1
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
2
|
Roe AL, Krzykwa J, Calderón AI, Bascoul C, Gurley BJ, Koturbash I, Li AP, Liu Y, Mitchell CA, Oketch-Rabah H, Si L, van Breemen RB, Walker H, Ferguson SS. Developing a Screening Strategy to Identify Hepatotoxicity and Drug Interaction Potential of Botanicals. J Diet Suppl 2024:1-31. [PMID: 39450425 DOI: 10.1080/19390211.2024.2417679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Botanical supplements, herbal remedies, and plant-derived products are used globally. However, botanical dietary supplements are rarely subjected to robust safety testing unless there are adverse reports in post-market surveillance. Botanicals are complex and difficult to assess using current frameworks designed for single constituent substances (e.g. small molecules or discrete chemicals), making safety assessments costly and time-consuming. The liver is a primary organ of concern for potential botanical-induced hepatotoxicity and botanical-drug interactions as it plays a crucial role in xenobiotic metabolism. The NIH-funded Drug Induced Liver Injury Network noted that the number of botanical-induced liver injuries in 2017 nearly tripled from those observed in 2004-2005. New approach methodologies (NAMs) can aid in the rapid and cost-effective assessment of botanical supplements for potential hepatotoxicity. The Hepatotoxicity Working Group within the Botanical Safety Consortium is working to develop a screening strategy that can help reliably identify potential hepatotoxic botanicals and inform mechanisms of toxicity. This manuscript outlines the Hepatotoxicity Working Group's strategy and describes the assays selected and the rationale for the selection of botanicals used in case studies. The selected NAMs evaluated as a part of this effort are intended to be incorporated into a larger battery of assays to evaluate multiple endpoints related to botanical safety. This work will contribute to a botanical safety toolkit, providing researchers with tools to better understand hepatotoxicity associated with botanicals, prioritize and plan future testing as needed, and gain a deeper insight into the botanicals being tested.
Collapse
Affiliation(s)
- Amy L Roe
- Procter & Gamble Healthcare, Cincinnati, OH, USA
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Cécile Bascoul
- Product Safety, dōTERRA International, Pleasant Grove, UT, USA
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of MS, University, MS, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | | | - Hellen Oketch-Rabah
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lin Si
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
3
|
Gurley BJ, Chittiboyina AG, ElSohly MA, Yates CR, Avula B, Walker LA, Khan SI, Khan IA. The National Center for Natural Products Research (NCNPR) at 30: A Legacy of Pioneering Research in Natural Products and Dietary Supplements. J Diet Suppl 2024:1-26. [PMID: 39381905 DOI: 10.1080/19390211.2024.2410758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Since its establishment in 1994, the National Center for Natural Products Research (NCNPR) at the University of Mississippi has made notable contributions to the field of natural product research, coinciding with the passage of the Dietary Supplement Health and Education Act. Over the past three decades, the Center has focused on studying plants, herbs, and other natural materials for applications in medicine, agriculture, and nutraceuticals, particularly in the area of botanical dietary supplements. NCNPR scientists have been actively engaged in developing and improving quality control measures to help ensure the safety of dietary supplements in response to a growing market. The Center's research efforts have led to its designation as a U.S. Food and Drug Administration Center of Excellence, reflecting its role in advancing scientific understanding of natural products. Through collaborations with various stakeholders and regulators, NCNPR has contributed to shaping the regulatory landscape for botanical dietary supplements, highlighting both their potential health benefits and associated risks, such as product adulteration. The Center's influence is also evident internationally, as demonstrated by its annual International Conference on the Science of Botanicals, which will mark its 26th year in April 2025. This overview outlines NCNPR's role in supporting research, regulation, and safety in the natural products field.
Collapse
Affiliation(s)
- Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - C Ryan Yates
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
4
|
Ruplin A, Segal E, McFarlane T. Review of drug-drug interactions in patients with prostate cancer. J Oncol Pharm Pract 2024; 30:1057-1072. [PMID: 38720547 PMCID: PMC11476483 DOI: 10.1177/10781552241238198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The objective of this review is to provide an overview of common drug-drug interactions (DDIs) associated with prostate cancer treatments and outline recommendations for managing polypharmacy. DATA SOURCES A literature search of PubMed, Embase, and CINAHL was carried out to identify pharmacokinetic and pharmacodynamic changes caused by DDIs that are relevant for prostate cancer patients, DDIs between prostate cancer therapies and co-administered medications (both prescription and over-the-counter), and measures to prevent DDIs. Medication package inserts were used to identify the impact of DDI on the prostate cancer therapy and suggested interventions. DATA SUMMARY No DDIs are expected for the LHRH agonists leuprolide acetate, histrelin, goserelin, or leuprolide mesylate. However, DDIs have been reported for GnRH antagonists, anti-androgens, PARP inhibitors, and taxanes. Although there are no confirmed DDIs for sipuleucel-T to date, it is not generally recommended to use sipuleucel-T concurrently with immunosuppressive medications. Interventions to prevent DDIs include the use of software that can detect clinically significant DDIs, up-to-date medication reconciliation, the inclusion of dedicated clinical pharmacists in cancer treatment teams, and patient/caregiver education. CONCLUSIONS Prostate cancer patients have a high risk of potential DDIs due to numerous new anti-cancer therapies, the increased use of treatment combinations, and the likelihood of comorbid conditions also requiring drug therapy. Drug-drug interaction screening software, up-to-date medication reconciliation, inclusion of oncology pharmacists on healthcare teams, and patient/caregiver education will aid the development of treatment plans that focus on achieving an optimal risk-benefit profile whilst reducing the risk of DDIs.
Collapse
Affiliation(s)
- Andrew Ruplin
- Department of Pharmacy, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eve Segal
- Department of Pharmacy, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tom McFarlane
- School of Pharmacy, University of Waterloo, Kitchener, Canada
| |
Collapse
|
5
|
Nascimento MDL, do Nascimento SB, Lima EDSP, de Oliveira FM, Dos Santos RR, Cesar IDC, de Castro WV. Evaluation of the Effects of Extracts Containing Valeriana officinalis and Piper methysticum on the Activities of Cytochrome P450 3A and P-Glycoprotein. PLANTA MEDICA 2024; 90:792-800. [PMID: 39013429 DOI: 10.1055/a-2360-4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This work investigated interactions ascribed to the administration of phytomedicines containing Valeriana officinalis and Piper methysticum with conventional drugs. The phytomedicines were characterized by HPLC and administered per os to male Wistar rats, either concomitantly or not with the CYP3A substrate midazolam. To distinguish between the presystemic or systemic effect, midazolam was given orally and intravenously. The effects on the P-gp substrate fexofenadine uptake by Caco-2 cells were examined. The valerenic acid content was 1.6 ± 0.1 mg per tablet, whereas kavain was 13.7 ± 0.3 mg/capsule. Valerian and kava-kava extracts increased the maximum plasma concentration (Cmax) of midazolam 2- and 4-fold compared to the control, respectively. The area under the plasma concentrations versus time curve (AUC(0-∞)) was enhanced from 994.3 ± 152.3 ng.h/mL (control) to 3041 ± 398 ng.h/mL (valerian) and 4139 ± 373 ng.h/mL (kava-kava). The half-life of midazolam was not affected. These changes were attributed to the inhibition of midazolam metabolism by the enteric CYP3A since the i. v. pharmacokinetic of midazolam remained unchanged. The kava-kava extract augmented the uptake of fexofenadine by 3.5-fold compared to the control. Although Valeriana increased the uptake of fexofenadine, it was not statistically significant to that of the control (12.5 ± 3.7 ng/mg protein vs. 5.4 ± 0.3 ng/mg protein, respectively). Therefore, phytomedicines containing V. officinalis or P. methysticum inhibited the intestinal metabolism of midazolam in rats. Conversely, the P-gp-mediated transport of fexofenadine was preferably affected by kava-kava.
Collapse
Affiliation(s)
- Mariana de Lima Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | - Sara Batista do Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | - Flávio Martins de Oliveira
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | | | - Whocely Victor de Castro
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| |
Collapse
|
6
|
Nguyen JT, Tian DD, Tanna RS, Arian CM, Calamia JC, Rettie AE, Thummel KE, Paine MF. An Integrative Approach to Elucidate Mechanisms Underlying the Pharmacokinetic Goldenseal-Midazolam Interaction: Application of In Vitro Assays and Physiologically Based Pharmacokinetic Models to Understand Clinical Observations. J Pharmacol Exp Ther 2023; 387:252-264. [PMID: 37541764 PMCID: PMC10658920 DOI: 10.1124/jpet.123.001681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
The natural product goldenseal is a clinical inhibitor of CYP3A activity, as evidenced by a 40%-60% increase in midazolam area under the plasma concentration versus time curve (AUC) after coadministration with goldenseal. The predominant goldenseal alkaloids berberine and (-)-β-hydrastine were previously identified as time-dependent CYP3A inhibitors using human liver microsomes. Whether these alkaloids contribute to the clinical interaction, as well as the primary anatomic site (hepatic vs. intestinal) and mode of CYP3A inhibition (reversible vs. time-dependent), remain uncharacterized. The objective of this study was to mechanistically assess the pharmacokinetic goldenseal-midazolam interaction using an integrated in vitro-in vivo-in silico approach. Using human intestinal microsomes, (-)-β-hydrastine was a more potent time-dependent inhibitor of midazolam 1'-hydroxylation than berberine (KI and kinact: 8.48 μM and 0.041 minutes-1, respectively, vs. >250 μM and ∼0.06 minutes-1, respectively). Both the AUC and Cmax of midazolam increased by 40%-60% after acute (single 3-g dose) and chronic (1 g thrice daily × 6 days) goldenseal administration to healthy adults. These increases, coupled with a modest or no increase (≤23%) in half-life, suggested that goldenseal primarily inhibited intestinal CYP3A. A physiologically based pharmacokinetic interaction model incorporating berberine and (-)-β-hydrastine successfully predicted the goldenseal-midazolam interaction to within 20% of that observed after both chronic and acute goldenseal administration. Simulations implicated (-)-β-hydrastine as the major alkaloid precipitating the interaction, primarily via time-dependent inhibition of intestinal CYP3A, after chronic and acute goldenseal exposure. Results highlight the potential interplay between time-dependent and reversible inhibition of intestinal CYP3A as the mechanism underlying natural product-drug interactions, even after acute exposure to the precipitant. SIGNIFICANCE STATEMENT: Natural products can alter the pharmacokinetics of an object drug, potentially resulting in increased off-target effects or decreased efficacy of the drug. The objective of this work was to evaluate fundamental mechanisms underlying the clinically observed goldenseal-midazolam interaction. Results support the use of an integrated approach involving established in vitro assays, clinical evaluation, and physiologically based pharmacokinetic modeling to elucidate the complex interplay between multiple phytoconstituents and various pharmacokinetic processes driving a drug interaction.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Christopher M Arian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Justina C Calamia
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.T.N., D.-D.T., R.S.T., M.F.P.); Department of Pharmaceutics (C.M.A., J.C.C., K.E.T.) and Department of Medicinal Chemistry (A.E.R.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (A.E.R, K.E.T., M.F.P.)
| |
Collapse
|
7
|
Sile I, Teterovska R, Onzevs O, Ardava E. Safety Concerns Related to the Simultaneous Use of Prescription or Over-the-Counter Medications and Herbal Medicinal Products: Survey Results among Latvian Citizens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6551. [PMID: 37623137 PMCID: PMC10454617 DOI: 10.3390/ijerph20166551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The use of herbal medicines is increasing worldwide. While the safety profile of many herbal medicines is promising, the data in the literature show important interactions with conventional drugs that can expose individual patients to high risk. The aim of this study was to investigate the experience of the use of herbal medicines and preparations and the risks of interactions between herbal and conventional medicines among Latvian citizens. Data were collected between 2019 and 2021 using a structured questionnaire designed for pharmacy customers in Latvia. Electronic databases such as Drugs.com, Medscape, and European Union herbal monographs were reviewed for the risk of drug interactions and potential side effects when herbal medicines were involved. The survey included 504 respondents. Of all the participants, 77.8% used herbal preparations. Most of the participants interviewed used herbal remedies based on the recommendation of the pharmacist or their own initiative. A total of 38.3% found the use of herbal remedies safe and harmless, while 57.3% of respondents regarded the combination of herbal and regular drugs as unsafe. The identified herbal medicines implicated in the potential risk of serious interactions were grapefruit, St. John's wort, and valerian. As the risks of herb-drug interactions were identified among the respondents, in the future, both pharmacy customers and healthcare specialists should pay more attention to possible herb-drug interactions of over-the-counter and prescription medications.
Collapse
Affiliation(s)
- Inga Sile
- Department of Applied Pharmacy, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Renate Teterovska
- Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Department of Pharmacy, Riga Stradins University Red Cross Medical College, 5 J. Asara Street, LV-1009 Riga, Latvia;
| | - Oskars Onzevs
- Department of Commerce, Turība University, 68 Graudu Street, LV-1058 Riga, Latvia;
| | - Elita Ardava
- Department of Pharmacy, Riga Stradins University Red Cross Medical College, 5 J. Asara Street, LV-1009 Riga, Latvia;
| |
Collapse
|
8
|
Chan WJJ, Adiwidjaja J, McLachlan AJ, Boddy AV, Harnett JE. Interactions between natural products and cancer treatments: underlying mechanisms and clinical importance. Cancer Chemother Pharmacol 2023; 91:103-119. [PMID: 36707434 PMCID: PMC9905199 DOI: 10.1007/s00280-023-04504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Natural products, also referred to as dietary supplements, complementary and alternative medicines, and health or food supplements are widely used by people living with cancer. These products are predominantly self-selected and taken concurrently with cancer treatments with the intention of improving quality of life, immune function and reducing cancer symptoms and treatment side effects. Concerns have been raised that concurrent use may lead to interactions resulting in adverse effects and unintended treatment outcomes. This review provides an overview of the mechanisms by which these interactions can occur and the current evidence about specific clinically important natural product-drug interactions. Clinical studies investigating pharmacokinetic interactions provide evidence that negative treatment outcomes may occur when Hypericum perforatum, Grapefruit, Schisandra sphenanthera, Curcuma longa or Hydrastis canadensis are taken concurrently with common cancer treatments. Conversely, pharmacodynamic interactions between Hangeshashinto (TJ-14) and some cancer treatments have been shown to reduce the side effects of diarrhoea and oral mucositis. In summary, research in this area is limited and requires further investigation.
Collapse
Affiliation(s)
- Wai-Jo Jocelin Chan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeffry Adiwidjaja
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew J McLachlan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alan V Boddy
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Joanna E Harnett
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
10
|
Haron MH, Dale O, Martin K, Avula B, Chittiboyina AG, Khan IA, Gurley BJ, Khan SI. Evaluation of the Herb-Drug Interaction Potential of Commonly Used Botanicals on the US Market with Regard to PXR- and AhR-Mediated Influences on CYP3A4 and CYP1A2. J Diet Suppl 2022:1-14. [PMID: 36017806 DOI: 10.1080/19390211.2022.2110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In this study, hydroethanolic extracts of 30 top-selling botanicals (herbs) commonly used as ingredients of herbal dietary supplements in the US were screened for their potential to activate the human pregnane X receptor (hPXR) and human aryl hydrocarbon receptor (hAhR) and to increase the activities of hPXR- and hAhR-regulated drug metabolizing cytochrome P450 enzymes (i.e., CYP3A4 and CYP1A2, respectively). Of the 30 botanicals tested, 21 induced PXR and 29 induced AhR transcriptional activities. Out of the 21 botanicals that induced hPXR transcriptional activity, 14 yielded >50% induction in CYP3A4 activity at concentrations ranging from 6 to 60 µg/mL and 16 out of the 29 botanicals that activated hAhR yielded >50% induction in CYP1A2 activity at concentrations ranging from 3 to 30 µg/mL. Moreover, eight botanicals (G. gummi-gutta [garcinia], Hemp [low and high CBD content], H. perforatum [St. John's wort], M. vulgare [horehound], M. oleifera [moringa], O. vulgare [oregano], P. johimbe [yohimbe] and W. somnifera [ashwagandha]) yielded >50% induction in both CYP3A4 and CYP1A2 activity. Herbal products are mixtures of phytoconstituents, any of which could modulate drug metabolism. Our data reveals that several top-selling botanicals may pose herb-drug interaction (HDI) risks via CYP450 induction. While in vitro experiments can provide useful guidance in assessing a botanical's HDI potential, their clinical relevance needs to be investigated in vivo. Botanicals whose effects on hPXR/CYP3A4, and hAhR/CYP1A2 activity were most pronounced will be slated for further clinical investigation.
Collapse
Affiliation(s)
- Mona H Haron
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Olivia Dale
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Katherine Martin
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bill J Gurley
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
11
|
An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. J Clin Med 2022; 11:jcm11144039. [PMID: 35887801 PMCID: PMC9315573 DOI: 10.3390/jcm11144039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Kava (Piper methysticum) has been widely consumed for many years in the South Pacific Islands and displays psychoactive properties, especially soothing and calming effects. This plant has been used in Western countries as a natural anxiolytic in recent decades. Kava has also been used to treat symptoms associated with depression, menopause, insomnia, and convulsions, among others. Along with its putative beneficial health effects, kava has been associated with liver injury and other toxic effects, including skin toxicity in heavy consumers, possibly related to its metabolic profile or interference in the metabolism of other xenobiotics. Kava extracts and kavalactones generally displayed negative results in genetic toxicology assays although there is sufficient evidence for carcinogenicity in experimental animals, most likely through a non-genotoxic mode of action. Nevertheless, the chemotherapeutic/chemopreventive potential of kava against cancer has also been suggested. Both in vitro and in vivo studies have evaluated the effects of flavokavains, kavalactones and/or kava extracts in different cancer models, showing the induction of apoptosis, cell cycle arrest and other antiproliferative effects in several types of cancer, including breast, prostate, bladder, and lung. Overall, in this scoping review, several aspects of kava efficacy and safety are discussed and some pertinent issues related to kava consumption are identified.
Collapse
|
12
|
Melchert PW, Qian Y, Zhang Q, Klee BO, Xing C, Markowitz JS. In vitro inhibition of carboxylesterase 1 by Kava (Piper methysticum) Kavalactones. Chem Biol Interact 2022; 357:109883. [PMID: 35278473 PMCID: PMC9244838 DOI: 10.1016/j.cbi.2022.109883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Kava refers to the extracts from the rhizome of the plant Piper methysticum which is of particular significance to various indigenous cultures in the South Pacific region. Kavalactones are the active constituents of kava products and are associated with sedative and anxiolytic effects. Kavalactones have been evaluated in vitro for their potential to alter the activity of various CYP450 enzymes but have undergone little systematic investigation as to their potential influence on esterases. This study investigated the inhibition effects of kava and its kavalactones on carboxylesterase 1 (CES1) in an in vitro system and established associated kinetic parameters. Kava and its kavalactones were found to produce reversible inhibition of CES1 to varying degrees. Kavain, dihydrokavain, and desmethoxyyangonin displayed competitive type inhibition, while methysticin, dihydromethysticin, and yangonin displayed a mixed competitive-noncompetitive type inhibition. The inhibition constants (Ki) values for each of the kavalactones were as follows: methysticin (35.2 μM), dihydromethysticin (68.2 μM), kavain (81.6 μM), dihydrokavain (105.3 μM), yangonin (24.9 μM), and desmethoxyyangonin (25.2 μM). With consideration to the in vitro Ki for each evaluated kavalactone as well as available clinical kavalactone concentrations in blood circulation, co-administration of CES1 substrate medications and kava products at the recommended daily dose is generally free of drug interaction concerns. However, uncertainty around kavalactone exposure in humans has been noted and a clinically relevant CES1 inhibition by kavain, dihydrokavain, and dihydromethysticin is indeed possible if the kavalactone consumption is higher than 1000 mg in the context of over-the-counter usage. Further clinical studies would be required to assess the possibility of clinically significant kava drug-drug interactions with CES1 substrate medications.
Collapse
Affiliation(s)
- Philip W Melchert
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Yuli Qian
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Brandon O Klee
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Lippert A, Renner B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J Clin Med 2022; 11:1567. [PMID: 35329893 PMCID: PMC8951360 DOI: 10.3390/jcm11061567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Many people worldwide use plant preparations for medicinal purposes. Even in industrialized regions, such as Europe, where conventional therapies are accessible for the majority of patients, there is a growing interest in and usage of phytomedicine. Plant preparations are not only used as alternative treatment, but also combined with conventional drugs. These combinations deserve careful contemplation, as the complex mixtures of bioactive substances in plants show a potential for interactions. Induction of CYP enzymes and pGP by St John's wort may be the most famous example, but there is much more to consider. In this review, we shed light on what is known about the interactions between botanicals and drugs, in order to make practitioners aware of potential drug-related problems. The main focus of the article is the treatment of inflammatory diseases, accompanied by plant preparations used in Europe. Several of the drugs we discuss here, as basal medication in chronic inflammatory diseases (e.g., methotrexate, janus kinase inhibitors), are also used as oral tumor therapeutics.
Collapse
Affiliation(s)
- Annemarie Lippert
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany;
| | | |
Collapse
|
14
|
Grzegorzewski J, Bartsch F, Köller A, König M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front Pharmacol 2022; 12:752826. [PMID: 35280254 PMCID: PMC8914174 DOI: 10.3389/fphar.2021.752826] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Caffeine is by far the most ubiquitous psychostimulant worldwide found in tea, coffee, cocoa, energy drinks, and many other beverages and food. Caffeine is almost exclusively metabolized in the liver by the cytochrome P-450 enzyme system to the main product paraxanthine and the additional products theobromine and theophylline. Besides its stimulating properties, two important applications of caffeine are metabolic phenotyping of cytochrome P450 1A2 (CYP1A2) and liver function testing. An open challenge in this context is to identify underlying causes of the large inter-individual variability in caffeine pharmacokinetics. Data is urgently needed to understand and quantify confounding factors such as lifestyle (e.g., smoking), the effects of drug-caffeine interactions (e.g., medication metabolized via CYP1A2), and the effect of disease. Here we report the first integrative and systematic analysis of data on caffeine pharmacokinetics from 141 publications and provide a comprehensive high-quality data set on the pharmacokinetics of caffeine, caffeine metabolites, and their metabolic ratios in human adults. The data set is enriched by meta-data on the characteristics of studied patient cohorts and subjects (e.g., age, body weight, smoking status, health status), the applied interventions (e.g., dosing, substance, route of application), measured pharmacokinetic time-courses, and pharmacokinetic parameters (e.g., clearance, half-life, area under the curve). We demonstrate via multiple applications how the data set can be used to solidify existing knowledge and gain new insights relevant for metabolic phenotyping and liver function testing based on caffeine. Specifically, we analyzed 1) the alteration of caffeine pharmacokinetics with smoking and use of oral contraceptives; 2) drug-drug interactions with caffeine as possible confounding factors of caffeine pharmacokinetics or source of adverse effects; 3) alteration of caffeine pharmacokinetics in disease; and 4) the applicability of caffeine as a salivary test substance by comparison of plasma and saliva data. In conclusion, our data set and analyses provide important resources which could enable more accurate caffeine-based metabolic phenotyping and liver function testing.
Collapse
|
15
|
Knapik JJ, Trone DW, Steelman RA, Farina EK, Lieberman HR. Adverse effects associated with use of specific dietary supplements: The US Military Dietary Supplement Use Study. Food Chem Toxicol 2022; 161:112840. [PMID: 35093428 DOI: 10.1016/j.fct.2022.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
Dietary supplements (DSs) are used by 50% of Americans and 70% of United States military service members (SMs); some have adverse effects (AEs). This cross-sectional investigation examined AEs associated with specific DSs. A stratified random sample of SMs from the Air Force, Army, Marine Corps, and Navy was obtained. Volunteers completed a questionnaire reporting AEs for 96 generic and 62 specific DSs. The highest prevalence (≥1 AE) in specific DS categories was 35% prohormones, 33% weight loss supplements, 26% pre/post workout supplements, 14% herbal products, 12% multivitamin/multiminerals, 11% protein/amino acids, 9% muscle building supplements, 7% other DSs, 6% joint health products, and 5% individual vitamins/minerals. Specific DSs of concern (with proportion reporting AEs) included: Libido Max® (35%), Hydroxycut Hardcore® (33%), OxyElite® (33%), Roxylean® (31%), Growth Factor 9® (30%), Super HD® (29%), Hydroxycut Advanced® (29%), Lipo 6® (28%), The Ripper® (27%), Test Booster® (27%), Xenadrine Xtreme Thermogenic® (27%), C4 Extreme® (26%), and C4 Origional® (25%). Products marketed for weight loss, use before/after workout, and prohormones had the highest AE prevalence. DSs can contain substances with independent/additive AEs and/or interact with other ingredients or prescribed medications. Methods described here could provide a continuous surveillance system detecting dangerous DSs entering the market.
Collapse
Affiliation(s)
- Joseph J Knapik
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
| | - Daniel W Trone
- Naval Health Research Center, Building 329, Ryne Rd, San Diego, CA, 92152, USA
| | - Ryan A Steelman
- Army Public Health Center, 8252 Blackhawk Rd, Aberdeen Proving Ground, MD, 21010, USA
| | - Emily K Farina
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| | - Harris R Lieberman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA
| |
Collapse
|
16
|
Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib. Eur J Clin Pharmacol 2022; 78:597-611. [DOI: 10.1007/s00228-021-03266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
17
|
Surana AR, Agrawal SP, Kumbhare MR, Gaikwad SB. Current perspectives in herbal and conventional drug interactions based on clinical manifestations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Herbs are an important source of pharmaceuticals. Herbs are traditionally used by millions of peoples for medicine, food and drink in developed and developing nations considering that they are safe. But, interaction of herbs with other medicines may cause serious adverse effects or reduces their efficacy. The demand for “alternative” medicines has been increased significantly, which include medicine derived from plant or herbal origin. The objective of this review article mainly focuses on drug interactions of commonly used herbs along with possible mechanisms. The method adopted for this review is searching of herb-drug interactions in online database.
Main text
Herb-drug interaction leads to pharmacological modification. The drug use along with herbs may show pharmacodynamic and pharmacokinetic interactions. Pharmacokinetic interaction causes alteration in absorption, distribution, metabolism and elimination. Similarly, pharmacodynamic interaction causes additive or synergistic or antagonist effect on the drugs or vice versa. Researchers had demonstrated that herbs show the toxicities and drug interactions like other pharmacologically active compounds. There is lack of knowledge amongst physician, pharmacist and consumers related to pharmacological action and mechanism of herb-drug interaction. This review article focuses on the herb-drug interaction of danshen (Salvia miltiorrhiza), Echinacea (Echinacea purpurea), garlic (Allium sativum), ginkgo (Ginkgo biloba), goldenseal (Hydrastis canadensis), green tea (Camellia sinensis), kava (Piper methysticum), liquorice (Glycyrrhiza glabra), milk thistle (Silybum marianum) and St. John’s wort (Hypericum perforatum) along with probable mechanisms and clinical manifestation based on case studies reported in literature.
Conclusion
Herb-drug interactions may lead to serious side effects. Physician, pharmacist and patients must be more cautious while prescribing and or consuming these herbs.
Collapse
|
18
|
Matura JM, Shea LA, Bankes VA. Dietary supplements, cytochrome metabolism, and pharmacogenetic considerations. Ir J Med Sci 2021; 191:2357-2365. [PMID: 34734388 DOI: 10.1007/s11845-021-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dietary supplement use has continued to rise. In addition to supplement-drug interactions, it is prudent to consider how dietary supplements may interact with a patient's specific pharmacogenetics. Variations in genes associated with CYP 450 enzymes have evidence of impacting drug metabolism and adverse effects. AIMS This research was performed to evaluate CYP P450 enzyme activity of the top 15 dietary supplements used in the USA in order to initiate pharmacogenetic considerations specific to commonly used dietary supplements. METHODS The most common dietary supplements used in the USA were obtained from the National Health and Nutrition Examination Survey (NHANES). Primary literature detailing supplement CYP P450 activity was compiled from PubMed using MeSH search terms: supplement name(s), cytochrome P450 enzymes, metabolism, and pharmacokinetics. Additional resources utilized for documented CYP enzyme genotypes were the pharmacogenetic databases from Clinical Pharmacogenetics Implementation Consortium and The Pharmacogenomic Variation Consortium. RESULTS Of the 15 most common dietary supplements used in the USA, 53% (cranberry, echinacea, garlic, ginkgo biloba, ginseng, melatonin, milk thistle, and valerian) exhibit CYP P450 metabolism, with some having possible induction activity as well. Melatonin and garlic are substrates of CYP1A2 and CYP2C19, respectively. Additionally, there is evidence of echinacea having possible CYP3A4 induction activity. CONCLUSION CYP P450 activity is an important consideration for any patient but becomes increasingly critical if patients have certain CYP P450 phenotypes that impact metabolism. These popular supplements have the potential for changes in supplement exposure, and adverse effects based on pharmacogenetic profiles. Furthermore, these sites of metabolism are shared with many medications, setting the stage for possibly more profound interactions between medications and supplements. This paper highlights the mechanisms in which dietary supplements may constitute a risk for patients with certain CYP P450 phenotypes. Further research is needed in the area of dietary supplements and their pharmacogenomic implications.
Collapse
Affiliation(s)
- Janelle M Matura
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| | - Leticia A Shea
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA.
| | - Victoria A Bankes
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| |
Collapse
|
19
|
Shinjyo N, Waddell G, Green J. Valerian Root in Treating Sleep Problems and Associated Disorders-A Systematic Review and Meta-Analysis. J Evid Based Integr Med 2021; 25:2515690X20967323. [PMID: 33086877 PMCID: PMC7585905 DOI: 10.1177/2515690x20967323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sleep problems are widely prevalent and associated with various comorbidities including anxiety. Valerian (Valeriana officinalis L.) is a popular herbal medicine used as a sleep aid, however the outcomes of previous clinical studies are inconsistent. This study was conducted to update and re-evaluate the available data in order to understand the reason behind the inconsistent outcomes and to provide a broader view of the use of valerian for associated disorders. PubMed, ScienceDirect, and Cochrane Library were searched to retrieve publications relevant to the effectiveness of valerian as a treatment of sleep problems and associated disorders. A total of 60 studies (n=6,894) were included in this review, and meta-analyses were performed to evaluate the effectiveness to improve subjective sleep quality (10 studies, n=1,065) and to reduce anxiety (8 studies, n=535). Results suggested that inconsistent outcomes were possibly due to the variable quality of herbal extracts and that more reliable effects could be expected from the whole root/rhizome. In addition, therapeutic benefits could be optimized when it was combined with appropriate herbal partners. There were no severe adverse events associated with valerian intake in subjects aged between 7 and 80 years. In conclusion, valerian could be a safe and effective herb to promote sleep and prevent associated disorders. However, due to the presence of multiple active constituents and relatively unstable nature of some of the active constituents, it may be necessary to revise the quality control processes, including standardization methods and shelf life.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defence, Graduate School of Medicine, 12737Chiba University, Chuo-ku, Chiba, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | - Julia Green
- Faculty of Science and Technology, Department of Life Sciences, 4921University of Westminster, London, UK
| |
Collapse
|
20
|
Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021; 13:1261. [PMID: 34452222 PMCID: PMC8399842 DOI: 10.3390/pharmaceutics13081261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients' outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Ken Dong
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China;
| | - Ruimin Miao
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Weijia Lu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (R.X.Z.); (R.M.); (W.L.)
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| |
Collapse
|
21
|
Babos MB, Heinan M, Redmond L, Moiz F, Souza-Peres JV, Samuels V, Masimukku T, Hamilton D, Khalid M, Herscu P. Herb-Drug Interactions: Worlds Intersect with the Patient at the Center. MEDICINES (BASEL, SWITZERLAND) 2021; 8:44. [PMID: 34436223 PMCID: PMC8401017 DOI: 10.3390/medicines8080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
This review examines three bodies of literature related to herb-drug interactions: case reports, clinical studies, evaluations found in six drug interaction checking resources. The aim of the study is to examine the congruity of resources and to assess the degree to which case reports signal for further study. A qualitative review of case reports seeks to determine needs and perspectives of case report authors. Methods: Systematic search of Medline identified clinical studies and case reports of interacting herb-drug combinations. Interacting herb-drug pairs were searched in six drug interaction resources. Case reports were analyzed qualitatively for completeness and to identify underlying themes. Results: Ninety-nine case-report documents detailed 107 cases. Sixty-five clinical studies evaluated 93 mechanisms of interaction relevant to herbs reported in case studies, involving 30 different herbal products; 52.7% of these investigations offered evidence supporting reported reactions. Cohen's kappa found no agreement between any interaction checker and case report corpus. Case reports often lacked full information. Need for further information, attitudes about herbs and herb use, and strategies to reduce risk from interaction were three primary themes in the case report corpus. Conclusions: Reliable herb-drug information is needed, including open and respectful discussion with patients.
Collapse
Affiliation(s)
- Mary Beth Babos
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Michelle Heinan
- School of Medical Sciences, Lincoln Memoria University, Harrogate, TN 37752, USA;
| | - Linda Redmond
- Medical Center Long Term Care, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Fareeha Moiz
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Joao Victor Souza-Peres
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Valerie Samuels
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Tarun Masimukku
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | | | - Myra Khalid
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Paul Herscu
- Research Division, Herscu Laboratory, Amherst, MA 01002, USA;
| |
Collapse
|
22
|
Amaeze O, Eng H, Horlbogen L, Varma MVS, Slitt A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 2021; 46:437-450. [PMID: 33844145 DOI: 10.1007/s13318-021-00685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use. METHODS Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield. RESULTS O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs. CONCLUSIONS The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.,Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | - Lauren Horlbogen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | | | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| |
Collapse
|
23
|
Gougis P, Hilmi M, Geraud A, Mir O, Funck-Brentano C. Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments. Crit Rev Oncol Hematol 2021; 166:103342. [PMID: 33930533 DOI: 10.1016/j.critrevonc.2021.103342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022] Open
Abstract
Herbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; CLIP² Galilée, Department of Medical Oncology Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Marc Hilmi
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| | - Arthur Geraud
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| |
Collapse
|
24
|
Bachmann F, Duthaler U, Krähenbühl S. Effect of deglucuronidation on the results of the Basel phenotyping cocktail. Br J Clin Pharmacol 2021; 87:4608-4618. [PMID: 33890704 DOI: 10.1111/bcp.14874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
We investigated the effect of deglucuronidation on the plasma concentration of the constituents of the Basel phenotyping cocktail and on the interpretation of the phenotyping results under basal conditions and after cytochrome P450 (CYP) induction with metamizole. The cocktail containing caffeine (CYP1A2), efavirenz (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6) and midazolam (CYP3A4) was administered to 12 healthy subjects before (basal) and after treatment with metamizole for 1 week. In the basal state, deglucuronidation caused an increase in the plasma concentrations and area under the curve (AUC) of metoprolol, 8'-hydroxyefavirenz, 4'-hydroxyflurbiprofen and 1'-hydroxymidazolam. This effect could be visualized in Bland-Altman plots, where the values for 8'-hydroxyefavirenz, 4'-hydroxyflurbiprofen and 1'-hydroxymidazolam were mostly above the +20% threshold. As a result, the metabolic ratio (MR), calculated as AUCparent drug /AUCmetabolite , decreased with deglucuronidation for CYP2B6, CYP2C9 and CYP3A4 and increased for CYP2D6. Treatment with metamizole, a constitutive androstane receptor-dependent inducer of CYP2B6, CYP2C9, CYP2C19 and CYP3A4, accentuated the effect of deglucuronidation on AUC and MR. The correlation of MRs calculated as the plasma concentration ratio parent drug/metabolite with the MR calculated as the AUC ratio showed that 1 sample obtained between 2 and 6 hours after cocktail ingestion and analysed with and without deglucuronidation is sufficient to obtain reliable phenotyping results. Importantly, CYP2C9 and 3A4 induction would have been missed without deglucuronidation of the plasma samples. In conclusion, deglucuronidation of the plasma samples improves the stability of the phenotyping results of the Basel phenotyping cocktail and is necessary to reliably detect CYP induction.
Collapse
Affiliation(s)
- Fabio Bachmann
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland.,Department of Biomedicine, University of Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland.,Department of Biomedicine, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland.,Department of Biomedicine, University of Basel, Switzerland
| |
Collapse
|
25
|
do Nascimento SB, de Lima Nascimento M, Duarte-Almeida JM, de Oliveira FM, do Carmo Vieira M, Siqueira JM, de Andrade FP, da Costa César I, de Castro WV. Validation of a HPLC method for quantification of midazolam in rat plasma: Application during a Maytenus ilicifolia-drug interaction study. Biomed Chromatogr 2021; 35:e4999. [PMID: 33460183 DOI: 10.1002/bmc.4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 11/06/2022]
Abstract
Midazolam (MDZ) is routinely employed as a marker compound of cytochrome P450 3A (CYP3A) activity. Despite the many HPLC-UV methods described to quantify MDZ in plasma, all of them use acetonitrile (ACN) or a mixture of methanol-isopropanol as organic solvent of the mobile phase. Since the ACN shortage in 2008, efforts have been made to replace this solvent during HPLC analysis. A simple, sensitive, accurate and repeatable HPLC-UV method (220 nm) was developed and validated to quantify MDZ in rat plasma using methanol instead. The method was applied during a herb-drug interaction study involving Maytenus ilicifolia, a Brazilian folk medicine used to treat gastric disorders. Plasma samples were alkalinized and MDZ plus alprazolam (internal standard) were extracted with diethyl ether. After solvent removal, the residue was reconstituted with methanol-water (1:1). The analyte was eluted throughout a C18 column using sodium acetate buffer (10 mm, pH 7.4)-methanol (40:60, v/v). The precision at the lower limit of quantification never exceeded 19.40%, and 13.86% at the higher levels of quality control standards, whereas the accuracy ranged from -19.81 to 14.33%. The analytical curve was linear from 50 to 2,000 ng/ml. The activity of the hepatic CYP3A enzymes was not affected by the extract.
Collapse
Affiliation(s)
- Sara Batista do Nascimento
- Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.,Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Maria do Carmo Vieira
- Federal University of Grande Dourados R. João Rosa Góes, Mato Grosso, do Sul, Brazil
| | | | | | | | | |
Collapse
|
26
|
Salari S, Amiri MS, Ramezani M, Moghadam AT, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry, Traditional and Modern Uses of Actaea racemosa L. (Black cohosh): A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:403-449. [PMID: 33861455 DOI: 10.1007/978-3-030-64872-5_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Actaea racemosa (AR) also known as Cimicifuga racemosa, is a perennial plant from Ranunculaceae family which was used as traditional remedies in treatment of various condition like rheumatoid muscular pain, headache, inflammation and dysmenorrhea. Actaea racemosa was basically native to Canada and the Eastern United State. This chapter proposed the ethnopharmacological uses of Actaea racemosa, and its phytochemical properties. Specifically, in this article we focused on use of Actaea racemose for menopausal and post-menopausal symptoms management. Electronic databases including PubMed and Scopus were searched for studies on Actaea racemose and its administration in management of menopausal symptoms. Chem Office software was also used in order to find chemical structures. The key words used as search terms were Cimicifuga racemose, Actaea racemose, Ranunculaceae, Black cohosh, Menopausal symptoms. We have included all relevant animal and human studies up to the date of publication. The analysis on Actaea racemose showed various indications for different plant's extracts. Approximately 131 chemical compounds have been isolated and identified from Actaea racemosa. According to recently studies, the most important chemicals known of the Actaea racemosa are phenolic compounds, chromones, triterpenoids, nitrogen-containing constituents. In addition, in vivo and in vitro studies reported wide range of pharmacological activities for Black cohosh like attenuating menopausal symptoms. Mechanism of action for some ethnomedicinal indications were made clear while some of its activities are not confirmed by pharmacological studies yet. Further investigations on its pharmacological properties are necessary to expand its clinical effective use. Also, additional large clinical trials are recommended for clarifying the effect of Black cohosh.
Collapse
Affiliation(s)
- Sofia Salari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2020; 13:pharmaceutics13010043. [PMID: 33396770 PMCID: PMC7824553 DOI: 10.3390/pharmaceutics13010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic enzyme and/or transporter-mediated pharmacokinetic (PK) changes in a drug caused by concomitant herbal products have been a primary issue of herb and drug interactions (HDIs), because PK changes of a drug may result in the alternation of efficacy and toxicity. Studies on HDIs have been carried out by predictive in vitro and in vivo preclinical studies, and clinical trials. Nevertheless, the discrepancies between predictive data and the clinical significance on HDIs still exist, and different reports of HDIs add to rather than clarify the confusion regarding the use of herbal products and drug combinations. Here, we briefly review the underlying mechanisms causing PK-based HDIs, and more importantly summarize challenging issues, such as dose and treatment period effects, to be considered in study designs and interpretations of HDI evaluations.
Collapse
|
28
|
Thangavel Mahalingam V, Kaliappan I, Rajappan Chandra SK, George M, Ramasamy MK, Sabarathinam S, Govind Prasad D. Clinical Pharmacokinetic Drug Interaction Potential of MenoAct851 in Adult, Female Healthy Volunteers. CURRENT THERAPEUTIC RESEARCH 2020; 94:100619. [PMID: 33393940 PMCID: PMC7772542 DOI: 10.1016/j.curtheres.2020.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND MenoAct851 (Varanasi BioResearch Pvt. Ltd., Varanasi, India) is a patented polyherbal formulation developed to manage menopause symptoms that can be taken along with other allopathic medicines. OBJECTIVE The present study aims to evaluate the drug interaction potential of MenoAct851 to inhibit cytochrome (CY) P450 in vitro in rats, and to measure its effects on simvastatin pharmacokinetic parameters in healthy human volunteers. METHODS CYP450-carbon monoxide assay of MenoAct851 was performed in rat liver microsomes to calculate the percentage inhibition. Fluorometric assays of CYP3A4 and CYP2D6 determined half maximal inhibitory concentration value. A double-blind, randomized, placebo-controlled drug interaction study of MenoAct851 was conducted in 24 healthy adult female volunteers aged 25 to 50 years. The selected volunteers were randomized to receive placebo or MenoAct851 500 mg BID PO for 14 days. On the 15th day, each group received 40 mg single-dose simvastatin. Blood samples were drawn at different intervals to measure simvastatin pharmacokinetic parameters. RESULTS The mean (SD) CYP450 concentration of the diluted microsome sample was calculated and found to be 0.405 (0.12) nmol/mg. The inhibitory potential of MenoAct851 (41.16% [1.24%]) was found to be less than ketoconazole. Half maximal inhibitory concentration values of MenoAct851 on CYP3A4 and CYP2D6 were 11.96 (1.04) µg/mL and 15.24 (0.58) µg/mL, respectively, but they were higher than respective positive controls. There was no statistically significant difference between MenoAct851 and placebo groups concerning the pharmacokinetic parameters such as Cmax, Tmax, t½, and mean residence time of simvastatin; however, AUC showed a significant difference (P < 0.05) between the groups. CONCLUSIONS MenoAct851 produced weaker interaction potential with CYP3A4 and CYP2D6 substrates based on in vitro assays, but the findings of clinical pharmacokinetic analysis indicate that MenoAct851 increased the AUC of simvastatin and simvastatin hydroxy acid. Therefore, coadministration of MenoAct851 might lead to drug-herb interaction, thereby affecting the therapeutic effect of CYP3A4 substrates. (Curr Ther Res Clin Exp. 2020; 81:XXX-XXX).
Collapse
Affiliation(s)
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Interdisciplinary Institute of Indian System of Medicine, Tamil Nadu, India
| | - Satish Kumar Rajappan Chandra
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Mohan Kumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sarvesh Sabarathinam
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dubey Govind Prasad
- National Facility for Tribal and Herbal Medicine, Institute of Medical Sciences, Banaras Hindu University, Uttar Pradesh, India
| |
Collapse
|
29
|
Chen L, Choi J, Leonard SW, Banuvar S, Barengolts E, Viana M, Chen SN, Pauli GF, Bolton JL, van Breemen RB. No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13929-13939. [PMID: 33197178 PMCID: PMC8071351 DOI: 10.1021/acs.jafc.0c05856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracts of red clover (Trifolium pratense L.), containing estrogenic isoflavones like genistein and daidzein and the proestrogenic isoflavones formononetin and biochanin A, are used by women as dietary supplements for the management of menopausal symptoms. Although marketed as a safer alternative to hormone therapy, red clover isoflavones have been reported to inhibit some cytochrome P450 (CYP) enzymes involved in drug metabolism. To evaluate the potential for clinically relevant drug-red clover interactions, we tested a standardized red clover dietary supplement (120 mg isoflavones per day) for interactions with the pharmacokinetics of four FDA-approved drugs (caffeine, tolbutamide, dextromethorphan, and alprazolam) as probe substrates for the enzymes CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5, respectively. Fifteen peri- and postmenopausal women completed pharmacokinetic studies at baseline and 2 weeks after consuming red clover. The averaged pharmacokinetic profiles of probe substrates in serum showed no significant alterations and no changes in the areas under the curve (AUC) over 96 h. Subgroup analysis based on the demographic characteristics (BMI, menopausal status, race, and age) also showed no differences in AUC for each probe substrate. Analysis of red clover isoflavones in serum showed primarily conjugated metabolites that explain, at least in part, the red clover pharmacokinetic safety profile.
Collapse
Affiliation(s)
- Luying Chen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
| | - Suzanne Banuvar
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Elena Barengolts
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Marlos Viana
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612
| |
Collapse
|
30
|
Nguyen JT, Tian DD, Tanna RS, Hadi DL, Bansal S, Calamia JC, Arian CM, Shireman LM, Molnár B, Horváth M, Kellogg JJ, Layton ME, White JR, Cech NB, Boyce RD, Unadkat JD, Thummel KE, Paine MF. Assessing Transporter-Mediated Natural Product-Drug Interactions Via In vitro-In Vivo Extrapolation: Clinical Evaluation With a Probe Cocktail. Clin Pharmacol Ther 2020; 109:1342-1352. [PMID: 33174626 DOI: 10.1002/cpt.2107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
The botanical natural product goldenseal can precipitate clinical drug interactions by inhibiting cytochrome P450 (CYP) 3A and CYP2D6. Besides P-glycoprotein, effects of goldenseal on other clinically relevant transporters remain unknown. Established transporter-expressing cell systems were used to determine the inhibitory effects of a goldenseal extract, standardized to the major alkaloid berberine, on transporter activity. Using recommended basic models, the extract was predicted to inhibit the efflux transporter BCRP and uptake transporters OATP1B1/3. Using a cocktail approach, effects of the goldenseal product on BCRP, OATP1B1/3, OATs, OCTs, MATEs, and CYP3A were next evaluated in 16 healthy volunteers. As expected, goldenseal increased the area under the plasma concentration-time curve (AUC0-inf ) of midazolam (CYP3A; positive control), with a geometric mean ratio (GMR) (90% confidence interval (CI)) of 1.43 (1.35-1.53). However, goldenseal had no effects on the pharmacokinetics of rosuvastatin (BCRP and OATP1B1/3) and furosemide (OAT1/3); decreased metformin (OCT1/2, MATE1/2-K) AUC0-inf (GMR, 0.77 (0.71-0.83)); and had no effect on metformin half-life and renal clearance. Results indicated that goldenseal altered intestinal permeability, transport, and/or other processes involved in metformin absorption, which may have unfavorable effects on glucose control. Inconsistencies between model predictions and pharmacokinetic outcomes prompt further refinement of current basic models to include differential transporter expression in relevant organs and intestinal degradation/metabolism of the precipitant(s). Such refinement should improve in vitro-in vivo prediction accuracy, contributing to a standard approach for studying transporter-mediated natural product-drug interactions.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Deena L Hadi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.,Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA
| | - Sumit Bansal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Justina C Calamia
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Laura M Shireman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Bálint Molnár
- SOLVO Biotechnology, SZTE Biológiai Epület, University of Szeged, Szeged, Hungary
| | - Miklós Horváth
- SOLVO Biotechnology, SZTE Biológiai Epület, University of Szeged, Szeged, Hungary
| | - Joshua J Kellogg
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Matthew E Layton
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - John R White
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Nadja B Cech
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Richard D Boyce
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.,Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA
| |
Collapse
|
31
|
Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A Comparison Analysis and Action Plan by Pharmaceutical Industrial Scientists. Curr Drug Metab 2020; 21:403-426. [DOI: 10.2174/1389200221666200620210522] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022]
Abstract
Background:
In January 2020, the US FDA published two final guidelines, one entitled “In vitro Drug
Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry”
and the other entitled “Clinical Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter-Mediated
Drug Interactions Guidance for Industry”. These were updated from the 2017 draft in vitro and clinical DDI
guidance.
Methods:
This study is aimed to provide an analysis of the updates along with a comparison of the DDI guidelines
published by the European Medicines Agency (EMA) and Japanese Pharmaceuticals and Medical Devices Agency
(PMDA) along with the current literature.
Results:
The updates were provided in the final FDA DDI guidelines and explained the rationale of those changes
based on the understanding from research and literature. Furthermore, a comparison among the FDA, EMA, and
PMDA DDI guidelines are presented in Tables 1, 2 and 3.
Conclusion:
The new 2020 clinical DDI guidance from the FDA now has even higher harmonization with the
guidance (or guidelines) from the EMA and PMDA. A comparison of DDI guidance from the FDA 2017, 2020,
EMA, and PMDA on CYP and transporter based DDI, mathematical models, PBPK, and clinical evaluation of DDI
is presented in this review.
Collapse
Affiliation(s)
- Sirimas Sudsakorn
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Praveen Bahadduri
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Jennifer Fretland
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Sanofi-Genzyme, Waltham, MA 02451, United States
| |
Collapse
|
32
|
Tugcu G, Kırmızıbekmez H, Aydın A. The integrated use of in silico methods for the hepatotoxicity potential of Piper methysticum. Food Chem Toxicol 2020; 145:111663. [PMID: 32827561 DOI: 10.1016/j.fct.2020.111663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Herbal products as supplements and therapeutic intervention have been used for centuries. However, their toxicities are not completely evaluated and the mechanisms are not clearly understood. Dried rhizome of the plant kava (Piper methysticum) is used for its anxiolytic, and sedative effects. The drug is also known for its hepatotoxicity potential. Major constituents of the plant were identified as kavalactones, alkaloids and chalcones in previous studies. Kava hepatotoxicity mechanism and the constituent that causes the toxicity have been debated for decades. In this paper, we illustrated the use of computational tools for the hepatotoxicity of kava constituents. The proposed mechanisms and major constituents that are most probably responsible for the toxicity have been scrutinized. According to the experimental and prediction results, the kava constituents play a substantial role in hepatotoxicity by some means or other via glutathione depletion, CYP inhibition, reactive metabolite formation, mitochondrial toxicity and cyclooxygenase activity. Some of the constituents, which have not been tested yet, were predicted to involve mitochondrial membrane potential, caspase-3 stimulation, and AhR activity. Since Nrf2 activation could be favorable for prevention of hepatotoxicity, we also suggest that these compounds should undergo testing given that they were predicted not to be activating Nrf2. Among the major constituents, alkaloids appear to be the least studied and the least toxic group in general. The outcomes of the study could help to appreciate the mechanisms and to prioritize the kava constituents for further testing.
Collapse
Affiliation(s)
- Gulcin Tugcu
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Atasehir, Istanbul, Turkey
| | - Hasan Kırmızıbekmez
- Yeditepe University, Faculty of Pharmacy, Department of Pharmacognosy, 34755, Atasehir, Istanbul, Turkey
| | - Ahmet Aydın
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, 34755, Atasehir, Istanbul, Turkey.
| |
Collapse
|
33
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
34
|
Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life (Basel) 2020; 10:life10070106. [PMID: 32635538 PMCID: PMC7400069 DOI: 10.3390/life10070106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions. In particular, they help to elucidate the cellular target (metabolic or transporter protein) and the mechanism (induction or inhibition) by which a single constituent of the herbal medicine acts. The authors highlight the difficulties in predicting herbal–drug interactions from in vitro data where high concentrations of extracts or their constituents are used and pharmacokinetics are missed. Moreover, the difficulty to compare results from human studies where different kinds of herbal extracts are used is discussed. The herbal medicines discussed are among the best sellers and they are reported in the “Herbal Medicines for Human Use” section of the European Medicinal Agency (EMA).
Collapse
|
35
|
McDonald MG, Tian DD, Thummel KE, Paine MF, Rettie AE. Modulation of Major Human Liver Microsomal Cytochromes P450 by Component Alkaloids of Goldenseal: Time-Dependent Inhibition and Allosteric Effects. Drug Metab Dispos 2020; 48:1018-1027. [PMID: 32591416 DOI: 10.1124/dmd.120.091041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Botanical and other natural products (NPs) are often coconsumed with prescription medications, presenting a risk for cytochrome P450 (P450)-mediated NP-drug interactions. The NP goldenseal (Hydrastis canadensis) has exhibited antimicrobial activities in vitro attributed to isoquinoline alkaloids contained in the plant, primarily berberine, (-)-β-hydrastine, and to a lesser extent, hydrastinine. These alkaloids contain methylenedioxyphenyl rings, structural alerts with potential to inactivate P450s through formation of metabolic intermediate complexes. Time-dependent inhibition experiments were conducted to evaluate their ability to inhibit major P450 activities in human liver microsomes by using a cocktail of isozyme-specific substrate probes. Berberine inhibited CYP2D6 (dextromethorphan O-demethylation; K I = 2.7 μM, kinact = 0.065 minute-1) and CYP3A4/5 (midazolam 1'-hydroxylation; K I = 14.8 μM, kinact = 0.019 minute-1); (-)-β-hydrastine inhibited CYP2C9 (diclofenac 4'-hydroxylation; K I = 49 μM, kinact = 0.036 minute-1), CYP2D6 (K I > 250 μM, kinact > 0.06 minute-1), and CYP3A4/5 (K I = 28 μM, kinact = 0.056 minute-1); and hydrastinine inhibited CYP2D6 (K I = 37 μM, kinact = 0.049 minute-1) activity. Berberine additionally exhibited allosteric effects on midazolam hydroxylation, showing both positive and negative heterotropic cooperativity. Experiments with recombinant isozymes showed that berberine activated midazolam 1'-hydroxylation by CYP3A5, lowering K m(app), but showed mixed inhibition and negative cooperativity toward this reaction when catalyzed by CYP3A4. Berberine inactivated CYP3A4 at a much faster rate than CYP3A5 and was a noncompetitive inhibitor of midazolam 4-hydroxylation by CYP3A4 but a strong mixed inhibitor of the CYP3A5 catalyzed reaction. These complex kinetics should be considered when extrapolating the risk for NP-drug interactions involving goldenseal. SIGNIFICANCE STATEMENT: Robust kinetic parameters were determined for the reversible and time-dependent inhibition of CYP2C9, CYP2D6, and CYP3A4/5 activities in human liver microsomes by major component isoquinoline alkaloids contained in the botanical natural product goldenseal. The alkaloid berberine also exhibited opposing, isozyme-specific allosteric effects on midazolam hydroxylation mediated by recombinant CYP3A4 (inhibition) and CYP3A5 (activation). These data will inform the development of a physiologically based pharmacokinetic model that can be used to predict potential clinically relevant goldenseal-drug interactions.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Dan-Dan Tian
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Kenneth E Thummel
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Mary F Paine
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| |
Collapse
|
36
|
Bordes C, Leguelinel-Blache G, Lavigne JP, Mauboussin JM, Laureillard D, Faure H, Rouanet I, Sotto A, Loubet P. Interactions between antiretroviral therapy and complementary and alternative medicine: a narrative review. Clin Microbiol Infect 2020; 26:1161-1170. [PMID: 32360208 DOI: 10.1016/j.cmi.2020.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The use of complementary and alternative medicine including herbal medicine (phytotherapy), vitamins, minerals and food supplements is frequent among people living with HIV/AIDS (PLWHAs) who take antiretroviral (ARV) drugs, but is often not known by their prescribing physicians. Some drug-supplement combinations may result in clinically meaningful interactions. AIMS In this literature review, we aimed to investigate the evidence for complementary and alternative medicine interactions with ARVs. SOURCES A bibliographic search of all in vitro, human studies and case reports of the PubMed database was performed to assess the risk of interactions between complementary and alternative self-medication products and ARVs. The 'HIV drug interaction' (https://www.hiv-druginteractions.org) and 'Natural medicines comprehensive database' (https://naturalmedicines.therapeuticresearch.com) interaction checkers were also analysed. CONTENT St John's wort, some forms of garlic, grapefruit and red rice yeast are known to have significant interaction and thus should not be co-administered, or should be used with caution with certain ARV classes. Data on other plant-based supplements come from in vitro studies or very small size in vivo studies and are thus insufficient to conclude the real in vivo impact in case of concomitant administration with ARVs. Some polyvalent minerals such as calcium, magnesium, and iron salts can reduce the absorption of integrase inhibitors by chelation. Potential interactions with vitamin C and quercetin with some ARVs should be noted and efficacy and tolerance of the treatment should be monitored. IMPLICATIONS This review shows the importance of screening all PLWHAs for complementary and alternative medicine use to prevent treatment failure or adverse effects related to an interaction with ARVs. Further human studies are warranted to describe the clinical significance of in vitro interactions between numerous complementary and alternative medicine and ARVs.
Collapse
Affiliation(s)
- C Bordes
- Pharmacy Department, University of Montpellier, CHU Nimes, France
| | - G Leguelinel-Blache
- Pharmacy Department, University of Montpellier, CHU Nimes, France; UPRES EA2415, Laboratory of Biostatistics, Epidemiology, Clinical Research and Health Economics, Clinical Research University Institute, University of Montpellier, Montpellier, France
| | - J-P Lavigne
- VBMI, INSERM U1047, University of Montpellier, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Nîmes, France
| | - J-M Mauboussin
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - D Laureillard
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France; Pathogenesis and Control of Chronic Infections, Inserm, Etablissement Français Du Sang, University of Montpellier, Montpellier, France
| | - H Faure
- Pharmacy Department, CH de Royan, Royan, France
| | - I Rouanet
- Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - A Sotto
- VBMI, INSERM U1047, University of Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France
| | - P Loubet
- VBMI, INSERM U1047, University of Montpellier, Department of Infectious and Tropical Diseases, CHU Nîmes, Nîmes, France.
| |
Collapse
|
37
|
Illamola SM, Amaeze OU, Krepkova LV, Birnbaum AK, Karanam A, Job KM, Bortnikova VV, Sherwin CM, Enioutina EY. Use of Herbal Medicine by Pregnant Women: What Physicians Need to Know. Front Pharmacol 2020; 10:1483. [PMID: 31998122 PMCID: PMC6962104 DOI: 10.3389/fphar.2019.01483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
About 80% of the consumers worldwide use herbal medicine (HMs) or other natural products. The percentage may vary significantly (7%-55%) among pregnant women, depending upon social status, ethnicity, and cultural traditions. This manuscript discusses the most common HMs used by pregnant women, and the potential interactions of HMs with conventional drugs in some medical conditions that occur during pregnancy (e.g., hypertension, asthma, epilepsy). It also includes an examination of the characteristics of pregnant HM consumers, the primary conditions for which HMs are taken, and a discussion related to the potential toxicity of HMs taken during pregnancy. Many cultures have used HMs in pregnancy to improve wellbeing of the mother and/or baby, or to help decrease nausea and vomiting, treat infection, ease gastrointestinal problems, prepare for labor, induce labor, or ease labor pains. One of the reasons why pregnant women use HMs is an assumption that HMs are safer than conventional medicine. However, for pregnant women with pre-existing conditions like epilepsy and asthma, supplementation of conventional treatment with HMs may further complicate their care. The use of HMs is frequently not reported to healthcare professionals. Providers are often not questioning HM use, despite little being known about the HM safety and HM-drug interactions during pregnancy. This lack of knowledge on potential toxicity and the ability to interact with conventional treatments may impact both mother and fetus. There is a need for education of women and their healthcare professionals to move away from the idea of HMs not being harmful. Healthcare professionals need to question women on whether they use any HMs or natural products during pregnancy, especially when conventional treatment is less efficient and/or adverse events have occurred as herbal-drug interactions could be the reason for these observations. Additionally, more preclinical and clinical studies are needed to evaluate HM efficacy and toxicity.
Collapse
Affiliation(s)
- Sílvia M. Illamola
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Ogochukwu U. Amaeze
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Lubov V. Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Angela K. Birnbaum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Ashwin Karanam
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Valentina V. Bortnikova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Catherine M.T. Sherwin
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
38
|
Drozdoff L, Klein E, Kalder M, Brambs C, Kiechle M, Paepke D. Potential Interactions of Biologically Based Complementary Medicine in Gynecological Oncology. Integr Cancer Ther 2019; 18:1534735419846392. [PMID: 31046491 PMCID: PMC6501502 DOI: 10.1177/1534735419846392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to assess the potential risks of interactions between biologically based complementary and alternative medication (BB-CAM) and conventional drugs during systemic therapy in breast and gynecological cancer patients by analyzing the actual CAM-drug combinations from individual patients' records. METHODS From September 2014 to December 2014 and from February 2017 to May 2017, all patients (n = 717) undergoing systemic therapy at the Gynecologic Oncology Day Care Unit in the Gynecology and Obstetrics Department of the Technical University of Munich, Germany, were asked to participate in a questionnaire about all their medications. To assess the potential risk of CAM-drug interactions (CDIs), we initially utilized the Lexicomp drug interaction database. This assessment was then expanded with a systematic search of other digital databases, such as the National Center for Complementary and Integrative Health, Memorial Sloan Kettering Cancer Center, PubMed, and MEDLINE as well as the Cochrane Library. RESULTS Among 448 respondents, 74.1% reported using BB-CAM simultaneously with their systemic therapy. The assessment showed 1 patient with a potentially clinically relevant CDI, where the interaction was based on a self-medicated combination of Echinacea and cyclophosphamide. Furthermore, 81 patients (18.1%) were thought to have interactions because of a combination of BB-CAMs and cytochrome P450 3A4-metabolized anticancer drugs. CONCLUSIONS Our data demonstrated high overall use of BB-CAMs by cancer patients undergoing systemic therapy. The analyses showed only 1 clinically relevant CDI.
Collapse
Affiliation(s)
- Loisa Drozdoff
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Evelyn Klein
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | | | | | - Marion Kiechle
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Daniela Paepke
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
39
|
Dunkoksung W, Vardhanabhuti N, Siripong P, Jianmongkol S. Rhinacanthin-C Mediated Herb-Drug Interactions with Drug Transporters and Phase I Drug-Metabolizing Enzymes. Drug Metab Dispos 2019; 47:1040-1049. [PMID: 31399508 DOI: 10.1124/dmd.118.085647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/15/2019] [Indexed: 11/22/2022] Open
Abstract
Rhinacanthin-C is a major active constituent in Rhinacanthus nasutus (L.) Kurz, a plant widely used in herbal remedies. Its potential for pharmacokinetic herb-drug interaction may exist with drug transporters and drug metabolizing enzymes. This study assessed the possibility for rhinacanthin-C-mediated drug interaction by determining its inhibitory effects against major human efflux and influx drug transporters as well as various human cytochrome P450(CYP) isoforms. Rhinacanthin-C demonstrated a moderate permeability through the Caco-2 monolayers [Papp (AP-to-BL) = 1.26 × 10-6 cm/s]. It significantly inhibited transport mediated by both P-glycoprotein (P-gp) (IC50 = 5.20 µM) and breast cancer resistance protein (BCRP) (IC50 = 0.83 µM) across Caco-2 and BCRP-overexpressing Madin-Darby canine kidney II cells (MDCKII) cells. This compound also strongly inhibited uptake mediated by organic anion-transporting polypeptide 1B1 (OATP1B1) (IC50 = 0.70 µM) and OATP1B3 (IC50 = 3.95 µM) in OATP1B-overexpressing HEK cells. In addition to its inhibitory effect on these drug transporters, rhinacanthin-C significantly inhibited multiple human CYP isoforms including CYP2C8 (IC50 = 4.56 µM), 2C9 (IC50 = 1.52 µM), 2C19 (IC50 = 28.40 µM), and 3A4/5 (IC50 = 53 µM for midazolam and IC50 = 81.20 µM for testosterone), but not CYP1A2, 2A6, 2B6, 2D6, and 2E1. These results strongly support a high propensity for rhinacanthin-C as a perpetrator of clinical herb-drug interaction via inhibiting various influx and efflux drug transporters (i.e., P-gp, BCRP, OATP1B1, and OATP1B3) and CYP isoforms (i.e., CYP2C8, CYP2C9, and CYP2C19). Thus, the potential for significant pharmacokinetic herb-drug interaction should be addressed when herbal products containing rhinacanthin-C are to be used in conjunction with other prescription drugs.
Collapse
Affiliation(s)
- Wilasinee Dunkoksung
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Nontima Vardhanabhuti
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Pongpun Siripong
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Suree Jianmongkol
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| |
Collapse
|
40
|
Gougis P, Palmieri LJ, Funck-Brentano C, Paci A, Flippot R, Mir O, Coriat R. Major pitfalls of protein kinase inhibitors prescription: A review of their clinical pharmacology for daily use. Crit Rev Oncol Hematol 2019; 141:112-124. [PMID: 31276964 DOI: 10.1016/j.critrevonc.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Protein kinase inhibitors (PKI) are a growing class of anticancer agents. They are prescribed with flat doses, and their oral administration is associated with interindividual variability in exposure. Patients can be over- or underexposed, due to numerous factors. We reviewed key pharmacokinetic concepts and mechanisms by which PKIs prescription could be altered. Challenging situations that could lead to increased toxicity or to therapeutic failure are described and recommendation for clinicians are proposed. Finally, the interest of therapeutic drug monitoring and indications for its use in daily practice is discussed.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, Faculty of Medicine, AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and Clinical Investigation Center, F-75013, Paris, France; CLIP² Galilée, Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Lola-Jade Palmieri
- AP-HP, Cochin Hospital, Department of gastroenterology and gastrointestinal oncology, Université Paris Descartes, Paris, France
| | - Christian Funck-Brentano
- Sorbonne Université, Faculty of Medicine, AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and Clinical Investigation Center, F-75013, Paris, France; INSERM, CIC-1421 and UMR ICAN 1166, Institute of Cardiometabolism and Nutrition (ICAN), F-75013, Paris, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Gustave Roussy et Université Paris Saclay, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France; Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Romain Coriat
- AP-HP, Cochin Hospital, Department of gastroenterology and gastrointestinal oncology, Université Paris Descartes, Paris, France
| |
Collapse
|
41
|
Lans C. Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:366-392. [PMID: 30772483 DOI: 10.1016/j.jep.2019.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are insufficient safe and effective treatments for chronic pain in pets. In cases such as osteoarthritis there is no commercially available cure and veterinarians use NSAIDs to manage pain. Pet owners may have to plan for a lifetime of plant-based treatment for the conditions that lead to chronic pain in pets. Phytopharmacotherapies have the advantage of being less toxic, cheap or free, readily available, are more likely to be safe for long-term use and have the potential to reset the immune system to normal functioning. AIM OF THE STUDY To examine the recently published medicinal plant research that matches unpublished data on ethnoveterinary medicines (EVM) used for pets in Canada (British Columbia) to see if the EVM data can provide a lead to the development of necessary drugs. MATERIALS AND METHODS In 2003 semi-structured interviews were conducted with 60 participants who were organic farmers or holisitic medicinal/veterinary practitioners obtained using a purposive sample. A draft manual prepared from the data was then evaluated by participants at a participatory workshop that discussed the plant-based treatments. A copy of the final version of the manual was given to all research participants. In 2018, the recently published research matching the EVM data was reviewed to see if the EVM practices could serve as a lead for further research. RESULTS AND CONCLUSION Medicinal plants are used to treat a range of conditions. The injuries treated in pets in British Columbia included abscesses (resulting from an initial injury), sprains and abrasions. Dogs were also treated with medicinal plants for rheumatoid arthritis, joint pain and articular cartilage injuries. More than 40 plants were used. Anal gland problems were treated with Allium sativum L., Aloe vera L., Calendula officinalis L., Plantago major L., Ulmus fulva Michx., Urtica dioica L. and Usnea longissima Ach. Arctium lappa, Hydrangea arborescens and Lactuca muralis were used for rheumatoid arthritis and joint pain in pets. Asthma was treated with: Linum usitatissimum L., Borago officinalis L., Verbascum thapsus L., Cucurbita pepo L., Lobelia inflata L., and Zingiber officinale Roscoe. Pets with heart problems were treated with Crataegus oxyacantha L., Cedronella canariensis (L.) Willd. ex Webb & Berth, Equisetum palustre L., Cypripedium calceolus L., Pinus ponderosa Douglas ex Lawson, Humulus lupulus L., Valeriana officinalis L., Lobelia inflata L., Stachys officinalis (L.) Trev., and Viscum album L. The following plants were used for epilepsy, motion sickness and anxiety- Avena sativa L., Valeriana officinalis, Lactuca muralis (L.) Fresen., Scutellaria lateriflora L., Satureja hortensis L., and Passiflora incarnata L. Plants used for cancer treatment included Phytolacca decandra, Ganoderma lucidum, Lentinula edodes, Rumex acetosella, Arctium lappa, Ulmus fulva, Rheum palmatum, Frangula purshiana, Zingiber officinale, Glycyrrhiza glabra, Ulmus fulva, Althea officinalis, Rheum palmatum, Rumex crispus and Plantago psyllium. Trifolium pratense was used for tumours in the prostate gland. Also used were Artemisia annua, Taraxacum officinale and Rumex crispus. This review of plants used in EVM was possible because phytotherapy research of the plants described in this paper has continued because few new pharmaceutical drugs have been developed for chronic pain and because treatments like glucocorticoid therapy do not heal. Phytotherapuetic products are also being investigated to address the overuse of antibiotics. There have also been recent studies conducted on plant-based functional foods and health supplements for pets, however there are still gaps in the knowledge base for the plants Stillingia sylvatica, Verbascum thapsus, Yucca schidigera and Iris versicolor and these need further investigation.
Collapse
Affiliation(s)
- Cheryl Lans
- Institute for Ethnobotany and Zoopharmacognosy (IEZ), Rijksstraatweg 158A, 6573 DG Beek, the Netherlands.
| |
Collapse
|
42
|
Inhibition of Cytochrome P450 Activities by Sophora flavescens Extract and Its Prenylated Flavonoids in Human Liver Microsomes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2673769. [PMID: 31001351 PMCID: PMC6436327 DOI: 10.1155/2019/2673769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
Abstract
Sophora flavescens possesses several pharmacological properties and has been widely used for the treatment of diarrhea, inflammation, abscess, dysentery, and fever in East Asian countries. S. flavescens is a major source of prenylated flavonoids, such as sophoraflavone and kushenol. In this study, we examined the effects of S. flavescens extract and its prenylated flavonoids on cytochrome P450 (CYP) isoform activity in human liver microsomes. The extract inhibited CYP2C8, CYP2C9, CYP2C19, and CYP3A activities, with IC50 values of 1.42, 13.6, 19.1, and 50 µg/mL, respectively. CYP2B6 was only inhibited in human liver microsomes preincubated with the extract. CYP3A4 was more strongly inhibited by the extract in the presence of NADPH, suggesting that the extract may inhibit CYP2B6 and CYP3A4 via mechanism-based inactivation. Prenylated flavonoids also inhibited CYP isoforms with different selectivity and modes of action. Kushenol I, leachianone A, and sophoraflavone G inhibited CYP2B6, whereas kushenol C, kushenol I, kushenol M, leachianone A, and sophoraflavone G inhibited CYP3A4 via mechanism-based inhibition. Our results suggest that S. flavescens may contribute to herb–drug interactions when coadministered with drugs metabolized by CYP2B6, CYP2C8, CYP2C9, and CYP3A4.
Collapse
|
43
|
S. Ramírez-Gómez X, N. Jiménez-García S, Beltrán Campos V, Rodríguez Miranda E, Herrera Pérez G, Vargas-Bernal R. Clinical Relevance of Medicinal Plants and Foods of Vegetal Origin on the Activity of Cytochrome P450. Med Chem 2019. [DOI: 10.5772/intechopen.79971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Liu J, Liu H, Zeng Q. The effect of naringenin on the pharmacokinetics of ibrutinib in rat: A drug–drug interaction study. Biomed Chromatogr 2019; 33:e4507. [DOI: 10.1002/bmc.4507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Liu
- Department of PharmacyJiangsu Health Vocational College Nanjing China
| | - Hanqing Liu
- Department of PharmacyNanjing University of Chinese Medicine Nanjing China
| | - Qingqi Zeng
- Department of Integrated Chinese and Western MedicineJiangsu Health Vocational College Nanjing China
| |
Collapse
|
45
|
Awortwe C, Bruckmueller H, Cascorbi I. Interaction of herbal products with prescribed medications: A systematic review and meta-analysis. Pharmacol Res 2019; 141:397-408. [PMID: 30660822 DOI: 10.1016/j.phrs.2019.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
Abstract
Although several studies on pharmacokinetic and/or pharmacodynamic herb-drug interactions (HDI) have been conducted in healthy volunteers, there is large uncertainty on the validity of these studies. A qualitative review and a meta-analysis were performed to establish the clinical evidence of these interaction studies. Out of 4026 screened abstracts, 32 studies were included into the qualitative analysis. The meta-analysis was performed on eleven additional studies. St. John's wort (SJW) significantly decreased the AUC (p < 0.0001) and clearance (p = 0.007) of midazolam. Further subgroup analysis identified age to affect Cmax of midazolam (p < 0.01) in the presence of SJW. Echinacea purpurea (EP) significantly increased the clearance of midazolam (p = 0.01). Evidence of publication bias (p > 0.001) was shown on the effect of the herbal products o half-life of midazolam. Green tea (GT) showed significant 85% decrease in plasma concentration of nadolol. The study findings suggest that GT, SJW and EP perpetuate significant interactions with prescribed medications via CYP3A4 or OATP1A2. Our studies show that meta-analyses are important in the area of natural products to provide necessary information on their use in overall medication plans in order to avoid unintended interactions.
Collapse
Affiliation(s)
- Charles Awortwe
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany; Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
46
|
Salleh N, Zulkiffli M, Mahmud R, Ismail S. Inhibitory effects of ficus deltoidea extracts on UDP-glucuronosyltransferase and glutathione s-transferase drug-metabolizing enzymes. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Showande SJ, Fakeye TO, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs-Implication for herb-drug interactions. Food Sci Nutr 2019; 7:44-55. [PMID: 30680158 PMCID: PMC6341161 DOI: 10.1002/fsn3.789] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increasing use of medicinal herbs as nutritional supplements and traditional medicines for the treatment of diabetes, hypertension, hyperlipidemia, and malaria fever with conventional drugs poses possibilities of herb-drug interactions (HDIs). The potential of nine selected widely used tropical medicinal herbs in inhibiting human cytochrome P450 (CYP) isoenzymes was investigated. MATERIALS AND METHODS In vitro inhibition of eight major CYP isoenzymes by aqueous extracts of Allium sativum, Gongronema latifolium, Moringa oleifera, Musa sapientum, Mangifera indica, Tetracarpidium conophorum, Alstonia boonei, Bauhinia monandra, and Picralima nitida was estimated in human liver microsomes by monitoring twelve probe metabolites of nine probe substrates with UPLC/MS-MS using validated N-in-one assay method. RESULTS Mangifera indica moderately inhibited CYP2C8, CYP2B6, CYP2D6, CYP1A2, and CYP2C9 with IC 50 values of 37.93, 57.83, 67.39, 54.83, and 107.48 μg/ml, respectively, and Alstonia boonei inhibited CYP2D6 (IC 50 = 77.19 μg/ml). Picralima nitida inhibited CYP3A4 (IC 50 = 45.58 μg/ml) and CYP2C19 (IC 50 = 73.06 μg/ml) moderately but strongly inhibited CYP2D6 (IC 50 = 1.19 μg/ml). Other aqueous extracts of Gongronema latifolium, Bauhinia monandra, and Moringa oleifera showed weak inhibitory activities against CYP1A2. Musa sapientum, Allium sativum, and Tetracarpidium conophorum did not inhibit the CYP isoenzymes investigated. CONCLUSION Potential for clinically important CYP-metabolism-mediated HDIs is possible for Alstonia boonei, Mangifera indica, and Picralima nitida with drugs metabolized by CYP 2C8, 2B6, 2D6, 1A2, 2C9, 2C19, and 3A4. Inhibition of CYP2D6 by Picralima nitida is of particular concern and needs immediate in vivo investigations.
Collapse
Affiliation(s)
- Segun Johnson Showande
- Faculty of PharmacyDepartment of Clinical Pharmacy and Pharmacy AdministrationUniversity of IbadanIbadanNigeria
| | - Titilayo Oyelola Fakeye
- Faculty of PharmacyDepartment of Clinical Pharmacy and Pharmacy AdministrationUniversity of IbadanIbadanNigeria
| | | | | | | |
Collapse
|
48
|
A transcriptomic analysis of black cohosh: Actein alters cholesterol biosynthesis pathways and synergizes with simvastatin. Food Chem Toxicol 2018; 120:356-366. [PMID: 29969672 DOI: 10.1016/j.fct.2018.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Previous studies indicate that the herb black cohosh (Actaea racemosa L.) and the triterpene glycoside actein inhibit the growth of human breast cancer cells and activate stress-associated responses. This study assessed the transcriptomic effects of black cohosh and actein on rat liver tissue, using Ingenuity and ToxFX analyses. Sprague-Dawley rats were treated with an extract of black cohosh enriched in triterpene glycosides (27%) for 24 h or actein for 6 and 24 h, at 35.7 mg/kg, and liver tissue collected for gene expression analysis. Ingenuity analysis indicates the top canonical pathways are, for black cohosh, RAR Activation, and, for actein, Superpathway of Cholesterol Biosynthesis, at 24 h. Actein alters the expression of cholesterol biosynthetic genes, but does not inhibit HMG-CoA reductase activity. Black cohosh and actein inhibited the growth of human breast and colon cancer cells and synergized with the statin simvastatin. Combinations of black cohosh with certain classes of statins could enhance their activity, as well as toxic, such as inflammatory liver, side effects. Transcriptomic analysis indicates black cohosh and actein warrant further study to prevent and treat cancer and lipid disorders. This study lays the basis for an approach to characterize the mode of action and toxicity of herbal medicines.
Collapse
|
49
|
White CM. The Pharmacology, Pharmacokinetics, Efficacy, and Adverse Events Associated With Kava. J Clin Pharmacol 2018; 58:1396-1405. [PMID: 29791008 DOI: 10.1002/jcph.1263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Kava is a plant with numerous kavapyrones that can induce pharmacologic effects and drug interactions through the cytochrome P450 and P-glycoprotein systems. Kava is used recreationally and for the treatment of anxiety. Clinical trials verify anxiolytic effects in excess of placebo, but the effects are not seen immediately and the optimal dose and dosing schedule needs to be determined. Clinical trials usually lasting for 4 weeks found generally good tolerability and safety; however, dermatologic, hepatologic, and cognitive adverse effects may occur. Some of these adverse effects are known to occur from the kavapyrones themselves, while others can be caused or exacerbated by use of substandard kava products. There is tremendous variability in the constitution of a kava product based on the parts of the plant that are being extracted and the extraction method. The most commonly studied extract for the treatment of anxiety is the acetone extract.
Collapse
Affiliation(s)
- C Michael White
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Director, Health Outcomes, Policy, and Evidence Synthesis (HOPES) Research Group, UConn and Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
50
|
The role of hepatic cytochrome P450s in the cytotoxicity of dronedarone. Arch Toxicol 2018; 92:1969-1981. [PMID: 29616291 DOI: 10.1007/s00204-018-2196-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
Dronedarone is used to treat patients with cardiac arrhythmias and has been reported to be associated with liver injury. Our previous mechanistic work demonstrated that DNA damage-induced apoptosis contributes to the cytotoxicity of dronedarone. In this study, we examined further the underlying mechanisms and found that after a 24-h treatment of HepG2 cells, dronedarone caused cytotoxicity, G1-phase cell cycle arrest, suppression of topoisomerase II, and DNA damage in a concentration-dependent manner. We also investigated the role of cytochrome P450s (CYPs)-mediated metabolism in the dronedarone-induced toxicity using our previously established HepG2 cell lines expressing individually 14 human CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrated that CYP3A4, 3A5, and 2D6 were the major enzymes that metabolize dronedarone, and that CYP3A7, 2E1, 2C19, 2C18, 1A1, and 2B6 also metabolize dronedarone, but to a lesser extent. Our data showed that the cytotoxicity of dronedarone was decreased in CYP3A4-, 3A5-, or 2D6-overexpressing cells compared to the control HepG2 cells, indicating that the parent dronedarone has higher potency than the metabolites to induce cytotoxicity in these cells. In contrast, cytotoxicity was increased in CYP1A1-overexpressing cells, demonstrating that CYP1A1 exerts an opposite effect in dronedarone's toxicity, comparing to CYP3A4, 3A5, or 2D6. We also studied the involvement of topoisomerase II in dronedarone-induced toxicity, and demonstrated that the overexpression of topoisomerase II caused an increase in cell viability and a decrease in γ-H2A.X induction, suggesting that suppression of topoisomerase II may be one of the mechanisms involved in dronedarone-induced liver toxicity.
Collapse
|