1
|
Gautam AK, Kumar P, Kumar V, Singh A, Mahata T, Maity B, Yadav S, Kumar D, Singh S, Saha S, Vijayakumar MR. Preclinical evaluation of dalbergin loaded PLGA-galactose-modified nanoparticles against hepatocellular carcinoma via inhibition of the AKT/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112813. [PMID: 39088916 DOI: 10.1016/j.intimp.2024.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sachin Yadav
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - M R Vijayakumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Sharifi-Zahabi E, Soltani S, Asiaei S, Dehesh P, Mohsenpour MA, Shidfar F. Higher dietary choline intake is associated with increased risk of all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of cohort studies. Nutr Res 2024; 130:48-66. [PMID: 39341000 DOI: 10.1016/j.nutres.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Evidence indicates that choline and betaine intakes are associated with mortality. Based on the available evidence, we hypothesized that dietary choline and betaine do not increase mortality risk. This meta-analysis was conducted to investigate the association of dietary choline and betaine with mortality from all causes, cardiovascular diseases, and stroke. Online databases including PubMed, Scopus, Web of Science, Embase, and Google Scholar were searched up to 9 March 2024. Six cohort studies comprising 482,778 total participants, 57,235 all-cause, 9351 cardiovascular disease, and 4,400 stroke deaths were included in this study. The linear dose-response analysis showed that each 100 mg/day increase in choline intake was significantly associated with 6% and 11% increases in risk of all-cause (RR = 1.06, 95% CI: 1.03, 1.10, I2 =83.7%, P < .001) and cardiovascular diseases mortality (RR = 1.11, 95% CI: 1.06, 1.16, I2 = 54.3%, P = .02) respectively. However, dietary betaine, was not associated with the risk of mortality. Furthermore, the result of the nonlinear dose-response analysis showed a significant relationship between betaine intake and stroke mortality at the dosages of 50 to 250 mg/day (Pnon-linearity= .0017). This study showed that each 100 mg/day increment in choline consumption was significantly associated with a 6% and 11% higher risk of all-cause and cardiovascular disease mortality respectively. In addition, a significant positive relationship between betaine intake and stroke mortality at doses of 50 to 250 mg/day was observed. Due to the small number of the included studies and heterogeneity among them more well-designed prospective observational studies considering potential confounding variables are required.
Collapse
Affiliation(s)
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Asiaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Paria Dehesh
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Nikrandt G, Chmurzynska A. Decoding Betaine: A Critical Analysis of Therapeutic Potential Compared with Marketing Hype-A Narrative Review. J Nutr 2024:S0022-3166(24)01018-6. [PMID: 39270852 DOI: 10.1016/j.tjnut.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Research interest in betaine supplementation has surged in recent years, for both enhancing sports performance and treating metabolic conditions. This surge aligns with an expanding market for betaine supplements, which are often marketed as promising aids for a range of metabolic conditions. Despite numerous in vitro and in vivo studies elucidating betaine's involvement in crucial metabolic pathways, consensus remains elusive on its clinical efficacy as a dietary supplement, based on results from randomized controlled trials. One analysis of dietary betaine intake in 28 observational studies showed a mean intake of 182 mg/d of betaine, with the main sources including grain-based foods, baked products, grains, cereals, and vegetables. Analysis of the results from human randomized clinical trials has shown that betaine supplementation improves body composition when combined with physical activity. Additionally, betaine supplementation decreases serum homocysteine levels, but does not affect liver enzymes, triglycerides, or high-density lipoprotein cholesterol levels, although it does increase total cholesterol and low-density lipoprotein cholesterol levels at doses ≥4 g/d. Market analysis has demonstrated that betaine is a popular supplement for supporting various physiological processes, such as digestibility, methylation, physical performance, and liver or cardiovascular health. Manufacturers suggest a diverse range of applications for betaine supplements, with 14 different uses identified. Additionally, high variability can be seen in the recommended usage directions for betaine. This narrative research sheds light on the evolving landscape of betaine supplementation and highlights the need for further investigation to clarify its clinical efficacy.
Collapse
Affiliation(s)
- Grzegorz Nikrandt
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
5
|
Singh SK, Yadav P, Patel D, Tanwar SS, Sherawat A, Khurana A, Bhatti JS, Navik U. Betaine ameliorates doxorubicin-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis through the modulation of AMPK/Nrf2/TGF-β expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:4134-4147. [PMID: 38651543 DOI: 10.1002/tox.24291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Doxorubicin (DOX) is a broad-spectrum antibiotic with potent anti-cancer activity. Nevertheless, despite having effective anti-neoplasm activity, its use has been clinically restricted due to its life-threatening side effects, such as cardiotoxicity. It is evident that betaine has anti-oxidant, and anti-inflammatory activity and has several beneficial effects, such as decreasing the amyloid-β generation, reducing obesity, improving steatosis and fibrosis, and activating AMP-activated protein kinase (AMPK). However, whether betaine could mitigate DOX-induced cardiomyopathy is still unexplored. Cardiomyopathy was induced in male Sprague Dawley rats using DOX (4 mg/kg dose with a cumulative dose of 20 mg/kg, i.p.). Further, betaine (200 and 400 mg/kg) was co-treated with DOX through oral gavage for 28 days. After the completion of the study, several biochemical, oxidative stress parameters, histopathology, western blotting, and qRT-PCR were performed. Betaine treatment significantly reduced CK-MB, LDH, SGOT, and triglyceride levels, which are associated with cardiotoxicity. DOX-induced increased oxidative stress was also mitigated by betaine intervention as the SOD, catalase, MDA, and nitrite levels were restored. The histopathological investigation also confirmed the cardioprotective effect of betaine against DOX-induced cardiomyopathy as the tissue injury was reversed. Further, molecular analysis revealed that betaine suppressed the DOX-induced increased expression of phospho-p53, phospho-p38 MAPK, NF-kB p65, and PINK 1 with an upregulation of AMPK and downregulation of Nrf2 expression. Interestingly, qRT-PCR experiments show that betaine treatment alleviates the DOX-induced increase in inflammatory (TNF-α, NLRP3, and IL-6) and fibrosis (TGF-β and Acta2) related gene expression, halting the cardiac injury. Interestingly, betaine also improves the mRNA expression of Nrf2, thus modulating the expression of antioxidant proteins and preventing oxidative damage. Here, we provide the first evidence that betaine treatment prevents DOX-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis by regulating AMPK/Nrf2/TGF-β expression. We believe that betaine can be utilized as a potential novel therapeutic strategy for preventing DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sumeet Kumar Singh
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Dhaneshvaree Patel
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Sampat Singh Tanwar
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Abhishek Sherawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
6
|
Karlsson T, Winkvist A, Strid A, Lindahl B, Johansson I. Associations of dietary choline and betaine with all-cause mortality: a prospective study in a large Swedish cohort. Eur J Nutr 2024; 63:785-796. [PMID: 38175250 PMCID: PMC10948568 DOI: 10.1007/s00394-023-03300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Investigate the association between choline and betaine intake and all-cause mortality in a large Swedish cohort. METHODS Women (52,246) and men (50,485) attending the Västerbotten Intervention Programme 1990-2016 were included. Cox proportional hazard regression models adjusted for energy intake, age, BMI, smoking, education, and physical activity were used to estimate mortality risk according to betaine, total choline, phosphatidylcholine, glycerophosphocholine, phosphocholine, sphingomyelin, and free choline intakes [continuous (per 50 mg increase) and in quintiles]. RESULTS During a median follow-up of 16 years, 3088 and 4214 deaths were registered in women and men, respectively. Total choline intake was not associated with all-cause mortality in women (HR 1.01; 95% CI 0.97, 1.06; P = 0.61) or men (HR 1.01; 95% CI 0.98, 1.04; P = 0.54). Betaine intake was associated with decreased risk of all-cause mortality in women (HR 0.95; 95% CI 0.91, 0.98; P < 0.01) but not in men. Intake of free choline was negatively associated with risk of all-cause mortality in women (HR 0.98; 95% CI 0.96, 1.00; P = 0.01). No other associations were found between intake of the different choline compounds and all-cause mortality. In women aged ≥ 55 years, phosphatidylcholine intake was positively associated with all-cause mortality. In men with higher folate intake, total choline intake was positively associated with all-cause mortality. CONCLUSION Overall, our results do not support that intake of total choline is associated with all-cause mortality. However, some associations were modified by age and with higher folate intake dependent on sex. Higher intake of betaine was associated with lower risk of all-cause mortality in women.
Collapse
Affiliation(s)
- Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden.
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Anna Strid
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P. O. Box 459, S-405 30, Gothenburg, Sweden
| | - Bernt Lindahl
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | | |
Collapse
|
7
|
Shi L, Guo M, Shi C, Gao G, Xu X, Zhang C, Fu J, Ni Y, Wang F, Xue X, Yu F. Distinguishing benign and malignant thyroid nodules using plasma trimethylamine N-oxide, carnitine, choline and betaine. J Cancer Res Clin Oncol 2024; 150:142. [PMID: 38503944 PMCID: PMC10951046 DOI: 10.1007/s00432-024-05666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Trimethylamine N-oxide (TMAO), a gut microbiome-derived metabolite, and its precursors (carnitine, choline, betaine) have not been fully examined in relation to thyroid cancer (TC) risk. The aim of this study was to assess the value of TMAO and its precursors in diagnosis of benign and malignant thyroid nodules. METHODS In this study, high-performance liquid chromatography-tandem mass spectrometry was utilized to measure the levels of plasma TMAO and its precursors (choline, carnitine, and betaine) in 215 TC patients, 63 benign thyroid nodules (BTN) patients and 148 healthy controls (HC). The distribution of levels of TMAO and its precursors among the three groups were compared by the Kruskal-Wallis test. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the sensitivity, specificity, and the predictive accuracy of single and combined biomarkers. RESULTS In comparison to HC, TC showed higher levels of TMAO and lower levels of its precursors (carnitine, choline, and betaine) (all P < 0.001). Plasma choline (P < 0.01) and betaine (P < 0.05) were declined in BTN than HC. The levels of carnitine (P < 0.001) and choline (P < 0.05) were significantly higher in BTN than that in TC group. Plasma TMAO showed lower levels in TC with lymph node metastasis (101.5 (73.1-144.5) ng/ml) than those without lymph node metastasis (131 (84.8-201) ng/ml, P < 0.05). Combinations of these four metabolites achieved good performance in the differential diagnosis, with the area under the ROC curve of 0.703, 0.741, 0.793 when discriminating between TC and BTN, BTN and HC, TC and HC, respectively. CONCLUSION Plasma TMAO, along with its precursors could serve as new biomarkers for the diagnosis of benign and malignant thyroid nodules.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Muhong Guo
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Cuixiao Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Gu Gao
- Department of Health Management Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xianghong Xu
- Department of Endocrinology, Nanjing First Hospital, Nanjing, 210006, China
| | - Chuan Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jingjing Fu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yudan Ni
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
8
|
Mao-Mao, Zhang JJ, Xu YP, Shao MM, Wang MC. Regulatory effects of natural products on N6-methyladenosine modification: A novel therapeutic strategy for cancer. Drug Discov Today 2024; 29:103875. [PMID: 38176674 DOI: 10.1016/j.drudis.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.
Collapse
Affiliation(s)
- Mao-Mao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Jin-Jing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Yue-Ping Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Min-Min Shao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Meng-Chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China.
| |
Collapse
|
9
|
Li W, Li C, Liu T, Song Y, Chen P, Liu L, Wang B, Qu J. The association of serum choline concentrations with the risk of cancers: a community-based nested case-control study. Sci Rep 2023; 13:22144. [PMID: 38092871 PMCID: PMC10719238 DOI: 10.1038/s41598-023-49610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Few studies have been designed to investigate the effect of serum choline on the risk of incident cancer. This study aims to explore the association between serum choline and the risk of new-onset cancer. We conducted a case-control study, including 199 patients with incident cancer and 199 matched controls during a median of 3.9 years of follow-up, nested within the China Stroke Primary Prevention Trial. Cubic spline regression (RCS) and conditional logistic regression analysis was used to assess the association of serum choline and incident cancer risk. We observed a positive dose-response association between serum choline levels and the risk of overall (p for overall = 0.046) and digestive system cancer (p for overall = 0.039). Compared with patients with the lowest choline levels (Q1 group), patients in the highest levels of choline (Q4) had a 3.69-fold and 6.01-fold increased risk of overall (OR = 3.69, 95% CI 1.17-11.63) and digestive system cancer (OR = 6.01, 95% CI 1.14-31.67). Elevated choline levels (per SD, 11.49 μg/mL) were associated with a higher risk of overall cancer among participants who were older, male, and smokers in the subgroup analyses. We found a positive association between elevated levels of serum choline with increased risk of incident cancer. Our findings have critical clinical implications for cancer prevention and diagnosis.Trial registration CSPPT, NCT00794885. Registered: November 20, 2008. https://www.clinicaltrials.gov/ct2/show/study/NCT00794885 https://www.clinicaltrials.gov/ct2/show/study/NCT00794885.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China
| | - Chong Li
- Department of Oncology, Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China.
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China.
| |
Collapse
|
10
|
Xie H, Zhang K, Wei Y, Ruan G, Zhang H, Li S, Song Y, Chen P, Liu L, Wang B, Shi H. The association of serum betaine concentrations with the risk of new-onset cancers: results from two independent nested case-control studies. Nutr Metab (Lond) 2023; 20:46. [PMID: 37904202 PMCID: PMC10614375 DOI: 10.1186/s12986-023-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/16/2023] [Indexed: 11/01/2023] Open
Abstract
Evidence from epidemiologic studies on the association of circulating betaine levels with the incident risk of cancer has been inconsistent. We aimed to investigate the prospective association of serum betaine concentrations with the risk of cancer. We performed two, nested, case-control studies utilizing data from the "H-type Hypertension Prevention and Control Public Service Project" (HHPCP) and the China Stroke Primary Prevention Trial (CSPPT), with 2782 participants (1391 cancer cases and 1391 matched controls) in the discovery cohort, and 228 participants (114 cancer cases and 114 matched controls) in the validation cohort. Odds ratios (OR) of the association between betaine and cancer were calculated using conditional logistic regression models. There was an association between serum betaine as a continuous variable and total cancer (OR = 1.03, 95%CI = 0.99-1.07, p = 0.097). Among cancer subtypes, a positive association was found between serum betaine and the risk of lung cancer, and an inverse association was found with other cancers. Interestingly, a U-shaped association was observed between serum betaine and digestive cancers, with a turning point of 5.01 mmol/L for betaine (betaine < 5.01 mmol/L, OR = 0.82, 95%CI = 0.59-1.14, p = 0.228; betaine ≥ 5.01 mmol/L, OR = 1.08, 95%CI = 1.01-1.17, p = 0.036). In the validation cohort, a significant association between serum betaine as a continuous variable and total cancer (OR = 1.48, 95%CI = 1.06-2.05, P = 0.020) was also found. High serum betaine was associated with increased risk of total cancer and lung cancer, and a U-shaped association was found with the risk of digestive cancers, with a turning point at about 5.01 mmol/L.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Kangping Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and nutritional engineering, China Agricultural University, Beijing, 100083, China
| | - Guotian Ruan
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Heyang Zhang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Shuqun Li
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China.
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
| |
Collapse
|
11
|
Yang Q, Han H, Sun Z, Liu L, Zheng X, Meng Z, Tao N, Liu J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur J Clin Invest 2023; 53:e14041. [PMID: 37318151 DOI: 10.1111/eci.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to systematically evaluate the role of circulating levels of choline and betaine in the risk of cardiovascular disease (CVD) and all-cause mortality by comprehensively reviewing observational studies. METHODS This study was conducted according to PRISMA 2020 statement. Six electronic databases, including PubMed, Embase and China National Knowledge Infrastructure (CNKI), were searched for cohort studies and derivative research design types (nested case-control and case-cohort studies) from the date of inception to March 2022. We pooled relative risk (RR) and 95% confidence interval (CI) of the highest versus lowest category and per SD of circulating choline and betaine concentrations in relation to the risk of CVD and all-cause mortality. RESULTS In the meta-analysis, 17 studies with a total of 33,009 participants were included. Random-effects model results showed that highest versus lowest quantile of circulating choline concentrations were associated with the risk of CVD (RR = 1.29, 95% CI: 1.04-1.61) and all-cause mortality (RR = 1.62, 95% CI: 1.12-2.36). We also observed the risk of CVD were increased 13% (5%-22%) with per SD increment. Furthermore, highest versus lowest quantile of circulating betaine concentrations were not associated with the risk of CVD (RR = 1.07, 95% CI: 0.92-1.24) and all-cause mortality (RR = 1.39, 95% CI: 0.96-2.01). However, the risk of CVD was increased 14% (5%-23%) with per SD increment. CONCLUSIONS Higher levels of circulating choline were associated with a higher risk of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hua Han
- Department of Clinical Nutrition, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xingting Zheng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Shah K, Chen J, Chen J, Qin Y. Pitaya Nutrition, Biology, and Biotechnology: A Review. Int J Mol Sci 2023; 24:13986. [PMID: 37762287 PMCID: PMC10530492 DOI: 10.3390/ijms241813986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Pitaya (Hylocereus spp.) is a member of the cactus family that is native to Central and South America but is now cultivated throughout the sub-tropical and tropical regions of the world. It is of great importance due to its nutritional, ornamental, coloring, medicinal, industrial, and high consumption values. In order to effectively utilize and develop the available genetic resources, it is necessary to appreciate and understand studies pertaining to the usage, origin, nutrition, diversity, evaluation, characterization, conservation, taxonomy, and systematics of the genus Hylocereus. Additionally, to gain a basic understanding of the biology of the plant, this review has also discussed how biotechnological tools, such as cell and tissue culture, micropropagation (i.e., somatic embryogenesis, organogenesis, somaclonal variation, mutagenesis, androgenesis, gynogenesis, and altered ploidy), virus-induced gene silencing, and molecular marker technology, have been used to enhance pitaya germplasm.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Rossi M, Khalifeh M, Fiori F, Parpinel M, Serraino D, Pelucchi C, Negri E, Giacosa A, Crispo A, Collatuzzo G, Hannun Y, Luberto C, La Vecchia C, Boffetta P. Dietary choline and sphingomyelin choline moiety intake and risk of colorectal cancer: a case-control study. Eur J Clin Nutr 2023; 77:905-910. [PMID: 37479807 DOI: 10.1038/s41430-023-01298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Phospholipids are possible favorable agents for colorectal cancer (CRC). Choline has been inversely related to CRC risk but findings are inconsistent. We assessed the effect of dietary sphingomyelin (SM) choline moiety and total choline intake on risk of CRC. METHOD This analysis is based on a multicenter case-control study conducted between 1992 and 1996 in Italy. A total of 6107 subjects were enrolled, including 1225 colon cancer cases, 728 rectal cancer cases and 4154 hospital-based controls. We applied data on the composition of foods in terms of SM choline moiety and choline intake on dietary information collected through a validated food-frequency questionnaire. Odds ratio (OR) for energy-adjusted tertiles of SM choline moiety and choline were estimated through logistic regression models adjusted for sex, age, center, education, alcohol consumption, body mass index, family history of CRC, and physical activity. RESULTS Choline was inversely related to CRC risk (OR for the highest versus the lowest tertile: 0.85; 95% confidence interval [CI]: 0.73-0.99), with a significant trend in risk. The OR for an increment of one standard deviation of energy-adjusted choline intake was 0.93 (95% CI: 0.88-0.98). The association was consistent in colon and rectal cancer and also across colon subsites. SM choline moiety was not associated with CRC risk (OR for the highest versus the lowest tertile: 0.96, 95% CI 0.84-1.11). CONCLUSION This study shows an inverse association between choline intake and CRC but not with SM choline moiety.
Collapse
Affiliation(s)
- Marta Rossi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Malak Khalifeh
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diego Serraino
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, National Cancer Institute IRCCS, 33108, Aviano, Italy
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900, Monza, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Yusuf Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy.
| |
Collapse
|
14
|
Seyyedsalehi MS, Rossi M, Hadji M, Rashidian H, Marzban M, Parpinel M, Fiori F, Naghibzadeh-Tahami A, Hannun YA, Luberto C, Zendehdel K, Boffetta P. Dietary Choline and Betaine Intake and Risk of Colorectal Cancer in an Iranian Population. Cancers (Basel) 2023; 15:2557. [PMID: 37174024 PMCID: PMC10177422 DOI: 10.3390/cancers15092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is increasing in low- and middle-income countries, likely due to changing lifestyle habits, including diet. We aimed to investigate the relationship between dietary betaine, choline, and choline-containing compounds and CRC risk. METHODS We analyzed data from a case-control study, including 865 CRC cases and 3206 controls from Iran. Detailed information was collected by trained interviewers using validated questionnaires. The intake of free choline, phosphocholine (Pcho), glycerophosphocholine (GPC), phosphatidylcholine (PtdCho), and sphingomyelin (SM), as well as of betaine was estimated from food frequency questionnaires and categorized into quartiles. The odds ratios (OR) and 95% confidence intervals (CI) of CRC for choline and betaine quartiles were calculated using multivariate logistic regression by adjusting for potential confounders. RESULTS We observed excess risk of CRC in the highest versus lowest intake of total choline (OR = 1.23, 95% CI 1.13, 1.33), GPC (OR = 1.13, 95% CI 1.00, 1.27), and SM (OR = 1.14, 95% CI 1.01, 1.28). The intake of betaine exerted an inverse association with CRC risk (OR = 0.91, 95% CI 0.83, 0.99). There was no association between free choline, Pcho, PtdCho, and CRC. Analyses stratified by gender showed an elevated OR of CRC in men for SM intake OR = 1.20, 95% CI 1.03, 1.40) and a significantly decreased CRC risk in women for betaine intake (OR = 0.84, 95% CI 0.73, 0.97). CONCLUSION Dietary modifications leading to an increase in betaine sources and managing the use of animal products as references for SM or other choline types might contribute to decreasing the risk of CRC.
Collapse
Affiliation(s)
- Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Marta Rossi
- The Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33521 Tampere, Finland
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Maryam Marzban
- Department of Human Genetics, McGill University, Montreal, QC 3640, Canada
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Ahmad Naghibzadeh-Tahami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7619833477, Iran
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Stony Brook Cancer Center, Stony Brook University, New York, NY 11794, USA
| |
Collapse
|
15
|
Van Puyvelde H, Dimou N, Katsikari A, Indave Ruiz BI, Godderis L, Huybrechts I, De Bacquer D. The association between dietary intakes of methionine, choline and betaine and breast cancer risk: A systematic review and meta-analysis. Cancer Epidemiol 2023; 83:102322. [PMID: 36701983 DOI: 10.1016/j.canep.2023.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIM This study evaluates the associations between dietary intakes and circulating blood levels of methionine, choline or betaine and breast cancer risk, which remains currently unclear. METHODS Systematic searches for observational epidemiological studies were performed of the MEDLINE, Embase, and Web of Science databases through July, 2022. Two review authors independently screened titles and abstracts against the eligibility criteria at a first stage, and screened full texts of potentially eligible records at a second stage, followed by data extraction from qualified studies. Quality of evidence was assessed using the Newcastle-Ottawa scale quality assessment tool. Risk estimates were calculated using random-effects meta-analysis. RESULTS In total, 21 studies were selected for qualitative analyses and 18 studies were included in the meta-analyses. Random-effects analysis combining prospective cohort (N = 8) or case-control studies (N = 10) showed little evidence of an association between dietary intake of methionine or betaine and the risk of breast cancer. However, inconclusive evidence for a significant inverse association between choline intake and breast cancer risk was found in case-control studies (odds ratio [OR] estimates for highest vs. lowest intakes = 0.38; 95 % CI: 0.16-0.86) but not in prospective cohort studies (hazard ratio [HR] estimates for highest vs. lowest intakes = 1.01; 95 % CI: 0.92-1.12). CONCLUSION This study did not suggest an effect of dietary intake of methionine, choline, nor betaine on breast cancer risk, mainly due to the lack of precision of the combined risk estimates as few studies are available. To overcome this uncertainty, more well-designed studies with relevant individual-level covariates are needed.
Collapse
Affiliation(s)
- Heleen Van Puyvelde
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 4K3, 9000 Ghent, Belgium; Research Foundation - Flanders (FWO), Egmontstraat 5, 1000 Brussels, Belgium; Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok D box 7001, 3000 Leuven, Belgium
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Aikaterini Katsikari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France
| | - Blanca Iciar Indave Ruiz
- WHO Classification of Tumours, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Lode Godderis
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok D box 7001, 3000 Leuven, Belgium; IDEWE (Externe dienst voor Preventie en Bescherming op het Werk), Interleuvenlaan 58, 3001 Heverlee, Belgium.
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Dirk De Bacquer
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 4K3, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Chen J, Xie F, Shah K, Chen C, Zeng J, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111595. [PMID: 36646140 DOI: 10.1016/j.plantsci.2023.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Basic helix-loop-helix (bHLH) proteins are dimeric transcription factors (TFs) involved in various plant physiological and biological processes. Despite this, little is known about the molecular properties and roles of bHLH TFs in pitaya betalain biosynthesis. Here we report the identification of 165 HubHLH genes in H. undantus genome, their chromosomal distribution, physiochemical characteristics, conserved motifs, gene structure, phylogeny and synteny of HubHLH genes. Based on phylogenetic relationship analysis, the 165 HubHLHs were divided into 26 subfamilies and unequally distributed on the 11 chromosomes of pitaya. Based on the pitaya transcriptome data, a candidate gene HubHLH159 was obtained, and the real-time quantitative PCR analysis confirmed that HubHLH159 showed a high expression level in 'Guanhuahong' pitaya (red-pulp) at mature stage, indicating its role in betalain biosynthesis. HubHLH159 is a Group II protein and contains a bHLH domain. It is a nuclear protein with transcriptional activation activity. Dual luciferase reporter assays and virus-induced gene silencing (VIGS) experiments showed that HubHLH159 promotes betalain biosynthesis by activating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The results of the present study lay a new theoretical reference for the regulation of pitaya betalain biosynthesis and also provides as essential basis for the future analysis of the functions of HubHLH gene family.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianmei Zeng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
17
|
Lv J, Jia H, Mo M, Yuan J, Wu Z, Zhang S, Zhe F, Gu B, Fan B, Li C, Zhang T, Zhu J. Changes of serum metabolites levels during neoadjuvant chemoradiation and prediction of the pathological response in locally advanced rectal cancer. Metabolomics 2022; 18:99. [PMID: 36441416 DOI: 10.1007/s11306-022-01959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Previous studies have explored prediction value of serum metabolites in neoadjuvant chemoradiation therapy (NCRT) response for rectal cancer. To date, limited literature is available for serum metabolome changes dynamically through NCRT. OBJECTIVES This study aimed to explore temporal change pattern of serum metabolites during NCRT, and potential metabolic biomarkers to predict the pathological response to NCRT in locally advanced rectal cancer (LARC) patients. METHODS Based on dynamic UHPLC-QTOF-MS untargeted metabolomics design, this study included 106 LARC patients treated with NCRT. Biological samples of the enrolled patients were collected in five consecutive time-points. Untargeted metabolomics was used to profile serum metabolic signatures from LARC patients. Then, we used fuzzy C-means clustering (FCM) to explore temporal change patterns in metabolites cluster and identify monotonously changing metabolites during NCRT. Repeated measure analysis of variance (RM-ANOVA) and multilevel partial least-squares discriminant analysis (ML-PLS-DA) were performed to select metabolic biomarkers. Finally, a panel of dynamic differential metabolites was used to build logistic regression prediction models. RESULTS Metabolite profiles showed a clearly tendency of separation between different follow-up panels. We identified two clusters of 155 serum metabolites with monotonously changing patterns during NCRT (74 decreased metabolites and 81 increased metabolites). Using RM-ANOVA and ML-PLS-DA, 8 metabolites (L-Norleucine, Betaine, Hypoxanthine, Acetylcholine, 1-Hexadecanoyl-sn-glycero-3-phosphocholine, Glycerophosphocholine, Alpha-ketoisovaleric acid, N-Acetyl-L-alanine) were further identified as dynamic differential biomarkers for predicting NCRT sensitivity. The area under the ROC curve (AUC) of prediction model combined with the baseline measurement was 0.54 (95%CI = 0.43 ~ 0.65). By incorporating the variability indexes of 8 dynamic differential metabolites, the prediction model showed better discrimination performance than baseline measurement, with AUC = 0.67 (95%CI 0.57 ~ 0.77), 0.64 (0.53 ~ 0.75), 0.60 (0.50 ~ 0.71), and 0.56 (0.45 ~ 0.67) for the variability index of difference, linear slope, ratio, and standard deviation, respectively. CONCLUSION This study identified eight metabolites as dynamic differential biomarkers to discriminate NCRT-sensitive and resistant patients. The changes of metabolite level during NCRT show better performance in predicting NCRT sensitivity. These findings highlight the clinical significance of metabolites variabilities in metabolomics analysis.
Collapse
Affiliation(s)
- Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Miao Mo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Yuan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenyu Wu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Shuai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhe
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingbing Gu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingbing Fan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxia Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Ji Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Belanova A, Chmykhalo V, Shkurat T, Trotsenko A, Zolotukhin P. Trimethylglycine betaine effects on NFκB, HIF1A and NFE2L2/AP-1 pathways, mitochondrial activity, glucose import, and levels of ROS, thiols and lipids in HeLa cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Chagovets VV, Vasil'ev VG, Iurova MV, Khabas GN, Pavlovich SV, Starodubtseva NL, Mayboroda OA. Metabolic “footprints” of the circulating cancer mucins: CA125 in the high-grade ovarian cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucins are large glycoproteins characterized by the abundant O-linked oligosaccharides (O-glycans) clustered on a protein backbone. Most of the circulating mucins are rapidly cleared by glycan-recognizing hepatic clearance receptors in the liver. Those mucins that remain in the bloodstream are most commonly used as markers in clinical diagnostics. One of such circulating mucins is MUC16; a peptide epitope of which is known as CA125 antigen — a marker for ovarian cancer. Here, using a targeted 1H-NMR profiling of plasma we are exploring a link between the measured CA125 values and the systemic metabolism of the patients within a group with confirmed high-grade ovarian cancer. The study allowed identifying statistically significant associations between the measured values of CA125 epitope and the plasma concentrations of glucose, glutamine, alanine, betaine and serine. The significance of the identified associations for the listed compounds is below 0.01. This, in turn, enables us to hypothesize about a possibility of including the metabolic measures into a composite score of the ovarian cancer based on the CA125 epitope of MUC16.
Collapse
Affiliation(s)
- VV Chagovets
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VG Vasil'ev
- Peoples' Friendship University of Russia, Moscow, Russia
| | - MV Iurova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - GN Khabas
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - SV Pavlovich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - NL Starodubtseva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OA Mayboroda
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Song M, Xu BP, Liang Q, Wei Y, Song Y, Chen P, Zhou Z, Zhang N, He Q, Liu L, Liu T, Zhang K, Hu C, Wang B, Xu X, Shi H. Association of serum choline levels and all-cause mortality risk in adults with hypertension: a nested case-control study. Nutr Metab (Lond) 2021; 18:108. [PMID: 34930356 PMCID: PMC8686288 DOI: 10.1186/s12986-021-00637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Serum choline levels were associated with multiple chronic diseases. However, the association between serum choline and all-cause mortality in Chinese adults with hypertension remains unclear. The purpose of this study is to explore the association between serum choline concentrations and all-cause mortality risk in Chinese adults with hypertension, a high-risk population. Methods A nested, case–control study was conducted that included 279 patients with all-cause death, and 279 matched, living controls, derived from the China Stroke Primary Prevention Trial (CSPPT). Baseline serum choline concentrations were measured by liquid chromatography with tandem quadrupole mass spectrometry (LC–MS/MS). Multivariate logistic regression analysis was used to assess the association of serum choline levels and all-cause mortality risk, with adjustment of pertinent covariables, including folic acid and homocysteine. Results The median age of all participants was 64.13 years [interquartile range (IQR), 57.33–70.59 years]. The median serum choline concentration for cases (9.51 μg/mL) was higher than that in controls (7.80 μg/mL) (P = 0.009). When serum choline concentration was assessed as a continuous variable (per SD increased), there was a positive relation between serum choline levels and all-cause mortality risk [odds ratios (OR), 1.29; 95% confidence intervals (95%CI), 1.06–1.57; P = 0.010]. There was an increased all-cause mortality risk for participants in quartiles 2–4 (≥ 4.00 μg/mL; OR, 1.79; 95%CI, 1.15–2.78 compared with quartile 1 (< 4.00 μg/mL). In addition, non-drinking was found to promote the incidence of all-cause mortality for those with high choline concentrations. Conclusions High serum choline concentrations were associated with increased all-cause mortality risk among Chinese adults with hypertension, compared to lower choline concentrations. Trial registration clinicaltrials.gov Identifier: NCT007948885; UTL: https://clinicaltrials.gov/ct2/show/NCT00794885?term=NCT00794885&draw=2&rank=1.
Collapse
Affiliation(s)
- Mengmeng Song
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Benjamin P Xu
- Department of Epidemiology and Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Qiongyue Liang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yun Song
- Institute for Biomedicine, Anhui Medical University, Hefei, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyi Zhou
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Nan Zhang
- Department of Epidemiology and Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Qiangqiang He
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Kangping Zhang
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Chunlei Hu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Binyan Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China. .,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China.
| |
Collapse
|
21
|
Al Za'abi M, Ali H, Al Sabahi M, Ali BH. The salutary action of melatonin and betaine, given singly or concomitantly, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1693-1701. [PMID: 34003327 DOI: 10.1007/s00210-021-02097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is commonly used in the treatment of various solid tumors. Its use, however, is hampered by nephrotoxicity. In this study, we compared the effect of betaine and melatonin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in mice. CP (20 mg/kg, given intraperitoneally on the 8th day of 12 days of the experiment) showed the typical physiological, biochemical, and histologic features of nephrotoxicity. CP-treated mice showed a significant reduction in food intake, body weight, and urine and fecal output. It also induced significant increases in the plasma concentrations of urea, creatinine, uric acid, phosphorous, adiponectin, interleukin-1β, interleukin-6, transforming growth factor -β1, tumor necrosis factor-α, and cystatin C. All these effects were significantly reduced by daily administration of betaine or melatonin at oral doses of 200 mg/kg and 10 mg/kg, respectively. Furthermore, using the two agents in combination caused further significant reductions in the above parameters. These findings suggest that betaine and melatonin concomitant use is likely to provide greater protection against CP-induced nephrotoxicity than when they are given singly, rendering them potentially suitable and safe agents to use in clinical trials to assess their possible beneficial actions in cancer patients receiving CP.
Collapse
Affiliation(s)
- Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman.
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Postal code 123, Oman
| | - Mohammed Al Sabahi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| |
Collapse
|
22
|
Liu ZY, Zhang DM, Yishake D, Luo Y, Fang AP, Zhu HL. Dietary choline, rather than betaine intake, is associated with hepatocellular carcinoma mortality. Food Funct 2020; 11:7866-7877. [PMID: 32812611 DOI: 10.1039/d0fo01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The dietary intakes of choline and betaine have been related to the mortality of some neoplasms, but their effects on hepatocellular carcinoma (HCC) mortality are still unknown. We examined the associations between dietary choline, five choline-containing compounds, different choline forms, betaine intake and HCC mortality. In total, 905 newly diagnosed HCC patients were enrolled in the Guangdong Liver Cancer Cohort study. Dietary intake was assessed by a valid food frequency questionnaire. Liver cancer-specific mortality (LCSM) and all-cause mortality (ACM) were calculated. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed by Cox proportional hazards models. It was found that a higher total choline intake was associated with lower ACM, Q4 vs. Q1: HR = 0.72, 95% CI: 0.53-0.97, Ptrend = 0.012 in the fully adjusted model. The associations between total choline intake and LCSM were not significant. Similar associations were found between water-soluble choline intake and HCC mortality, where the fully adjusted HR for ACM was 0.72, 95% CI: 0.53-0.98, Ptrend = 0.017. However, null associations were found between neither phosphatidylcholine (the most abundant lipid-soluble choline) nor total lipid-soluble choline intake and HCC mortality. These results implied that the favorable associations between the total choline intake and ACM were more attributed to water-soluble choline. Furthermore, no significant associations were observed between betaine intake and HCC mortality. Future human intervention trials regarding choline supplementation and liver disease recovery should take the forms into consideration rather than just the total amount alone.
Collapse
Affiliation(s)
- Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Dao-Ming Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Dinuerguli Yishake
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Yun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| |
Collapse
|
23
|
Hong Z, Lin M, Zhang Y, He Z, Zheng L, Zhong S. Role of betaine in inhibiting the induction of RNA Pol III gene transcription and cell growth caused by alcohol. Chem Biol Interact 2020; 325:109129. [PMID: 32418914 PMCID: PMC7323736 DOI: 10.1016/j.cbi.2020.109129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Alcohol has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC). Studies have demonstrated that alcohol intake increases the risk of breast cancer, and alcohol also stimulates breast cancer cell growth. Deregulation of Pol III genes is tightly associated with tumour development. Transcription factor II-B (TFIIB)-related factor 1 (Brf1) is a transcription factor that specifically regulates Pol III gene transcription. Our in vivo and in vitro studies have indicated that alcohol enhances the transcription of Pol III genes to cause an alteration of cellular phenotypes, which is closely related with human breast cancer. Betaine is a vegetable alkaloid and has antitumor functions. Most reports about betaine show that the consumption level of betaine is inversely associated with a risk of breast cancer. Although different mechanisms of betaine against tumour have been investigated, nothing has been reported on the effect of betaine on the deregulation of Brf1 and Pol III genes. In this study, we determine the role of betaine in breast cancer cell growth and colony formation and explore its mechanism. Our results indicate that alcohol increases the rates of growth and colony formation of breast cancer cells, whereas betaine is able to significantly inhibit the effects of alcohol on these cell phenotypes. Betaine decreases the induction of Brf1 expression and Pol III gene transcription caused by ethanol to reduce the rates of cell growth and colony formation. Together, these studies provide novel insights into the role of betaine in alcohol-caused breast cancer cell growth and deregulation of Brf1 and Pol III genes. These results suggest that betaine consumption is able to prevent alcohol-associated human cancer development.
Collapse
Affiliation(s)
- Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingen Lin
- The First Hospital of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China.
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Liu ZY, Yishake D, Fang AP, Zhang DM, Liao GC, Tan XY, Zhang YJ, Zhu HL. Serum choline is associated with hepatocellular carcinoma survival: a prospective cohort study. Nutr Metab (Lond) 2020; 17:25. [PMID: 32256673 PMCID: PMC7106561 DOI: 10.1186/s12986-020-00445-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Higher choline and betaine levels have been linked to lower risk of liver cancer, whereas existing data in relation to hepatocellular carcinoma (HCC) prognosis are scarce. Our objective was to examine the associations of the serum choline and betaine with HCC survival. METHODS 866 newly diagnosed HCC patients were enrolled in the Guangdong Liver Cancer Cohort. Serum choline and betaine were assessed using high-performance liquid chromatography with online electro-spray ionization tandem mass spectrometry. Liver cancer-specific survival (LCSS) and overall survival (OS) were calculated. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Serum choline levels were associated with better LCSS (T3 vs. T1: HR = 0.69, 95% CI: 0.51-0.94; P -trend < 0.05) and OS (T3 vs. T1: HR = 0.73, 95% CI: 0.54-0.99; P -trend < 0.05). The associations were significantly modified by C-reactive protein (CRP) levels but not by other selected prognostic factors including sex, age, etc. The favorable associations between serum choline and LCSS and OS were only existed among patients with CRP ≥3.0 mg/L. No significant associations were found between serum betaine levels and either LCSS or OS. CONCLUSIONS This study revealed that higher serum choline levels were associated with better HCC survival, especially in HCC patients with systemic inflammation status. No significant associations were found between serum betaine and HCC survival. Our findings suggest the benefits of choline on HCC survival. TRIAL REGISTRATION The Guangdong Liver Cancer Cohort was registered at clinicaltrials.gov as NCT03297255.
Collapse
Affiliation(s)
- Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Dinuerguli Yishake
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Dao-Ming Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Gong-Cheng Liao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xu-Ying Tan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
25
|
Mendoza-Rodríguez MG, Sánchez-Barrera CÁ, Callejas BE, García-Castillo V, Beristain-Terrazas DL, Delgado-Buenrostro NL, Chirino YI, León-Cabrera SA, Rodríguez-Sosa M, Gutierrez-Cirlos EB, Pérez-Plasencia C, Vaca-Paniagua F, Meraz-Ríos MA, Terrazas LI. Use of STAT6 Phosphorylation Inhibitor and Trimethylglycine as New Adjuvant Therapies for 5-Fluorouracil in Colitis-Associated Tumorigenesis. Int J Mol Sci 2020; 21:ijms21062130. [PMID: 32244885 PMCID: PMC7139326 DOI: 10.3390/ijms21062130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as β-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-β, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.
Collapse
Affiliation(s)
- Mónica G. Mendoza-Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - C. Ángel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Blanca E. Callejas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Diana L. Beristain-Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Norma L. Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Sonia A. León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Emma Bertha Gutierrez-Cirlos
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av. San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av. San Fernando No. 22, Ciudad de México 14080, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Marco Antonio Meraz-Ríos
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico;
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (M.G.M.-R.); (C.Á.S.-B.); (B.E.C.); (V.G.-C.); (D.L.B.-T.); (N.L.D.-B.); (Y.I.C.); (S.A.L.-C.); (M.R.-S.); (C.P.-P.); (F.V.-P.)
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
- Correspondence:
| |
Collapse
|
26
|
Gao X, Zhang H, Guo XF, Li K, Li S, Li D. Effect of Betaine on Reducing Body Fat-A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11102480. [PMID: 31623137 PMCID: PMC6835719 DOI: 10.3390/nu11102480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/22/2022] Open
Abstract
Animal studies have shown the beneficial effect of betaine supplementation on reducing body fat, while the data from human studies are controversial and inconsistent. The objective of the present systematic review was to investigate the effects of betaine intervention on treating obesity in humans and quantitatively evaluate the pooled effects based on randomized controlled trials with a meta-analysis. The PubMed and Scopus databases, and the Cochrane Library, were searched up to September 2019. Weighted mean differences were calculated for net changes in obesity-related indices by using a random-effects model. Publication bias was estimated using Begg’s test. Six studies with 195 participants were identified. Betaine supplementation significantly reduced the total body fat mass (−2.53 kg; 95% CI: −3.93, −0.54 kg; I2 = 6.6%, P = 0.36) and body fat percentage (−2.44%; 95% CI: −4.20, −0.68%; I2 = 0.0%, P = 0.44). No changes were observed regarding body weight (−0.29 kg; 95% CI: −1.48, 0.89 kg; I2 = 0.00%, P = 0.99) and body mass index (−0.10 kg/m2; 95% CI: −5.13, 0.31 kg/m2; I2 = 0.00%, P = 0.84). The results suggested that dietary betaine supplementation might be an effective approach for reducing body fat.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Huijun Zhang
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Kelei Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Shan Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019; 11:nu11071613. [PMID: 31315227 PMCID: PMC6682904 DOI: 10.3390/nu11071613] [Citation(s) in RCA: 562] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.
Collapse
|
28
|
Dhana A, Yen H, Li T, Holmes MD, Qureshi AA, Cho E. Intake of folate and other nutrients related to one-carbon metabolism and risk of cutaneous melanoma among US women and men. Cancer Epidemiol 2018; 55:176-183. [PMID: 29990794 PMCID: PMC6097627 DOI: 10.1016/j.canep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nutrients involved in one-carbon metabolism - folate, vitamins B6 and B12, methionine, choline, and betaine - have been inversely associated with multiple cancer sites and may be related to skin cancer. However, there is a lack of research on the association between intake of these nutrients and cutaneous melanoma risk. The aim of this study was to examine the associations between intake of one-carbon metabolism nutrients and cutaneous melanoma risk in two large prospective cohorts. METHODS The cohorts included 75,311 white women and 48,523 white men. Nutrient intake was assessed repeatedly by food frequency questionnaires and self-reported supplement use. We used Cox proportional hazards regression to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) and then pooled HRs using a random-effects model. RESULTS Over 24-26 years of follow-up, we documented 1328 melanoma cases (648 men and 680 women). Higher intake of folate from food only, but not total folate, was associated with increased melanoma risk (pooled HR for top versus bottom quintile: 1.36; 95% CI: 1.13-1.64; P for trend = 0.001). The association was significant in men, but attenuated in women. Higher intake of vitamins B6 and B12, choline, betaine, and methionine were not associated with melanoma risk, although there was modest increasing trend of risk for vitamin B6 from food only (pooled HR for top versus bottom quintile: 1.18; 95% CI: 0.99-1.41; P for trend = 0.03). CONCLUSIONS We found some evidence that higher intake of folate from food only was associated with a modest increased risk of cutaneous melanoma. However, since other factors related to dietary folate intake may account for the observed association, our findings warrant further investigation.
Collapse
Affiliation(s)
- Ashar Dhana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Dermatology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Hsi Yen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tricia Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle D Holmes
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abrar A Qureshi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Eunyoung Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|