who have weak toe flexors or who suffer from a variety of foot pathologies.
Collapse
|
15
|
Sozzi S, Schieppati M. Balance Adaptation While Standing on a Compliant Base Depends on the Current Sensory Condition in Healthy Young Adults. Front Hum Neurosci 2022; 16:839799. [PMID: 35399363 PMCID: PMC8989851 DOI: 10.3389/fnhum.2022.839799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Several investigations have addressed the process of balance adaptation to external perturbations. The adaptation during unperturbed stance has received little attention. Further, whether the current sensory conditions affect the adaptation rate has not been established. We have addressed the role of vision and haptic feedback on adaptation while standing on foam. Methods In 22 young subjects, the analysis of geometric (path length and sway area) and spectral variables (median frequency and mean level of both total spectrum and selected frequency windows) of the oscillation of the centre of feet pressure (CoP) identified the effects of vision, light-touch (LT) or both in the anteroposterior (AP) and mediolateral (ML) direction over 8 consecutive 90 s standing trials. Results Adaptation was obvious without vision (eyes closed; EC) and tenuous with vision (eyes open; EO). With trial repetition, path length and median frequency diminished with EC (p < 0.001) while sway area and mean level of the spectrum increased (p < 0.001). The low- and high-frequency range of the spectrum increased and decreased in AP and ML directions, respectively. Touch compared to no-touch enhanced the rate of increase of the low-frequency power (p < 0.05). Spectral differences in distinct sensory conditions persisted after adaptation. Conclusion Balance adaptation occurs during standing on foam. Adaptation leads to a progressive increase in the amplitude of the lowest frequencies of the spectrum and a concurrent decrease in the high-frequency range. Within this common behaviour, touch adds to its stabilising action a modest effect on the adaptation rate. Stabilisation is improved by favouring slow oscillations at the expense of sway minimisation. These findings are preliminary to investigations of balance problems in persons with sensory deficits, ageing, and peripheral or central nervous lesion.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Istituti Clinici Scientifici Maugeri SB (IRCCS), Pavia, Italy
| | | |
Collapse
|
16
|
Boerger TF, McGinn L, Wang MC, Schmit BD, Hyngstrom AS. Degenerative cervical myelopathy delays responses to lateral balance perturbations regardless of predictability. J Neurophysiol 2022; 127:673-688. [PMID: 35080466 PMCID: PMC8897012 DOI: 10.1152/jn.00159.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to quantify balance impairments in standing in people with degenerative cervical myelopathy (PwDCM) in response to external perturbations. PwDCM have damage to their spinal cord due to degeneration of the cervical vertebral column, but little is known about balance. Balance was quantified by capturing kinetics, kinematic, and electromyographic data during standing in response to lateral waist pulls. Participants received pulls during predictable and unpredictable contexts in three stance widths at two magnitudes. In response to lateral waist pulls, PwDCM had larger center of mass excursion (P < 0.001) and delayed gluteus medius electromyography onset (P < 0.001) and peak (P < 0.001) timing. These main effects of history of myelopathy were consistent across predictability, stance width, and magnitude. A multilinear regression determined that gluteus medius peak timing + tibialis anterior peak timing most strongly predicted center of mass excursion (R2 = 0.50, P < 0.001). These data suggest that PwDCM have delays in generating voluntary and reactive motor commands, contributing to balance impairments. Future rehabilitation strategies should focus on generating rapid muscular contractions. Additionally, frontal plane postural control is regulated by the gluteus medius and the tibialis anterior, whereas other muscles (e.g. gluteus minimus, ankle invertors/evertors) not studied here may also contribute.NEW & NOTEWORTHY Frontal plane reactive postural control is impaired in persons with degenerative cervical myelopathy because of delayed muscle responses. Additionally, postural control varies across stance width, predictability, and perturbation magnitude.
Collapse
Affiliation(s)
- T. F. Boerger
- 1Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L. McGinn
- 2Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - M. C. Wang
- 1Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B. D. Schmit
- 3Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - A. S. Hyngstrom
- 2Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Sozzi S, Nardone A, Schieppati M. Specific Posture-Stabilising Effects of Vision and Touch Are Revealed by Distinct Changes of Body Oscillation Frequencies. Front Neurol 2021; 12:756984. [PMID: 34880823 PMCID: PMC8645986 DOI: 10.3389/fneur.2021.756984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
We addressed postural instability during stance with eyes closed (EC) on a compliant surface in healthy young people. Spectral analysis of the centre of foot pressure oscillations was used to identify the effects of haptic information (light-touch, EC-LT), or vision (eyes open, EO), or both (EO-LT). Spectral median frequency was strongly reduced by EO and EO-LT, while spectral amplitude was reduced by all "stabilising" sensory conditions. Reduction in spectrum level by EO mainly appeared in the high-frequency range. Reduction by LT was much larger than that induced by the vision in the low-frequency range, less so in the high-frequency range. Touch and vision together produced a fall in spectral amplitude across all windows, more so in anteroposterior (AP) direction. Lowermost frequencies contributed poorly to geometric measures (sway path and area) for all sensory conditions. The same subjects participated in control experiments on a solid base of support. Median frequency and amplitude of the spectrum and geometric measures were largely smaller when standing on solid than on foam base but poorly affected by the sensory conditions. Frequency analysis but not geometric measures allowed to disclose unique tuning of the postural control mode by haptic and visual information. During standing on foam, the vision did not reduce low-frequency oscillations, while touch diminished the entire spectrum, except for the medium-high frequencies, as if sway reduction by touch would rely on rapid balance corrections. The combination of frequency analysis with sensory conditions is a promising approach to explore altered postural mechanisms and prospective interventions in subjects with central or peripheral nervous system disorders.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Istituti Clinici Scientifici Maugeri SB (Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS), Pavia, Italy
| | - Antonio Nardone
- Neurorehabilitation and Spinal Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Istituti Clinici Scientifici Maugeri SB (Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS), University of Pavia, Pavia, Italy
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri SB, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| |
Collapse
|
18
|
Influence of intermittent pneumatic compression on foot sensation and balance control in chemotherapy-induced peripheral neuropathy patients. Clin Biomech (Bristol, Avon) 2021; 90:105512. [PMID: 34717200 DOI: 10.1016/j.clinbiomech.2021.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy, a side effect of cancer treatment, presents several issues to patients, including reduced sensation and increased fall risk. Previously, massage therapy has been shown to improve chemotherapy-induced peripheral neuropathy symptoms, possibly through increased blood flow. A custom built intermittent pneumatic compression device, previously shown to increase lower leg blood flow, was tested as a plausible treatment modality. METHODS Seven cancer survivors suffering from chemotherapy-induced peripheral neuropathy were recruited. Foot sensation (Semmes-Weinstein test) as well as static (dual and tandem stance) and dynamic (timed-up-and-go) balance control tests were performed both pre and post a 5-min intermittent pneumatic compression intervention. Self-reported feedback was provided by participants following testing and 24-h later. FINDINGS Five participants reported positive changes in their feet immediately following intermittent pneumatic compression treatment while four of those participants reported positive changes up to 24 h after intervention. Foot sensation was unchanged regardless of location tested (P ≥ 0.23). Postural sway path length and sway area were unchanged following intervention during dual stance (P ≥ 0.14), but path length was significantly reduced (~19.9%) following intervention during tandem stance (P = 0.033). Timed-up-and-go duration was also significantly reduced (~7.0%, P = 0.012). INTERPRETATION Overall, these findings demonstrate that intermittent pneumatic compression may be a plausible treatment modality for improving self-reported foot sensation as well as static and dynamic balance control. As a pilot study, this study provides sufficient context for further research exploring the efficacy of intermittent pneumatic compression as a treatment using a randomized control trial design.
Collapse
|
19
|
Togoe T, Tung PH, Honda K, Nakashima Y, Yamamoto M. Evaluation of Muscle Activity and Human Standing Stability Index Using the Swash Plate in a Disturbance Application. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human standing stability was evaluated using a swash plate drop device in a disturbance application. Under different experimental conditions using the device, electromyogram (EMG) measurements showed that the left and right lower limb muscles were used differently. It also demonstrated that the dynamics also differed depending on the experimental conditions. In particular, the dynamics of standing stabilization in a tandem standing position and a normal standing position significantly differed, and the activities of related muscles were also significantly different; this indicates that standing stability may potentially depend on the subjects. These results indicate the need for the comprehensive consideration of the standing and disturbance conditions during the quantitative evaluation of human standing stability.
Collapse
|
20
|
Setiorini A, Agustiningsih D, Yunus J, Budiharjo S. Effect Vladimir Janda Balance Training on Postural Sway and Leg Muscle Strength. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The majority of people who work as tea plantation pickers are powerful. They carry heavy loads of tea on their backs while the roads are quite dangerous and sometimes cause problems. A balance training program has proven to reduce postural sway, increasing leg muscle strength and improving balance strategies.
Objective:The aim of this study was to determine the effect of Vladimir Janda balance training methods with an external load on postural sway and leg muscle strength of tea pickers.
Methods: The study design used was quasi-experimental with a randomized control group pretest-posttest design. Subjects were tea pickers consisting of a productive age group of 15 people and 15 people as a control treatment group. The Vladimir Janda method balance exercises were conducted over five weeks consisting of 5 phases. Phase I-IV were carried out 5 times a week, while the V phase was done 3 times a week and each session lasted 15 minutes. Postural sway was measured with a posturometer. Leg muscle strength was measured by a back-leg dynamometer. The statistical tests used were Independent T-test and the Mann-Whitney test.
Results:The statistical test for the control and treatment groups using the Mann-Whitney test showed p = 0.001, meaning no external load effects on postural sway. Independent t-test showed p = 0.000, meaning there are differences in the effect between the treatment and control groups after being given balance exercises to increase leg muscle strength. Logistic regression test results obtained the ROC value of 0.917, meaning the Vladimir Janda balance training can affect the postural sway and knee extensor muscle strength by 91.7%.
Conclusion: The Vladimir Janda balance exercise method can reduce postural sway and increase the strength of knee extensor muscles and ankle flexor Dorsi muscles. External loads can affect the postural sway.
Collapse
|
21
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|
22
|
González L, Argüelles J, González V, Winge K, Iscar M, Olmedillas H, Blanco M, Valenzuela PL, Lucia A, Federolf PA, Santos L. Slackline Training in Children with Spastic Cerebral Palsy: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228649. [PMID: 33233328 PMCID: PMC7700417 DOI: 10.3390/ijerph17228649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
Objective: To assess whether a slackline intervention program improves postural control in children/adolescents with spastic cerebral palsy (CP). Design: Randomized controlled trial. Setting: Patients’ association. Participants: Twenty-seven children/adolescents with spastic CP (9–16 years) were randomly assigned to a slackline intervention (n = 14, 13 ± 3 years) or control group (n = 13, 12 ± 2 years). Intervention: Three slackline sessions per week (30 min/session) for 6 weeks. Main outcome measures: The primary outcome was static posturography (center of pressure—CoP—parameters). The secondary outcomes were surface myoelectrical activity of the lower-limb muscles during the posturography test and jump performance (countermovement jump test and Abalakov test). Overall (RPE, >6–20 scale) rating of perceived exertion was recorded at the end of each intervention session. Results: The intervention was perceived as “very light” (RPE = 7.6 ± 0.6). The intervention yielded significant benefits on static posturography (a significant group by time interaction on Xspeed, p = 0.006) and jump performance (a significant group by time interaction on Abalakov test, p = 0.015). Conclusions: Slackline training improved static postural control and motor skills and was perceived as non-fatiguing in children/adolescents with spastic CP.
Collapse
Affiliation(s)
- Lucía González
- Spanish Confederation of People with Physical and Organic Disability (COCEMFE), 33204 Asturias, Spain;
| | - Juan Argüelles
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (J.A.); (H.O.)
| | - Vicente González
- Medical Service of the Community of Cabo Peñas, 33440 Asturias, Spain;
| | | | - Marta Iscar
- University Central Hospital of Asturias (HUCA), 33011 Asturias, Spain;
| | - Hugo Olmedillas
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (J.A.); (H.O.)
| | - Miguel Blanco
- Catholic University of Valencia, 46001 Valencia, Spain;
| | - Pedro L. Valenzuela
- Department of Systems Biology, University of Alcalá, 28805 Alcalá de Henares, Spain;
| | - Alejandro Lucia
- European University of Madrid (Faculty of Sport Sciences) and Research Institute Hospital 12 de Octubre (‘i+12’), 28041 Madrid, Spain;
| | - Peter A. Federolf
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Luis Santos
- Department of Physical Education and Sport, University of León, 24007 León, Spain
- Performance and Health Group, Department of Physical Education and Sport, University of A Coruña, 15179 A Coruña, Spain
- Correspondence:
| |
Collapse
|
23
|
Wang SJ, Xu DQ, Su LN, Li JX. Effect of long-term exercise training on static postural control in older adults: a cross-sectional study. Res Sports Med 2020; 28:553-562. [DOI: 10.1080/15438627.2020.1795661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shao-Jun Wang
- Institute of Physical Education, North Minzu University, Yinchuan, China
- Graduate School, Tianjin University of Sport, Tianjin, China
| | - Dong-Qing Xu
- Graduate School, Tianjin University of Sport, Tianjin, China
| | - Li-Na Su
- Institute of Physical Education, North Minzu University, Yinchuan, China
| | - Jing Xian Li
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
24
|
Kaulmann D, Saveriano M, Lee D, Hermsdörfer J, Johannsen L. Stabilization of body balance with Light Touch following a mechanical perturbation: Adaption of sway and disruption of right posterior parietal cortex by cTBS. PLoS One 2020; 15:e0233988. [PMID: 32615583 PMCID: PMC7332304 DOI: 10.1371/journal.pone.0233988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/16/2020] [Indexed: 11/26/2022] Open
Abstract
Light touch with an earth-fixed reference point improves balance during quite standing. In our current study, we implemented a paradigm to assess the effects of disrupting the right posterior parietal cortex on dynamic stabilization of body sway with and without Light Touch after a graded, unpredictable mechanical perturbation. We hypothesized that the benefit of Light Touch would be amplified in the more dynamic context of an external perturbation, reducing body sway and muscle activations before, at and after a perturbation. Furthermore, we expected sway stabilization would be impaired following disruption of the right Posterior Parietal Cortex as a result of increased postural stiffness. Thirteen young adults stood blindfolded in Tandem-Romberg stance on a force plate and were required either to keep light fingertip contact to an earth-fixed reference point or to stand without fingertip contact. During every trial, a robotic arm pushed a participant's right shoulder in medio-lateral direction. The testing consisted of 4 blocks before TMS stimulation and 8 blocks after, which alternated between Light Touch and No Touch conditions. In summary, we found a strong effect of Light Touch, which resulted in improved stability following a perturbation. Light Touch decreased the immediate sway response, steady state sway following re-stabilization, as well as muscle activity of the Tibialis Anterior. Furthermore, we saw gradual decrease of muscle activity over time, which indicates an adaptive process following exposure to repetitive trials of perturbations. We were not able to confirm our hypothesis that disruption of the rPPC leads to increased postural stiffness. However, after disruption of the rPPC, muscle activity of the Tibialis Anterior is decreased more compared to sham. We conclude that rPPC disruption enhanced the intra-session adaptation to the disturbing effects of the perturbation.
Collapse
Affiliation(s)
- David Kaulmann
- Department of Sport and Health Sciences, Human Movement Science, Technische Universität München, Munchen, Germany
| | - Matteo Saveriano
- Department of Computer Science, Intelligent and Interactive Systems, University of Innsbruck, Innsbruck, Austria
| | - Dongheui Lee
- Human-centered Assistive Robotics, Electro- and Information Technology, Technische Universität München, Munchen, Germany
- Institute of Robotics and Mechatronics, German Aerospace Centre, Cologne, Germany
| | - Joachim Hermsdörfer
- Department of Sport and Health Sciences, Human Movement Science, Technische Universität München, Munchen, Germany
| | - Leif Johannsen
- Institute of Psychology, Cognitive and Experimental Psychology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
25
|
The Effects of Task Prioritization on Dual-Tasking Postural Control in Patients With Parkinson Disease Who Have Different Postural Impairments. Arch Phys Med Rehabil 2020; 101:1212-1219. [DOI: 10.1016/j.apmr.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
|
26
|
Alizadehsaravi L, Bruijn SM, Maas H, van Dieën JH. Modulation of soleus muscle H-reflexes and ankle muscle co-contraction with surface compliance during unipedal balancing in young and older adults. Exp Brain Res 2020; 238:1371-1383. [PMID: 32266445 PMCID: PMC7286858 DOI: 10.1007/s00221-020-05784-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/14/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to assess modulation of lower leg muscle reflex excitability and co-contraction during unipedal balancing on compliant surfaces in young and older adults. Twenty healthy adults (ten aged 18-30 years and ten aged 65-80 years) were recruited. Soleus muscle H-reflexes were elicited by electrical stimulation of the tibial nerve, while participants stood unipedally on a robot-controlled balance platform, simulating different levels of surface compliance. In addition, electromyographic data (EMG) of soleus (SOL), tibialis anterior (TA), and peroneus longus (PL) and full-body 3D kinematic data were collected. The mean absolute center of mass velocity was determined as a measure of balance performance. Soleus H-reflex data were analyzed in terms of the amplitude related to the M wave and the background EMG activity 100 ms prior to the stimulation. The relative duration of co-contraction was calculated for soleus and tibialis anterior, as well as for peroneus longus and tibialis anterior. Center of mass velocity was significantly higher in older adults compared to young adults ([Formula: see text] and increased with increasing surface compliance in both groups ([Formula: see text]. The soleus H-reflex gain decreased with surface compliance in young adults [Formula: see text], while co-contraction increased [Formula: see text]. Older adults did not show such modulations, but showed overall lower H-reflex gains [Formula: see text] and higher co-contraction than young adults [Formula: see text]. These results suggest an overall shift in balance control from the spinal level to supraspinal levels in older adults, which also occurred in young adults when balancing at more compliant surfaces.
Collapse
Affiliation(s)
- Leila Alizadehsaravi
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour Amsterdam and Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour Amsterdam and Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour Amsterdam and Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour Amsterdam and Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Effects of Slackline Training on Acceleration, Agility, Jump Performance and Postural Control in Youth Soccer Players. J Hum Kinet 2019; 67:235-245. [PMID: 31523321 PMCID: PMC6714354 DOI: 10.2478/hukin-2018-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The goal of this study was to assess the effects of a supervised slackline training program in a group of soccer players. Thirty-four male division I under-19 players (16.64 ± 0.81 years) agreed to participate in the study. They were randomly divided into an experimental group (EG) and a control group (CG). The first group (EG) followed a 6-week supervised slackline training program (3 sessions/week; 5-9 min/session), while the CG performed only regular soccer training. Several variables were assessed in all participants: acceleration (20-m sprint test), agility (90º turns test), jump performance (squat jump, countermovement jump), and postural control (Center of Pressure ( CoP) testing: length, area, speed, Xmean, Ymean, Xspeed, Yspeed, Xdeviation, Ydeviation). Ratings of perceived exertion and local muscle ratings of perceived exertions were also recorded after each slackline training session. At post-tests, there was a significant increase only in the EG in acceleration, agility, squat jump and countermovement jump performance, as well as several CoP variables: area in the bipedal support on a firm surface, and length, area and speed in the left leg on a firm surface. The program was rated as “somewhat hard” by the players, while quadriceps, gastrocnemius and tibialis anterior were the most exerted muscles while slacklining. In conclusion, slackline training can be an effective training tool for young, high-level soccer players.
Collapse
|
28
|
Ferraro R, Garman S, Taylor R, Parrott JS, Kadlowec J. The effectiveness of transverse abdominis training on balance, postural sway and core muscle recruitment patterns: a pilot study comparison across age groups. J Phys Ther Sci 2019; 31:729-737. [PMID: 31631946 PMCID: PMC6751050 DOI: 10.1589/jpts.31.729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This pilot study aims to determine whether improvements in postural sway, particularly among older adults, can be augmented immediately after training participants to activate and isolate the transverse abdominis (TrA) muscle. [Participants and Methods] Fifty six participants (in three age groups) took part in a single session TrA training intervention. Aspects of postural sway, balance and muscle activation patterns were measured before and after training and compared. [Results] There was significant improvement across four of six postural sway variables for the combined sample of all age groups. Older adults improved more than younger and middle-age participants in two important postural sway variables. No marked differences were evident in static reach distance across all age groups. There were no differences between groups with regard to surface electromyography (sEMG) amplitudes despite the emergence of different activation patterns among age groups. [Conclusion] Immediate effects were induced in postural sway measures after the single session training intervention. By improving neuromuscular control of the TrA and maximizing the efficiency of related proximal core muscles center of pressure (COP) sway velocities decreased during single limb standing (SLS).
Collapse
Affiliation(s)
- Richard Ferraro
- School of Health Professions, Rutgers, The State University of New Jersey: 200 College Drive, Jefferson Hall, Blackwood, New Jersey 08012, USA
| | - Sarah Garman
- School of Health Professions, Rutgers, The State University of New Jersey: 200 College Drive, Jefferson Hall, Blackwood, New Jersey 08012, USA
| | - Rebecca Taylor
- School of Health Professions, Rutgers, The State University of New Jersey: 200 College Drive, Jefferson Hall, Blackwood, New Jersey 08012, USA
| | - J Scott Parrott
- Departments of Interdisciplinary Studies and Epidemiology, Rutgers, The State University of New Jersey, USA
| | | |
Collapse
|
29
|
Modulation of tendon tap reflex activation of soleus motor neurons with reduced stability tandem stance. Hum Mov Sci 2019; 64:274-282. [DOI: 10.1016/j.humov.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
|
30
|
Standing task difficulty related increase in agonist-agonist and agonist-antagonist common inputs are driven by corticospinal and subcortical inputs respectively. Sci Rep 2019; 9:2439. [PMID: 30792452 PMCID: PMC6385195 DOI: 10.1038/s41598-019-39197-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/18/2019] [Indexed: 11/26/2022] Open
Abstract
In standing, coordinated activation of lower extremity muscles can be simplified by common neural inputs to muscles comprising a functional synergy. We examined the effect of task difficulty on common inputs to agonist-agonist (AG-AG) pairs supporting direction specific reciprocal muscle control and agonist-antagonist (AG-ANT) pairs supporting stiffness control. Since excessive stiffness is energetically costly and limits the flexibility of responses to perturbations, compared to AG-ANT, we expected greater AG-AG common inputs and a larger increase with increasing task difficulty. We used coherence analysis to examine common inputs in three frequency ranges which reflect subcortical/spinal (0–5 and 6–15 Hz) and corticospinal inputs (6–15 and 16–40 Hz). Coherence was indeed higher in AG-AG compared to AG-ANT muscles in all three frequency bands, indicating a predilection for functional synergies supporting reciprocal rather than stiffness control. Coherence increased with increasing task difficulty, only in AG-ANT muscles in the low frequency band (0–5 Hz), reflecting subcortical inputs and only in AG-AG group in the high frequency band (16–40 Hz), reflecting corticospinal inputs. Therefore, common neural inputs to both AG-AG and AG-ANT muscles increase with difficulty but are likely driven by different sources of input to spinal alpha motor neurons.
Collapse
|
31
|
Rougier PR, Marsande J, James M, Brachet M. Biomechanical Study of Tandem Stance in Healthy Young Adults: Effects of Weight-Bearing and Limb Dominance. J Mot Behav 2019; 51:603-609. [PMID: 30600782 DOI: 10.1080/00222895.2018.1545217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Postural strategies of healthy young adults to control tandem stance were investigated through the calculation of the relative contribution of the two loading-unloading (LU) and pressure-distribution (PD) mechanisms and the two legs for controlling the resultant center-of-pressure (CPRes) displacements. Weight-bearing asymmetry and limb dominance were also studied. For antero-posterior and medio-lateral CPRes displacements, LU and PD mechanisms mainly contribute, respectively. A significant LU contribution is nonetheless observed for medio-lateral control, due to a lateral gap between the CP positions under each foot despite a strict sagittal alignment for the two feet. Moreover, for medio-lateral control, the respective involvement of the two legs is related to the level of weight-bearing asymmetry, whereas the front leg mainly controls the antero-posterior sway. By specifying potential effects of body-weight asymmetry and limb dominance, to a better testing of patients with deficiencies in lateral sway control.
Collapse
Affiliation(s)
- Patrice R Rougier
- Laboratoire Interdisciplinaire de Biologie de la Motricité, EA 7424, Université de Savoie, Domaine Scientifique de Savoie-Technolac , Le Bourget du Lac cedex , France
| | - Jeanne Marsande
- Laboratoire Interdisciplinaire de Biologie de la Motricité, EA 7424, Université de Savoie, Domaine Scientifique de Savoie-Technolac , Le Bourget du Lac cedex , France
| | - Max James
- Laboratoire Interdisciplinaire de Biologie de la Motricité, EA 7424, Université de Savoie, Domaine Scientifique de Savoie-Technolac , Le Bourget du Lac cedex , France
| | - Manu Brachet
- Laboratoire Interdisciplinaire de Biologie de la Motricité, EA 7424, Université de Savoie, Domaine Scientifique de Savoie-Technolac , Le Bourget du Lac cedex , France
| |
Collapse
|
32
|
Effects of Foot Placement on Postural Sway in the Anteroposterior and Mediolateral Directions. Motor Control 2018; 23:149-170. [PMID: 30518285 DOI: 10.1123/mc.2017-0074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The common practice of standardizing foot placement in postural research and in clinical practice may serve to increase postural sway. The focus of this study was to investigate foot placement strategies in the tandem (anteroposterior, AP) and side-to-side (mediolateral, ML) stance in healthy adults. Foot placement was either experimenter-controlled or selected by the participant. Greater sway was observed for the AP stance than the ML stance, where sway was minimal. When foot placement was self-selected, participants recruited additional degrees of freedom by rotating both feet outward to expand the base of support; they narrowed their stance width in the AP stance only. Self-selection served to decrease AP sway for the AP stance and increase ML sway for both the AP and ML stances. A dynamical measure, the largest Lyapunov exponent, supported the finding that self-selection of foot placement serves to stabilize posture. The implication is that improvements in postural control were due primarily to self-selection of foot placement and not to adjustments in stance width. Experimental and perhaps clinical procedures should be revised to allow participants to self-select foot placement during postural tasks.
Collapse
|
33
|
Sozzi S, Decortes F, Schmid M, Crisafulli O, Schieppati M. Balance in Blind Subjects: Cane and Fingertip Touch Induce Similar Extent and Promptness of Stance Stabilization. Front Neurosci 2018; 12:639. [PMID: 30254565 PMCID: PMC6141713 DOI: 10.3389/fnins.2018.00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
Subjects with low vision often use a cane when standing and walking autonomously in everyday life. One aim of this study was to assess differences in the body stabilizing effect produced by the contact of the cane with the ground or by the fingertip touch of a firm surface. Another aim was to estimate the promptness of balance stabilization (or destabilization) on adding (or withdrawing) the haptic input from cane or fingertip. Twelve blind subjects and two subjects with severe visual impairment participated in two experimental protocols while maintaining the tandem Romberg posture on a force platform. In one protocol, subjects lowered the cane to a second platform on the ground and lifted it in sequence at their own pace. In the other protocol, they touched an instrumented pad with the index finger and withdrew the finger from the pad in sequence. In both protocols, subjects were asked to exert a force not granting mechanical stabilization. Under steady-state condition, the finger touch or the contact of the cane with the ground significantly reduced (to ∼78% and ∼86%, respectively) the amplitude of medio-lateral oscillation of the centre of foot pressure (CoP). Oscillation then increased when haptic information was removed. The delay to the change in body oscillation after the haptic shift was longer for addition than withdrawal of the haptic information (∼1.4 s and ∼0.7 s, respectively; p < 0.001), but was not different between the two haptic conditions (finger and cane). Similar stabilizing effects of input from cane on the ground and from fingertip touch, and similar latencies to integrate haptic cue from both sources, suggest that the process of integration of the input for balance control is initiated by the haptic stimulus at the interface cane-hand. Use of a tool is as helpful as the fingertip input, and does not produce different stabilization. Further, the latencies to haptic cue integration (from fingertip or cane) are similar to those previously found in a group of sighted subjects, suggesting that integration delays for automatic balance stabilization are not modified by visual impairment. Haptic input from a tool is easily exploited by the neural circuits subserving automatic balance stabilization in blind people, and its use should be enforced by sensory-enhancing devices and appropriate training.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Francesco Decortes
- Centro di Riabilitazione Visiva, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Monica Schmid
- Centro di Riabilitazione Visiva, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Oscar Crisafulli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Marco Schieppati
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| |
Collapse
|
34
|
Nandi T, Lamoth CJC, van Keeken HG, Bakker LBM, Kok I, Salem GJ, Fisher BE, Hortobágyi T. In Standing, Corticospinal Excitability Is Proportional to COP Velocity Whereas M1 Excitability Is Participant-Specific. Front Hum Neurosci 2018; 12:303. [PMID: 30104968 PMCID: PMC6077221 DOI: 10.3389/fnhum.2018.00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Reductions in the base of support (BOS) make standing difficult and require adjustments in the neural control of sway. In healthy young adults, we determined the effects of reductions in mediolateral (ML) BOS on peroneus longus (PL) motor evoked potential (MEP), intracortical facilitation (ICF), short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI) using transcranial magnetic stimulation (TMS). We also examined whether participant-specific neural excitability influences the responses to increasing standing difficulty. Repeated measures ANOVA revealed that with increasing standing difficulty MEP size increased, SICI decreased (both p < 0.05) and ICF trended to decrease (p = 0.07). LICI decreased only in a sub-set of participants, demonstrating atypical facilitation. Spearman's Rank Correlation showed a relationship of ρ = 0.50 (p = 0.001) between MEP size and ML center of pressure (COP) velocity. Measures of M1 excitability did not correlate with COP velocity. LICI and ICF measured in the control task correlated with changes in LICI and ICF, i.e., the magnitude of response to increasing standing difficulty. Therefore, corticospinal excitability as measured by MEP size contributes to ML sway control while cortical facilitation and inhibition are likely involved in other aspects of sway control while standing. Additionally, neural excitability in standing is determined by an interaction between task difficulty and participant-specific neural excitability.
Collapse
Affiliation(s)
- Tulika Nandi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Claudine J C Lamoth
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Helco G van Keeken
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lisanne B M Bakker
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Iris Kok
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - George J Salem
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
The effects of short-term and long-term experiences on co-contraction of lower extremity postural control muscles during continuous, multi-directional support-surface perturbations. J Electromyogr Kinesiol 2018; 39:42-48. [PMID: 29413452 DOI: 10.1016/j.jelekin.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/15/2017] [Accepted: 01/21/2018] [Indexed: 01/09/2023] Open
Abstract
While reactive balance control in response to single perturbations in quiet standing is relatively well understood, some occupational environments (e.g. maritime environments) expose workers to continuous, multi-directional challenges to balance and postural control, which require workers to respond to the current perturbation, as well as anticipate coming perturbations. Investigation of muscle activation patterns during continuous, multi-directional perturbations, and the role of previous experience, is warranted to better understand postural control strategies in these types of environments. This study aimed to identify changes in co-contraction in the lower extremity postural control muscles during multi-directional support-surface perturbations as a result of short-term and long-term experience. Twenty-five participants (12 with minimal experience (novice), 13 with ≥6 months experience working in moving maritime environments (experienced)) were exposed to five 5-minute trials of continuous support-surface perturbations. Muscle activity was recorded from six muscles bilaterally. Co-contraction indices were calculated for selected muscle pairings and compared between groups and trials. Co-contraction decreased across trials, and was lower in the experienced group relative to the novice group. These findings provide insight into the influence of previous experience on muscle activation during reactive balance control, and suggest that increased co-contraction may be a potential mechanism of the increased risk of workplace fatigue, falls, and injury in novice maritime workers. The development and refinement of training programs targeting novice workers may be a potential avenue to reduce fall and injury risk in maritime environments.
Collapse
|
36
|
Increasing mediolateral standing sway is associated with increasing corticospinal excitability, and decreasing M1 inhibition and facilitation. Gait Posture 2018; 60:135-140. [PMID: 29202358 DOI: 10.1016/j.gaitpost.2017.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
In standing, corticospinal excitability increases and primary motor cortex (M1) inhibition decreases in response to anterior posterior or direction unspecific manipulations that increase task difficulty. However, mediolateral (ML) sway control requires greater active neural involvement. Therefore, the primary purpose of this study was to determine the pattern of change in neural excitability when ML postural task difficulty is manipulated and to test whether the neural excitability is proportional to ML sway magnitude across conditions. Tibialis anterior corticospinal excitability was quantified using motor evoked potential (MEP) and postural sway was indexed using ML center of pressure (COP) velocity. Additionally, we examined inhibition and facilitation processes in the primary motor cortex using the paired pulse short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) techniques respectively. Measurements were repeated in four conditions with quiet stance as a control. Differences between conditions were tested using one-way repeated measures ANOVAs, on log transformed data. Associations were quantified using Spearman's Rank Correlation Coefficient. There was a significant main effect of condition on all the neural excitability measures with MEP (p<0.001) being highest in the most difficult condition, and SICI (p=0.01), ICF (p<0.001) being lowest in the most difficult condition. Increasing ML COP velocity was significantly associated with increasing MEP amplitude (r=0.68, p<0.001), but decreasing SICI (r=0.24, p=0.03) and ICF (r=-0.54, p<0.001). Our results show that both corticospinal and M1 excitability in standing are scaled in proportion to ML task difficulty.
Collapse
|
37
|
Park D, Lee SH, Shin JH, Park JS. Lower limb muscle magnetic resonance imaging in myotonic dystrophy type 1 correlates with the six-minute walk test and CTG repeats. Neuromuscul Disord 2018; 28:29-37. [DOI: 10.1016/j.nmd.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
38
|
Sozzi S, Crisafulli O, Schieppati M. Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization. Front Neurosci 2017; 11:705. [PMID: 29311785 PMCID: PMC5735113 DOI: 10.3389/fnins.2017.00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Haptic cues are important for balance. Knowledge of the temporal features of their effect may be crucial for the design of neural prostheses. Touching a stable surface with a fingertip reduces body sway in standing subjects eyes closed (EC), and removal of haptic cue reinstates a large sway pattern. Changes in sway occur rapidly on changing haptic conditions. Here, we describe the effects and time-course of stabilization produced by a haptic cue derived from a walking cane. We intended to confirm that cane use reduces body sway, to evaluate the effect of vision on stabilization by a cane, and to estimate the delay of the changes in body sway after addition and withdrawal of haptic input. Seventeen healthy young subjects stood in tandem position on a force platform, with eyes closed or open (EO). They gently lowered the cane onto and lifted it from a second force platform. Sixty trials per direction of haptic shift (Touch → NoTouch, T-NT; NoTouch → Touch, NT-T) and visual condition (EC-EO) were acquired. Traces of Center of foot Pressure (CoP) and the force exerted by cane were filtered, rectified, and averaged. The position in space of a reflective marker positioned on the cane tip was also acquired by an optoelectronic device. Cross-correlation (CC) analysis was performed between traces of cane tip and CoP displacement. Latencies of changes in CoP oscillation in the frontal plane EC following the T-NT and NT-T haptic shift were statistically estimated. The CoP oscillations were larger in EC than EO under both T and NT (p < 0.001) and larger during NT than T conditions (p < 0.001). Haptic-induced effect under EC (Romberg quotient NT/T ~ 1.2) was less effective than that of vision under NT condition (EC/EO ~ 1.5) (p < 0.001). With EO cane had little effect. Cane displacement lagged CoP displacement under both EC and EO. Latencies to changes in CoP oscillations were longer after addition (NT-T, about 1.6 s) than withdrawal (T-NT, about 0.9 s) of haptic input (p < 0.001). These latencies were similar to those occurring on fingertip touch, as previously shown. Overall, data speak in favor of substantial equivalence of the haptic information derived from both “direct” fingertip contact and “indirect” contact with the floor mediated by the cane. Cane, finger and visual inputs would be similarly integrated in the same neural centers for balance control. Haptic input from a walking aid and its processing time should be considered when designing prostheses for locomotion.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, Istituti Clinici Scientifici Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Oscar Crisafulli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Marco Schieppati
- Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| |
Collapse
|
39
|
Does structural leg-length discrepancy affect postural control? Preliminary study. BMC Musculoskelet Disord 2017; 18:346. [PMID: 28793888 PMCID: PMC5551003 DOI: 10.1186/s12891-017-1707-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Leg-length inequality results in an altered position of the spine and pelvis. Previous studies on the influence of leg asymmetry on postural control have been inconclusive. The purpose of this paper was to investigate the effect of structural leg-length discrepancy (LLD) on the control of posture. METHODS We studied 38 individuals (19 patients with structural LLD, 19 healthy subjects). The examination included measurement of the length of the lower limbs and weight distribution as well as a static posturography. All statistical analyses were performed with Statistica software version 10.0. Non-parametrical Kruskal-Wallis with Dunn's post test and Spearman test were used. Differences between the groups and correlation between mean COP sway velocity and the value of LLD as well as the value of LLD and weight distribution were assumed as statistically significant at p < 0.05. RESULTS There was a significant difference in the asymmetry of weight distribution between the group of patients and the healthy subjects (p = 0.0005). Differences in a posturographic examination between the groups were not statistically significant (p > 0.05). Meaningful differences in mean COP velocity in mediolateral direction between tandem stance with eyes open and closed were detected in both groups (in controls p = 0.000134, in patients both with the shorter leg in a front and rear position, p = 0.029, p = 0.026 respectively). There was a positive moderate correlation between the value of LLD and the value of mean COP velocity in normal standing in mediolateral direction with eyes open (r = 0.47) and closed (r = 0.54) and in anterioposterior plane with eyes closed (r = 0.05). CONCLUSIONS The fact that there were no significant differences in posturography between the groups might indicate compensations to the altered posture and neuromuscular adaptations in patients with structural leg-length inequality. LLD causes an increased asymmetry of weight distribution. This study confirmed a fundamental role of the sight in postural control, especially in unstable conditions. The analysis of mean COP sway velocity may suggest a proportional deterioration of postural control with the increase of the value of leg-length asymmetry. TRIAL REGISTRATION NUMBER Trial registry: ClinicalTrials.gov NCT03048656 , 8 February 2017 (retrospectively registered).
Collapse
|
40
|
Static postural sway of women with and without fibromyalgia syndrome: A cross-sectional study. Clin Biomech (Bristol, Avon) 2017; 44:83-89. [PMID: 28364674 DOI: 10.1016/j.clinbiomech.2017.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is a frequent complaint about balance problems among fibromyalgia syndrome patients; however, there are not enough studies that have shown static postural sway of women with fibromyalgia syndrome. This study aimed to compare static postural sway of women with and without fibromyalgia syndrome. METHODS This is a cross-sectional study in which twenty-nine women with fibromyalgia syndrome and 20 without took part. A posturography evaluation was performed in six different situations (bipedal, right tandem and left tandem, with eyes opened and closed), and questionnaires for clinical depression symptoms, clinical anxiety symptoms, sleep quality, and Visual Analogue Scales for Pain and Fatigue were applied. Mann-Whitney U test was used to check differences among groups; Wilcoxon matched-pair test was used to check differences intragroup; Cohen d coefficient was used to measure effect sizes and Pearson Correlation Coefficient was used for correlations among variables. Level of significance adopted was 5%. FINDINGS Women with fibromyalgia syndrome have presented worse postural sway than women without fibromyalgia syndrome in all situations (P<0.05), and worse scores in all questionnaires (P<0.05). In the eyes closed situations, women with fibromyalgia syndrome presented worse postural sway than women without in the same conditions. INTERPRETATION Women with fibromyalgia syndrome have worse performance in the static posture test, more prominent in reduced support bases with eyes closed. Pain, fatigue, depression and anxiety may have directly influenced postural sway in fibromyalgia syndrome patients.
Collapse
|
41
|
Honeine JL, Crisafulli O, Schieppati M. Body sway adaptation to addition but not withdrawal of stabilizing visual information is delayed by a concurrent cognitive task. J Neurophysiol 2017; 117:777-785. [PMID: 27903641 DOI: 10.1152/jn.00725.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/26/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to test the effects of a concurrent cognitive task on the promptness of the sensorimotor integration and reweighting processes following addition and withdrawal of vision. Fourteen subjects stood in tandem while vision was passively added and removed. Subjects performed a cognitive task, consisting of counting backward in steps of three, or were "mentally idle." We estimated the time intervals following addition and withdrawal of vision at which body sway began to change. We also estimated the time constant of the exponential change in body oscillation until the new level of sway was reached, consistent with the current visual state. Under the mentally idle condition, mean latency was 0.67 and 0.46 s and the mean time constant was 1.27 and 0.59 s for vision addition and withdrawal, respectively. Following addition of vision, counting backward delayed the latency by about 300 ms, without affecting the time constant. Following withdrawal, counting backward had no significant effect on either latency or time constant. The extension by counting backward of the time interval to stabilization onset on addition of vision suggests a competition for allocation of cortical resources. Conversely, the absence of cognitive task effect on the rapid onset of destabilization on vision withdrawal, and on the relevant reweighting time course, advocates the intervention of a subcortical process. Diverting attention from a challenging standing task discloses a cortical supervision on the process of sensorimotor integration of new balance-stabilizing information. A subcortical process would instead organize the response to removal of the stabilizing sensory input.NEW & NOTEWORTHY This study is the first to test the effect of an arithmetic task on the time course of balance readjustment following visual withdrawal or addition. Performing such a cognitive task increases the time delay following addition of vision but has no effect on withdrawal dynamics. This suggests that sensorimotor integration following addition of a stabilizing signal is performed at a cortical level, whereas the response to its withdrawal is "automatic" and accomplished at a subcortical level.
Collapse
Affiliation(s)
- Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and
| | - Oscar Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and.,Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Chia Bejarano N, Pedrocchi A, Nardone A, Schieppati M, Baccinelli W, Monticone M, Ferrigno G, Ferrante S. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans. Ann Biomed Eng 2017; 45:1204-1218. [PMID: 28144794 DOI: 10.1007/s10439-017-1802-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023]
Abstract
The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.
Collapse
Affiliation(s)
- Noelia Chia Bejarano
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Antonio Nardone
- Posture and Movement Laboratory, Division of Physical Medicine and Rehabilitation, Scientific Institute of Veruno, Fondazione Salvatore Maugeri (IRCCS), Veruno, Novara, Italy.,Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Centro Studi Attività Motorie (CSAM), Scientific Institute of Pavia, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy
| | - Walter Baccinelli
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.,Ab.Acus, Milan, Italy
| | - Marco Monticone
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy.,Physical Medicine and Rehabilitation Unit, Scientific Institute of Lissone, Fondazione Salvatore Maugeri (IRCCS), Lissone, Monza Brianza, Italy
| | - Giancarlo Ferrigno
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Simona Ferrante
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| |
Collapse
|
43
|
Usami K, Aimoto K, Oyabu M, Hashimoto K, Owaki S, Tozawa N, Kondo I. Maximum Inter-foot Distance During Leg-crossing Movement Depends on Whether the Dominant or Non-dominant Leg Is in Front. Prog Rehabil Med 2017; 2:20170010. [DOI: 10.2490/prm.20170010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kazuya Usami
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Keita Aimoto
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Miwa Oyabu
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kakeru Hashimoto
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shunpei Owaki
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Nozomi Tozawa
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Izumi Kondo
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
44
|
Sozzi S, Nardone A, Schieppati M. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision. Front Hum Neurosci 2016; 10:419. [PMID: 27625599 PMCID: PMC5003929 DOI: 10.3389/fnhum.2016.00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/08/2016] [Indexed: 12/05/2022] Open
Abstract
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS) Pavia, Italy
| | - Antonio Nardone
- Posture and Movement Laboratory, Physical Medicine and Rehabilitation, Fondazione Salvatore Maugeri (IRCCS)Veruno, Italy; Department of Translational Medicine, University of Eastern PiedmontNovara, Italy
| | - Marco Schieppati
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS)Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of PaviaPavia, Italy
| |
Collapse
|
45
|
Honeine JL, Schieppati M, Crisafulli O, Do MC. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation. Front Hum Neurosci 2016; 10:445. [PMID: 27642280 PMCID: PMC5015477 DOI: 10.3389/fnhum.2016.00445] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all three conditions. Conclusively, coordinated activation of hip abductors and ankle dorsiflexors during APA displaces the CoP towards the swing leg, and sets the contact position for the swing foot.
Collapse
Affiliation(s)
- Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of PaviaPavia, Italy; Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of PaviaPavia, Italy
| | - Oscar Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| | - Manh-Cuong Do
- Faculty of Sport Science, Complexité, Innovations, Activités Motrices et Sportives (CIAMS), Université Paris-Saclay Orsay, France
| |
Collapse
|
46
|
Santos L, Fernandez-Rio J, Winge K, Barragán-Pérez B, Rodríguez-Pérez V, González-Díez V, Blanco-Traba M, Suman OE, Philip Gabel C, Rodríguez-Gómez J. Effects of supervised slackline training on postural instability, freezing of gait, and falls efficacy in people with Parkinson's disease. Disabil Rehabil 2016; 39:1573-1580. [PMID: 27416005 DOI: 10.1080/09638288.2016.1207104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this study was to assess whether supervised slackline training reduces the risk of falls in people with Parkinson's disease (PD). METHODS Twenty-two patients with idiopathic PD were randomized into experimental (EG, N = 11) and control (CG, N = 11) groups. Center of Pressure (CoP), Freezing of Gait (FOG), and Falls Efficacy Scale (FES) were assessed at pre-test, post-test and re-test. Rate perceived exertion (RPE, Borg's 6-20 scale) and local muscle perceived exertion (LRPE) were also assessed at the end of the training sessions. RESULTS The EG group showed significant improvements in FOG and FES scores from pre-test to post-test. Both decreased at re-test, though they did not return to pre-test levels. No significant differences were detected in CoP parameters. Analysis of RPE and LRPE scores revealed that slackline was associated with minimal fatigue and involved the major lower limb and lumbar muscles. CONCLUSIONS These findings suggest that slacklining is a simple, safe, and challenging training and rehabilitation tool for PD patients. It could be introduced into their physical activity routine to reduce the risk of falls and improve confidence related to fear of falling. Implications for Rehabilitation Individuals with Parkinson's disease (PD) are twice as likely to have falls compared to patients with other neurological conditions. This study support slackline as a simple, safe, and challenging training and rehabilitation tool for people with PD, which reduce their risk of falls and improve confidence related to fear of falling. Slackline in people with PD yields a low tiredness or fatigue impact and involves the major lower limb and lumbar muscles.
Collapse
Affiliation(s)
- Luis Santos
- a University School of Sports Medicine, University of Oviedo , Oviedo , Spain.,b Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education , University of A Coruna , Spain
| | | | - Kristian Winge
- c Department of Neurology , Bispebjerg Movement Disorders Biobank, Bispebjerg University Hospital , Copenhagen , Denmark
| | | | | | | | | | - Oscar E Suman
- f Department of Surgery , University of Texas Medical Branch , Galveston , TX , USA.,g Shriners Hospitals for Children , Galveston , TX , USA
| | | | | |
Collapse
|
47
|
Santos L, Fernández-Río J, Fernández-García B, Jakobsen MD, González-Gómez L, Suman OE. Effects of Slackline Training on Postural Control, Jump Performance, and Myoelectrical Activity in Female Basketball Players. J Strength Cond Res 2016; 30:653-64. [DOI: 10.1519/jsc.0000000000001168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Sakanaka TE, Lakie M, Reynolds RF. Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy. J Physiol 2015; 594:781-93. [PMID: 26607292 PMCID: PMC4988472 DOI: 10.1113/jp271137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile. We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway. This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway. These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness. Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance.
Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a shallower increase. This transition occurred earlier during increased levels of ankle sway. These results are consistent with a movement‐dependent change in passive ankle stiffness caused by thixotropic properties of the calf muscle. The consequence is to place increased reliance upon active neural control during times when increased sway renders ankle stiffness low. The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile. We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway. This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway. These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness. Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance.
Collapse
Affiliation(s)
- Tania E Sakanaka
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Martin Lakie
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Raymond F Reynolds
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Honeine JL, Crisafulli O, Sozzi S, Schieppati M. Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information. J Neurophysiol 2015; 114:3097-110. [PMID: 26334013 DOI: 10.1152/jn.00618.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022] Open
Abstract
We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs.
Collapse
Affiliation(s)
- Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy
| | - Oscar Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and
| | - Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Pavia, Italy
| |
Collapse
|
50
|
Lemos T, Imbiriba LA, Vargas CD, Vieira TM. Modulation of tibialis anterior muscle activity changes with upright stance width. J Electromyogr Kinesiol 2015; 25:168-74. [DOI: 10.1016/j.jelekin.2014.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/20/2014] [Accepted: 07/15/2014] [Indexed: 01/11/2023] Open
|