1
|
Malik MY, Alex A, Sivalingam AM, Neha B, Vimal S. Evaluation of the Phytochemical Screening of Methanolic Seed Extracts of Tribulus terrestris: An In Vitro Application of Anti-cancer, Anti-oxidant, and Anti-microbial Activities. Cureus 2024; 16:e66674. [PMID: 39262564 PMCID: PMC11389076 DOI: 10.7759/cureus.66674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Tribulus terrestris, a plant known for its pharmacological properties, was investigated in this study for its potential anticancer effects against oral cancer cells. The study aimed to explore the phytochemical composition of T. terrestris seed extract and evaluate its cytotoxic, pro-apoptotic, antioxidant, anti-inflammatory, and antimicrobial activities. MATERIALS AND METHODS Methanolic seed extracts of T. terrestris were obtained and subjected to phytochemical analysis to identify bioactive compounds. The cytotoxic effect of the extract on oral cancer cells was evaluated using the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, while pro-apoptotic effects were assessed through dual fluorescent staining. Antioxidant activity was measured using hydrogen peroxide and erythrocyte aggregation assays, while anti-inflammatory activity was evaluated through inhibition of albumin denaturation. RESULTS Phytochemical analysis revealed the presence of alkaloids, tannins, saponins, flavonoids, and phenols in T. terrestris seed extract. The extract demonstrated concentration-dependent cytotoxicity against oral cancer cells, with 100 μg/mL showing significant growth inhibition. Pro-apoptotic effects were observed, with characteristic morphological changes in cancer cells treated with the extract. Antioxidant activity was demonstrated by the extract, with methanol fraction of a flower (MFF) exhibiting the highest capacity, followed by total trichome fraction (TTF), and a positive correlation between phenolic content and free radical scavenging effectiveness was noted. Antimicrobial activity against various pathogens, including bacteria and fungi, was also observed, with higher concentrations showing increased efficacy. CONCLUSION The study concludes that methanolic extracts of T. terrestris possess significant anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. These findings highlight the potential of T. terrestris as a candidate for further research and clinical applications, either alone or in combination with other agents, for the treatment of oral cancer and associated conditions.
Collapse
Affiliation(s)
- Mohammed Yaseen Malik
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Arockia Alex
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Azhagu Madhavan Sivalingam
- Community Medicine/Diabetes and Endocrinology, Pharmacology, Nanotechnology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Brahma Neha
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Sugumar Vimal
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| |
Collapse
|
2
|
Mustafa A, Indiran MA, Ramalingam K, Perumal E, Shanmugham R, Karobari MI. Anticancer potential of thiocolchicoside and lauric acid loaded chitosan nanogel against oral cancer cell lines: a comprehensive study. Sci Rep 2024; 14:9270. [PMID: 38649421 PMCID: PMC11035588 DOI: 10.1038/s41598-024-60046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The present study explored the anticancer activity of a Chitosan-based nanogel incorporating thiocolchicoside and lauric acid (CTL) against oral cancer cell lines (KB-1). Cell viability, AO/EtBr dual staining and Cell cycle analysis were done to evaluate the impact of CTL nanogel on oral cancer cells. Real-time PCR was performed to analyze proapoptotic and antiapoptotic gene expression in CTL-treated KB-1 cells. Further, molecular docking analysis was conducted to explore the interaction of our key ingredient, thiocolchicoside and its binding affinities. The CTL nanogel demonstrated potent anticancer activity by inhibiting oral cancer cell proliferation and inducing cell cycle arrest in cancer cells. Gene expression analysis indicated alterations in Bax and Bcl-2 genes; CTL nanogel treatment increased Bax mRNA expression and inhibited the Bcl-2 mRNA expression, which showed potential mechanisms of the CTL nanogel's anticancer action. It was found that thiocolchicoside can stabilize the protein's function or restore it as a tumour suppressor. The CTL nanogel exhibited excellent cytotoxicity and potent anticancer effects, making it a potential candidate for non-toxic chemotherapy in cancer nanomedicine. Furthermore, the nanogel's ability to modulate proapoptotic gene expression highlights its potential for targeted cancer therapy. This research contributes to the growing interest in Chitosan-based nanogels and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Ameena Mustafa
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Meignana Arumugham Indiran
- Department of Public Health Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Karthikeyan Ramalingam
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Elumalai Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Rajeshkumar Shanmugham
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Mohmed Isaqali Karobari
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
3
|
Babu LT, Das U, Das R, Kar B, Paira P. Re(I)[2-aryl-1 H-imidazo[4,5- f][1,10]phenanthroline] tricarbonyl chloride complexes for selective cancer therapy via a potential DNA damage mechanism. Dalton Trans 2024; 53:5993-6005. [PMID: 38469684 DOI: 10.1039/d3dt04383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.
Collapse
Affiliation(s)
- Lavanya Thilak Babu
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Utpal Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Binoy Kar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Chang Y, Wang Z, Li H, Dang W, Song Y, Kang X, Zhang H. Morphological Changes and Strong Cytotoxicity in Yarrowia lipolytica by Overexpressing Delta-12-Desaturase. J Fungi (Basel) 2024; 10:126. [PMID: 38392798 PMCID: PMC10890566 DOI: 10.3390/jof10020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, delta-12 desaturase was overexpressed in Yarrowia lipolytica using the single-copy integrative vector pINA1312 and multicopy integrative vector pINA1292, resulting in the engineered yeast strains 1312-12 and 1292-12, respectively. The content of intracellular linoleic acid (LA) in the 1292-12 strain was much higher than in the 1312-12 strain and the control group. One interesting finding was that the 1292-12 strain showed obvious changes in surface morphology. The 1292-12 colonies were much smaller and smoother, whereas their single cells became much larger compared to the control strain. In addition, the dry cell weight (DCW) of the 1292-12 strain was obviously increased from 8.5 to 12.7 g/L, but the viable cell number sharply decreased from 107 to 105/mL. These results indicated that increased LA content in Yarrowia lipolytica could induce morphological changes or even oxidative stress-dependent cell death. The reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated in the 1292-12 strain, while the antioxidant activities of intracellular catalase (CAT) and superoxide dismutase (SOD) were significantly decreased by 27.6 and 32.0%, respectively. Furthermore, it was also revealed that these issues could be ameliorated by the exogenous supplementation of vitamin C, fish and colza oil.
Collapse
Affiliation(s)
- Yufei Chang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zhen Wang
- School of Public Health, Qilu Medical University, Zibo 255300, China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinxin Kang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
5
|
Vue Z, Garza‐Lopez E, Neikirk K, Katti P, Vang L, Beasley H, Shao J, Marshall AG, Crabtree A, Murphy AC, Jenkins BC, Prasad P, Evans C, Taylor B, Mungai M, Killion M, Stephens D, Christensen TA, Lam J, Rodriguez B, Phillips MA, Daneshgar N, Koh H, Koh A, Davis J, Devine N, Saleem M, Scudese E, Arnold KR, Vanessa Chavarin V, Daniel Robinson R, Chakraborty M, Gaddy JA, Sweetwyne MT, Wilson G, Zaganjor E, Kezos J, Dondi C, Reddy AK, Glancy B, Kirabo A, Quintana AM, Dai D, Ocorr K, Murray SA, Damo SM, Exil V, Riggs B, Mobley BC, Gomez JA, McReynolds MR, Hinton A. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell 2023; 22:e14009. [PMID: 37960952 PMCID: PMC10726809 DOI: 10.1111/acel.14009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/15/2023] Open
Abstract
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
| | - Larry Vang
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Heather Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Jianqiang Shao
- Central Microscopy Research FacilityUniversity of IowaIowaIowa CityUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Amber Crabtree
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Brenita C. Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Chantell Evans
- Department of Cell BiologyDuke University School of MedicineNorth CarolinaDurhamUSA
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaFloridaGainesvilleUSA
| | - Margaret Mungai
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Mason Killion
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Dominique Stephens
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Jacob Lam
- Department of Internal MedicineUniversity of IowaIowaIowa CityUSA
| | | | - Mark A. Phillips
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Nastaran Daneshgar
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Ho‐Jin Koh
- Department of Biological SciencesTennessee State UniversityTennesseeNashvilleUSA
| | - Alice Koh
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and PharmacologyMeharry Medical CollegeTennesseeNashvilleUSA
| | - Nina Devine
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Mohammad Saleem
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
- Sport Sciences and Exercise Laboratory (LaCEE)Catholic University of Petrópolis (UCP)PetrópolisState of Rio de JaneiroBrazil
| | - Kenneth Ryan Arnold
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Valeria Vanessa Chavarin
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Ryan Daniel Robinson
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | | | - Jennifer A. Gaddy
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Medicine Health and SocietyVanderbilt UniversityTennesseeNashvilleUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemsTennesseeNashvilleUSA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and PathologyUniversity of WashingtonWashingtonSeattleUSA
| | - Genesis Wilson
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Elma Zaganjor
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Cristiana Dondi
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | | | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthMarylandBethesdaUSA
| | - Annet Kirabo
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research CenterUniversity of Texas at El PasoTexasEl PasoUSA
| | - Dao‐Fu Dai
- Department of PathologyUniversity of Johns Hopkins School of MedicineMarylandBaltimoreUSA
| | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Sandra A. Murray
- Department of Cell Biology, School of MedicineUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Steven M. Damo
- Department of Life and Physical SciencesFisk UniversityTennesseeNashvilleUSA
- Center for Structural BiologyVanderbilt UniversityTennesseeNashvilleUSA
| | - Vernat Exil
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowaIowa CityUSA
- Department of Pediatrics, Division of CardiologySt. Louis University School of MedicineMissouriSt. LouisUSA
| | - Blake Riggs
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Bret C. Mobley
- Department of PathologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jose A. Gomez
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| |
Collapse
|
6
|
Priya S, Murali A, Mohan S, Lakshminarayanan A, Sekar S, Ramesh R, Devendiran M, Han SS. In vitro anti-prostate adenocarcinoma and lung cancer studies of phenoxyaniline- block-poly(methyl methacrylate) based nanocomposites via controlled radical polymerization. NANOSCALE ADVANCES 2023; 5:5870-5879. [PMID: 37881709 PMCID: PMC10597550 DOI: 10.1039/d3na00644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
A phenoxyaniline-based macroinitiator is utilized for the first time in order to produce phenoxyaniline-block-poly(methyl methacrylate) composites through single electron transfer-living radical polymerization (SET-LRP) under mild conditions. A different weight percentage of Cloisite 93A is added into the polymer mixtures in order to increase their biochemical properties. The prepared block copolymer nanocomposites are characterized using ATR-IR, UV-vis-spectroscopy, XRD, Raman, TGA, DSC, a particle size analyzer, contact angle measurements and SEM in order to characterize their structural, thermal, surface and morphological properties. Further, the developed polymeric nanocomposites are successfully applied in two different cancer cell lines (prostate adenocarcinoma and lung cancer), which show excellent anticancer properties. Also, acridine orange/ethidium bromide (AO/EtBr) dual staining is performed, which causes drastic cell death by apoptosis in both A549 and PC-3 cell lines, which indicated that the prepared polymeric nanocomposites effectively inhibit the cell proliferation and induce the apoptosis in both the cancer cells. Here nanoclay is used for cancer treatment because of its complete water solubility, which essentially causes the formation of a cationic complex between the clay and drug through electrostatic interactions. Hence, the exchange of ions between the clay and other ions in the biological environment leads to inhibition of the proliferation of prostate adenocarcinoma and lung cancer cells in the system.
Collapse
Affiliation(s)
- Sahariya Priya
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Adhigan Murali
- School for Advanced Research in Petrochemicals (SARP)- ARSTPS, Central Institute of Petrochemicals Engineering & Technology (CIPET), Govt. of India Chennai 600032 India
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain University Bangalore 562112 Karnataka India
| | - A Lakshminarayanan
- Department of Pharmacology, Indira Medical College and Hospitals Tiruvallur Tamilnadu 631 203 India
| | - S Sekar
- School for Advanced Research in Petrochemicals (SARP)- ARSTPS, Central Institute of Petrochemicals Engineering & Technology (CIPET), Govt. of India Chennai 600032 India
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Material Engineering, Adama Science and Technology University, Adama P.O. Box: 1888 Adama Ethiopia
| | - M Devendiran
- Vels Institute of Science Technology and Advanced Studies (VISTAS) Pallavaram Chennai 117 India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| |
Collapse
|
7
|
Thilak
Babu L, Paira P. CuAAC "Click"-Derived Luminescent 2-(2-(4-(4-(Pyridin-2-yl)-1 H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[ d]thiazole-Based Ru(II)/Ir(III)/Re(I) Complexes as Anticancer Agents. ACS OMEGA 2023; 8:32382-32395. [PMID: 37720792 PMCID: PMC10500652 DOI: 10.1021/acsomega.3c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/13/2023] [Indexed: 09/19/2023]
Abstract
To enhance the cytoselective behavior of the complexes, we intended to develop a CuAAC "click"-derived synthetic protocol for the preparation of 2-(2-(4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)butoxy)phenyl)benzo[d]thiazole-based Ru(II)/Ir(III)/Re(I) complexes, and their cytotoxicity against three different cancer cell lines (MCF-7, HeLa, and U87MG) in consort with one normal cell line (HEK-293) was evaluated. In our detailed investigations, the significant cytotoxic nature of the Ru(II) complex 7a compared to Ir(III) and Re(I) complexes (7b and 7c, respectively) was observed. Complex 7a was capable of MCF-7 cell apoptosis via the inhibition of both S- and G2/M-phase cell cycle arrest in association with a substantial quantity of ROS production and DNA intercalation.
Collapse
Affiliation(s)
- Lavanya Thilak
Babu
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
8
|
Chen J, Agrawal S, Yi H, Vallejo D, Agrawal A, Lee AP. Cell-Sized Lipid Vesicles as Artificial Antigen-Presenting Cells for Antigen-Specific T Cell Activation. Adv Healthc Mater 2023; 12:e2203163. [PMID: 36645182 PMCID: PMC10175210 DOI: 10.1002/adhm.202203163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Indexed: 01/17/2023]
Abstract
In this study, efficient T cell activation is demonstrated using cell-sized artificial antigen-presenting cells (aAPCs) with protein-conjugated bilayer lipid membranes that mimic biological cell membranes. The highly uniform aAPCs are generated by a facile method based on standard droplet microfluidic devices. These aAPCs are able to activate the T cells in peripheral blood mononuclear cells, showing a 28-fold increase in interferon gamma (IFNγ) secretion, a 233-fold increase in antigen-specific CD8 T cells expansion, and a 16-fold increase of CD4 T cell expansion. The aAPCs do not require repetitive boosting or additional stimulants and can function at a relatively low aAPC-to-T cell ratio (1:17). The research presents strong evidence that the surface fluidity and size of the aAPCs are critical to the effective formation of immune synapses essential for T cell activation. The findings demonstrate that the microfluidic-generated aAPCs can be instrumental in investigating the physiological conditions and mechanisms for T cell activation. Finally, this method demonstrates the feasibility of customizable aAPCs for a cost-effective off-the-shelf approach to immunotherapy.
Collapse
Affiliation(s)
- Jui‐Yi Chen
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | | | - Hsiu‐Ping Yi
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Derek Vallejo
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Anshu Agrawal
- Department of MedicineUniversity of CaliforniaIrvineCA92617USA
| | - Abraham P. Lee
- Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| |
Collapse
|
9
|
Kado T, Kusakari N, Tamaki T, Murota K, Tsujiuchi T, Fukushima N. Oleic acid stimulates cell proliferation and BRD4-L-MYC-dependent glucose transporter transcription through PPARα activation in ovarian cancer cells. Biochem Biophys Res Commun 2023; 657:24-34. [PMID: 36965420 DOI: 10.1016/j.bbrc.2023.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fatty acids (FAs) play important roles in cell membrane structure maintenance, energy production via β-oxidation, and as extracellular signaling molecules. Prior studies have demonstrated that exposure of cancer cells to FAs affects cell survival, cell proliferation, and cell motility. Oleic acid (OA) has somewhat controversial effects in cancer cells, with both pro- and anti-cancer effects, depending on cell type. Our prior findings suggested that OA enhances cell survival in serum starved HNOA ovarian cancer cells by activating glycolysis, but not β-oxidation. Here, we pharmacologically examined the cellular mechanisms by which OA stimulates glycolysis in HNOA cells. OA induced cell cycle progression, leading to increase in cell number through peroxisome proliferator activated receptor (PPAR) α activation. OA-induced glycolysis was mediated by increased GLUT expression, and increases in GLUT expression were mediated by increased L-MYC expression. Furthermore, L-MYC expression was due to BRD4 activation. These findings suggested involvement of the BRD4-L-MYC-GLUT axis in OA-stimulated glycolysis. These results suggested that OA could activate PPARα to stimulate two pathways: glycolysis and cell cycle progression, and provided insight into the role of OA in ovarian cancer cell growth.
Collapse
Affiliation(s)
- Tsuyoshi Kado
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Naoki Kusakari
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Takeru Tamaki
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Kaeko Murota
- Division of Food and Nutritional Chemistry, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan.
| |
Collapse
|
10
|
Li N, Li Q, He X, Gao X, Wu L, Xiao M, Cai W, Liu B, Zeng F. Antioxidant and anti-aging activities of Laminaria japonica polysaccharide in Caenorhabditis elegans based on metabonomic analysis. Int J Biol Macromol 2022; 221:346-354. [PMID: 36084871 DOI: 10.1016/j.ijbiomac.2022.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
In this study, Laminaria japonica polysaccharide (LJP) was measured in vitro against three antioxidant indicators: DPPH, ABTS, and hydroxyl. In vivo, LJP investigated thermal tolerance, H2O2-induced oxidative stress tolerance, and lipofuscin in Caenorhabditis elegans (C. elegans). Following that, after LJP treatment, the effects and underlying mechanisms were investigated at the mRNA and metabolite levels. We discovered the free radical scavenging activity of LJP. The thermal tolerance of C. elegans improved significantly, lowering levels of malondialdehyde, lipofuscin, and reactive oxygen species. Upregulation of Glp-1, Daf-16, Skn-1, and Sod-3 expression and downregulation of Age-1 and Daf-2 expression increased the ability to resist oxidative stress. Metabolomic analysis revealed that LJP promoted alanine, aspartate, and glutamate metabolism, the TCA cycle, butanoate metabolism, and the FOXO signaling pathway expression, resulting in significant changes in (R)-3-hydroxybutyric acid, palmitic acid, L-glutamic acid, L-malic acid, and oleic acid. The present study shows that LJP, as a functional food, has the potential to boost antioxidant capacity and delay aging.
Collapse
Affiliation(s)
- Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linxiu Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Meifang Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenwen Cai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, Arsad H. The antiproliferative and apoptotic potential of Clinacanthus nutans against human breast cancer cells through targeted apoptosis pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81685-81702. [PMID: 35737268 DOI: 10.1007/s11356-022-20858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Salwani Md Saad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Ismail Abiola Adebayo
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Analystical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
- Microbiology and Immunology Department, School of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Ishaka-Bushenyi, Uganda
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Rafedah Abas
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang, Kepala Batas, Malaysia.
| |
Collapse
|
12
|
Meenakshi Sundaram DN, Plianwong S, Kc R, Ostergaard H, Uludağ H. In Vitro Cytotoxicity and Cytokine Production by Lipid-Substituted Low Molecular Weight Branched PEIs Used for Gene Delivery. Acta Biomater 2022; 148:279-297. [PMID: 35738388 DOI: 10.1016/j.actbio.2022.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Lipid-modified low molecular weight branched polyethyleneimines (PEIs) are promising non-viral gene delivery systems that have been successfully explored for treatment of various diseases. The present study aims to determine in vitro safety of these delivery systems based on assessment of cytotoxicity with peripheral blood mononuclear cells (PBMCs), hemolysis with human red blood cells (RBC) and cytokine secretion from several sources of PBMCs. The viability of cells treated with lipopolymer/pDNA complexes was dependent on the polymer:pDNA ratio used but remained low at therapeutically relevant concentrations for most lipopolymers, except for the propionic acid substituted PEIs. The extent of hemolysis was minimal and below the accepted safety levels with most of the lipopolymers; however, some linoleic acid substituted PEIs yielded significant hemolysis activity. Unlike strong cytokine secretion from PMA/IO stimulated cells, most lipopolymer/pDNA complexes remained non-responsive, showing minimal changes in cytokine secretion (TNF-α, IL-6 and IFN-γ) irrespective of the lipopolymer/pDNA formulations. The 0.6 kDa PEI with lauric acid substituent displayed slight cytokine upregulation, however it remained low relative to the positive controls. This study demonstrated that the lipid modified LMW PEIs are expected to be safe in contact with blood components. However, close attention to lipopolymer concentration and ratio of polymer to pDNA in formulations might be required for individual lipopolymers for optimal safety response in nucleic acid therapies. STATEMENT OF SIGNIFICANCE: : This manuscript investigated the safety aspects of various lipid modified low molecular weight polyethylenimine (LMW-PEI) polymers employed for pDNA delivery through in vitro studies. Using peripheral blood mononuclear cells (PBMCs) from multiple sources, we show that the hemolysis ability was minimal for most polymers, although a particular lipid substituent (linoleic acid) at specific ratios exhibited hemolysis. The levels of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ) were slightly upregulated only with a lauric acid substituted 0.6PEI, but remained low relative to positive control treatments. We further report the beneficial effect of polyacrylic acid additives on hemolysis and cytokine secretion to a reasonable extent. This study confirms the feasibility of using LMW-PEI as safe delivery agents for various therapeutic purposes.
Collapse
Affiliation(s)
| | - Samarwadee Plianwong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Remant Kc
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hanne Ostergaard
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Mohammadihaji R, Gheibi N, Amiri S, Adibzadeh S, Abdolmaleki F, Elmi A, Rahmani B, Azad M. The effect of ω-6 fatty acid on WT1 and WIF-1 genes expression and inducing apoptosis in A375 melanoma cell line. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Mishchenko EV, Timofeeva EE, Artamonov AS, Portnaya IB, Koroleva MY. Nanoemulsions and Nanocapsules with Oleic Acid. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Samir Ali S, Al-Tohamy R, Khalil MA, Ho SH, Fu Y, Sun J. Exploring the potential of a newly constructed manganese peroxidase-producing yeast consortium for tolerating lignin degradation inhibitors while simultaneously decolorizing and detoxifying textile azo dye wastewater. BIORESOURCE TECHNOLOGY 2022; 351:126861. [PMID: 35183728 DOI: 10.1016/j.biortech.2022.126861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
MnP-YC4, a newly constructed manganese peroxidase-producing yeast consortium, has been developed to withstand lignin degradation inhibitors while degrading and detoxifying azo dye. MnP-YC4 tolerance to major biomass-derived inhibitors was promising. MnP induced by lignin was found to be highly related to dye decolorization by MnP-YC4. Simulated azo dye-containing wastewater supplemented with a lignin co-substrate (3,5-Dimethoxy-4-hydroxybenzaldehyde) decolorized up to 100, 91, and 76% at final concentrations of 20, 40, and 60%, respectively. MnP-YC4 effectively decolorized the real textile wastewater sample, reaching up to 91.4%, and the COD value decreased significantly during the decolorization, reaching 7160 mg/l within 7 days. A possible dye biodegradation pathway was proposed based on the degradation products identified by UV-vis, FTIR, GC/MS, and HPLC techniques, beginning with azo bond cleavage and eventually mineralized to CO2 and H2O. When compared to the phytotoxic original dye, the phytotoxicity of MnP-YC4 treated dye-containing wastewater samples confirmed the nontoxic nature.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of the Environment and Agrifood, Cranfield University, MK43 0AL, UK
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
16
|
Minocha T, Das M, Rai V, Verma SS, Awasthee N, Gupta SC, Haldar C, Yadav SK. Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. Inflammopharmacology 2022; 30:1411-1429. [DOI: 10.1007/s10787-022-00964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
|
17
|
Cheng J, Liu Q, Zhang Y, Wang Z, Gao M, Li S. Preparation and properties of antibacterial and antioxidant mango peel extract/polyvinyl alcohol composite films. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Cheng
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Qun Liu
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Yucang Zhang
- College of Food and Biological Engineering Jimei University Xiamen China
| | - Zhifen Wang
- School of Chemical Engineering and Technology Hainan University Haikou China
| | - Mengmeng Gao
- School of Chemical Engineering and Technology Hainan University Haikou China
| | - Siyuan Li
- School of Chemical Engineering and Technology Hainan University Haikou China
| |
Collapse
|
18
|
Alfhili MA, Aljuraiban GS. Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells 2021; 10:cells10123388. [PMID: 34943896 PMCID: PMC8699421 DOI: 10.3390/cells10123388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide, and dietary habits represent a major risk factor for dyslipidemia; a hallmark of CVD. Saturated fatty acids contribute to CVD by aggravating dyslipidemia, and, in particular, lauric acid (LA) raises circulating cholesterol levels. The role of red blood cells (RBCs) in CVD is increasingly being appreciated, and eryptosis has recently been identified as a novel mechanism in CVD. However, the effect of LA on RBC physiology has not been thoroughly investigated. RBCs were isolated from heparin-anticoagulated whole blood (WB) and exposed to 50-250 μM of LA for 24 h at 37 °C. Hemoglobin was photometrically examined as an indicator of hemolysis, whereas eryptosis was assessed by Annexin V-FITC for phosphatidylserine (PS) exposure, Fluo4/AM for Ca2+, light scatter for cellular morphology, H2DCFDA for oxidative stress, and BODIPY 581/591 C11 for lipid peroxidation. WB was also examined for RBC, leukocyte, and platelet viability and indices. LA caused dose-responsive hemolysis, and Ca2+-dependent PS exposure, elevated erythrocyte sedimentation rate (ESR), cytosolic Ca2+ overload, cell shrinkage and granularity, oxidative stress, accumulation of lipid peroxides, and stimulation of casein kinase 1α (CK1α). In WB, LA disrupted leukocyte distribution with elevated neutrophil-lymphocyte ratio (NLR) due to selective toxicity to lymphocytes. In conclusion, this report provides the first evidence of the pro-eryptotic potential of LA and associated mechanisms, which informs dietary interventions aimed at CVD prevention and management.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: ; Tel.: +966-504-262-597
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
19
|
Pinto LC, Mesquita FP, Barreto LH, Souza PFN, Ramos INF, Pinto AVU, Soares BM, da Silva MN, Burbano RMR, Montenegro RC. Anticancer potential of limonoids from Swietenia macrophylla: Genotoxic, antiproliferative and proapoptotic effects towards human colorectal cancer. Life Sci 2021; 285:119949. [PMID: 34543640 DOI: 10.1016/j.lfs.2021.119949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
AIMS Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 μg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.
Collapse
Affiliation(s)
- Laine C Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus street, 4487, Guamá, Belém, Brazil
| | - Felipe P Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil
| | - Leilane H Barreto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Pedro F N Souza
- Collaborating professor of Biochemistry and Molecular Biology Graduate Program at the Department of Biochemistry and Molecular Biology, Federal University of Ceará
| | - Ingryd N F Ramos
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Adrielly V U Pinto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Bruno M Soares
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Rommel M R Burbano
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Raquel C Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
20
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Zhu S, Choudhury NR, Rooney S, Pham NT, Koszela J, Kelly D, Spanos C, Rappsilber J, Auer M, Michlewski G. RNA pull-down confocal nanoscanning (RP-CONA) detects quercetin as pri-miR-7/HuR interaction inhibitor that decreases α-synuclein levels. Nucleic Acids Res 2021; 49:6456-6473. [PMID: 34107032 PMCID: PMC8216281 DOI: 10.1093/nar/gkab484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
RNA-protein interactions are central to all gene expression processes and contribute to a variety of human diseases. Therapeutic approaches targeting RNA-protein interactions have shown promising effects on some diseases that are previously regarded as 'incurable'. Here, we developed a fluorescent on-bead screening platform, RNA Pull-Down COnfocal NAnoscanning (RP-CONA), to identify RNA-protein interaction modulators in eukaryotic cell extracts. Using RP-CONA, we identified small molecules that disrupt the interaction between HuR, an inhibitor of brain-enriched miR-7 biogenesis, and the conserved terminal loop of pri-miR-7-1. Importantly, miR-7's primary target is an mRNA of α-synuclein, which contributes to the aetiology of Parkinson's disease. Our method identified a natural product quercetin as a molecule able to upregulate cellular miR-7 levels and downregulate the expression of α-synuclein. This opens up new therapeutic avenues towards treatment of Parkinson's disease as well as provides a novel methodology to search for modulators of RNA-protein interaction.
Collapse
Affiliation(s)
- Siran Zhu
- Infection Medicine, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Nila Roy Choudhury
- Infection Medicine, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
| | - Saul Rooney
- Infection Medicine, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
| | - Nhan T Pham
- School of Biological Sciences, IQB3, University of Edinburgh, Edinburgh EH9 9FF, UK
| | - Joanna Koszela
- School of Biological Sciences, IQB3, University of Edinburgh, Edinburgh EH9 9FF, UK
| | - David Kelly
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
- Department of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Manfred Auer
- School of Biological Sciences, IQB3, University of Edinburgh, Edinburgh EH9 9FF, UK
| | - Gracjan Michlewski
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
- Infection Medicine, University of Edinburgh, The Chancellor’s Building, Edinburgh EH16 4SB, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
22
|
Kuo T, Yang G, Chen T, Wu Y, Tran Nguyen Minh H, Chen L, Chen W, Huang M, Liang Y, Yang W. Bidens pilosa
: Nutritional value and benefits for metabolic syndrome. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.63] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tien‐Fen Kuo
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Greta Yang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Tzung‐Yan Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Translational Research Center Academia Sinica Taipei Taiwan
| | - Yueh‐Chen Wu
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Hieu Tran Nguyen Minh
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Institute of Biotechnology National Taiwan University Taipei Taiwan
| | - Lin‐Shyan Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Wen‐Chu Chen
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Department of Life Sciences National Chung‐Hsing University Taichung Taiwan
| | | | - Yu‐Chuan Liang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
| | - Wen‐Chin Yang
- Biotechnology Research Center Academia Sinica Taipei Taiwan
- Translational Research Center Academia Sinica Taipei Taiwan
- Institute of Biotechnology National Taiwan University Taipei Taiwan
- Department of Life Sciences National Chung‐Hsing University Taichung Taiwan
- Institute of Pharmacology National Yang‐Ming University Taipei Taiwan
| |
Collapse
|
23
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
24
|
Al-Tohamy R, Kenawy ER, Sun J, Ali SS. Performance of a Newly Isolated Salt-Tolerant Yeast Strain Sterigmatomyces halophilus SSA-1575 for Azo Dye Decolorization and Detoxification. Front Microbiol 2020; 11:1163. [PMID: 32595618 PMCID: PMC7300265 DOI: 10.3389/fmicb.2020.01163] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
The effective degradation of hazardous contaminants remains an intractable challenge in wastewater processing, especially for the high concentration of salty azo dye wastewater. However, some unique yeast symbionts identified from the termite gut system present an impressive function to deconstruct some aromatic compounds, which imply that they may be valued to work on the dye degradation for various textile effluents. In this investigation, a newly isolated and unique yeast strain, Sterigmatomyces halophilus SSA-1575, was identified from the gut system of a wood-feeding termite (WFT), Reticulitermes chinensis. Under the optimized ambient conditions, the yeast strain SSA-1575 showed a complete decolorization efficiency on Reactive Black 5 (RB5) within 24 h, where this azo dye solution had a concentration of a 50 mg/L RB5. NADH-dichlorophenol indophenol (NADH-DCIP) reductase and lignin peroxidase (LiP) were determined as the key reductase and oxidase of S. halophilus SSA-1575. Enhanced decolorization was recorded when the medium was supplemented with carbon and energy sources, including glucose, ammonium sulfate, and yeast extract. To understand a possible degradation pathway well, UV-Vis spectroscopy, FTIR and Mass Spectrometry analyses were employed to analyze the possible decolorization pathway by SSA-1575. Determination of relatively high NADH-DCIP reductase suggested that the asymmetric cleavage of RB5 azo bond was mainly catalyzed by NADH-DCIP reductase, and finally resulting in the formation of colorless aromatic amines devoid of any chromophores. The ecotoxicology assessment of RB5 after a decolorization processing by SSA-1575, was finally conducted to evaluate the safety of its metabolic intermediates from RB5. The results of Microtox assay indicate a capability of S. halophilus SSA-1575, in the detoxification of the toxic RB5 pollutant. This study revealed the effectiveness of halotolerant yeasts in the eco-friendly remediation of hazardous pollutants and dye wastewater processing for the textile industry.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Enhanced production of lipstatin from mutant of Streptomyces toxytricini and fed-batch strategies under submerged fermentation. 3 Biotech 2020; 10:151. [PMID: 32181113 DOI: 10.1007/s13205-020-2147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022] Open
Abstract
Streptomyces toxytricini produces bioactive metabolite recognized as lipstatin and its intermediate orlistat. The main focus of this study is to enhance lipstatin production by strain improvement and precursor feeding. In this study, strain improvement to enhance the production of lipstatin was carried out by different doses (50, 100, 150, 200, and 250 Gy) of gamma radiation and precursors (Linoleic acid, Oleic acid, and l-Leucine). Screening showed that the highest yield of lipstatin (4.58 mg/g) was produced by mutant designated as SRN 7. The production of lipstatin (5.011 mg/g) increased significantly when the medium was supplemented with ratio 1:1.5 (linoleic acid + oleic acid). The addition of 1.5% l-Leucine leads to further increment in the production of lipstatin (5.765 mg/g). The addition of 10% soy flour in the culture medium resulted in the maximum production of lipstatin to 5.886 mg/g.
Collapse
|
26
|
Porfírio‐Dias CL, Melo KM, Bastos CEMC, Ferreira TAA, Azevedo LFC, Salgado HL, Santos AS, Rissino JD, Nagamachi CY, Pieczarka JC. Andiroba oil (Carapa guianensisAubl) shows cytotoxicity but no mutagenicity in the ACPP02 gastric cancer cell line. J Appl Toxicol 2020; 40:1060-1066. [DOI: 10.1002/jat.3966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Clara L. Porfírio‐Dias
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Karina M. Melo
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Carlos E. M. C. Bastos
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Tássia A. A. Ferreira
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Luana F. C. Azevedo
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Hugo L. Salgado
- Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade MolecularInstituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém Pará Brazil
| | - Alberdan S. Santos
- Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade MolecularInstituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém Pará Brazil
| | - Jorge D. Rissino
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Cleusa Y. Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| | - Julio C. Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da BiodiversidadeInstituto de Ciências Biológicas, Universidade Federal do Pará Belém Pará Brazil
| |
Collapse
|
27
|
Balkrishna A, Sharma VK, Das SK, Mishra N, Bisht L, Joshi A, Sharma N. Characterization and Anti-Cancerous Effect of Putranjiva roxburghii Seed Extract Mediated Silver Nanoparticles on Human Colon (HCT-116), Pancreatic (PANC-1) and Breast (MDA-MB 231) Cancer Cell Lines: A Comparative Study. Int J Nanomedicine 2020; 15:573-585. [PMID: 32158209 PMCID: PMC6986406 DOI: 10.2147/ijn.s230244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/03/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction A comparative study of Putranjiva roxburghii Wall. seed extract and developed silver nanoparticles (PJSNPs) for improving bioavailability that enhance their anti-cancer activity against HCT-116 (colon carcinoma), PANC-1 (pancreatic carcinoma), MDA-MB 231 (breast carcinoma) cell lines was performed. Materials and Methods The green synthesis of PJSNPs (Putranjiva silver nanoparticles) was performed using PJ (Putranjiva) extract, and characterization of synthesized nanoparticles was accomplished through UV-Vis spectrum, X-ray diffraction (XRD), transmission electron microscopy, energy-dispersive X-ray spectroscopy (TEM-EDAX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and Raman spectroscopy. Results The results revealed that PJSNPs are homogeneous, spherical in shape, ~8±2 nm in size, and negatively charged with a zeta potential of about -26.71 mV. The cytotoxicity pattern observed was AgNO3 > PJSNPs > PJ extract. The morphological changes of the cells were observed by flow cytometry and also by the DNA ladder pattern on gel electrophoresis, which indicated that the process of cell death occurred via the apoptosis mechanism and PJSNPs were exerting late-stage apoptosis in all the tested cell lines. The small size and negative value of zeta potential could be the factors responsible for greater bioavailability and thus increased uptake by the tumor cells. Conclusion The MTT assay and morphological changes observed by various methods indicate that the novel PJSNPs are a better anticancer agent than PJ extract. All the above properties make biologically synthesized PJSNPs an important target in the field of anti-cancer drug discovery.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India.,University of Patanjali, Haridwar, Uttarakhand 249405, India
| | - Vinay Kumar Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India.,University of Patanjali, Haridwar, Uttarakhand 249405, India
| | - Subrata K Das
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India
| | - Nayan Mishra
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India
| | - Laxmi Bisht
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India
| | - Alpana Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation Trust, Haridwar, Uttarakhand 249405, India
| |
Collapse
|
28
|
Figueroa VA, Jara O, Oliva CA, Ezquer M, Ezquer F, Retamal MA, Martínez AD, Altenberg GA, Vargas AA. Contribution of Connexin Hemichannels to the Decreases in Cell Viability Induced by Linoleic Acid in the Human Lens Epithelial Cells (HLE-B3). Front Physiol 2020; 10:1574. [PMID: 32038277 PMCID: PMC6984129 DOI: 10.3389/fphys.2019.01574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023] Open
Abstract
Connexin (Cx) proteins form gap junction channels (GJC) and hemichannels that a allow bidirectional flow of ions and metabolites between the cytoplasm and extracellular space, respectively. Under physiological conditions, hemichannels have a very low probability of opening, but in certain pathologies, hemichannels activity can increase and induce and/or accelerate cell death. Several mechanisms control hemichannels activity, including phosphorylation and oxidation (i.e., S-nitrosylation). Recently, the effect of polyunsaturated fatty acids (PUFAs) such as linoleic acid (LA), were found to modulate Cxs. It has been seen that LA increase cell death in bovine and human lens cells. The lens is a structure allocated in the eye that highly depends on Cx for the metabolic coupling between its cells, a condition necessary for its transparency. Therefore, we hypothesized that LA induces lens cells death by modulating hemichannel activity. In this work, we characterized the effect of LA on hemichannel activity and survival of HLE-B3 cells (a human lens epithelial cell line). We found that HLE-B3 cells expresses Cx43, Cx46, and Cx50 and can form functional hemichannels in their plasma membrane. The extracellular exposure to 10–50 μM of LA increases hemichannels activity (dye uptake) in a concentration-dependent manner, which was reduced by Cx-channel blockers, such as the Cx-mimetic peptide Gap27 and TATGap19, La3+, carbenoxolone (CBX) and the Akt kinase inhibitor. Additionally, LA increases intracellular calcium, which is attenuated in the presence of TATGap19, a specific Cx43-hemichannel inhibitor. Finally, the long exposure of HLE-B3 cells to LA 20 and 50 μM, reduced cell viability, which was prevented by CBX. Moreover, LA increased the proportion of apoptotic HLE-B3 cells, effect that was prevented by the Cx-mimetic peptide TAT-Gap19 but not by Akt inhibitor. Altogether, these findings strongly suggest a contribution of hemichannels opening in the cell death induced by LA in HLE-B3 cells. These cells can be an excellent tool to develop pharmacological studies in vitro.
Collapse
Affiliation(s)
- Vania A Figueroa
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Carolina A Oliva
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Aníbal A Vargas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Hari R, Priyadurairaj, Kumar Reddy P, Thiruvanavukkarasu P, Rajesh S, Karunakaran S. Effect of ethanolic extract of Carica papaya Leaves and their cytotoxicity and apoptotic potential in human ovarian cancer cell lines- PA-1. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_117_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Ferreira PMP, Santos DB, Silva JDN, Goudinho AF, Ramos CLS, Souza PCD, Almeida RSCD, Moura DS, Oliveira RD, Grisolia CK, Cavalheiro AJ, Carvalho Melo-Cavalcante AAD, Ferreira JRDO, Moraes Filho MOD, Pessoa C. Toxicological findings about an anticancer fraction with casearins described by traditional and alternative techniques as support to the Brazilian Unified Health System (SUS). JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112004. [PMID: 31152784 DOI: 10.1016/j.jep.2019.112004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts, essential oils and molecules from Casearia sylvestris have popularly shown pharmacological actions against chronic diseases, as anxiety, inflammation, cancer and dyslipidemia. In the context of antitumoral therapy, we investigated in vitro, ex vivo and in vivo toxicological changes induced by a Fraction with Casearins (FC) and its component Casearin X isolated from C. sylvestris on animal and vegetal cells, and upon invertebrates and mammals. MATERIAL AND METHODS Cytotoxicity was carried out using normal lines and absorbance and flow cytometry techniques, Artemia salina nauplii, Danio rerio embryos and meristematic cells from Allium cepa roots. Acute and 30 days-mice analysis were done by behavioral, hematological and histological investigations and DNA/chromosomal damages detected by alkaline Cometa and micronucleus assays. RESULTS FC was cytotoxic against lung and fibroblasts cells and caused DNA breaks, loss of integrity and mitochondrial depolarization on ex vivo human leukocytes. It revealed 24 h-LC50 values of 48.8 and 36.7 μg/mL on A. salina nauplii and D. rerio embryos, reduced mitotic index of A. cepa roots, leading to cell cycle arrest at metaphase and anaphase and micronuclei. FC showed i.p. and oral LD50 values of 80.9 and 267.1 mg/kg body weight. Subacute i.p. injections induced loss of weight, swelling of hepatocytes and tubules, tubular and glomerular hemorrhage, microvesicular steatosis, lung inflammatory infiltration, augment of GPT, decrease of albumin, alkaline phosphatase, glucose, erythrocytes, and lymphocytes, and neutrophilia (p > 0.05). FC-treated animals at 10 mg/kg/day i.p. caused micronuclei in bone marrow and DNA strand breaks in peripheral leukocytes. CONCLUSIONS This research postulated suggestive side effects after use of FC-related drugs, demonstrating FC as antiproliferative and genotoxic on mammal and meristematic cells, including human leukocytes, teratogenicity upon zebrafish embryos, myelosuppression, clastogenicity, and morphological and biochemical markers indicating liver as main target for FC-induced systemic toxicity.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil.
| | - Denise Barbosa Santos
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | - Amanda Freitas Goudinho
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
| | - Carla Lorena Silva Ramos
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil; Postgraduate Programs in Pharmaceutical Sciences and Biotechnology, Federal University of Piauí, Teresina, Brazil
| | | | | | - Diego Sousa Moura
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rhaul de Oliveira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
31
|
Dutta D, Paul B, Mukherjee B, Mondal L, Sen S, Chowdhury C, Debnath MC. Nanoencapsulated betulinic acid analogue distinctively improves colorectal carcinoma in vitro and in vivo. Sci Rep 2019; 9:11506. [PMID: 31395908 PMCID: PMC6687831 DOI: 10.1038/s41598-019-47743-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Betulinic acid, a plant secondary metabolite, has gained significant attention due to its antiproliferative activity over a range of cancer cells. A promising betulinic acid analogue (2c) with better therapeutic efficacy than parent molecule to colon carcinoma cells has been reported. Despite impressive biological applications, low aqueous solubility and bioavailability create difficulties for its therapeutic applications. To overcome these lacunae and make it as a promising drug candidate we have encapsulated the lead betulinic acid derivative (2c) in a polymeric nanocarrier system (2c-NP) and evaluated its in vitro and in vivo therapeutic efficacy. Apoptosis that induces in vitro antiproliferative activity was significantly increased by 2c-NP compared to free-drug (2c), as assured by MTT assay, Annexin V positivity, JC1 analysis and cell cycle study. The therapeutic potential measured in vitro and in vivo reflects ability of 2c-NP as an effective therapeutic agent for treatment of colon carcinoma and future translation to clinical trials.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Brahamacharry Paul
- Infectious Diseases and Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Suparna Sen
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
32
|
Pinto LC, Mesquita FP, Soares BM, da Silva EL, Puty B, de Oliveira EHC, Burbano RR, Montenegro RC. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol In Vitro 2019; 60:305-312. [PMID: 31207347 DOI: 10.1016/j.tiv.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The objective of study was to examine the role of MBZ on malignant ascites cells and the involvement of C-MYC. Comet assay was used to assess the genotoxic effects of MBZ in AGP01 cells and human lymphocytes; differential staining by ethidium bromide and acridine orange, caspase 3/7 and flow cytometry assay was done to access the mechanisms of apoptosis and cell cycle analysis of MBZ in AGP01 cells. C-MYC amplification, C-MYC mRNA and C-MYC protein expression were evaluated by FISH, RT-qPCR and Western blotting, respectively. In addition, cytotoxicity of MBZ was evaluated in AGP01 and AGP01 shRNA MYC by MTT. MBZ significantly increased the damage index and no produced in human lymphocytes. MBZ caused remarkable cell cycle arrest in G0/G1 and G2/M phases at 0.5μM and 1.0 μM, respectively and induced significantly apoptosis in higher concentrations. Additionally, MBZ (0.5 μM and 1.0 μM) increased caspase 3 and 7 activities. MBZ decreased signals, C-MYC mRNA and C-MYC protein expression in AGP01 cells. MBZ induced lower cell viability in AGP01 cells compared AGP01 shRNA MYC in the same concentration. Therefore, our results show the evidence of C-MYC gene as one of the pathways by which MBZ induces cell death in gastric cancer cells.
Collapse
Affiliation(s)
- Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus street, 4487 - Guamá, Belém, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Bruno Moreira Soares
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Bruna Puty
- Laboratory of Structural and Functional Biology Science, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil; Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Rodovia BR-316 km 7 - s/n, Levilândia, Ananindeua, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Rodovia BR-316 km 7 - s/n, Levilândia, Ananindeua, Brazil
| | - Rommel Rodriguez Burbano
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01 - Guamá, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
33
|
Synthesis and in vitro evaluation of substituted tetrahydroquinoline-isoxazole hybrids as anticancer agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
35
|
Figueiredo PLB, Pinto LC, da Costa JS, da Silva ARC, Mourão RHV, Montenegro RC, da Silva JKR, Maia JGS. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:30-38. [PMID: 30543916 DOI: 10.1016/j.jep.2018.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oils and extracts of Eugenia uniflora have been reported as antimicrobial, antifungal, antinociceptive, antiprotozoal, antioxidant and cytotoxic. AIM OF THE STUDY The oils of five specimens (E1 to E5) that occur in the Brazilian Amazon were extracted, analyzed for their chemical composition, and submitted to antioxidant and cytotoxic assays. MATERIAL AND METHODS Oils were hydrodistilled, analyzed by GC and GC-MS, and submitted to PCA and HCA analyses. The antioxidant activity of the oils was evaluated by the DPPH radical scavenging and the β-carotene/linoleic acid assays. Antiproliferative effects of the oils and curzerene were tested against colon (HCT-116), gastric (AGP-01), and melanoma (SKMEL-19) human cancer cell lines and a normal human fibroblast cell line (MRC-5), using MTT assay. RESULTS Oxygenated sesquiterpenes and sesquiterpene hydrocarbons such as curzerene, selina-1,3,7(11)-trien-2-one, selina-1,3,7(11)-trien-2-one epoxide, germacrene B, caryophyllene oxide, and (E)-caryophyllene were predominant in the oils. PCA and HCA analyses classified the oils samples into four chemotypes. TEAC values of chemotype II (E3 oil, 228.3 ± 19.2 mg TE/mL) and chemotype III (E4 oil, 217.0 ± 23.3 mg TE/mL) displayed significant antioxidant activities. The oils E2 and E4 showed cytotoxic activity against all cell lines tested HCT-116 (IC50 E2:16.26 μg/mL; IC50 E4:9.28 μg/mL), AGP-01, (IC50 E2:12.60 μg/mL; IC50 E4:8.73 μg/mL), SKMEL-19 (IC50 E2:12.20 μg/mL; IC50 E4:15.42 μg/mL), and MRC-5 (IC50 E2:10.27 μg/mL; IC50 E4:14.95 μg/mL). Curzerene showed the more significant activity against melanoma cells (SKMEL-19, IC50:5.17 μM), induced apoptosis at 5.0 μM and 10.0 μM compared to DMSO, exhibiting a decrease in the cell migration at 5.0 μM and 10.0 μM, after 30 h of treatment. CONCLUSION The curzerene chemotype oil and E. uniflora oils can be indicated as drug candidates for anticancer activity of the lung, colon, stomach, and melanoma, with a real prospect to their subsequent phytotherapeutic development.
Collapse
Affiliation(s)
- Pablo Luis B Figueiredo
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| | - Laine C Pinto
- Laboratório de Citogenética, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jamile S da Costa
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | | | - Rosa Helena V Mourão
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, 68035-110 Santarém, PA, Brazil
| | - Raquel C Montenegro
- Laboratório de Farmacogenética, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Joyce Kelly R da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil.
| |
Collapse
|
36
|
Huang Q, Sun D, Zubair Hussain M, Liu Y, A. Morozova-Roche L, Zhang C. HEWL interacts with dissipated oleic acid micelles, and decreases oleic acid cytotoxicity. PLoS One 2019; 14:e0212648. [PMID: 30794655 PMCID: PMC6386356 DOI: 10.1371/journal.pone.0212648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/06/2019] [Indexed: 11/18/2022] Open
Abstract
Senile plaques are well-known hallmarks of Alzheimer's Diseases (AD). However, drugs targeting tangles of the protein tau and plaques of β-amyloid have no significant effect on disease progression, and the studies on the underlying mechanism of AD remain in high demand. Growing evidence supports the protective role of senile plaques in local inflammation driven by S100A9. We herein demonstrate that oleic acid (OA) micelles interact with hen egg white lysozyme (HEWL) and promote its amyloid formation. Consequently, SH-SY5Y cell line and mouse neural stem cells are rescued from OA toxicity by co-aggregation of OA and HEWL. Using atomic force microscopy in combination with fluorescence microscopy, we revealed that HEWL forms round-shaped aggregates in the presence of OA micelles instead of protofibrils of HEWL alone. These HEWL amyloids act as a sink for toxic OA micelles and their co-aggregate form large clumps, suggesting a protective function in amyloid and OA cytotoxicity.
Collapse
Affiliation(s)
- Qin Huang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, China
| | - Dan Sun
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, China
| | - Muhammad Zubair Hussain
- Department of Zoology, Government Emerson College, Multan, Pakistan
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Yonggang Liu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Ce Zhang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Institute of Photonics and Photon-Technology, Northwest University, Xi’an, China
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Mansingh DP, O J S, Sali VK, Vasanthi HR. [6]-Gingerol-induced cell cycle arrest, reactive oxygen species generation, and disruption of mitochondrial membrane potential are associated with apoptosis in human gastric cancer (AGS) cells. J Biochem Mol Toxicol 2018; 32:e22206. [PMID: 30091159 DOI: 10.1002/jbt.22206] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/29/2023]
Abstract
Ginger (Zingiber officinale Roscoe), a monocotyledonous herb, is widely used as an herbal medicine owing to the phytoconstituents it possesses. In the current study, the quantity of [6]-gingerol, the major phenolic ketone, in the fresh ginger and dried ginger rhizome was found to be 6.11 µg/mg and 0.407 µg/mg. Furthermore, [6]-gingerol was assessed for its antiapoptotic effects in human gastric adenocarcinoma (AGS) cells evidenced by acridine orange/ethidium bromide staining technique and Annexin-V assay. An increase in reactive oxygen species (ROS) generation led to a decrease in mitochondrial membrane potential (MMP) and subsequent induction of apoptosis. Results disclose that perturbations in MMP are associated with deregulation of Bax/Bcl-2 ratio at protein level, which leads to upregulation of cytochrome-c triggering the caspase cascade. These enduringly suggest that [6]-gingerol can be effectively used for targeting the mitochondrial energy metabolism to manage gastric cancer cells.
Collapse
Affiliation(s)
- Debjani P Mansingh
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sunanda O J
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Veeresh Kumar Sali
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry, India
| |
Collapse
|
38
|
Casu F, Pinu FR, Stefanello E, Greenwood DR, Villas-Bôas SG. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics 2018; 14:103. [PMID: 30830379 DOI: 10.1007/s11306-018-1399-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Saccharomyces cerevisiae has been widely used for fermenting food and beverages for over thousands years. Its metabolism together with the substrate composition play an important role in determining the characteristics of the final fermented products. We previously showed that the polyunsaturated fatty acid, linoleic acid, which is present in the grape juice at trace levels, significantly affected the development of aroma compounds of the wines. However, the effect of linoleic acid on the overall cell metabolism of S. cerevisiae is still not clear. Therefore, we aimed to unlock the metabolic response of S. cerevisiae to linoleic acid using metabolomics and isotope labelling experiments. METHODS We cultured the cells on a minimal mineral medium supplementing them with linoleic acid isomers and 13C-linoleic acid. Both intracellular and extracellular metabolite profiles were determined using gas chromatography coupled to mass spectrometry (GC-MS) to investigate which S. cerevisiae pathways were affected by linoleic acid supplementation. RESULTS The utilisation of linoleic acid by S. cerevisiae had a significant impact on the primary carbon metabolism increasing the glucose consumption and the ethanol production under anaerobic condition. The energetic state of the cell was, therefore, affected and the glycolytic pathway, the TCA cycle and the amino acid production were up-regulated. We also observed that linoleic acid was transported into the cell and converted into other fatty acids affecting their profile even under anaerobic condition. CONCLUSION Our data clearly shows that linoleic acid supplementation in growth medium increased glucose consumption and ethanol production by S. cerevisiae under anaerobic condition. We also suggest that S. cerevisiae might be able to perform an alternative anaerobic pathway to β-oxidation, which has not been reported yet.
Collapse
Affiliation(s)
- Francesca Casu
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- The University of Auckland, 49 Symonds Street, Auckland, 1010, New Zealand
| | - Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland, 1025, New Zealand.
| | - Eliezer Stefanello
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, São Paulo, SP, 748, Brazil
| | - David R Greenwood
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland, 1025, New Zealand
| | - Silas G Villas-Bôas
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
39
|
Vishnu KV, Ajeesh Kumar KK, Chatterjee NS, Lekshmi RGK, Sreerekha PR, Mathew S, Ravishankar CN. Sardine oil loaded vanillic acid grafted chitosan microparticles, a new functional food ingredient: attenuates myocardial oxidative stress and apoptosis in cardiomyoblast cell lines (H9c2). Cell Stress Chaperones 2018; 23:213-222. [PMID: 28766116 PMCID: PMC5823802 DOI: 10.1007/s12192-017-0834-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
Fish oil has been widely recognized as an excellent dietary source of polyunsaturated n-3 fatty acids such as EPA and DHA. However, it can undergo oxidation easily resulting in the formation of toxic off flavor compounds such as hydroperoxides. These compounds adversely affect the nutritional quality and may induce several stress reactions in body. To solve this problem, a new antioxidant bio-material, vanillic acid-grafted chitosan (Va-g-Ch), was synthesized and used as a wall material for microencapsulation of fish oil. The sardine oil loaded Va-g-Ch microparticles could be a potential functional food ingredient considering the numerous health benefits of fish oil, chitosan, and vanillic acid. The current study aimed to investigate the possible protective effect of sardine oil-loaded Va-g-Ch microparticles against doxorubicin-induced cardiotoxicity and the underlying mechanisms. In vitro cytotoxicity evaluation was conducted using H9c2 cardiomyocytes. MTT assay revealed that effective cytoprotective effect was induced by a sample concentration of 12.5 μg/mL. Results of apoptosis by double fluorescent staining with acridine orange/ethidium bromide and caspase-3 evaluation by ELISA substantiated the above findings. Further, flow cytometric determination of membrane potential, relative expression of NF-κB by PCR, and ROS determination using DCFH-DA also confirmed the protective effect of encapsulated sardine oil against doxorubicin-induced cardiotoxicity. NF-κB expression was down-regulated nearly by 50% on cells treated with encapsulated sardine oil. Altogether, the results revealed that sardine oil-loaded Va-g-Ch microparticles demonstrated potential cell protection against doxorubicin-induced oxidative stress.
Collapse
Affiliation(s)
- K V Vishnu
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - K K Ajeesh Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - Niladri S Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India.
| | - R G K Lekshmi
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - P R Sreerekha
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O, Kerala, 682029, India
| |
Collapse
|
40
|
Ronco LI, Feuser PE, da Cas Viegas A, Minari RJ, Gugliotta LM, Sayer C, Araújo PHH. Incorporation of Magnetic Nanoparticles in Poly(Methyl Methacrylate) Nanocapsules. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ludmila I. Ronco
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Alexandre da Cas Viegas
- Department of Physic; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Luis M. Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC UNL-CONICET); Güemes 3450 Santa Fe 3000 Argentina
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianopolis SC 88040-900 Brazil
| |
Collapse
|
41
|
Howie D, Ten Bokum A, Necula AS, Cobbold SP, Waldmann H. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Front Immunol 2018; 8:1949. [PMID: 29375572 PMCID: PMC5770376 DOI: 10.3389/fimmu.2017.01949] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
The differentiation and effector functions of both the innate and adaptive immune system are inextricably linked to cellular metabolism. The features of metabolism which affect both arms of the immune system include metabolic substrate availability, expression of enzymes, transport proteins, and transcription factors which control catabolism of these substrates, and the ability to perform anabolic metabolism. The control of lipid metabolism is central to the appropriate differentiation and functions of T lymphocytes, and ultimately to the maintenance of immune tolerance. This review will focus on the role of fatty acid (FA) metabolism in T cell differentiation, effector function, and survival. FAs are important sources of cellular energy, stored as triglycerides. They are also used as precursors to produce complex lipids such as cholesterol and membrane phospholipids. FA residues also become incorporated into hormones and signaling moieties. FAs signal via nuclear receptors and their channeling, between storage as triacyl glycerides or oxidation as fuel, may play a role in survival or death of the cell. In recent years, progress in the field of immunometabolism has highlighted diverse roles for FA metabolism in CD4 and CD8 T cell differentiation and function. This review will firstly describe the sensing and modulation of the environmental FAs and lipid intracellular signaling and will then explore the key role of lipid metabolism in regulating the balance between potentially damaging pro-inflammatory and anti-inflammatory regulatory responses. Finally the complex role of extracellular FAs in determining cell survival will be discussed.
Collapse
Affiliation(s)
- Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Annemieke Ten Bokum
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Stephen Paul Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Govindaraju S, Arulselvi PI. Characterization ofColeus aromaticusessential oil and its major constituent carvacrol forin vitroantidiabetic and antiproliferative activities. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/10496475.2017.1369483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Govindaraju
- Plant and Microbial Biotechnology Lab, Department of Biotechnology, Periyar palkalai nagar, Periyar University, Salem, Tamilnadu, India
| | - P. Indra Arulselvi
- Plant and Microbial Biotechnology Lab, Department of Biotechnology, Periyar palkalai nagar, Periyar University, Salem, Tamilnadu, India
| |
Collapse
|
43
|
Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, And Toxicity Evaluation. Sci Rep 2017; 7:5929. [PMID: 28724950 PMCID: PMC5517525 DOI: 10.1038/s41598-017-06092-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/07/2017] [Indexed: 02/02/2023] Open
Abstract
In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.
Collapse
|
44
|
Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR, Arunakaran J. Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 2017; 35:217-231. [DOI: 10.1002/cbf.3266] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Solaimuthu Balakrishnan
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras; Chennai Tamil Nadu India
| | - Sudip Mukherjee
- Chemical Biology, CSIR-Indian Institute of Chemical Technology; Hyderabad Telangana State India
- Academy of Scientific and Innovative Research (AcSIR); Training and Development Complex; Chennai India
| | - Sourav Das
- Chemical Biology, CSIR-Indian Institute of Chemical Technology; Hyderabad Telangana State India
- Academy of Scientific and Innovative Research (AcSIR); Training and Development Complex; Chennai India
| | - Firdous Ahmad Bhat
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras; Chennai Tamil Nadu India
| | - Paulraj Raja Singh
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras; Chennai Tamil Nadu India
| | - Chitta Ranjan Patra
- Chemical Biology, CSIR-Indian Institute of Chemical Technology; Hyderabad Telangana State India
- Academy of Scientific and Innovative Research (AcSIR); Training and Development Complex; Chennai India
| | - Jagadeesan Arunakaran
- Department of Endocrinology; Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras; Chennai Tamil Nadu India
| |
Collapse
|
45
|
Devi GK, Sathishkumar K. Synthesis of gold and silver nanoparticles using Mukia maderaspatna plant extract and its anticancer activity. IET Nanobiotechnol 2017; 11:143-151. [PMID: 28476996 PMCID: PMC8676453 DOI: 10.1049/iet-nbt.2015.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2023] Open
Abstract
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform-infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20-50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.
Collapse
|
46
|
Cury-Boaventura MF, Gorjão R, de Lima TM, Piva TM, Peres CM, Soriano FG, Curi R. Toxicity of a Soybean Oil Emulsion on Human Lymphocytes and Neutrophils. JPEN J Parenter Enteral Nutr 2017; 30:115-23. [PMID: 16517956 DOI: 10.1177/0148607106030002115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. In this study, the toxicity of a lipid emulsion rich (60%) in triacylglycerol of omega-6 polyunsaturated fatty acids on leukocytes from healthy volunteers was investigated. METHODS Eleven volunteers were recruited, and blood samples were collected before infusion of a soybean oil emulsion, immediately afterwards, and 18 hours later. The cells were studied immediately after isolation and again after 24 hours or 48 hours in culture. The following determinations were made: composition and concentration of fatty acids in plasma, lymphocytes and neutrophils, lymphocyte proliferation, levels of cell viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, reactive oxygen species production, and neutral lipid accumulation. RESULTS Soybean oil emulsion decreased lymphocyte proliferation and provoked neutrophil and lymphocyte apoptosis and necrosis. Evidence is presented herein that soybean oil emulsion is less toxic to neutrophils than to lymphocytes. The mechanism of cell death induced by this oil emulsion was characterized by mitochondrial membrane depolarization and neutral lipid accumulation but did not alter reactive oxygen species production. CONCLUSIONS Soybean oil emulsion given as a single dose of 500 mL promotes lymphocyte and neutrophil death that may enhance the susceptibility of the patients to infections.
Collapse
Affiliation(s)
- Maria Fernanda Cury-Boaventura
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, and the Division of Clinical Emergency, Faculty of Medicine, University of São Paulo, Av. Prof. Lineu Prestes 1524, CEP 05508-900 São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
47
|
Bordeianu C, Parat A, Affolter-Zbaraszczuk C, Muller RN, Boutry S, Begin-Colin S, Meyer F, Laurent S, Felder-Flesch D. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. J Mater Chem B 2017; 5:5152-5164. [DOI: 10.1039/c7tb00781g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Superparamagnetic iron oxide nanoparticles synthesized by thermal decomposition have been grafted with two dendrons bearing respectively a monophosphonic anchor (D2) or a biphosphonic tweezer (D2-2P) at their focal point.
Collapse
Affiliation(s)
- C. Bordeianu
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - A. Parat
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | | | - R. N. Muller
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - S. Boutry
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - S. Begin-Colin
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - F. Meyer
- Université de Strasbourg
- INSERM
- UMR 1121 Biomatériaux et Bioingénierie
- 67000 Strasbourg
- France
| | - S. Laurent
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - D. Felder-Flesch
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
48
|
High Levels of Residue within Polymeric Hollow Fiber Membranes Used for Blood Oxygenation. ASAIO J 2016; 62:690-696. [PMID: 27465094 DOI: 10.1097/mat.0000000000000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A number of research teams are developing surface coatings for hollow fiber membrane (HFM) blood oxygenators to improve their biocompatibility and service life. Surface coating techniques can be quite sensitive to the presence of contaminants on the exterior surface of the hollow fibers. We found large amounts of leachable oils associated with several commercial HFMs, i.e., as much as 2.5-7.5 weight percent. Leachable residues were suspected when a surface coating, a surface-initiated atom transfer radical polymerization (s-ATRP) of poly(ethylene glycol) methacrylate, resulted in areas of 100 µm devoid of coatings on the exterior surfaces of HFMs. After leaching residual oils, s-ATRP coatings were uniform and continuous across the hollow fibers. Therefore, removal of residual material should be considered before applying coating technologies to commercial HFMs. The effects of such leachable agents on the performance of blood oxygenators are not known.
Collapse
|
49
|
Ye H, Liu X, Sun J, Zhu S, Zhu Y, Chang S. Enhanced therapeutic efficacy of LHRHa-targeted brucea javanica oil liposomes for ovarian cancer. BMC Cancer 2016; 16:831. [PMID: 27793127 PMCID: PMC5086058 DOI: 10.1186/s12885-016-2870-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
Background Although brucea javanica oil liposomes (BJOLs) have been used clinically to treat ovarian cancer, its clinical efficacy is often limited by systemic side effects due to non-specific distribution. Luteinizing hormone releasing hormone receptor (LHRHR) is overexpressed in most ovarian cancers but negligibly expressed in most of the other visceral organs. In this study, we aimed to develop a novel LHRHa targeted and BJO-loaded liposomes (LHRHa-BJOLs), and investigate its characteristics, targeting ability and anti-ovarian cancer efficiency both in vitro and in vivo. Methods The LHRHa-BJOLs were prepared by film-dispersion and biotin-streptavidin linkage methods, and characterized in terms of its morphology, particle size, zeta potential, ligand conjugation, encapsulation efficiency and stability. The targeting nature and antitumor effects of the liposomes were evaluated in vitro using cultured human ovarian cancer A2780/DDP cells, and in vivo using ovarian cancer-bearing nude mice. Results The LHRHa-BJOLs were successfully synthesized, with a uniformly spherical shape, appropriate particle size and zeta potential, as well as a high encapsulation efficiency. Compared to non-targeted liposomes and BJO emulsion, the LHRHa-BJOLs could significantly increase specific intracellular uptaking rate, enhance cell inhibitory effect and induce cell apoptosis in A2780/DDP cells in vitro. Meanwhile, LHRHa-BJOLs also had a significantly stronger activity of targeting tumor tissue, inhibiting tumor growth, inducing tumor apoptosis and prolonging survival time in ovarian cancer-bearing mice in vivo. Conclusions Our experiment suggests that LHRHa-BJOLs may be a useful targeted drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hongxia Ye
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong district, Chongqing, 400010, China
| | - Xiaojuan Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong district, Chongqing, 400010, China
| | - Jiangchuan Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong district, Chongqing, 400010, China
| | - Shenyin Zhu
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong district, Chongqing, 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong district, Chongqing, 400010, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong district, Chongqing, 400010, China.
| |
Collapse
|
50
|
da Silva JKR, Pinto LC, Burbano RMR, Montenegro RC, Andrade EHA, Maia JGS. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids Health Dis 2016; 15:174. [PMID: 27717404 PMCID: PMC5054595 DOI: 10.1186/s12944-016-0347-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background Piper aequale Vahl is a small shrub that grows in the shadow of large trees in the Carajás National Forest, Municipality of Parauapebas, Para state, Brazil. The local people have used the plant against rheumatism and inflammation. Methods The essential oil of the aerial parts was extracted and analyzed by GC and GC-MS. The MTT colorimetric assay was used to measuring the cytotoxic activity of the oil against human cancer lines. The determination of antioxidant activity of the oil was conducted by DPPH radical scavenging assay. Results The main constituents were δ-elemene (18.92 %), β-pinene (15.56 %), α-pinene (12.57 %), cubebol (7.20 %), β-atlantol (5.87 %), and bicyclogermacrene (5.51 %), totalizing 65.63 % of the oil. The oil displayed a strong in vitro cytotoxic activity against the human cancer cell lines HCT-116 (colon) and ACP03 (gastric) with IC50values of 8.69 μg/ml and 1.54 μg/ml, respectively. The oil has induced the apoptosis in a gastric cancer cells in all tested concentration (0.75–3.0 μg/ml), after 72 h of treatment, when compared to negative control (p < 0.001). Also, the oil showed a significant antioxidant activity (280.9 ± 22.2 mg TE/ml), when analyzed as Trolox equivalent, and a weak acetylcholinesterase inhibition, with a detection limit of 100 ng, when compared to the physostigmine standard (1.0 ng). Conclusion The higher cell growth inhibition induced by the oil of P. aequale is probably due to its primary terpene compounds, which were previously reported in the proliferation inhibition, in stimulation of apoptosis and induction of cell cycle arrest in malignant cells.
Collapse
Affiliation(s)
- Joyce Kelly R da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.
| | - Laine C Pinto
- Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Rommel M R Burbano
- Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Raquel C Montenegro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.,Laboratório de Citogenética Humana, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - Eloísa Helena A Andrade
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.,Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, 68035-110, Santarém, PA, Brazil
| |
Collapse
|