1
|
Faryadi S, Sheikhahmadi A, Farhadi A, Nourbakhsh H. Evaluating the therapeutic effect of different forms of silymarin on liver status and expression of some genes involved in fat metabolism, antioxidants and anti-inflammatory in older laying hens. Vet Med Sci 2024; 10:e70025. [PMID: 39324876 PMCID: PMC11426161 DOI: 10.1002/vms3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Silymarin, the predominant compound of milk thistle, is an extract took out from milk thistle (Silybum marianum) seeds, containing a mixture of flavonolignans with strong antioxidant capability. METHODS The experiment was conducted using 70 Lohmann LSL-Lite hens at 80 weeks of age with 7 treatments each with 10 replicates. Treatments included: (1) control diet without silymarin, (2) daily intake of 100 mg silymarin powder/kg body weight (BW) (PSM100), (3) daily intake of 200 mg silymarin powder/kg BW (PSM200), (4) daily intake of 100 mg nano-silymarin/kg BW (NSM100), (5) daily intake of 200 mg nano-silymarin/kg BW (NSM200), (6) daily intake of 100 mg lecithinized silymarin/kg BW (LSM100) and (7) daily intake of 200 mg lecithinized silymarin/kg BW (LSM200). The birds were housed individually, and diets were fed for 12 weeks. RESULTS Scanning electron microscopy showed that NSM was produced with the average particle size of 20.30 nm. Silymarin treatment improved serum antioxidant enzyme activity. All groups receiving silymarin showed a decrease in liver malondialdehyde content, expression of fatty acid synthase, tumour necrosis factor alpha, interleukin 6 (IL-6) genes in the liver, and hepatic steatosis than the control, except those fed the PSM100 diet. There were decreases in liver dry matter and fat contents, non-alcoholic fatty liver disease and hepatocyte ballooning, and an increase in glutathione peroxidase gene expression and a decrease in iNOS gene expression in birds fed the NSM100, NSM200, LSM100 and LSM200 diets compared to the control group. Moreover, all groups receiving silymarin showed a significant decrease in liver weight compare to the control group. CONCLUSIONS Overall, the effects of silymarin when converted to NSM or LSM and offered at the level of 200 mg/kg BW were more pronounced on the hepatic variables and may be useful in the prevention of the liver disease in older laying hens.
Collapse
Affiliation(s)
- Samira Faryadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ardashir Sheikhahmadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ayoub Farhadi
- Department of Animal ScienceFaculty of Animal Sciences and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Himan Nourbakhsh
- Department of Food Science and EngineeringFaculty of AgricultureUniversity of KurdistanSanandajIran
| |
Collapse
|
2
|
Lanari J, Lupi A, Billato I, Alessandris R, Crimì F, Caregari S, Pepe A, D'Amico FE, Vitale A, Quaia E, Cillo U, Gringeri E. Textbook outcome and nomogram-guided approaches for enhancing surgical success in elderly HCC patients: Deciphering the influence of sarcopenia. Updates Surg 2024; 76:2645-2654. [PMID: 39373845 PMCID: PMC11602817 DOI: 10.1007/s13304-024-01992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Sarcopenia, serving as a surrogate for frailty, is clinically significant in liver resection (LR) for elderly hepatocellular carcinoma (HCC) patients. Our study aims to assess sarcopenia's impact, measured by Psoas Muscle Index (PMI), on postoperative outcomes. We retrospectively studied patients aged ≥ 60 years who underwent LR for HCC between 2014 and 2018. PMI, derived from preoperative CT scans, and Textbook Outcome (TO) for LR were assessed. A nomogram predicting overall survival (OS) was developed via multivariable analysis. Of the 149 eligible HCC patients, the median PMI was 7.225 cm2/m2 in males and 4.882 cm2/m2 in females, with 37 (24.8%) patients identified as sarcopenic. Mortality was significantly associated with sarcopenia (HR 2.15; p = 0.032), MELD ≥ 10 (HR 3.13; p = 0.001), > 3 HCC nodules (HR 4.97; p = 0.001), and Clavien-Dindo ≥ 3 complications (HR 3.38; p < 0.001). Sarcopenic patients had a 5-year OS of 38.8% compared to 61% for non-sarcopenic individuals (p = 0.085). Achieving TO correlated with higher OS (p = 0.01). In sarcopenic cases, the absence of postoperative complications emerged as a limiting factor. Sarcopenic patients failing to achieve TO had worse OS compared to non-sarcopenic and TO-achieving counterparts (5-year OS 18.5%; p = 0.00039). Sarcopenia emerges as a prognostic factor for LR outcomes in elderly HCC patients. Postoperative complications in sarcopenic patients may compromise oncological outcomes.
Collapse
Affiliation(s)
- Jacopo Lanari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy.
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy.
| | - Amalia Lupi
- Institute of Radiology, Department of Medicine, Padua University Hospital, University of Padua, Padua, Italy
| | - Ilaria Billato
- Department of Biology, University of Padua, Padua, Italy
| | - Remo Alessandris
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Filippo Crimì
- Institute of Radiology, Department of Medicine, Padua University Hospital, University of Padua, Padua, Italy
| | - Silvia Caregari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Alessia Pepe
- Institute of Radiology, Department of Medicine, Padua University Hospital, University of Padua, Padua, Italy
| | - Francesco Enrico D'Amico
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Alessandro Vitale
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Emilio Quaia
- Institute of Radiology, Department of Medicine, Padua University Hospital, University of Padua, Padua, Italy
| | - Umberto Cillo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Enrico Gringeri
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| |
Collapse
|
3
|
Liu Q, Li X, Luo Y. Tanshinone IIA delays liver aging by modulating oxidative stress. Front Pharmacol 2024; 15:1434024. [PMID: 39415831 PMCID: PMC11480062 DOI: 10.3389/fphar.2024.1434024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Organ-specific aging is increasingly recognized for its research significance, with liver aging demonstrating particular relevance due to its central role in metabolism. We have pioneered the discovery that the expression of ESRRG in the liver positively correlates with age and have established its association with clinical characteristics, including hepatic edema. Our findings link liver aging to a shift in oxidative stress states, where ESRRG, a crucial nuclear receptor responsive to oxidative stress, may be modulated by various small molecules. Through virtual screening of a natural medicinal molecule database followed by further validation, we confirmed that the natural compound Tanshinone IIA mitigates oxidative stress-induced damage in the liver via the ESRRG/Cyp2e1 pathway, thus decelerating liver aging. Importantly, our study also explores the dynamic impact of Tanshinone IIA on ESRRG conformation, providing a profound understanding of its molecular interactions with ESRRG and laying a foundation for the rational design of small molecules based on natural compounds.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Li
- School of Basic Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- Research Center for Life and Health Sciences, Binjiang Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
5
|
Wei C, Li X, Jin Y, Zhang Y, Yuan Q. Does the liver facilitate aging-related cognitive impairment: Conversation between liver and brain during exercise? J Cell Physiol 2024; 239:e31287. [PMID: 38704693 DOI: 10.1002/jcp.31287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Liver, an important regulator of metabolic homeostasis, is critical for healthy brain function. In particular, age-related neurodegenerative diseases seriously reduce the quality of life for the elderly. As population aging progresses rapidly, unraveling the mechanisms that effectively delay aging has become critical. Appropriate exercise is reported to improve aging-related cognitive impairment. Whereas current studies focused on exploring the effect of exercise on the aging brain itself, ignoring the persistent effects of peripheral organs on the brain through the blood circulation. The aim of this paper is to summarize the communication and aging processes of the liver and brain and to emphasize the metabolic mechanisms of the liver-brain axis about exercise ameliorating aging-related neurodegenerative diseases. A comprehensive understanding of the potential mechanisms about exercise ameliorating aging is critical for improving adaptation to age-related brain changes and formulating effective interventions against age-related cognitive decline.
Collapse
Affiliation(s)
- Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yuanting Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Qiongjia Yuan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
7
|
Li C, Hu H, Bai C, Xu H, Liu L, Tang S. Alpha-fetoprotein and APRI as predictive markers for patients with Type C hepatitis B-related acute-on-chronic liver failure: a retrospective study. BMC Gastroenterol 2024; 24:191. [PMID: 38834942 PMCID: PMC11151586 DOI: 10.1186/s12876-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Type C hepatitis B-related acute-on-chronic liver failure (HBV-ACLF), which is based on decompensated cirrhosis, has different laboratory tests, precipitating events, organ failure and clinical outcomes. The predictors of prognosis for type C HBV-ACLF patients are different from those for other subgroups. This study aimed to construct a novel, short-term prognostic score that applied serological indicators of hepatic regeneration and noninvasive assessment of liver fibrosis to predict outcomes in patients with type C HBV-ACLF. METHOD Patients with type C HBV-ACLF were observed for 90 days. Demographic information, clinical examination, and laboratory test results of the enrolled patients were collected. Univariate and multivariate logistic regression were performed to identify independent prognostic factors and develop a novel prognostic scoring system. A receiver operating characteristic (ROC) curve was used to analyse the performance of the model. RESULTS A total of 224 patients with type C HBV-ACLF were finally included. The overall survival rate within 90 days was 47.77%. Age, total bilirubin (TBil), international normalized ratio (INR), alpha-fetoprotein (AFP), white blood cell (WBC), serum sodium (Na), and aspartate aminotransferase/platelet ratio index (APRI) were found to be independent prognostic factors. According to the results of the logistic regression analysis, a new prognostic model (named the A3Twin score) was established. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) was 0.851 [95% CI (0.801-0.901)], the sensitivity was 78.8%, and the specificity was 71.8%, which were significantly higher than those of the MELD, IMELD, MELD-Na, TACIA and COSSH-ACLF II scores (all P < 0.001). Patients with lower A3Twin scores (<-9.07) survived longer. CONCLUSIONS A new prognostic scoring system for patients with type C HBV-ACLF based on seven routine indices was established in our study and can accurately predict short-term mortality and might be used to guide clinical management.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Hao Hu
- Endoscopy Center and Endoscopy Research Institute, Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chengzhi Bai
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Huaqian Xu
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Lin Liu
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China.
| |
Collapse
|
8
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
12
|
HBO1 as an Important Target for the Treatment of CCL4-Induced Liver Fibrosis and Aged-Related Liver Aging and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1881519. [PMID: 36524217 PMCID: PMC9747301 DOI: 10.1155/2022/1881519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
The liver is the largest digestive organ in the human body. The increasing incidence of chronic liver fibrosis is one of the major health challenges in the world. Liver fibrosis is a wound-healing response to acute or chronic cellular damage of liver tissue. At present, despite a series of research progress on the pathophysiological mechanism of fibrosis that has been made, there is still a gap in identifying antifibrotic targets and converting them into effective treatments. Therefore, it is extremely important to seek a molecular target that can alleviate or reverse liver fibrosis, which has important scientific and clinical significance. In the current study, to evaluate the therapeutic effect of HBO1 as a molecular target on liver aging and fibrosis, naturally-aged mice and CCL4-induced liver fibrosis mice were used as animal models, and multiple experiments were performed. Experimental results showed that HBO1 knockdown could strongly mitigate the accumulation of hepatic collagen by Masson and Sirius Red staining. Further study showed that HBO1 knockdown reduced the expression of fibrosis-related marker molecules (α-SMA, collagen type I (ColI), and fibronectin). Further work showed that HBO1 knockdown could significantly alleviate HSC activation. On this basis, we analyzed the underlying mechanism by which HBO1 alleviates liver fibrosis. It was found that HBO1 knockdown may modulate liver fibrosis by regulating the processes of EMT, inflammation, and oxidative stress. We further studied the effect of HBO1 knockdown on liver aging and aging-related liver fibrosis, and the results showed that HBO1 knockdown could significantly reduce the level of aging-related liver fibrosis and relieve liver aging. In conclusion, we systematically investigated the potential of HBO1 as a therapeutic target to attenuate liver fibrosis and liver aging. The current study found a crucial target for liver fibrosis and liver-aging therapy, which has laid a solid foundation for the liver fibrosis-related research.
Collapse
|
13
|
Hess S, Kendall TJ, Pena M, Yamane K, Soong D, Adams L, Truman R, Rambukkana A. In vivo partial reprogramming by bacteria promotes adult liver organ growth without fibrosis and tumorigenesis. Cell Rep Med 2022; 3:100820. [PMID: 36384103 PMCID: PMC9729881 DOI: 10.1016/j.xcrm.2022.100820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
Ideal therapies for regenerative medicine or healthy aging require healthy organ growth and rejuvenation, but no organ-level approach is currently available. Using Mycobacterium leprae (ML) with natural partial cellular reprogramming capacity and its animal host nine-banded armadillos, we present an evolutionarily refined model of adult liver growth and regeneration. In infected armadillos, ML reprogram the entire liver and significantly increase total liver/body weight ratio by increasing healthy liver lobules, including hepatocyte proliferation and proportionate expansion of vasculature, and biliary systems. ML-infected livers are microarchitecturally and functionally normal without damage, fibrosis, or tumorigenesis. Bacteria-induced reprogramming reactivates liver progenitor/developmental/fetal genes and upregulates growth-, metabolism-, and anti-aging-associated markers with minimal change in senescence and tumorigenic genes, suggesting bacterial hijacking of homeostatic, regeneration pathways to promote de novo organogenesis. This may facilitate the unraveling of endogenous pathways that effectively and safely re-engage liver organ growth, with broad therapeutic implications including organ regeneration and rejuvenation.
Collapse
Affiliation(s)
- Samuel Hess
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, The University of Edinburgh, Edinburgh, UK
| | - Maria Pena
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Keitaro Yamane
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Daniel Soong
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Linda Adams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Richard Truman
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Anura Rambukkana
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK; Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK; Edinburgh Infectious Diseases, The University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Zhao Y, Yang Y, Li Q, Li J. Understanding the Unique Microenvironment in the Aging Liver. Front Med (Lausanne) 2022; 9:842024. [PMID: 35280864 PMCID: PMC8907916 DOI: 10.3389/fmed.2022.842024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past decades, many studies have focused on aging because of our pursuit of longevity. With lifespans extended, the regenerative capacity of the liver gradually declines due to the existence of aging. This is partially due to the unique microenvironment in the aged liver, which affects a series of physiological processes. In this review, we summarize the related researches in the last decade and try to highlight the aging-related alterations in the aged liver.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Jianzhou Li
| |
Collapse
|
15
|
Gu YF, Chen YP, Jin R, Wang C, Wen C, Zhou YM. Age-related changes in liver metabolism and antioxidant capacity of laying hens. Poult Sci 2021; 100:101478. [PMID: 34695635 PMCID: PMC8554276 DOI: 10.1016/j.psj.2021.101478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the age-related changes of hepatic metabolism and antioxidant capacity of laying hens at 3 different ages. A total of 192 Hy-line Brown laying hens were assigned into 3 groups: 1) 195-day-old (D195 group); 2) 340-day-old (D340 group); 3) 525-day-old (D525 group). Each group replicated 8 times with 8 hens at the same age. Higher activity of aspartate aminotransferase and lower contents of total protein and globulin were observed in the serum of 525-day-old hens in comparison with their 195-day-old counterparts (P < 0.05). The 525-day-old hens accumulated higher contents of total cholesterol and triglyceride in the liver than 195-day-old birds. Additionally, compared with hens from D195 or D340 group, 525-day-old birds exhibited a lower circulating estradiol level (P < 0.05). For antioxidant capacity, birds in the D525 group showed a higher malondialdehyde concentration in both serum and liver as compared with D195 or D340 group (P < 0.05). The 525-day-old hens also exhibited lower glutathione peroxidase activities in both serum and liver when compared with 195-day-old birds (P < 0.05). Simultaneously, there was a decline of hepatic superoxide dismutase activity in the D525 group in comparison with D195 group (P < 0.05). Compared with 195-day-old counterparts, 340-day-old birds upregulated the mRNA abundance of nuclear factor erythroid-2 related factor 2 and glutathione peroxidase 1 in the liver (P < 0.05). In contrast, hens from D525 group showed the downregulation of hepatic nuclear factor erythroid-2 related factor 2, NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 when compared with D340 group (P < 0.05). These results indicated that increasing age can adversely affect liver metabolism and function of laying hens.
Collapse
Affiliation(s)
- Y F Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - R Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
16
|
Liu Q, Chen F, Yang T, Su J, Song S, Fu ZR, Li Y, Hu YP, Wang MJ. Aged-related Function Disorder of Liver is Reversed after Exposing to Young Milieu via Conversion of Hepatocyte Ploidy. Aging Dis 2021; 12:1238-1251. [PMID: 34341705 PMCID: PMC8279529 DOI: 10.14336/ad.2020.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Previous study showed that senescent hepatocytes from aged liver could be rejuvenated after repopulated in the young recipient liver. The proliferative capacity of hepatocytes was restored with the senescence reversal. However, it is unknown whether metabolic and homeostatic function of aged liver, as well as age-dependent liver steatosis could be rejuvenated or alleviated. Here, we found that senescent hepatocytes from aged liver were rejuvenated after exposing to young blood. An autonomous proliferation of senescent hepatocytes which resulting in ploidy reversal might be the underlying mechanism of senescent reversal. After performing 2/3 partial hepatectomy (2/3PHx) in young blood exposed old liver, delayed DNA synthesis of senescent hepatocytes was rescued and the number of BrdU positive hepatocytes was restored from 4.39±2.30% to 17.85±3.21%, similarly to that in the young mice at 36 hours post 2/3PHx. Moreover, Cyclin A2 and Cyclin E1 overexpression of hepatocytes in aged liver facilitating the G1/S phase transition was contributed to enhance liver regeneration. Furthermore, lipid droplet spread widely in the elderly human liver and old mouse liver, but this aged-associated liver steatosis was alleviated as senescence reversal. Collectively, our study provides new thoughts for effectively preventing age-related liver diseases.
Collapse
Affiliation(s)
- Qinggui Liu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tao Yang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jing Su
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Shaohua Song
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zhi-Ren Fu
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yao Li
- 3State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-Ping Hu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Min-Jun Wang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
17
|
Lee KA, Robbins PD, Camell CD. Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 2021; 57:107-116. [PMID: 33684669 DOI: 10.1016/j.coph.2021.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Aging is associated with the highest risk for morbidity and mortality to chronic or metabolic diseases, which are present in 50% of the elderly. Improving metabolic and immune function of the elderly would improve quality of life and reduce the risk for all other diseases. Tissue-resident macrophages and the NLRP3 inflammasome are established drivers of inflammaging and metabolic dysfunction. Energy-sensing signaling pathways connect sterile and metabolic inflammation with cellular senescence and tissue dysfunction. We discuss recent advances in the immunometabolism field. Common themes revealed by recent publications include the alterations in metabolic signaling (SIRTUIN, AMPK, or mTOR pathways) in aged immune cells, the impact of senescence on inflammaging and tissue dysfunction, and the age-related changes in metabolic tissues, especially adipose tissue, as an immunological organ. Promising gerotherapeutics are candidates to broadly target nutrient and energy sensing, inflammatory and senescence pathways, and have potential to improve healthspan and treat age-related diseases.
Collapse
Affiliation(s)
- Kyoo-A Lee
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA
| | - Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Shimada S, Kamiyama T, Orimo T, Nagatsu A, Asahi Y, Sakamoto Y, Kamachi H, Taketomi A. Prognoses, outcomes, and clinicopathological characteristics of very elderly patients with hepatocellular carcinoma who underwent hepatectomy. World J Surg Oncol 2020; 18:122. [PMID: 32522259 PMCID: PMC7288547 DOI: 10.1186/s12957-020-01899-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives The aim was to evaluate the prognostic factors, clinicopathological characteristics, and surgical outcomes after hepatectomy in very elderly patients with hepatocellular carcinoma (HCC). Methods We analyzed 796 patients with HCC from 2000 to 2017. Patients aged 80 years or older were classified into the very elderly group (group VE; n = 49); patients younger than 80 years old and aged 65 years or older were classified into the elderly group (group E; n = 363), and patients younger than 65 years old were classified into the young group (group Y; n = 384). We investigated the prognoses, clinicopathological characteristics, and surgical outcomes after hepatectomy. Results The number of surgical procedures and outcomes, including morbidities, was not significantly different. Groups VE, E, and Y showed similar prognoses in terms of both survival and recurrence. In group VE, prothrombin activity (PA) < 80% and PIVKA-II ≥ 400 mAU/ml were unfavorable factors for survival, and PIVKA-II ≥ 400 mAU/ml and the presence of portal venous invasion (PVI), hepatic venous invasion, and fibrosis were unfavorable factors for recurrence. In group E, ChE < 180 IU/l, AFP ≥ 20 ng/ml, tumor size ≥ 10 cm, and the presence of multiple tumors, PVI, and hepatic venous invasion (HVI) were unfavorable factors for survival, and ChE < 180 IU/l, tumor size ≥ 10 cm, and the presence of multiple tumors, PVI, and HVI were unfavorable factors for recurrence. In group Y, AFP ≥ 20 ng/ml, the presence of multiple tumors, poor differentiation, PVI, HVI, and blood loss ≥ 400 ml were unfavorable factors for survival, and PA < 80%, albumin < 3.5 g/dl, AFP ≥ 20 ng/ml, tumor size ≥ 10 cm, and the presence of multiple tumors, poor differentiation, and PVI were unfavorable factors for recurrence. Conclusions Tumor factors might have limited influence on the prognosis of very elderly patients, and liver function reserve might be important for the long-term survival of very elderly patients. Hepatectomy can be performed safely, even in very elderly patients. Hepatectomy should not be avoided in very elderly patients with HCC if patients have a good general status because these patients have the same prognoses as nonelderly individuals.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoh Asahi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuzuru Sakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15-West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|