1
|
Tratenšek A, Locatelli I, Grabnar I, Drobne D, Vovk T. Oxidative stress-related biomarkers as promising indicators of inflammatory bowel disease activity: A systematic review and meta-analysis. Redox Biol 2024; 77:103380. [PMID: 39368456 PMCID: PMC11490685 DOI: 10.1016/j.redox.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Oxidative stress is believed to play an important role in the pathogenesis of inflammatory bowel disease (IBD), specifically Crohn's disease (CD) and ulcerative colitis (UC). This meta-analysis aimed to identify and quantify the oxidative stress-related biomarkers in IBD and their associations with disease activity. We systematically searched Ovid MEDLINE, Ovid Embase, and Web of Science databases, identifying 54 studies for inclusion. Comparisons included: (i) active IBD versus healthy controls; (ii) inactive IBD versus healthy controls; (iii) active CD versus inactive CD; and (iv) active UC versus inactive UC. Our analysis revealed a significant accumulation of biomarkers of oxidative damage to biomacromolecules, coupled with reductions in various antioxidants, in both patients with active and inactive IBD compared to healthy controls. Additionally, we identified biomarkers that differentiate between active and inactive CD, including malondialdehyde, Paraoxonase 1, catalase, albumin, transferrin, and total antioxidant capacity. Similarly, levels of Paraoxonase 1, erythrocyte glutathione peroxidase, catalase, albumin, transferrin, and free thiols differed between active and inactive UC. Vitamins and carotenoids also emerged as potential disease activity biomarkers for CD and UC, but their intake should be monitored to obtain meaningful results. These findings emphasize the involvement of oxidative stress in the pathogenesis of IBD and highlight the potential of oxidative stress-related biomarkers as a minimally invasive and additional tool for monitoring the activity of IBD.
Collapse
Affiliation(s)
- Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Igor Locatelli
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - David Drobne
- University Medical Centre Ljubljana, Department of Gastroenterology, Japljeva ulica 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Du X, Chen Z, Zhao R, Hu B. Salt-Promoted Fibrillation of Legume Proteins Enhanced Interfacial Modulus for Stabilization of HIPEs Encapsulating Carotenoids with Improved Nutritional Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:690-703. [PMID: 38117687 DOI: 10.1021/acs.jafc.3c08434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The thermal acidic-treatment-induced fibrillation of legume proteins isolated from cowpea and mung bean was demonstrated to be promoted by salt. Worm-like thin prefibrilar intermediates were formed in low salt concentrations (0-75 mM), which twisted to be the thick and mature amyloid-like fibrils with multistrands as the salt content was elevated (150-300 mM). Absorption of the fibrils fabricated in high salt concentrations to the oil/water interface constructed the protein layer with a significantly higher interfacial modulus compared with the one formed by the fibrils fabricated in low salt concentrations. Consequently, they showed the superiority in stabilizing high internal phase emulsions (HIPEs) with oil volume fraction ratios higher than 74%. HIPEs stabilized by the high salt-concentration-induced legume protein fibrils had stronger capabilities not only in encapsulating liposoluble carotenoids but also in protecting their stability against heating, ultraviolet, and iron ion stimulus, compared with the one stabilized by the low-salt-concentration-induced legume protein fibrils. Bioaccessibilities of the carotenoids in simulating gastrointestinal (GI) digestion were significantly improved after encapsulation by the HIPEs, which were interestingly increased with the elevation of salt concentrations utilized for preparing the legume protein fibrils. Furthermore, the carotenoids-loading-HIPEs were injectable and showed in vivo nutritional functions of mitigating colitis.
Collapse
Affiliation(s)
- Xinyu Du
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Ran Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
3
|
McDonnell M, Sartain S, Westoby C, Katarachia V, Wootton SA, Cummings JRF. Micronutrient Status in Adult Crohn's Disease during Clinical Remission: A Systematic Review. Nutrients 2023; 15:4777. [PMID: 38004171 PMCID: PMC10674454 DOI: 10.3390/nu15224777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adults with Crohn's disease (CD) may be at risk of micronutrient insufficiency in clinical remission through restrictive eating, malabsorption, abnormal losses or inflammation. This systematic review synthesises the literature on micronutrient insufficiency in CD in clinical remission in terms of the prevalence of low circulating micronutrient concentrations and as a comparison against a healthy control (HC). Studies were included if the population was predominantly in remission. A total of 42 studies met the inclusion criteria; 12 were rated as low quality, leaving 30 studies covering 21 micronutrients of medium/high quality that were included in the synthesis. Vitamins D and B12 were the most frequently reported nutrients (8 and 11); there were few eligible studies for the remaining micronutrients. The prevalence studies were consistent in reporting individuals with low Vitamins A, B6, B12 and C, β-carotene, D, Magnesium, Selenium and Zinc. The comparator studies were inconsistent in finding differences with CD populations; Vitamin D, the most reported nutrient, was only lower than the HC in one-quarter of the studies. Adult CD populations are likely to contain individuals with low levels of one or more micronutrients, with the most substantial evidence for Vitamins D and B12. The studies on other micronutrients are of insufficient number, standardisation and quality to inform practice.
Collapse
Affiliation(s)
- Martin McDonnell
- Human Health and Development, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK (V.K.); (S.A.W.)
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Stephanie Sartain
- Human Health and Development, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK (V.K.); (S.A.W.)
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Catherine Westoby
- Human Health and Development, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK (V.K.); (S.A.W.)
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
- Department of Dietetics, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Vasiliki Katarachia
- Human Health and Development, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK (V.K.); (S.A.W.)
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
- Department of Dietetics, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Stephen A. Wootton
- Human Health and Development, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK (V.K.); (S.A.W.)
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
| | - J. R. Fraser Cummings
- NIHR Biomedical Research Center, University Hospital Southampton, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Jabłońska B, Mrowiec S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023; 15:nu15081991. [PMID: 37111210 PMCID: PMC10143611 DOI: 10.3390/nu15081991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Malnutrition is an important issue in patients with inflammatory bowel diseases (IBDs) including Crohn's disease (CD) and ulcerative colitis (UC). It is caused by altered digestion and absorption within the small bowel, inadequate food intake, and drug-nutrient interactions in patients. Malnutrition is an essential problem because it is related to an increased risk of infections and poor prognosis in patients. It is known that malnutrition is also related to an increased risk of postsurgery complications in IBD patients. Basic nutritional screening involves anthropometric parameters with body mass index (BMI) and others (fat mass, waist-to-hip ratio, muscle strength), medical history concerning weight loss, and biochemical parameters (including the Prognostic Nutritional Index). Besides standard nutritional screening tools, including the Subjective Global Assessment (SGA), Nutritional Risk Score 2002 (NRS 2002), and Malnutrition Universal Screening Tool (MUST), specific nutritional screening tools are used in IBD patients, such as the Saskatchewan Inflammatory Bowel Disease-Nutrition Risk Tool (SaskIBD-NR Tool and IBD-specific Nutritional Screening Tool). There is a higher risk of nutrient deficiencies (including iron, zinc, magnesium) and vitamin deficiencies (including folic acid, vitamin B12 and D) in IBD patients. Therefore, regular evaluation of nutritional status is important in IBD patients because many of them are undernourished. An association between plasma ghrelin and leptin and nutritional status in IBD patients has been observed. According to some authors, anti-tumor necrosis factor (anti-TNFα) therapy (infliximab) can improve nutritional status in IBD patients. On the other hand, improvement in nutritional status may increase the response rate to infliximab therapy in CD patients. Optimization of nutritional parameters is necessary to improve results of conservative and surgical treatment and to prevent postoperative complications in patients with IBDs. This review presents basic nutritional screening tools, anthropometric and laboratory parameters, dietary risk factors for IBDs, common nutrient deficiencies, associations between anti-TNFα therapy and nutritional status, selected features regarding the influence of nutritional status, and surgical outcome in IBD patients.
Collapse
Affiliation(s)
- Beata Jabłońska
- Department of Digestive Tract Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Sławomir Mrowiec
- Department of Digestive Tract Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
7
|
Zhao T, Wang H, Liu Z, Liu Y, Li B, Huang X. Recent Perspective of Lactobacillus in Reducing Oxidative Stress to Prevent Disease. Antioxidants (Basel) 2023; 12:antiox12030769. [PMID: 36979017 PMCID: PMC10044891 DOI: 10.3390/antiox12030769] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During oxidative stress, an important factor in the development of many diseases, cellular oxidative and antioxidant activities are imbalanced due to various internal and external factors such as inflammation or diet. The administration of probiotic Lactobacillus strains has been shown to confer a range of antibacterial, anti-inflammatory, antioxidant, and immunomodulatory effects in the host. This review focuses on the potential role of oxidative stress in inflammatory bowel diseases (IBD), cancer, and liver-related diseases in the context of preventive and therapeutic effects associated with Lactobacillus. This article reviews studies in cell lines and animal models as well as some clinical population reports that suggest that Lactobacillus could alleviate basic symptoms and related abnormal indicators of IBD, cancers, and liver damage, and covers evidence supporting a role for the Nrf2, NF-κB, and MAPK signaling pathways in the effects of Lactobacillus in alleviating inflammation, oxidative stress, aberrant cell proliferation, and apoptosis. This review also discusses the unmet needs and future directions in probiotic Lactobacillus research including more extensive mechanistic analyses and more clinical trials for Lactobacillus-based treatments.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Haoran Wang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
8
|
Gold SL, Manning L, Kohler D, Ungaro R, Sands B, Raman M. Micronutrients and Their Role in Inflammatory Bowel Disease: Function, Assessment, Supplementation, and Impact on Clinical Outcomes Including Muscle Health. Inflamm Bowel Dis 2023; 29:487-501. [PMID: 36287025 DOI: 10.1093/ibd/izac223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Stephanie L Gold
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Manning
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Kohler
- Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Ryan Ungaro
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Lomer MCE, Wilson B, Wall CL. British Dietetic Association consensus guidelines on the nutritional assessment and dietary management of patients with inflammatory bowel disease. J Hum Nutr Diet 2023; 36:336-377. [PMID: 35735908 PMCID: PMC10084145 DOI: 10.1111/jhn.13054] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite increased awareness of diet and nutrition being integral to the management of patients with inflammatory bowel disease (IBD), there are gaps in the knowledge of IBD healthcare providers regarding nutrition. Furthermore, high quality evidence on nutritional assessment and dietary management of IBD is limited. A Delphi consensus from a panel of experts allows for best-practice guidelines to be developed, especially where high quality evidence is limited. The aim was to develop guidelines for the nutritional assessment and dietary management of IBD using an eDelphi online consensus agreement platform. METHODS Seventeen research topics related to IBD and nutrition were systematically reviewed. Searches in Cochrane, Embase®, Medline® and Scopus® electronic databases were performed. GRADE was used to develop recommendations. Experts from the IBD community (healthcare professionals and patients with IBD) were invited to vote anonymously on the recommendations in a custom-built online platform. Three rounds of voting were carried out with updated iterations of the recommendations and evaluative text based on feedback from the previous round. RESULTS From 23,824 non-duplicated papers, 167 were critically appraised. Fifty-five participants completed three rounds of voting and 14 GRADE statements and 42 practice statements achieved 80% consensus. Comprehensive guidance related to nutrition assessment, nutrition screening and dietary management is provided. CONCLUSIONS Guidelines on the nutritional assessment and dietary management of IBD have been developed using evidence-based consensus to improve equality of care. The statements and practice statements developed demonstrate the level of agreement and the quality and strength of the guidelines.
Collapse
Affiliation(s)
- Miranda C E Lomer
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Nutritional Sciences, King's College London, London, UK
| | - Bridgette Wilson
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Nutritional Sciences, King's College London, London, UK
| | - Catherine L Wall
- Department of Nutritional Sciences, King's College London, London, UK.,Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
10
|
Chen J, Ruan X, Yuan S, Deng M, Zhang H, Sun J, Yu L, Satsangi J, Larsson SC, Therdoratou E, Wang X, Li X. Antioxidants, minerals and vitamins in relation to Crohn's disease and ulcerative colitis: A Mendelian randomization study. Aliment Pharmacol Ther 2023; 57:399-408. [PMID: 36645152 PMCID: PMC11497233 DOI: 10.1111/apt.17392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/13/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Evidence for antioxidants, minerals and vitamins in relation to the risk of Crohn's disease (CD) and ulcerative colitis (UC) is limited and inconsistent. This mendelian randomization (MR) study aimed to examine the causal associations of circulating levels of antioxidants, minerals and vitamins with CD and UC. METHODS Single-nucleotide polymorphisms associated with antioxidants (beta-carotene, lycopene and uric acid), minerals (copper, calcium, iron, magnesium, phosphorus, zinc and selenium), and vitamins (folate, vitamins A, B6, B12, C, D, E and K1) were employed as instrumental variables. Genetic associations with CD and UC were extracted from the UK Biobank, the FinnGen study and the International Inflammatory Bowel Disease Genetics Consortium. The inverse variance weighted method and sensitivity analyses were performed. RESULTS Genetically predicted higher lycopene (OR = 0.94, 95% CI: 0.91-0.97), vitamins D (OR = 0.65, 95% CI: 0.54-0.79) and K1 (OR = 0.93, 95% CI: 0.90-0.97) levels were inversely associated with CD risk, whereas genetically predicted higher magnesium (OR = 1.53, 95% CI: 1.23-1.90) levels were positively associated with CD risk. Higher levels of genetically predicted lycopene (OR = 0.91, 95% CI: 0.88-0.95), phosphorus (OR = 0.69, 95% CI: 0.58-0.82), selenium (OR = 0.91, 95% CI: 0.85-0.97), zinc (OR = 0.91, 95% CI: 0.89-0.94), folate (OR = 0.71, 95% CI: 0.56-0.92) and vitamin E (OR = 0.78, 95% CI: 0.69-0.88) were associated with reduced UC risk, whereas genetically predicted high levels of calcium (OR = 1.46, 95% CI: 1.22-1.76) and magnesium (OR = 1.24, 95% CI: 1.03-1.49) were associated with increased risk of UC. CONCLUSIONS Our study provided evidence that circulating levels of antioxidants, minerals and vitamins might be causally linked to the development of IBD.
Collapse
Affiliation(s)
- Jie Chen
- Department of GastroenterologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
- Centre for Global HealthZhejiang University School of MedicineHangzhouChina
- Department of Big Data in Health ScienceSchool of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xixian Ruan
- Department of GastroenterologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Minzi Deng
- Department of GastroenterologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Han Zhang
- Department of Big Data in Health ScienceSchool of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jing Sun
- Department of Big Data in Health ScienceSchool of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Yu
- Department of Big Data in Health ScienceSchool of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine DivisionUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
- Unit of Medical Epidemiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Evropi Therdoratou
- Centre for Global HealthUsher Institute, University of EdinburghEdinburghUK
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Xiaoyan Wang
- Department of GastroenterologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xue Li
- Department of Big Data in Health ScienceSchool of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
11
|
Salmonella Typhimurium Infection Reduces the Ascorbic Acid Uptake in the Intestine. Mediators Inflamm 2023; 2023:2629262. [PMID: 36704315 PMCID: PMC9873446 DOI: 10.1155/2023/2629262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Salmonella Typhimurium infection of the gastrointestinal tract leads to damage that compromises the integrity of the intestinal epithelium and results in enterocolitis and inflammation. Salmonella infection promotes the expression of inflammasome NLRP3, leading to activation and release of proinflammatory cytokines such as IL-1β, and the infected host often displays altered nutrient levels. To date, the effect of Salmonella infection and proinflammatory cytokine IL-1β on the intestinal uptake of ascorbic acid (AA) is unknown. Our results revealed a marked decrease in the rate of AA uptake in mouse jejunum infected with Salmonella wild type (WT). However, the nonpathogenic mutant (Δ invA Δ spiB) strain did not affect AA uptake. The decrease in AA uptake due to Salmonella WT infection is accompanied by significantly lower expression of mouse (m)SVCT1 protein, mRNA, and hnRNA levels. NLRP3 and IL-1β expression levels were markedly increased in Salmonella-infected mouse jejunum. IL-1β-exposed Caco-2 cells displayed marked inhibition in AA uptake and significantly decreased hSVCT1 expression at both protein and mRNA levels. Furthermore, the activity of the SLC23A1 promoter was significantly inhibited by IL-1β exposure. In addition, GRHPR (a known SVCT1 interactor) protein and mRNA expression levels were significantly reduced in Salmonella-infected mouse jejunum. These results indicate that Salmonella infection inhibits AA absorption in mouse jejunum and IL-1β-exposed Caco-2 cells. The observed inhibitory effect may partially be mediated through transcriptional mechanisms.
Collapse
|
12
|
Jo H, Lee D, Go C, Jang Y, Chu N, Bae S, Kang D, Im JP, Kim Y, Kang JS. Preventive Effect of Vitamin C on Dextran Sulfate Sodium (DSS)-Induced Colitis via the Regulation of IL-22 and IL-6 Production in Gulo(−/−) Mice. Int J Mol Sci 2022; 23:ijms231810612. [PMID: 36142515 PMCID: PMC9505994 DOI: 10.3390/ijms231810612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS), which are exceptionally high in IBD lesions, are known to cause abnormal immune responses to inflammatory reactions in inflammatory bowel diseases (IBD) through damage to the intestinal mucosal linings. Moreover, they are theorized to be an agent of IBD development. Vitamin C is widely known to be an effective antioxidant for its ability to regulate inflammatory responses through its ROS scavenging effect. Therefore, we examined vitamin C’s influence on the development and progression of IBD in Gulo(−/−) mice, which cannot synthesize vitamin C like humans due to a defect in the expression of L-gulono-γ–lactone oxidase, an essential enzyme for vitamin C production. First, we found extensive oxidative stress and an inflammation increase in the colon of vitamin C-insufficient Gulo(−/−) mice. We also found decreased IL-22 production and NKp46(+) cell recruitment and the impaired activation of the p38MAPK pathway. Additionally, comparing vitamin C-insufficient Gulo(−/−) mice to vitamin C-sufficient Gulo(−/−) mice and wild-type mice, the insufficient group faced a decrease in mucin-1 expression, accompanied by an increase in IL-6 production, followed by the activation of the STAT3 and Akt pathways. The results suggest that vitamin C insufficiency induces severe colitis, meaning vitamin C could also take on a preventative role by regulating the production of cytokines and the induction of inflammation.
Collapse
Affiliation(s)
- Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dahae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Cheolhyeon Go
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoojin Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Naghyung Chu
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Suhyun Bae
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongmin Kang
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA 02215, USA
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
- Correspondence: (Y.K.); (J.S.K.)
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Medical Research Center, Institute of Allergy and Clinical Immunology, Seoul National University, Seoul 03080, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.K.); (J.S.K.)
| |
Collapse
|
13
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
14
|
Li Y, Sheng L, Jena PK, Gilbert MC, Wan YJY, Mao H. Retinoic Acid Signaling Is Compromised in DSS-Induced Dysbiosis. Nutrients 2022; 14:2788. [PMID: 35889745 PMCID: PMC9315703 DOI: 10.3390/nu14142788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and malnutrition both cause dysbiosis and dampen retinoic acid (RA) signaling pathways, which play pivotal roles in biological processes. The current study evaluates a hypothesis that colitis-associated dysbiosis also has systemic negative impacts on RA signaling. Thus, we studied the effects of inflammation, under a vitamin A-sufficient condition, on RA signaling using mouse colitis models induced by dextran sulfate sodium. That data showed that intestinal inflammation resulted in reduced RA signaling in the liver, brain, gut, and adipose tissues measured by analyzing the expression of genes encoding for the synthesis, oxidation, transport, and receptor of RA. The expression of RA-regulated gut homing molecules including α4β7 integrin, and CCR9, along with MADCAM1 were all reduced in colitis mice revealing compromised immunity due to reduced RA signaling. The data also showed that the development of colitis was accompanied by dysbiosis featured with reduced Lactobacillaceae and Verrucomicrobiaceae but an expansion of Erysipelotrichaceae and others. Colitis resulted in reduced butyrate-producing bacteria and increased methane-generating bacteria. Additionally, dysbiosis was associated with induced Il-1β, Ifn-γ, and Tnf-α mRNA but reduced Il-22, Il-17f, and Rorγt transcripts in the colon. Together, intestinal inflammation inhibits RA signaling in multiple organs. RA is essential in regulating various biological processes, it is critical to detect RA signaling reduction in tissues even when vitamin A deficiency is absent. Moreover, probiotics can potentially prevent dysbiosis and reverse compromised RA signaling, having systemic health benefits.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
- Department of Infectious Diseases, The Six Affiliated Hospital, South China University of Technology, Foshan 528200, China
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| |
Collapse
|
15
|
Nigam S, Ranjan R, Sinha N, Ateeq B. Nuclear magnetic resonance spectroscopy reveals dysregulation of monounsaturated fatty acid metabolism upon SPINK1 attenuation in colorectal cancer. NMR IN BIOMEDICINE 2022; 35:e4705. [PMID: 35102613 DOI: 10.1002/nbm.4705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Metabolic reprogramming, a key hallmark of cancer, plays a pivotal role in fulfilling the accelerated biological demands of tumor cells. Such metabolic changes trigger the production of several proinflammatory factors, thereby inciting cancer development and its progression. Serine protease inhibitor Kazal Type 1 (SPINK1), well known for its oncogenic role and its upregulation via acute-phase reactions, is highly expressed in multiple cancers including colorectal cancer (CRC). Here, we show accumulation of lipid droplets in CRC cells stained with Oil Red O upon SPINK1 silencing. Furthermore, NMR spectroscopy analysis revealed an accretion of monounsaturated fatty acids (MUFAs) and phosphatidylcholine in these CRC cells, while the levels of polyunsaturated fatty acids remained unaltered. This alteration indicates the presence of MUFAs with the triglycerides in the lipid droplets as observed in SPINK1-silenced CRC cells. Considering the role of MUFAs in the anti-inflammatory response, our data hint that suppression of SPINK1 in CRC leads to activation of an anti-inflammatory signaling milieu. Conclusively, our study uncovers a connection between lipid metabolism and SPINK1-mediated CRC progression, hence paving the way for further exploration and better prognosis of SPINK1-positive CRC patients.
Collapse
Affiliation(s)
- Shivansh Nigam
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Renuka Ranjan
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India
| | - Neeraj Sinha
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
- The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
16
|
There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. J Clin Med 2022; 11:jcm11092365. [PMID: 35566490 PMCID: PMC9105551 DOI: 10.3390/jcm11092365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Crohn’s disease (CD) and Ulcerative Colitis (UC) are classified as inflammatory bowel diseases (IBD). Currently, an increasing number of studies indicate that the metabolic consequences of IBD may include abnormalities in the fatty acid profile. The aim of this study was to compare fatty acid concentrations in IBD in order to identify differences between CD and UC and differences between the phases of both diseases. Methods: Sixty-three adolescent patients with CD (n = 33) and UC (n = 30) aged 13.66 ± 2.67 and 14.15 ± 3.31, respectively, were enrolled in the study. Analysis was performed by gas chromatography. Results: A statistically significant higher concentration of vaccenic acid was observed in the total UC group relative to total CD. In remission CD relative to active CD, a significantly higher concentration of palmitic acid was shown. Whereas in active CD, significantly higher levels of linoleic acid were observed relative to remission. The UC group had significantly higher lauric acid and gamma-linoleic acid levels in active disease relative to remission. Conclusions: The identified differences between FA levels in UC and CD could potentially be involved in the course of both diseases.
Collapse
|
17
|
Short-Chain and Total Fatty Acid Profile of Faeces or Plasma as Predictors of Food-Responsive Enteropathy in Dogs: A Preliminary Study. Animals (Basel) 2021; 12:ani12010089. [PMID: 35011195 PMCID: PMC8749849 DOI: 10.3390/ani12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Food-responsive enteropathy is the most common diagnosis given for dogs with chronic enteropathy, and there are no tests that can replace treatment trials. Furthermore, there is a lack of information on the specific nutritional status of these patients regarding the lipid profile that could relate them to the state of health/disease. This study evaluated differences in short-chain fatty acids and the total fatty acid profile of faeces and plasma as possible indicators of food-responsive enteropathy (FRE), as well as its relationship with body condition and the chronic enteropathy activity index. Changes in the long-chain fatty acid of plasma, and short-chain, branched and odd-chain fatty acids of faeces were detected in sick dogs, and high correlations were observed between some of these compounds and the existing calculated indices. Abstract The aim of this study was to evaluate differences in short-chain fatty acids (SCFAs) and the total fatty acid profile of faeces or plasma as possible indicators of FRE in comparison with healthy dogs. FRE dogs had a lower concentration (p = 0.026) of plasma α-tocopherol as an indicator of the oxidative status of the animal, and lower C20:5n-3 (p = 0.033), C22:5n-3 (p = 0.005), polyunsaturated fatty acids (PUFA) (p = 0.021) and n-6 (p = 0.041) when compared with the control dogs; furthermore, sick dogs had higher proportions of plasma C20:3n-6 (p = 0.0056). The dogs with FRE showed a decrease in the production of faecal levels of SCFAs, mainly propionic acid (C3) (p = 0.0001) and isovaleric acid (iC5) (p = 0.014). FRE dogs also had a lower proportion of C15:0 (p = 0.0003), C16:1n-9 (p = 0.0095), C16:1n-7 (p = 0.0001), C20:5n-3 (p = 0.0034) and monounsaturated fatty acids (p = 0.0315), and tended to have lower n-3 (p = 0.058) and a reduced desaturase activity index in the stool when compared with the control group. However, the dogs with chronic enteropathy tended to have greater C20:4n-6 (p = 0.065) in their faeces as signs of damage at the intestinal level. The faecal parameters were better predictors than plasma. The highest correlations between faecal odd-chain, medium- or long-chain fatty acids and SCFAs were observed for C15:0 that correlated positively with faecal acetic acid (C2) (r = 0.72, p = 0.004), propionic acid (r = 0.95, p = 0.0001), isobutyric acid (iC4) (r = 0.59, p = 0.027) and isovaleric acid (r = 0.64, p = 0.0136), as well as with total SCFAs (r = 0.61, p = 0.02). Conversely, faecal C20:4n-6 showed a high inverse correlation (r = −0.83, p = 0.0002) with C2 and C3 (r = −0.59, p = 0.027). Canine inflammatory bowel disease (IBD) activity (CIBDAI) index correlated negatively mainly with faecal measurements, such as C3 (r = −0.869, p = 0.0005) and C15:0 (r = −0.825, p = 0.0018), followed by C16:1/C16:0 (r = −0.66, p= 0.0374) and iC5 (r = −0.648, p = 0.0310), which would indicate that these fatty acids could be good non-invasive indicators of the chronic inflammatory status, specifically FRE.
Collapse
|
18
|
Subramanian VS, Teafatiller T, Moradi H, Marchant JS. Histone deacetylase inhibitors regulate vitamin C transporter functional expression in intestinal epithelial cells. J Nutr Biochem 2021; 98:108838. [PMID: 34403723 DOI: 10.1016/j.jnutbio.2021.108838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Intestinal absorption of vitamin C in humans is mediated via the sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2). hSVCT1 and hSVCT2 are localized at the apical and basolateral membranes, respectively, of polarized intestinal epithelia. Studies have identified low plasma levels of vitamin C and decreased expression of hSVCT1 in patients with several inflammatory conditions including inflammatory bowel disease (IBD). Investigating the underlying mechanisms responsible for regulating hSVCT1 expression are critical for understanding vitamin C homeostasis, particularly in conditions where suboptimal vitamin C levels detrimentally affect human health. Previous research has shown that hSVCT1 expression is regulated at the transcriptional level, however, little is known about epigenetic regulatory pathways that modulate hSVCT1 expression in the intestine. In this study, we found that hSVCT1 expression and function were significantly decreased in intestinal epithelial cells by the histone deacetylase inhibitors (HDACi), valproic acid (VPA), and sodium butyrate (NaB). Further, expression of transcription factor HNF1α, which is critical for SLC23A1 promoter activity, was significantly down regulated in VPA-treated cells. Chromatin immunoprecipitation (ChIP) assays showed significantly increased enrichment of tetra-acetylated histone H3 and H4 within the SLC23A1 promoter following VPA treatment. In addition, knockdown of HDAC isoforms two, and three significantly decreased hSVCT1 functional expression. Following VPA administration to mice, functional expression of SVCT1 in the jejunum was significantly decreased. Collectively, these in vitro and in vivo studies demonstrate epigenetic regulation of SVCT1 expression in intestinal epithelia partly mediated through HDAC isoforms two and three.
Collapse
Affiliation(s)
| | - Trevor Teafatiller
- Department of Medicine, University of California, Irvine, California, USA
| | - Hamid Moradi
- Department of Medicine, University of California, Irvine, California, USA; Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Russell LA, Balart MT, Serrano P, Armstrong D, Pinto-Sanchez MI. The complexities of approaching nutrition in inflammatory bowel disease: current recommendations and future directions. Nutr Rev 2021; 80:215-229. [PMID: 34131736 DOI: 10.1093/nutrit/nuab015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis predispose patients to malnutrition due to a combination of increased basal metabolic rate, decreased oral intake, and increased nutritional losses and malabsorption. Malnutrition is common, affecting up to 75% of patients with Crohn's disease and 62% of patients with ulcerative colitis, and is associated with worse disease prognosis, higher complication rates, decreased quality of life, and increased mortality risk. It is imperative to screen patients with IBD for malnutrition to assess those at increased risk and treat accordingly to prevent progression and complications. This literature review provides an overall approach to optimizing nutrition in IBD, focusing on the assessment for the diagnosis of malnutrition, management of macro- and micronutrient deficiencies, and identification of areas for future study.
Collapse
Affiliation(s)
- Lindsey A Russell
- L.A. Russell, M.T. Balart, D. Armstrong, and M.I. Pinto-Sanchez are with Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; L.A. Russell, M.T. Balart, P. Serrano, D. Armstrong, and M.I. Pinto-Sanchez are with McMaster University, Hamilton, Ontario, Canada
| | - Maria Teresa Balart
- L.A. Russell, M.T. Balart, D. Armstrong, and M.I. Pinto-Sanchez are with Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; L.A. Russell, M.T. Balart, P. Serrano, D. Armstrong, and M.I. Pinto-Sanchez are with McMaster University, Hamilton, Ontario, Canada
| | - Pablo Serrano
- L.A. Russell, M.T. Balart, D. Armstrong, and M.I. Pinto-Sanchez are with Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; L.A. Russell, M.T. Balart, P. Serrano, D. Armstrong, and M.I. Pinto-Sanchez are with McMaster University, Hamilton, Ontario, Canada
| | - David Armstrong
- L.A. Russell, M.T. Balart, D. Armstrong, and M.I. Pinto-Sanchez are with Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; L.A. Russell, M.T. Balart, P. Serrano, D. Armstrong, and M.I. Pinto-Sanchez are with McMaster University, Hamilton, Ontario, Canada
| | - Maria Ines Pinto-Sanchez
- L.A. Russell, M.T. Balart, D. Armstrong, and M.I. Pinto-Sanchez are with Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; L.A. Russell, M.T. Balart, P. Serrano, D. Armstrong, and M.I. Pinto-Sanchez are with McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Ma S, Qian C, Li N, Fang Z, Zhao J, Zhang H, Chen W, Liu Z, Lu W. Protein diets with the role of immune and gut microbial regulation alleviate DSS-induced chronic ulcerative colitis. Food Sci Nutr 2021; 9:1259-1270. [PMID: 33747442 PMCID: PMC7958528 DOI: 10.1002/fsn3.1914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The association between diet and inflammatory bowel disease (IBD) has been confirmed. However, the role of protein consumption in IBD remains controversial. This research aimed to explore the effects of milk-based protein (MBP), potato protein (PP), and mixed protein (MP) on the recovery of mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). MP alleviated UC symptoms through reducing colon shortening and tissue damage, decreasing neutrophil infiltration, maintaining the mucous layer integrity, and suppressing the expression of TNF-α, IL-17A, IL-6, and IL-1β. MBP and PP decreased the colon shortening and IL-1β levels but PP increased the MUC2 expression. Additionally, the gut microbial structure and composition were altered after different proteins supplement. Compared to DSS-treated mice, MP-treated mice showed that increased abundances in Coprococcus and Bifidobacterium and decreased abundances in Sutterella, Lactobacillus, and Akkermansia. MBP increased the proportion of Bifidobacterium and reduced Sutterella, but PP increased Ruminococcus and Bifidobacterium and decreased Adlercreutzia. Correspondence analysis of gut microbial composition to determine the effects of protein diets on immune response and pathological characteristics also verified the interaction between gut microbiota and alleviation of colitis. These results provide a theoretical basis for the selection of raw materials for clinical enteral nutrition preparations and potential use for potato protein wastes.
Collapse
Affiliation(s)
- Shenyan Ma
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Cheng Qian
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Nan Li
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., Ltd.ShanghaiChina
| | - Zhifeng Fang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jianxin Zhao
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxiChina
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
- Beijing Innovation Centre of Food Nutrition and Human HealthBeijing Technology and Business University (BTBU)BeijingChina
| | - Zhenmin Liu
- State Key Laboratory of Dairy BiotechnologyShanghai Engineering Research Center of Dairy BiotechnologyDairy Research InstituteBright Dairy & Food Co., Ltd.ShanghaiChina
| | - Wenwei Lu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
| |
Collapse
|
21
|
Metabolomic Profile of Weaned Pigs Challenged with E. coli and Supplemented with Carbadox or Bacillus subtilis. Metabolites 2021; 11:metabo11020081. [PMID: 33573321 PMCID: PMC7911053 DOI: 10.3390/metabo11020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study explored the metabolomic profiles in ileal mucosa and colon digesta in response to enterotoxigenic Escherichia coli F18 (ETEC) infection and dietary use of probiotics and low-dose antibiotics. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight) were randomly allotted to one of four treatments. Pigs in the negative control (NC) were fed a basal diet without ETEC challenge, whereas pigs in the positive control (PC), antibiotic, and probiotic groups were fed the basal diet, basal diet supplemented with 50 mg/kg of carbadox, or 500 mg/kg of Bacillus subtilis, respectively, and orally challenged with ETEC F18. All pigs were euthanized at day 21 post-inoculation to collect ileal mucosa and colon digesta for untargeted metabolomic profiling using gas chromatography coupled with time-of-flight mass spectrometry. Multivariate analysis highlighted a more distinct metabolomic profile of ileal mucosa metabolites in NC compared to the ETEC-challenged groups. The relative abundance of 19 metabolites from the ileal mucosa including polyamine, nucleotide, monosaccharides, fatty acids, and organic acids was significantly different between the NC and PC groups (q < 0.1). In colon digesta, differential metabolites including 2-monoolein, lactic acid, and maltose were reduced in the carbadox group compared with the probiotics group. In conclusion, several differential metabolites and metabolic pathways were identified in ileal mucosa, which may suggest an ongoing intestinal mucosal repair in the ileum of ETEC-challenged pigs on day 21 post-inoculation.
Collapse
|
22
|
Krzystek-Korpacka M, Kempiński R, Bromke MA, Neubauer K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics (Basel) 2020; 10:E601. [PMID: 32824619 PMCID: PMC7459713 DOI: 10.3390/diagnostics10080601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Precise diagnostic biomarker in inflammatory bowel diseases (IBD) is still missing. We conducted a comprehensive overview of oxidative stress markers (OSMs) as potential diagnostic, differential, progression, and prognostic markers in IBD. A Pubmed, Web of Knowledge, and Scopus search of original articles on OSMs in IBD, published between January 2000 and April 2020, was conducted. Out of 874 articles, 79 eligible studies were identified and used to prepare the interpretative synthesis. Antioxidants followed by lipid peroxidation markers were the most popular and markers of oxidative DNA damage the least popular. There was a disparity in the number of retrieved papers evaluating biomarkers in the adult and pediatric population (n = 6). Of the reviewed OSMs, a promising performance has been reported for serum total antioxidant status as a mucosal healing marker, mucosal 8-OHdG as a progression marker, and for multi-analyte panels of lipid peroxidation products assessed non-invasively in breath as diagnostic and differential markers in the pediatric population. Bilirubin, in turn, was the only validated marker. There is a desperate need for non-invasive biomarkers in IBD which, however, will not be met in the near future by oxidative stress markers as they are promising but mostly at the early research phase of discovery.
Collapse
Affiliation(s)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Mariusz A. Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland;
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
23
|
Vitamin C Deficiency: An Under-Recognized Condition in Crohn's Disease. ACG Case Rep J 2020; 7:e00424. [PMID: 32766366 PMCID: PMC7357708 DOI: 10.14309/crj.0000000000000424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022] Open
Abstract
Although many nutritional deficiencies are associated with Crohn's disease (CD), vitamin C deficiency is less frequently diagnosed and reported despite its prevalence. Vitamin C deficiency may be more difficult to diagnose in patients with CD because symptoms from active CD may overlap with scurvy. Identification of the deficiency is vital, however, because treatment can lead to swift, marked resolution of symptoms. We present a patient with long-standing CD who presented with gum bleeding and was found to have scurvy.
Collapse
|
24
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Nutrients in the Prevention of Osteoporosis in Patients with Inflammatory Bowel Diseases. Nutrients 2020; 12:E1702. [PMID: 32517239 PMCID: PMC7352179 DOI: 10.3390/nu12061702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
The chronic character of inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, results in various complications. One of them is osteoporosis, manifested by low bone mineral density, which leads to an increased risk of fractures. The aetiology of low bone mineral density is multifactorial and includes both diet and nutritional status. Calcium and vitamin D are the most often discussed nutrients with regard to bone mineral density. Moreover, vitamins A, K, C, B12; folic acid; calcium; phosphorus; magnesium; sodium; zinc; copper; and selenium are also involved in the formation of bone mass. Patients suffering from inflammatory bowel diseases frequently consume inadequate amounts of the aforementioned minerals and vitamins or their absorption is disturbed, resulting innutritional deficiency and an increased risk of osteoporosis. Thus, nutritional guidelines for inflammatory bowel disease patients should comprise information concerning the prevention of osteoporosis.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.M.R.); (A.Z.); (A.D.)
| | | | | | | | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland; (A.M.R.); (A.Z.); (A.D.)
| |
Collapse
|
25
|
Parenteral Nutrition in Patients with Inflammatory Bowel Disease Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2019; 11:nu11122865. [PMID: 31766687 PMCID: PMC6950216 DOI: 10.3390/nu11122865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease mediated by the immune system and characterized by the inflammation of the gastrointestinal tract. This study is to understand how the use of parenteral nutrition (PN) can affect the adult population diagnosed with IBD. We conducted a systematic review, meta-analysis, and meta-regression. From the different databases (MEDLINE, Scopus, Cochrane, LILACS, CINAHL, WOS), we found 119 registers with an accuracy of 16% (19 registers). After a full-text review, only 15 research studies were selected for qualitative synthesis and 10 for meta-analysis and meta-regression. The variables used were Crohn’s Disease Activity Index (CDAI), albumin, body weight (BW), and postoperative complications (COM). PN has shown to have efficacy for the treatment of IBD and is compatible with other medicines. The CDAI and albumin improve, although the effect of PN is greater after a while. However, the effect on the albumin could be less than the observed value in the meta-analysis due to possible publication bias. The BW does not change after intervention. COM utilizing PN has been observed, although the proportion is low. More studies specifically referring to ulcerative colitis (UC) and Crohn’s disease (CD) are needed to develop more concrete clinical results.
Collapse
|
26
|
Kilby K, Mathias H, Boisvenue L, Heisler C, Jones JL. Micronutrient Absorption and Related Outcomes in People with Inflammatory Bowel Disease: A Review. Nutrients 2019; 11:E1388. [PMID: 31226828 PMCID: PMC6627381 DOI: 10.3390/nu11061388] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic disorder associated with immune dysregulation and chronic inflammation of the digestive tract. While it is poorly understood, the role of nutrition and nutrient status in the etiology of IBD and its associated outcomes has led to increased research relating to micronutrient deficiency. This review offers an overview of recent literature related to micronutrient absorption and outcomes in adults with IBD. Although the absorption and IBD-related outcomes of some micronutrients (e.g., vitamin D and iron) are well understood, other micronutrients (e.g., vitamin A) require further research. Increased research and clinician knowledge of the relationship between micronutrients and IBD may manifest in improved nutrient screening, monitoring, treatment, and outcomes for people living with IBD.
Collapse
Affiliation(s)
- Kyle Kilby
- Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, NS B3J 4R2, Canada.
| | - Holly Mathias
- School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS B3H 1T8, Canada.
| | - Lindsay Boisvenue
- Seaway Valley Community Health Care, 353 Pitt Street, Cornwall, ON K6J 3R1, Canada.
| | - Courtney Heisler
- Nova Scotia Collaborative Inflammatory Bowel Disease Program, Division of Digestive Care and Endoscopy, QEII Health Science Centre, Room 932, Victoria Building, 1276 South Park Street, Halifax, NS B3H 2Y9, Canada.
| | - Jennifer L Jones
- Nova Scotia Collaborative Inflammatory Bowel Disease Program, Division of Digestive Care and Endoscopy, QEII Health Science Centre, Room 932, Victoria Building, 1276 South Park Street, Halifax, NS B3H 2Y9, Canada.
| |
Collapse
|
27
|
Bourgonje AR, von Martels JZH, Bulthuis MLC, van Londen M, Faber KN, Dijkstra G, van Goor H. Crohn's Disease in Clinical Remission Is Marked by Systemic Oxidative Stress. Front Physiol 2019; 10:499. [PMID: 31080419 PMCID: PMC6497730 DOI: 10.3389/fphys.2019.00499] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction: Crohn’s disease (CD) is characterized by chronic and relapsing inflammation of the gastro-intestinal tract. It is assumed that oxidative stress contributes to CD pathogenesis, but systemic biomarkers for oxidative stress in CD are not yet identified. A reduction in free thiol groups in plasma proteins (“plasma free thiols”) reflects systemic oxidative stress since they are prime substrates for reactive oxygen species. Here, we determined the concentrations of plasma free thiols in CD patients and healthy controls and studied the putative correlation with disease parameters. Methods: Free thiols were quantified in plasma of patients with CD in clinical remission [according to the Harvey Bradshaw Index (HBI)] and healthy controls and adjusted for plasma albumin. Albumin-adjusted free thiol concentrations were analyzed for associations with clinical and biochemical disease markers. Results: Mean plasma free thiol concentrations were significantly lower in patients with CD (n = 51) compared to healthy controls (n = 27) (14.7 ± 2.4 vs. 17.9 ± 1.8 μmol/g albumin; P < 0.001). Patients with CD with above-average free thiols had significantly lower CRP levels (median 1.4 [interquartile range] [0.4; 2.6] vs. 3.6 [0.6; 7.0] mg/L; P < 0.05) and BMI (23.6 ± 4.8 vs. 27.1 ± 5.2 kg/m2; P < 0.05). Patients with CD having solely colonic disease demonstrated markedly reduced plasma free thiol concentrations compared to patients with ileocolonic involvement (13.2 ± 1.8 vs. 15.2 ± 2.2 μmol/g; P < 0.05). Finally, plasma free thiol concentrations negatively correlated with biomarkers of inflammation, including hsCRP, SAA, IL-17A (all P < 0.05), and VEGF. Conclusion: Plasma free thiols are reduced in patients with CD in clinical remission compared to healthy controls. Thus, subclinical CD disease activity is reflected by systemic oxidative stress and plasma free thiols may be a relevant therapeutic target and biomarker to monitor disease activity in CD.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Julius Z H von Martels
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco van Londen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Subramanian VS, Sabui S, Marchant JS, Said HM. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. J Nutr Biochem 2019; 65:46-53. [PMID: 30616065 PMCID: PMC6420349 DOI: 10.1016/j.jnutbio.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/04/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Intestinal absorption of ascorbic acid (AA) occurs via a Na+-dependent carrier-mediated process facilitated through the human sodium-dependent vitamin C transporters-1 &-2 (hSVCT1 and hSVCT2). Many studies have shown that hSVCT1 (product of the SLC23A1 gene) is expressed on the apical membrane of polarized enterocytes where it mediates AA absorption. hSVCT1 expression levels are therefore an important determinant of physiological vitamin C homeostasis. However, little is known about posttranscriptional mechanisms that regulate hSVCT1 expression in intestinal epithelia. In this study, we investigated regulation of hSVCT1 by microRNA (miRNA). A pmirGLO-SLC23A1-3'-UTR construct transfected into human intestinal cell lines (Caco-2 and NCM460 cells) showed markedly reduced luciferase activity. Bioinformatic analysis of the SLC23A1-3'-UTR predicted five miRNA binding sites (miR-103a, miR-107, miR-328, miR-384, and miR-499-5p) in the 3'-UTR. Expression of mature miR-103a was markedly higher compared to the other four putative miRNA regulators in both intestinal cell lines and mouse jejunal mucosa. Addition of a miR-103a mimic, but not a miR-103a mutant construct, markedly reduced the luminescence of the pmirGLO-SLC23A1-3'-UTR reporter. Reciprocally, addition of a miR-103a inhibitor significantly increased luciferase reporter activity. Addition of the miR-103a mimic led to a significant inhibition in AA uptake, associated with decreased hSVCT1 mRNA and protein expression in Caco-2 cells. In contrast, the miR-103a inhibitor increased AA uptake, associated with increased levels of hSVCT1 mRNA and protein. These findings provide the first evidence for posttranscriptional regulation of hSVCT1 by miRNA in intestinal epithelial cells.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822.
| | - Subrata Sabui
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI 53226
| | - Hamid M Said
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822
| |
Collapse
|
29
|
A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol 2019; 12:457-467. [PMID: 29695840 PMCID: PMC6202286 DOI: 10.1038/s41385-018-0022-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Microbial metabolites are an emerging class of mediators influencing CD4+ T-cell function. To advance the understanding of direct causal microbial factors contributing to Crohn's disease, we screened 139 predicted Crohn's disease-associated microbial metabolites for their bioactivity on human CD4+ T-cell functions induced by disease-associated T helper 17 (Th17) polarizing conditions. We observed 15 metabolites with CD4+ T-cell bioactivity, 3 previously reported, and 12 unprecedented. A deeper investigation of the microbe-derived metabolite, ascorbate, revealed its selective inhibition on activated human CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. Mechanistic assessment suggested the apoptosis of activated human CD4+ T cells associated with selective inhibition of energy metabolism. These findings suggest a substantial rate of relevant T-cell bioactivity among Crohn's disease-associated microbial metabolites, and evidence for novel modes of bioactivity, including targeting of T-cell energy metabolism.
Collapse
|
30
|
Sarazin A, Dendooven A, Delbeke M, Gatault S, Pagny A, Standaert A, Rousseaux C, Desreumaux P, Dubuquoy L, Capron M. Treatment with P28GST, a schistosome-derived enzyme, after acute colitis induction in mice: Decrease of intestinal inflammation associated with a down regulation of Th1/Th17 responses. PLoS One 2018; 13:e0209681. [PMID: 30592734 PMCID: PMC6310452 DOI: 10.1371/journal.pone.0209681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Background P28GST, a 28Kd glutathione S-transferase enzymatic protein derived from a schistosome helminth prevents experimental colitis when administered subcutaneously in the presence of adjuvant by decreasing pro-inflammatory Th1/Th17 response. Given the antioxidant properties of P28GST, we evaluated its anti-inflammatory potential when administered locally after colitis induction in the absence of adjuvant. Methods Colitis was induced in BALB/c mice by rectal administration of TNBS, followed by two intraperitoneal injections of P28GST at day 1 and day 2. Mice were sacrificed 48h after TNBS administration and evaluated for macroscopic and histological scores, myeloperoxidase (MPO) quantification and cytokine messenger RNA expression in the colonic tissues. Results Both clinical and histological scores significantly decreased in mice treated with P28GST at 5 or 50μg/kg when compared to vehicle- treated mice. A significant reduction of MPO was detected in colonic tissues from P28GST–treated mice, similarly to mice treated with methylprednisolone as the reference treatment. Pro-inflammatory cytokines TNF, IL-1β, and IL-6, mRNA as well as serum levels were down-regulated in mice colonic tissues treated with P28GST at 5 or 50μg/kg. In addition, a significant decrease of mRNA expression levels of T-bet, and ROR-γ, respective markers of Th1 and Th17 cells was observed. Whereas no significant effect was detected on Gata3 mRNA, a marker of Th2 cells, the Arg/iNOS mRNA levels significantly increased in P28GST-treated mice, suggesting the induction of M2 macrophages. Conclusions These findings provide evidence that P28GST injected locally after colitis induction induces a potent decrease of colitis inflammation in mice, associated to downregulation of Th1/Th17 response, and induction of anti-inflammatory alternatively activated macrophages.
Collapse
Affiliation(s)
- Aurore Sarazin
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Arnaud Dendooven
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Marie Delbeke
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Solène Gatault
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Aurélien Pagny
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Annie Standaert
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | | | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
| | - Monique Capron
- Univ. Lille, Inserm, CHU Lille, U995 – LIRIC – Lille Inflammation Research International Center, Lille, France
- * E-mail:
| |
Collapse
|
31
|
Subramanian VS, Sabui S, Subramenium GA, Marchant JS, Said HM. Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling. Am J Physiol Gastrointest Liver Physiol 2018; 315:G241-G248. [PMID: 29631379 PMCID: PMC6139644 DOI: 10.1152/ajpgi.00071.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-dependent vitamin C transporter-1 (SVCT-1) is the major transporter mediating intestinal vitamin C uptake. Intestinal inflammation and prolonged infection are associated with increased serum and intestinal mucosa levels of tumor necrosis factor-α (TNF-α), which also exerts profound effects on the intestinal absorption process. Elevated levels of TNF-α have been linked to the pathogenesis of inflammatory bowel disease (IBD) and malabsorption of nutrients, and patients with this condition have low levels of vitamin C. To date, little is known about the effect of TNF-α on intestinal absorption of vitamin C. We studied the impact of TNF-α on ascorbic acid (AA) transport using a variety of intestinal preparations. The expression level of human SVCT-1 mRNA is significantly lower in patients with IBD. TNF-α treated Caco-2 cells and mice showed a significant inhibition of intestinal 14C-AA uptake. This inhibition was associated with significant decreases in SVCT-1 protein, mRNA, and heterogeneous nuclear RNA levels in TNF-α treated Caco-2 cells, mouse jejunum, and enteroids. Also, TNF-α caused a significant inhibition in the SLC23A1 promoter activity. Furthermore, treatment of Caco-2 cells with celastrol (NF-κB inhibitor) blocked the inhibitory effect caused by TNF-α on AA uptake, SVCT-1 protein, and mRNA expression, as well as the activity of SLC23A1 promoter. Treatment of TNF-α also led to a significant decrease in the expression of hepatocyte nuclear factor-1-α, which drives the basal activity of SLC23A1 promoter, and this effect was reversed by celastrol. Together, these findings show that TNF-α inhibits intestinal AA uptake, and this effect is mediated, at least in part, at the level of transcription of the SLC23A1 gene via the NF-κB pathway. NEW & NOTEWORTHY Our findings show that tumor necrosis factor-α inhibits intestinal ascorbic acid uptake in both in vitro and in vivo systems, and this inhibitory effect is mediated, at least in part, at the level of transcription of the SLC23A1 (sodium-dependent vitamin C transporter-1) gene via the NF-κB pathway.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Subrata Sabui
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Ganapathy A. Subramenium
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| | - Jonathan S. Marchant
- 4Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hamid M. Said
- 1Department of Medicine, University of California, Irvine, California,2Department of Physiology and Biophysics, University of California, Irvine, California,3Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
32
|
Oxidative Stress and Effect of Treatment on the Oxidation Product Decomposition Processes in IBD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7918261. [PMID: 30057685 PMCID: PMC6051053 DOI: 10.1155/2018/7918261] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Oxidative stress plays an important role in IBD because chronic intestinal inflammation is associated with the overproduction of reactive oxygen species (ROS) leading to oxidative stress, which has been implicated in IBD. Many lines of evidence suggest that IBD is associated with an imbalance between ROS and antioxidant activity which generates oxidative stress as the result of either ROS overproduction or a decrease in antioxidant activity. Our study was to evaluate the influence of oxidative stress and antioxidants on the course of the disease and treatment of IBD patients. Our results show that an increase of LOOH levels positively correlates with an increase in MDA levels; therefore, MDA may be a marker indicating lipid peroxidation. Also, being the decomposition product of oxidation processes, MDA may be applied as a useful biomarker for identifying the effect of endogenous oxidative stress in Crohn's disease patients. The anti-inflammatory efficacy of AZA drugs may be the result of a reduction of the amount of lipid peroxides in the intestinal mucosa cells in CD patients and facilitate mucosal healing.
Collapse
|
33
|
Guan G, Lan S. Implications of Antioxidant Systems in Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1290179. [PMID: 29854724 PMCID: PMC5966678 DOI: 10.1155/2018/1290179] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
Abstract
The global incidence of inflammatory bowel disease (IBD), a group of chronic gastrointestinal disorders, has been rising. The preponderance of evidence demonstrates that oxidative stress (OS) performs a critical function in the onset of IBD and the manner of its development. The purpose of this review is to outline the generation of reactive oxygen species and antioxidant defense mechanisms in the gastrointestinal tract and the role played by OS in marking the onset and development of IBD. Furthermore, the review demonstrates the various ways through which OS is related to genetic susceptibility and the mucosal immune response. The experimental results suggest that certain therapeutic regimens for IBD could have a favorable impact by scavenging free radicals, reducing cytokine and prooxidative enzyme concentrations, and improving the antioxidative capabilities of cells. However, antioxidative activity characterized by a high level of specificity may be fundamental for the development of clinical therapies and for relapsing IBD patients. Therefore, additional research is required to clarify the ways through which OS is related to the pathogenesis and progression of IBD.
Collapse
Affiliation(s)
- Guiping Guan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shile Lan
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
34
|
Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 66:687-708. [PMID: 29570147 DOI: 10.1097/mpg.0000000000001896] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS A growing body of evidence supports the need for detailed attention to nutrition and diet in children with inflammatory bowel disease (IBD). We aimed to define the steps in instituting dietary or nutritional management in light of the current evidence and to offer a useful and practical guide to physicians and dieticians involved in the care of pediatric IBD patients. METHODS A group of 20 experts in pediatric IBD participated in an iterative consensus process including 2 face-to-face meetings, following an open call to Nutrition Committee of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition Porto, IBD Interest, and Nutrition Committee. A list of 41 predefined questions was addressed by working subgroups based on a systematic review of the literature. RESULTS A total of 53 formal recommendations and 47 practice points were endorsed with a consensus rate of at least 80% on the following topics: nutritional assessment; macronutrients needs; trace elements, minerals, and vitamins; nutrition as a primary therapy of pediatric IBD; probiotics and prebiotics; specific dietary restrictions; and dietary compounds and the risk of IBD. CONCLUSIONS This position paper represents a useful guide to help the clinicians in the management of nutrition issues in children with IBD.
Collapse
|
35
|
Jezernik G, Potočnik U. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis. Prostaglandins Leukot Essent Fatty Acids 2018; 130:1-10. [PMID: 29549916 DOI: 10.1016/j.plefa.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 01/15/2023]
Abstract
Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10-8) and a locus in LRRK2 (p = 1.4 × 10-7). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10-3), total trans-fatty acids (p = 4.49 × 10-3), palmitic acid (p = 5.85 × 10-3) and arachidonic acid (p = 8.58 × 10-3) as significantly associated with IBD pathogenesis.
Collapse
Affiliation(s)
- Gregor Jezernik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
36
|
|
37
|
Subramanian VS, Sabui S, Moradi H, Marchant JS, Said HM. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:556-565. [PMID: 29030247 DOI: 10.1016/j.bbamem.2017.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/28/2022]
Abstract
Ascorbic acid (AA) accumulation in intestinal epithelial cells is an active transport process mainly mediated by two sodium-dependent vitamin C transporters (SVCT-1 and SVCT-2). To date, little is known about the effect of gut microbiota generated lipopolysaccharide (LPS) on intestinal absorption of water-soluble vitamins. Therefore, the objective of this study was to investigate the effects of bacterially-derived LPS on AA homeostasis in enterocytes using Caco-2 cells, mouse intestine and intestinal enteroids models. Pre-treating Caco-2 cells and mice with LPS led to a significant decrease in carrier-mediated AA uptake. This inhibition was associated with a significant reduction in SVCT-1 and SVCT-2 protein, mRNA, and hnRNA expression. Furthermore, pre-treating enteroids with LPS also led to a marked decrease in SVCT-1 and SVCT-2 protein and mRNA expression. Inhibition of SVCT-1 and SVCT-2 occurred at least in part at the transcriptional level as promoter activity of SLC23A1 and SLC23A2 was attenuated following LPS treatment. Subsequently, we examined the protein and mRNA expression levels of HNF1α and Sp1 transcription factors, which are needed for basal SLC23A1 and SLC23A2 promoter activity, and found that they were significantly decreased in the LPS treated Caco-2 cells and mouse jejunum; this was reflected on level of the observed reduction in the interaction of these transcription factors with their respective promoters in Caco-2 cells treated with LPS. Our findings indicate that LPS inhibits intestinal carrier- mediated AA uptake by down regulating the expression of both vitamin C transporters and transcriptional regulation of SLC23A1 and SLC23A2 genes.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States.
| | - Subrata Sabui
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States
| | - Hamid Moradi
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Hamid M Said
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697, United States; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, United States
| |
Collapse
|
38
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
39
|
Subramanian VS, Srinivasan P, Wildman AJ, Marchant JS, Said HM. Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract. Am J Physiol Gastrointest Liver Physiol 2017; 312:G340-G347. [PMID: 27932501 PMCID: PMC5407060 DOI: 10.1152/ajpgi.00369.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
Mammalian cells utilize two transporters for the uptake of ascorbic acid (AA), Na+-dependent vitamin C transporter SVCT-1 and SVCT-2. In the intestine, these transporters are involved in AA absorption and are expressed at the apical and basolateral membrane domains of the polarized epithelia, respectively. Little is known about the differential expression of these two transporters along the anterior-posterior axis of the intestinal tract and the molecular mechanism(s) that dictate this pattern of expression. We used mouse and human intestinal cDNAs to address these issues. The results showed a significantly lower rate of carrier-mediated AA uptake by mouse colon than jejunum. This was associated with a significantly lower level of expression of SVCT-1 and SVCT-2 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels in the colon than the jejunum, implying the involvement of transcriptional mechanism(s). Similarly, expression levels of SVCT-1 and SVCT-2 mRNA and hnRNA were significantly lower in human colon. We also examined the levels of expression of hepatocyte nuclear factor 1α and specificity protein 1, which drive transcription of the Slc23a1 and Slc23a2 promoters, respectively, and found them to be markedly lower in the colon. Furthermore, significantly lower levels of the activating markers for histone (H3) modifications [H3 trimethylation of lysine 4 (H3K4me3) and H3 triacetylation of lysine 9 (H3K9ac)] were observed in the Slc23a1 and Slc23a2 promoters in the colon. These findings show, for the first time, that SVCT-1 and SVCT-2 are differentially expressed along the intestinal tract and that this pattern of expression is, at least in part, mediated via transcriptional/epigenetic mechanisms.NEW & NOTEWORTHY Our findings show, for the first time, that transporters of the water-soluble vitamin ascorbic acid (i.e., the vitamin C transporters SVCT-1 and SVCT-2) are differentially expressed along the length of the intestinal tract and that the pattern of expression is mediated, at least in part, by transcriptional and epigenetic mechanism(s) affecting both Slc23a1 and Slc23a2 genes.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California; and
| | - Padmanabhan Srinivasan
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California; and
| | - Alexis J. Wildman
- 2Department of Veterans Affairs Medical Center, Long Beach, California; and
| | - Jonathan S. Marchant
- 3Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hamid M. Said
- 1Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California; and
| |
Collapse
|
40
|
Abstract
Malnutrition is a frequent feature in Crohn's disease (CD), affects patient outcome and must be recognised. For chronic inflammatory diseases, recent guidelines recommend the development of combined malnutrition and inflammation risk scores. We aimed to design and evaluate a new screening tool that combines both malnutrition and inflammation parameters that might help predict clinical outcome. In a prospective cohort study, we examined fifty-five patients with CD in remission (Crohn's disease activity index (CDAI) <200) at 0 and 6 months. We assessed disease activity (CDAI, Harvey-Bradshaw index), inflammation (C-reactive protein (CRP), faecal calprotectin (FC)), malnutrition (BMI, subjective global assessment (SGA), serum albumin, handgrip strength), body composition (bioelectrical impedance analysis) and administered the newly developed 'Malnutrition Inflammation Risk Tool' (MIRT; containing BMI, unintentional weight loss over 3 months and CRP). All parameters were evaluated regarding their ability to predict disease outcome prospectively at 6 months. At baseline, more than one-third of patients showed elevated inflammatory markers despite clinical remission (36·4 % CRP ≥5 mg/l, 41·5 % FC ≥100 µg/g). Prevalence of malnutrition at baseline according to BMI, SGA and serum albumin was 2-16 %. At 6 months, MIRT significantly predicted outcome in numerous nutritional and clinical parameters (SGA, CD-related flares, hospitalisations and surgeries). In contrast, SGA, handgrip strength, BMI, albumin and body composition had no influence on the clinical course. The newly developed MIRT was found to reliably predict clinical outcome in CD patients. This screening tool might be used to facilitate clinical decision making, including treatment of both inflammation and malnutrition in order to prevent complications.
Collapse
|
41
|
Jang KU, Yu CS, Lim SB, Park IJ, Yoon YS, Kim CW, Lee JL, Yang SK, Ye BD, Kim JC. Factors affecting poor nutritional status after small bowel resection in patients with Crohn disease. Medicine (Baltimore) 2016; 95:e4285. [PMID: 27472702 PMCID: PMC5265839 DOI: 10.1097/md.0000000000004285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Crohn disease, bowel-preserving surgery is necessary to prevent short bowel syndrome due to repeated operations. This study aimed to determine the remnant small bowel length cut-off and to evaluate the clinical factors related to nutritional status after small bowel resection in Crohn disease.We included 394 patients (69.3% male) who underwent small bowel resection for Crohn disease between 1991 and 2012. Patients who were classified as underweight (body mass index < 17.5) or at high risk of nutrition-related problems (modified nutritional risk index < 83.5) were regarded as having a poor nutritional status. Preliminary remnant small bowel length cut-offs were determined using receiver operating characteristic curves. Variables associated with poor nutritional status were assessed retrospectively using Student t tests, chi-squared tests, Fisher exact tests, and logistic regression analyses.The mean follow-up period was 52.9 months and the mean patient ages at the time of the last bowel surgery and last follow-up were 31.2 and 35.7 years, respectively. The mean remnant small bowel length was 331.8 cm. Forty-three patients (10.9%) underwent ileostomy, 309 (78.4%) underwent combined small bowel and colon resection, 111 (28.2%) had currently active disease, and 105 (26.6%) underwent at least 2 operations for recurrent disease. The mean body mass index and modified nutritional risk index were 20.6 and 100.8, respectively. The independent factors affecting underweight status were remnant small bowel length ≤240 cm (odds ratio: 4.84, P < 0.001), ileostomy (odds ratio: 4.70, P < 0.001), and currently active disease (odds ratio: 4.16, P < 0.001). The independent factors affecting high nutritional risk were remnant small bowel length ≤230 cm (odds ratio: 2.84, P = 0.012), presence of ileostomy (odds ratio: 3.36, P = 0.025), and currently active disease (odds ratio: 4.90, P < 0.001).Currently active disease, ileostomy, and remnant small bowel length ≤230 cm are risk factors affecting the poor nutritional status of patients with Crohn disease after small bowel resection.
Collapse
Affiliation(s)
- Ki Ung Jang
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - Chang Sik Yu
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
- Correspondence: Chang Sik Yu, Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea (e-mail: )
| | - Seok-Byung Lim
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - In Ja Park
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - Yong Sik Yoon
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - Chan Wook Kim
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - Jong Lyul Lee
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| | - Suk-Kyun Yang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Cheon Kim
- Department of Colorectal Surgery, University of Ulsan College of Medicine, Asan Medical Center
| |
Collapse
|
42
|
Concentration of hepatic vitamins A and E in rats exposed to chlorpyrifos and/or enrofloxacin. Pol J Vet Sci 2016; 19:371-8. [DOI: 10.1515/pjvs-2016-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the study was to determine the level of antioxidant vitamins A and E in the liver of rats exposed to chlorpyrifos and/or enrofloxacin. Chlorpyrifos (Group I) was administered at a dose of 0.04 LD50 (6 mg/kg b.w.) for 28 days, and enrofloxacin (Group II) at a dose of 5 mg/kg b.w. for 5 consecutive days. The animals of group III were given both of the mentioned above compounds at the same manner as groups I and II, but enrofloxacin was applied to rats for the last 5 days of chlorpyrifos exposure (i.e. on day 24, 25, 26, 27 and 28). Chlorpyrifos and enrofloxacin were administered to rats intragastrically via a gastric tube. The quantitative determination of vitamins was made by the HPLC method. The results of this study indicated a reduction in the hepatic concentrations of vitamins A and E, compared to the control, which sustained for the entire period of the experiment. The four-week administration of chlorpyrifos to rats resulted in a significant decrease of vitamins in the initial period of the experiment, i.e. up to 24 hours after exposure. For vitamin A the maximum drop was observed after 24 hours (19.24%) and for vitamin E after 6 hours (23.19%). Enrofloxacin caused a slight (3-9%) reduction in the level of the analysed vitamins. In the chlorpyrifos-enrofloxacin co-exposure group reduced vitamins A and E levels were also noted, but changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. The decrease in the antioxidant vitamin levels, particularly noticeable in the chlorpyrifos- and the chlorpyrifos combined with enrofloxacin-treated groups, may result not only from the increase in the concentration of free radicals, but also from the intensification of the secondary stages of lipid peroxidation.
Collapse
|
43
|
Wędrychowicz A, Zając A, Tomasik P. Advances in nutritional therapy in inflammatory bowel diseases: Review. World J Gastroenterol 2016; 22:1045-66. [PMID: 26811646 PMCID: PMC4716019 DOI: 10.3748/wjg.v22.i3.1045] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease are chronic, life-long, and relapsing diseases of the gastrointestinal tract. Currently, there are no complete cure possibilities, but combined pharmacological and nutritional therapy may induce remission of the disease. Malnutrition and specific nutritional deficiencies are frequent among IBD patients, so the majority of them need nutritional treatment, which not only improves the state of nutrition of the patients but has strong anti-inflammatory activity as well. Moreover, some nutrients, from early stages of life are suspected as triggering factors in the etiopathogenesis of IBD. Both parenteral and enteral nutrition is used in IBD therapy, but their practical utility in different populations and in different countries is not clearly established, and there are sometimes conflicting theories concerning the role of nutrition in IBD. This review presents the actual data from research studies on the influence of nutrition on the etiopathogenesis of IBD and the latest findings regarding its mechanisms of action. The use of both parenteral and enteral nutrition as therapeutic methods in induction and maintenance therapy in IBD treatment is also extensively discussed. Comparison of the latest research data, scientific theories concerning the role of nutrition in IBD, and different opinions about them are also presented and discussed. Additionally, some potential future perspectives for nutritional therapy are highlighted.
Collapse
|
44
|
Balmus IM, Ciobica A, Trifan A, Stanciu C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J Gastroenterol 2016; 22:3-17. [PMID: 26831601 PMCID: PMC4763525 DOI: 10.4103/1319-3767.173753] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient's immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS), oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients.
Collapse
Affiliation(s)
- Ioana Miruna Balmus
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
| | - Alin Ciobica
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
- Address for correspondence: Dr. Alin Ciobica, Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol I, 11, Iaşi - 700506, Romania. E-mail:
| | - Anca Trifan
- Department of Gastroenterology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Carol Stanciu
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
| |
Collapse
|
45
|
Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, Pollard KS, Sharpton TJ. Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes. PLoS Comput Biol 2015; 11:e1004573. [PMID: 26565399 PMCID: PMC4643905 DOI: 10.1371/journal.pcbi.1004573] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/29/2015] [Indexed: 12/30/2022] Open
Abstract
Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP). ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn’s disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease. Microbial communities perform a wide variety of functions, from marine photosynthesis to aiding digestion in the human gut. Shotgun “metagenomic” sequencing can be used to sample millions of short DNA sequences from such communities directly, without needing to first culture its constituents in the laboratory. Using these data, researchers can survey which functions are encoded by mapping these short sequences to known protein families and pathways. Several tools for this annotation already exist. But, annotation is a multi-step process that includes identification of genes in a metagenome and determination of the type of protein each gene encodes. We currently know little about how different choices of parameters during annotation influences the final results. In this work, we systematically test how several key decisions affect the accuracy and speed of annotation, and based on these results, develop new software for annotation, which we named ShotMAP. We then use ShotMAP to functionally characterize marine communities and gut communities in a clinical cohort of inflammatory bowel disease. We find several functions are differentially represented in the gut microbiome of Crohn’s disease patients, which could be candidates for biomarkers and could also offer insight into the pathophysiology of Crohn’s. ShotMAP is freely available (https://github.com/sharpton/shotmap).
Collapse
Affiliation(s)
- Stephen Nayfach
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Patrick H. Bradley
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Stacia K. Wyman
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Timothy J. Laurent
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Alex Williams
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Jonathan A. Eisen
- Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KSP); (TJS)
| | - Thomas J. Sharpton
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Microbiology, Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (KSP); (TJS)
| |
Collapse
|
46
|
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer. Mar Drugs 2015; 13:6152-209. [PMID: 26437418 PMCID: PMC4626684 DOI: 10.3390/md13106152] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Sofía García-Mauriño
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville 41012, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Antonio Alcaide
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| |
Collapse
|
47
|
Abstract
The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.
Collapse
Affiliation(s)
- Rasmus Goll
- Medical Clinic, Section of Gastroenterology, University Hospital of North Norway , Tromsø , Norway
| | | |
Collapse
|
48
|
Abstract
Advanced mucosal healing (MH) after intestinal mucosal inflammation coincides with sustained clinical remission and reduced rates of hospitalization and surgical resection, explaining why MH is increasingly considered as a full therapeutic goal and as an endpoint for clinical trials. Intestinal MH is a complex phenomenon viewed as a succession of steps necessary to restore tissue structure and function. These steps include epithelial cell migration and proliferation, cell differentiation, restoration of epithelial barrier functions, and modulation of cell apoptosis. Few clinical studies have evaluated the needs for specific macronutrients and micronutrients and their effects on intestinal MH, most data having been obtained from animal and cell studies. These data suggest that supplementation with specific amino acids including arginine, glutamine, glutamate, threonine, methionine, serine, proline, and the amino acid-derived compounds, polyamines can favorably influence MH. Short-chain fatty acids, which are produced by the microbiota from undigested polysaccharides and protein-derived amino acids, also exert beneficial effects on the process of intestinal MH in experimental models. Regarding supplementation with lipids, although the effects of ω-3 and ω-6 fatty acids remain controversial, endogenous prostaglandin synthesis seems to be necessary for MH. Finally, among micronutrients, several vitamin and mineral deficiencies with different frequencies have been observed in patients with inflammatory bowel diseases and supplementation with some of them (vitamin A, vitamin D3, vitamin C, and zinc) are presumed to favor MH. Future work, including clinical studies, should evaluate the efficiency of supplementation with combination of dietary compounds as adjuvant nutritional intervention for MH of the inflamed intestinal mucosa.
Collapse
|
49
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1417] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
50
|
Amir Shaghaghi M, Bernstein CN, Serrano León A, El-Gabalawy H, Eck P. Polymorphisms in the sodium-dependent ascorbate transporter gene SLC23A1 are associated with susceptibility to Crohn disease. Am J Clin Nutr 2014; 99:378-83. [PMID: 24284447 DOI: 10.3945/ajcn.113.068015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Crohn disease (CD) and ulcerative colitis (UC) are 2 common inflammatory bowel diseases (IBDs) associated with intestinal inflammation and tissue damage. Oxidative stress is suggested to play a major role in the initiation and progression of IBD. Vitamin C (ascorbate, ascorbic acid) supplementation has reduced oxidative stress in persons with IBD. The role of ascorbate transporters in IBD remains to be determined. SLC23A1 is a major ascorbate transporter in the intestinal tract, and some of its genetic variants have been associated with severely decreased ascorbate transport and lower systemic concentrations. OBJECTIVE This study aimed to determine whether common genetic variants in the vitamin C transporter SLC23A1 are associated with the risk of IBD. DESIGN Genomic DNA samples from patients with CD (n = 162) and UC (n = 149) from the Manitoba IBD Cohort Study and ethnically matched controls (n = 142) were genotyped for 3 SLC23A1 polymorphisms (rs6596473, rs33972313, and rs10063949) by using TaqMan assays. RESULTS Variation at rs10063949 (G allele for heterozygote and homozygote) was associated with increased susceptibility to CD (OR: 2.54; 95% CI: 1.38, 4.66; OR: 4.72; 95% CI: 2.53, 8.81; P < 0.0001; respectively). A strong linkage disequilibrium (LD) was observed across the SLC23A1 region (variation rs6596473 with rs10063949) for CD and UC (D' = 0.94 and 0.96, respectively). The risk alleles confirmed a haplotype (CGG) that is carried more in CD patients (65.3%, P < 0.0001) than in controls (43.5%). CONCLUSIONS A genetic variant (rs10063949-G) in the SLC23A1 ascorbate transporter locus was identified and is associated with an increased risk of CD in a white Canadian IBD cohort. The presented evidence that SLC23A1 variations can modulate the risk of CD has implications for understanding ascorbate transport in CD patients and provides a novel opportunity toward individualized nutritional therapy for patients carrying the disease-associated genotype.
Collapse
Affiliation(s)
- Mandana Amir Shaghaghi
- From Human Nutritional Sciences (MAS, ASL, and PE), The Richardson Centre for Functional Foods and Nutraceuticals (MAS, ASL, and PE), the IBD Clinical and Research Centre (CNB), and the Department of Internal Medicine (CNB and HE-G), University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|