1
|
Triposkiadis F, Xanthopoulos A, Skoularigis J. Targeting Sodium in Heart Failure. J Pers Med 2024; 14:1064. [PMID: 39452570 PMCID: PMC11508519 DOI: 10.3390/jpm14101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
A dominant event determining the course of heart failure (HF) includes the disruption of the delicate sodium (Na+) and water balance leading to (Na+) and water retention and edema formation. Although incomplete decongestion adversely affects outcomes, it is unknown whether interventions directly targeting (Na+), such as strict dietary (Na+) restriction, intravenous hypertonic saline, and diuretics, reverse this effect. As a result, it is imperative to implement (Na+)-targeting interventions in selected HF patients with established congestion on top of quadruple therapy with angiotensin receptor neprilysin inhibitor, β-adrenergic receptor blocker, mineralocorticoid receptor antagonist, and sodium glucose cotransporter 2 inhibitor, which dramatically improves outcomes. The limited effectiveness of (Na+)-targeting treatments may be partly due to the fact that the current metrics of HF severity have a limited capacity of foreseeing and averting episodes of congestion and guiding (Na+)-targeting treatments, which often leads to dysnatremias, adversely affecting outcomes. Recent evidence suggests that spot urinary sodium measurements may be used as a guide to monitor (Na+)-targeting interventions both in chronic and acute HF. Further, the classical (2)-compartment model of (Na+) storage has been displaced by the (3)-compartment model emphasizing the non-osmotic accumulation of (Na+), chiefly in the skin. 23(Na+) magnetic resonance imaging (MRI) enables the accurate and reliable quantification of tissue (Na+). Another promising approach enabling tissue (Na+) monitoring is based on wearable devices employing ion-selective electrodes for electrolyte detection, including (Na+) and (Cl-). Undoubtably, further studies using 23(Na+)-MRI technology and wearable sensors are required to learn more about the clinical significance of tissue (Na+) storage and (Na+)-related mechanisms of morbidity and mortality in HF.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (J.S.)
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (J.S.)
| |
Collapse
|
2
|
Tabbassum S, Yue S, Cheng P, Yanko F, Balachandran R, Aschner M, Bowman AB, Nie LH. Measurement of potassium in rats using an In vivo neutron activation analysis system. Appl Radiat Isot 2024; 212:111439. [PMID: 39111052 DOI: 10.1016/j.apradiso.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
Abnormal levels of potassium are linked to several health conditions, including high blood pressure, cardiac dysfunction, kidney damage, and osteoporosis. Given the limited availability of in vivo measurement techniques, there is a need for novel methods to measure potassium to enhance the diagnosis and management of potassium metabolism related diseases. This study aimed to evaluate the feasibility of compact neutron generator based in vivo measurement system for quantification of potassium using rat carcasses. A cohort of thirty-nine rats (n = 20 males and 19 females, average weight 255 ± 15 and 163 ± 7 g) were sacrificed, and their carcasses were placed in polyethylene bottles. The rats were then positioned and irradiated in a carefully designed irradiation cave built alongside the neutron generator with an optimized thermal neutron flux and radiation dose ratio. The irradiation time was 10 min, followed by a 5-min decay and 2-h measurement using a high efficiency high purity germanium detector(HPGe). RESULTS: The average potassium concentration in male and female rats was found to be comparable (male 2874 ± 161 and female 2866 ± 144 μg/g). A marginally positive correlation between potassium concentration and weight was found in female rats only (male(20) = 0.07, P = 0.76 and female r(19) = 0.34, P = 0.15). We assessed the influence of manganese toxicity on potassium levels and observed no significant impact. These results were consistent with our previous study in mice. CONCLUSION: This study suggests that in vivo neutron activation analysis could serve as a promising method to quantify potassium and to investigate the storage and metabolism of potassium in human and in animals.
Collapse
Affiliation(s)
- Sana Tabbassum
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Song Yue
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Pinjing Cheng
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; School of Nuclear Science and Technology, Nanhua University, Henyang, Hunan, China
| | - Frank Yanko
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rekha Balachandran
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Exponent Inc, Alexandria, VA, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Marton A, Saffari SE, Rauh M, Sun RN, Nagel AM, Linz P, Lim TT, Takase-Minegishi K, Pajarillaga A, Saw S, Morisawa N, Yam WK, Minegishi S, Totman JJ, Teo S, Teo LLY, Ng CT, Kitada K, Wild J, Kovalik JP, Luft FC, Greasley PJ, Chin CWL, Sim DKL, Titze J. Water Conservation Overrides Osmotic Diuresis During SGLT2 Inhibition in Patients With Heart Failure. J Am Coll Cardiol 2024; 83:1386-1398. [PMID: 38599715 DOI: 10.1016/j.jacc.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).
Collapse
Affiliation(s)
- Adriana Marton
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore; Department of Internal Medicine 4-Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany.
| | | | - Manfred Rauh
- Research Laboratory, Division of Paediatrics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruo-Ning Sun
- Clinical Imaging Research Centre, Centre for Translational Medicine, Singapore
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany; German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Tzy Tiing Lim
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | | | | | - Sharon Saw
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Norihiko Morisawa
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Wan Keat Yam
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Shintaro Minegishi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - John J Totman
- Clinical Imaging Research Centre, Centre for Translational Medicine, Singapore; Radiography and Medical Imaging Department, Fatima College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Serena Teo
- Clinical Imaging Research Centre, Centre for Translational Medicine, Singapore
| | - Louis L Y Teo
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Choon Ta Ng
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Johannes Wild
- Center for Cardiology, Cardiology I, Johannes Gutenberg-University, Mainz, Germany
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Berlin, Germany
| | - Peter J Greasley
- Early Discovery and Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - David K L Sim
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore; III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
4
|
Bagordo D, Rossi GP, Delles C, Wiig H, Rossitto G. Tangram of Sodium and Fluid Balance. Hypertension 2024; 81:490-500. [PMID: 38084591 PMCID: PMC10863667 DOI: 10.1161/hypertensionaha.123.19569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homeostasis of fluid and electrolytes is a tightly controlled physiological process. Failure of this process is a hallmark of hypertension, chronic kidney disease, heart failure, and other acute and chronic diseases. While the kidney remains the major player in the control of whole-body fluid and electrolyte homeostasis, recent discoveries point toward more peripheral mechanisms leading to sodium storage in tissues, such as skin and muscle, and a link between this sodium and a range of diseases, including the conditions above. In this review, we describe multiple facets of sodium and fluid balance from traditional concepts to novel discoveries. We examine the differences between acute disruption of sodium balance and the longer term adaptation in chronic disease, highlighting areas that cannot be explained by a kidney-centric model alone. The theoretical and methodological challenges of more recently proposed models are discussed. We acknowledge the different roles of extracellular and intracellular spaces and propose an integrated model that maintains fluid and electrolyte homeostasis and can be distilled into a few elemental players: the microvasculature, the interstitium, and tissue cells. Understanding their interplay will guide a more precise treatment of conditions characterized by sodium excess, for which primary aldosteronism is presented as a prototype.
Collapse
Affiliation(s)
- Domenico Bagordo
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Gian Paolo Rossi
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
| | - Christian Delles
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, Dipartimento di Medicina (DIMED), Università degli Studi di Padova, Italy (D.B., G.P.R., G.R.)
- School of Cardiovascular & Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.)
| |
Collapse
|
5
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
6
|
Miyauchi H, Geisberger S, Luft FC, Wilck N, Stegbauer J, Wiig H, Dechend R, Jantsch J, Kleinewietfeld M, Kempa S, Müller DN. Sodium as an Important Regulator of Immunometabolism. Hypertension 2024; 81:426-435. [PMID: 37675565 PMCID: PMC10863658 DOI: 10.1161/hypertensionaha.123.19489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.
Collapse
Affiliation(s)
- Hidetaka Miyauchi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Sabrina Geisberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Friedrich C. Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
| | - Nicola Wilck
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Johannes Stegbauer
- Department of Nephrology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany (J.S.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany (J.S.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Ralf Dechend
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
- HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany (R.D.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Germany (J.J.)
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Germany (J.J.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium (M.K.)
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium (M.K.)
- University Multiple Sclerosis Center, Hasselt University/Campus Diepenbeek, Belgium (M.K.)
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Dominik N. Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| |
Collapse
|
7
|
Jula A. Sodium - a systematic review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10319. [PMID: 38327996 PMCID: PMC10845896 DOI: 10.29219/fnr.v68.10319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/25/2022] [Accepted: 10/25/2023] [Indexed: 02/09/2024] Open
Abstract
Blood pressure (BP) rises along with increasing sodium intake from early childhood to late adulthood, and leads to hypertension among most men and women living in Nordic and Baltic countries. Elevated BP is the leading global risk factor for premature deaths and disability-adjusted life-years. A reduction in sodium intake is essential in the prevention of hypertension in individuals, in the lowering of BP levels, in the treatment of hypertensive individuals, and in decreasing risks associated with elevated BP. There is a progressive linear dose-response relationship between sodium intake and BP beginning from a sodium intake of less than 0.8 g/day. Sodium reduction decreases BP linearly by a dose-response manner down to a sodium intake level of less than 2 g/day. Randomised intervention studies with a duration of at least 4 weeks confirm the efficiency and safety of reducing blood sodium intake to a level of less than 2 g/day. Results from prospective cohort studies show that higher sodium intake is positively associated with an increased risk of stroke and cardiovascular events and mortality among the general adult population, and the associations are linear in studies using proper sodium assessment methods. Analyses assessing sodium intake using at least two 24-h urine samples have shown a linear positive relationship between sodium intake and the risk of a cardiovascular event or death. Based on an overall evaluation of the available data, a limitation of the sodium intake to 2.0 g/day is suggested for adults. The optimal sodium intake level would be probably about 1.5 g/day. Sodium intake recommended for children can be extrapolated from the recommended sodium intake for adults. According to national dietary surveys, the average sodium intakes in Nordic countries range in adult men from 3.6 to 4.4 g/day and in adult women from 2.6. to 3.2 g/day, and in Baltic countries in men from 2.6 to 5.1 g/day and in women from 1.8 to 3.6 g/day.
Collapse
Affiliation(s)
- Antti Jula
- Department of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
9
|
Fang HY, Wilund KR. Muscle Sodium Accumulation in Kidney Failure: Physiological Impact and Mitigation Strategies. J Ren Nutr 2023; 33:S93-S102. [PMID: 36965750 DOI: 10.1053/j.jrn.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
Skeletal muscle has recently been recognized as a nonosmotic sodium reservoir that buffers dietary sodium. The in-vivo quantification of muscle sodium is based on a novel technology, sodium magnetic resonance imaging. Studies using this technology have shown that muscle sodium accumulation may be a clinical complication of chronic kidney disease (CKD). This review aims to summarize existing evidence on muscle sodium accumulation in patients with CKD and to identify knowledge gaps and topics for further research. The literature examined in this review suggests that muscle sodium accumulation is associated with CKD progression and pathological conditions. However, the causalities between muscle sodium accumulation and its related pathological changes are still elusive mainly because it is still uncertain where and how sodium accumulates in the muscle. More research is needed to address these gaps and determine if muscle sodium is a new intervention target in CKD.
Collapse
Affiliation(s)
- Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
10
|
Chattopadhyay A, Tully J, Shan J, Sheikh S, Ohliger M, Gordon JW, Mauro T, Abuabara K. Sodium in the skin: a summary of the physiology and a scoping review of disease associations. Clin Exp Dermatol 2023; 48:733-743. [PMID: 36970766 DOI: 10.1093/ced/llad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Indexed: 07/20/2023]
Abstract
A large and growing body of research suggests that the skin plays an important role in regulating total body sodium, challenging traditional models of sodium homeostasis that focused exclusively on blood pressure and the kidney. In addition, skin sodium may help to prevent water loss and facilitate macrophage-driven antimicrobial host defence, but may also trigger immune dysregulation via upregulation of proinflammatory markers and downregulation of anti-inflammatory processes. We performed a systematic search of PubMed for published literature on skin sodium and disease outcomes and found that skin sodium concentration is increased in patients with cardiometabolic conditions including hypertension, diabetes and end-stage renal disease; autoimmune conditions including multiple sclerosis and systemic sclerosis; and dermatological conditions including atopic dermatitis, psoriasis and lipoedema. Several patient characteristics are associated with increased skin sodium concentration including older age and male sex. Animal evidence suggests that increased salt intake results in higher skin sodium levels; however, there are conflicting results from small trials in humans. Additionally, limited data suggest that pharmaceuticals such as diuretics and sodium-glucose co-transporter-2 inhibitors approved for diabetes, as well as haemodialysis may reduce skin sodium levels. In summary, emerging research supports an important role for skin sodium in physiological processes related to osmoregulation and immunity. With the advent of new noninvasive magnetic resonance imaging measurement techniques and continued research on skin sodium, it may emerge as a marker of immune-mediated disease activity or a potential therapeutic target.
Collapse
Affiliation(s)
- Aheli Chattopadhyay
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Janell Tully
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Judy Shan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Sidra Sheikh
- Kaiser Permanente, Department of Physical Medicine & Rehabilitation, Oakland, CA, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Theodora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Costello HM, Krilis G, Grenier C, Severs D, Czopek A, Ivy JR, Nixon M, Holmes MC, Livingstone DEW, Hoorn EJ, Dhaun N, Bailey MA. High salt intake activates the hypothalamic-pituitary-adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice. Cardiovasc Res 2023; 119:1740-1750. [PMID: 36368681 PMCID: PMC10325699 DOI: 10.1093/cvr/cvac160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11β-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.
Collapse
Affiliation(s)
- Hannah M Costello
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Georgios Krilis
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Celine Grenier
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Alicja Czopek
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Jessica R Ivy
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Mark Nixon
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Megan C Holmes
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Dawn E W Livingstone
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Neeraj Dhaun
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Matthew A Bailey
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
12
|
Gregg NM, Pal Attia T, Nasseri M, Joseph B, Karoly P, Cui J, Stirling RE, Viana PF, Richner TJ, Nurse ES, Schulze-Bonhage A, Cook MJ, Worrell GA, Richardson MP, Freestone DR, Brinkmann BH. Seizure occurrence is linked to multiday cycles in diverse physiological signals. Epilepsia 2023; 64:1627-1639. [PMID: 37060170 PMCID: PMC10733995 DOI: 10.1111/epi.17607] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.
Collapse
Affiliation(s)
- Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Tal Pal Attia
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Mona Nasseri
- School of Engineering, University of North Florida, Florida, Jacksonville, USA
| | - Boney Joseph
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Philippa Karoly
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Victoria, Parkville, Australia
| | - Jie Cui
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Rachel E Stirling
- Seer Medical, Victoria, Melbourne, Australia
- Department of Biomedical Engineering, University of Melbourne, Victoria, Melbourne, Australia
| | - Pedro F Viana
- School of Neuroscience, King's College London, London, UK
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Thomas J Richner
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Ewan S Nurse
- Seer Medical, Victoria, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Victoria, Fitzroy, Australia
| | | | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Victoria, Fitzroy, Australia
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | | | | | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| |
Collapse
|
13
|
Ito Y, Sun T, Tanaka H, Yamaguchi M, Kinashi H, Sakata F, Kunoki S, Sakai Y, Ishimoto T. Tissue Sodium Accumulation Induces Organ Inflammation and Injury in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24098329. [PMID: 37176037 PMCID: PMC10179540 DOI: 10.3390/ijms24098329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
High salt intake is a primary cause of over-hydration in chronic kidney disease (CKD) patients. Inflammatory markers are predictors of CKD mortality; however, the pathogenesis of inflammation remains unclear. Sodium storage in tissues has recently emerged as an issue of concern. The binding of sodium to tissue glycosaminoglycans and its subsequent release regulates local tonicity. Many cell types express tonicity-responsive enhancer-binding protein (TonEBP), which is activated in a tonicity-dependent or tonicity-independent manner. Macrophage infiltration was observed in the heart, peritoneal wall, and para-aortic tissues in salt-loading subtotal nephrectomized mice, whereas macrophages were not prominent in tap water-loaded subtotal nephrectomized mice. TonEBP was increased in the heart and peritoneal wall, leading to the upregulation of inflammatory mediators associated with cardiac fibrosis and peritoneal membrane dysfunction, respectively. Reducing salt loading by a diuretic treatment or changing to tap water attenuated macrophage infiltration, TonEBP expression, and inflammatory marker expression. The role of TonEBP may be crucial during the cardiac fibrosis and peritoneal deterioration processes induced by sodium overload. Anti-interleukin-6 therapy improved cardiac inflammation and fibrosis and peritoneal membrane dysfunction. Further studies are necessary to establish a strategy to regulate organ dysfunction induced by TonEBP activation in CKD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroya Tanaka
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Fumiko Sakata
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Japan
| | - Shunnosuke Kunoki
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yukinao Sakai
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
14
|
Campbell NR, Whelton PK, Orias M, Cobb LL, Jones ES, Garg R, Willliams B, Khan N, Chia YC, Jafar TH, Ide N. It is strongly recommended to not conduct, fund, or publish research studies that use spot urine samples with estimating equations to assess individuals' sodium (salt) intake in association with health outcomes: a policy statement of the World Hypertension League, International Society of Hypertension and Resolve to Save Lives. J Hypertens 2023; 41:683-686. [PMID: 36723484 PMCID: PMC10090307 DOI: 10.1097/hjh.0000000000003385] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 02/02/2023]
Abstract
Spot urine samples with estimating equations have been used to assess individuals' sodium (salt) intake in association with health outcomes. There is large random and systematic error in estimating sodium intake using this method and spurious health outcome associations. Substantial controversy has resulted from false claims the method is valid. Hence, the World Hypertension League, International Society of Hypertension and Resolve to Save Lives, supported by 21 other health organizations, have issued this policy statement that strongly recommends that research using spot urine samples with estimating equations to assess individuals' sodium (salt) intake in association with health outcomes should not be conducted, funded or published. Literature reviews on the health impacts of reducing dietary sodium that include studies that have used spot and short duration timed urine samples with estimating equations need to explicitly acknowledge that the method is not recommended to be used and is associated with spurious health outcome associations.
Collapse
Affiliation(s)
| | - Paul K. Whelton
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | | | | - Erika S.W. Jones
- Division of Nephrology and Hypertension, Department of Medicine, Groote Schuur Hospital, University of Cape Town, South Africa
| | - Renu Garg
- Resolve to Save Lives, New York, New York, USA
| | - Bryan Willliams
- University College London, NIHR University College London, Hospitals Biomedical Research Centre, London, UK
| | - Nadia Khan
- Center for Health Evaluation and Outcomes Sciences, University of British Columbia, Vancouver, Canada
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Tazeen H. Jafar
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nicole Ide
- Resolve to Save Lives, New York, New York, USA
| |
Collapse
|
15
|
Müller DN, Geisberger S, Kleinewietfeld M, Jantsch J. Salt sensitivity includes effects on immune cell signalling and metabolism. Nat Rev Immunol 2023:10.1038/s41577-023-00881-x. [PMID: 37095255 DOI: 10.1038/s41577-023-00881-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Affiliation(s)
- Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.
| | - Sabrina Geisberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium.
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University Multiple Sclerosis Center (UMSC), Hasselt University, Diepenbeek, Belgium.
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany.
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Olde Engberink RHG, van Oosten PJ, Weber T, Tabury K, Baatout S, Siew K, Walsh SB, Valenti G, Chouker A, Boutouyrie P, Heer M, Jordan J, Goswami N. The kidney, volume homeostasis and osmoregulation in space: current perspective and knowledge gaps. NPJ Microgravity 2023; 9:29. [PMID: 37005397 PMCID: PMC10067832 DOI: 10.1038/s41526-023-00268-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Although we have sent humans into space for more than 50 years crucial questions regarding kidney physiology, volume regulation and osmoregulation remain unanswered. The complex interactions between the renin-angiotensin-aldosterone system, the sympathetic nervous system, osmoregulatory responses, glomerular function, tubular function, and environmental factors such as sodium and water intake, motion sickness and ambient temperature make it difficult to establish the exact effect of microgravity and the subsequent fluid shifts and muscle mass loss on these parameters. Unfortunately, not all responses to actual microgravity can be reproduced with head-down tilt bed rest studies, which complicates research on Earth. Better understanding of the effects of microgravity on kidney function, volume regulation and osmoregulation are needed with the advent of long-term deep space missions and planetary surface explorations during which orthostatic intolerance complaints or kidney stone formation can be life-threatening for astronauts. Galactic cosmic radiation may be a new threat to kidney function. In this review, we summarise and highlight the current understandings of the effects of microgravity on kidney function, volume regulation and osmoregulation and discuss knowledge gaps that future studies should address.
Collapse
Affiliation(s)
- Rik H G Olde Engberink
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| | - Paula J van Oosten
- Amsterdam UMC location University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre (EAC), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Keith Siew
- London Tubular Centre, UCL Department of Renal Medicine, University College London, London, UK
| | - Stephen B Walsh
- London Tubular Centre, UCL Department of Renal Medicine, University College London, London, UK
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Alexander Chouker
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Pierre Boutouyrie
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Service de Pharmacologie, DMU CARTE, AP-HP, Hôpital Européen Georges Pompidou, FR-75015, Paris, France
| | - Martina Heer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR) and University of Cologne, Cologne, Germany
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Löwi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
17
|
Soleimani M, Barone S, Luo H, Zahedi K. Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt. Int J Mol Sci 2023; 24:4294. [PMID: 36901725 PMCID: PMC10002086 DOI: 10.3390/ijms24054294] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolic syndrome is manifested by visceral obesity, hypertension, glucose intolerance, hyperinsulinism, and dyslipidemia. According to the CDC, metabolic syndrome in the US has increased drastically since the 1960s leading to chronic diseases and rising healthcare costs. Hypertension is a key component of metabolic syndrome and is associated with an increase in morbidity and mortality due to stroke, cardiovascular ailments, and kidney disease. The pathogenesis of hypertension in metabolic syndrome, however, remains poorly understood. Metabolic syndrome results primarily from increased caloric intake and decreased physical activity. Epidemiologic studies show that an enhanced consumption of sugars, in the form of fructose and sucrose, correlates with the amplified prevalence of metabolic syndrome. Diets with a high fat content, in conjunction with elevated fructose and salt intake, accelerate the development of metabolic syndrome. This review article discusses the latest literature in the pathogenesis of hypertension in metabolic syndrome, with a specific emphasis on the role of fructose and its stimulatory effect on salt absorption in the small intestine and kidney tubules.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Sharon Barone
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Henry Luo
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
18
|
Jaques DA, Ponte B, Olivier V, de Seigneux S, Feraille E, Burnier M, Pechère-Bertschi A. Variability of 24-Hour Sodium Urinary Excretion in Young Healthy Males Based on Consecutive Urine Collections: Impact on Categorization of Salt Intake. J Ren Nutr 2023; 33:450-455. [PMID: 36738948 DOI: 10.1053/j.jrn.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Several nonconsecutive 24-h urinary collections are considered the gold standard for estimating dietary salt intake. As those samples are logistically demanding, we aimed to describe the variability of 24-h sodium urinary excretion over consecutive days and report its adequacy with sodium intake. METHODS We enrolled 16 healthy male volunteers in a prospective controlled study. All participants randomly received a low salt diet (LSD) (3 g/day of NaCl), a normal salt diet (NSD) (6 g/day of NaCl), and a high salt diet (HSD) (15 g/day of NaCl) for 7 days in a crossover design without wash-out period. RESULTS On day 6, median sodium urinary excretion was 258 (216-338), 10 (8-18), and 87 (69-121) mmol/day for HSD, LSD, and NSD, respectively (P < .001). When considering days 4-6, sodium urinary excretion was in steady state as models with and without interaction term "diet type X sample day" were not significantly different (P = .163). On day 6, area under the curve (AUC) of receiver operating characteristic for urinary sodium excretion to detect HSD was 1.0 (1.0-1.0) and a cut-point of 175 mmol/day was 100% sensitive and specific to detect HSD. On day 6, receiver operating characteristic AUC to detect LSD was 0.993 (0.978-1.0) and a cut-point of 53 mmol/day was 96.4% sensitive and 100% specific to detect LSD. CONCLUSION A steady state of sodium balance, where sodium intake is proportional to its excretion, is reached within a few days under a constant diet in the real-life setting. Categorization of salt consumption into low (3 g/day), normal (6 g/day), or high (15 g/day) based on a single 24-h urine collection is nearly perfect. Based on these results, repeated nonconsecutive urine collection might prove unnecessary to estimate sodium intake in daily clinical practice provided that diet is rather constant over time.
Collapse
Affiliation(s)
- David A Jaques
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland.
| | - Belén Ponte
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Valérie Olivier
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Eric Feraille
- Division of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Michel Burnier
- Division of Nephrology and Hypertension, Lausanne University Hospitals, Lausanne, Switzerland
| | | |
Collapse
|
19
|
Smeulders N, Cho A, Alshaiban A, Read K, Fagan A, Easty M, Minhas K, Barnacle A, Hayes W, Bockenhauer D. Shockwaves and the Rolling Stones: An Overview of Pediatric Stone Disease. Kidney Int Rep 2023; 8:215-228. [PMID: 36815103 PMCID: PMC9939363 DOI: 10.1016/j.ekir.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Urinary stone disease is a common problem in adults, with an estimated 10% to 20% lifetime risk of developing a stone and an annual incidence of almost 1%. In contrast, in children, even though the incidence appears to be increasing, urinary tract stones are a rare problem, with an estimated incidence of approximately 5 to 36 per 100,000 children. Consequently, typical complications of rare diseases, such as delayed diagnosis, lack of awareness, and specialist knowledge, as well as difficulties accessing specific treatments also affect children with stone disease. Indeed, because stone disease is such a common problem in adults, frequently, it is adult practitioners who will first be asked to manage affected children. Yet, there are unique aspects to pediatric urolithiasis such that treatment practices common in adults cannot necessarily be transferred to children. Here, we review the epidemiology, etiology, presentation, investigation, and management of pediatric stone disease; we highlight those aspects that separate its management from that in adults and make a case for a specialized, multidisciplinary approach to pediatric stone disease.
Collapse
Affiliation(s)
- Naima Smeulders
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Alexander Cho
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Abdulelah Alshaiban
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
- Department of Pediatrics, College of Medicine, King Saud University, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Katharine Read
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Aisling Fagan
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Marina Easty
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Kishore Minhas
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Alex Barnacle
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Wesley Hayes
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Great Ormond Street Hospital National Health Service Foundation Trust, London, UK
- Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
20
|
Martin K, Toussaint ND, Tan SJ, Hewitson TD. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 2023; 46:408-416. [PMID: 36434290 DOI: 10.1038/s41440-022-01096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Kylie Martin
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Effects of pediatric chronic kidney disease and its etiology on tissue sodium concentration: a pilot study. Pediatr Nephrol 2023; 38:499-507. [PMID: 35655040 DOI: 10.1007/s00467-022-05600-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sodium-23 magnetic resonance imaging (23Na MRI) allows non-invasive assessment of tissue sodium concentration ([Na+]). Age and chronic kidney disease (CKD) are associated with increased tissue [Na+] in adults, but limited information is available pertaining to children and adolescents. We hypothesized that pediatric CKD is associated with altered tissue [Na+] compared to healthy controls. METHODS This was a case-control exploratory study on healthy children and adults and pediatric CKD patients. Study participants underwent an investigational visit, blood/urine biochemistry, and leg 23Na MRI for tissue [Na+] quantification (whole leg, skin, soleus muscle). CKD was stratified by etiology and patients' tissue [Na+] was compared against healthy controls by computing individual Z-scores. An absolute Z-score > 1.96 was deemed to deviate significantly from the mean of healthy controls. Pearson correlation was used to compute the associations between tissue [Na+] and kidney function. RESULTS A total of 36 pediatric participants (17 healthy, 19 CKD) and 19 healthy adults completed the study. Healthy adults had significantly higher tissue [Na+] compared with pediatric groups; conversely, no significant differences were found between healthy children/adolescents and CKD patients. Four patients with glomerular disease and one kidney transplant recipient due to atypical hemolytic-uremic syndrome had elevated whole-leg [Na+] Z-scores. Reduced whole-leg [Na+] Z-scores were found in two patients with tubular disorders (Fanconi syndrome, proximal-distal renal tubular acidosis). All tissue [Na+] measures were significantly associated with proteinuria and hypoalbuminemia. CONCLUSIONS Depending on etiology, pediatric CKD was associated with either increased (glomerular disease) or reduced (tubular disorders) tissue [Na+] compared with healthy controls. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
22
|
Etiological Diagnosis and Personalized Therapy for Hypertension: A Hypothesis of the REASOH Classification. J Pers Med 2023; 13:jpm13020261. [PMID: 36836495 PMCID: PMC9960440 DOI: 10.3390/jpm13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With the epidemic of risk factors such as unhealthy lifestyle, obesity and mental stress, the prevalence of hypertension continues to rise across the world. Although standardized treatment protocols simplify the selection of antihypertensive drugs and ensure therapeutic efficacy, the pathophysiological state of some patients remains, which may also lead to the development of other cardiovascular diseases. Thus, there is an urgent need to consider the pathogenesis and selection of antihypertensive drug for different type of hypertensive patients in the era of precision medicine. We proposed the REASOH classification, based on the etiology of hypertension, including renin-dependent hypertension, elderly-arteriosclerosis-based hypertension, sympathetic-active hypertension, secondary hypertension, salt-sensitive hypertension and hyperhomocysteinemia hypertension. The aim of this paper is to propose a hypothesis and provide a brief reference for the personalized treatment of hypertensive patients.
Collapse
|
23
|
Zhou TL, Schütten MTJ, Kroon AA, Henry RMA, Houben AJHM, van der Kallen CJH, van Greevenbroek MMJ, de Leeuw PW, Stehouwer CDA. Urinary Sodium Excretion and Salt Intake Are Not Associated With Blood Pressure Variability in a White General Population. J Am Heart Assoc 2022; 12:e026578. [PMID: 36565181 PMCID: PMC9973596 DOI: 10.1161/jaha.122.026578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Salt restriction may lower blood pressure variability (BPV), but previous studies have shown inconsistent results. Therefore, we investigated in an observational study and intervention trial whether urinary sodium excretion and salt intake are associated with 24-hour BPV. Methods and Results We used data from the cross-sectional population-based Maastricht Study (n=2652; 60±8 years; 52% men) and from a randomized crossover trial (n=40; 49±11 years; 33% men). In the observational study, we measured 24-hour urinary sodium excretion and 24-hour BPV and performed linear regression adjusted for age, sex, mean blood pressure, lifestyle, and cardiovascular risk factors. In the intervention study, participants adhered to a 7-day low- and high-salt diet (50 and 250 mmol NaCl/24 h) with a washout period of 14 days, 24-hour BPV was measured during each diet. We used linear mixed models adjusted for order of diet, mean blood pressure, and body mass index. In the observational study, 24-hour urinary sodium excretion was not associated with 24-hour systolic or diastolic BPV (β, per 1 g/24 h urinary sodium excretion: 0.05 mm Hg [95% CI, -0.02 to 0.11] and 0.04 mm Hg [95% CI, -0.01 to 0.09], respectively). In the intervention trial, mean difference in 24-hour systolic and diastolic BPV between the low- and high-salt diet was not statistically significantly different (0.62 mm Hg [95% CI, -0.10 to 1.35] and 0.04 mm Hg [95% CI, -0.54 to 0.63], respectively). Conclusions Urinary sodium excretion and salt intake are not independently associated with 24-hour BPV. These findings suggest that salt restriction is not an effective strategy to lower BPV in the White general population. Registration URL: https://clinicaltrials.gov/ct2/show/NCT02068781.
Collapse
Affiliation(s)
- Tan Lai Zhou
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Monica T. J. Schütten
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Abraham A. Kroon
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Ronald M. A. Henry
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands,Heart and Vascular Center Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Alfonsius J. H. M. Houben
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Carla J. H. van der Kallen
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Marleen M. J. van Greevenbroek
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Peter W. de Leeuw
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Coen D. A. Stehouwer
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands,Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
24
|
Rossitto G, Delles C. Mechanisms of sodium-mediated injury in cardiovascular disease: old play, new scripts. FEBS J 2022; 289:7260-7273. [PMID: 34355504 DOI: 10.1111/febs.16155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
There is a strong association between salt intake and cardiovascular diseases, particularly hypertension, on the population level. The mechanisms that explain this association remain incompletely understood and appear to extend beyond blood pressure. In this review, we describe some of the 'novel' roles of Na+ in cardiovascular health and disease: energetic implications of sodium handling in the kidneys; local accumulation in tissue; fluid dynamics; and the role of the microvasculature, with particular focus on the lymphatic system. We describe the interplay between these factors that involves body composition, metabolic signatures, inflammation and composition of the extracellular and intracellular milieus.
Collapse
Affiliation(s)
- Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK.,Department of Medicine (DIMED), University of Padua, Italy
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
25
|
Masenga SK, Pilic L, Hamooya BM, Nzala S, Heimburger DC, Mutale W, Koethe JR, Kirabo A, Munsaka SM, Elijovich F. Immediate pressor response to oral salt and its assessment in the clinic: a time series clinical trial. Clin Hypertens 2022; 28:25. [PMID: 36104796 PMCID: PMC9476589 DOI: 10.1186/s40885-022-00209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND High blood pressure (BP) is associated with high-salt consumption especially in sub-Saharan Africa. Although the pressor effect of salt is viewed as a chronic effect, some studies suggest that a salty meal may increase BP immediately in some individuals, and that this effect may cause endothelial dysfunction. Therefore, the aim of our research was to study the immediate pressor response to oral salt (IPROS) and its determinants, with the expectation that a simple methodology may be devised to diagnose it in the clinic or in low-resource environments. METHODS We conducted a time series trial at Livingstone Central Hospital. We present data in 127 normotensive participants who ingested 2 g of sodium chloride; their BP was monitored for 120 minutes in intervals of 10 minutes. Sociodemographic and clinical data were collected. Descriptive and inferential statistics were used for analyses of data. RESULTS Median age was 30 years (interquartile range, 22-46 years) and 52% were female patients. An increase of ≥10 mmHg in mean arterial pressure (MAP), considered a clinically significant IPROS, was present in 62% of participants. Systolic BP 30 minutes after the salt load was a significant predictor of IPROS, avoiding the need to calculate MAP in the clinic setting. CONCLUSIONS We confirm the presence of an IPROS in a high proportion (62%) of otherwise normotensive participants. The average time course for this response was 30 minutes and its duration was sustained for the 120-minutes period of study in most of the participants. Prediction of IPROS by ∆SBP (change in systolic blood pressure) at 30 minutes allows for easy assessment of possible responder status in the clinic. Our data indicate that the IPROS to oral salt-loads in the range currently consumed by the Western world and African populations in single meals may increase the 24-hour BP load, which is a risk factor for hypertension and target organ damage. The relevance of our findings indicates the need to include dietary sodium assessment in the diagnosis, prevention, and management of high BP.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- grid.442660.20000 0004 0449 0406HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Akapelwa street, LUTH Premises, Livingstone, Zambia ,grid.12984.360000 0000 8914 5257Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Leta Pilic
- grid.417907.c0000 0004 5903 394XFaculty of Sport, Health and Applied Science, St. Mary’s University, Twickenham, London, UK
| | - Benson M. Hamooya
- grid.442660.20000 0004 0449 0406HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Akapelwa street, LUTH Premises, Livingstone, Zambia ,grid.12984.360000 0000 8914 5257School of Public Health and School of Medicine, University of Zambia, Lusaka, Zambia
| | - Selestine Nzala
- grid.12984.360000 0000 8914 5257School of Public Health and School of Medicine, University of Zambia, Lusaka, Zambia
| | - Douglas C. Heimburger
- grid.12984.360000 0000 8914 5257School of Public Health and School of Medicine, University of Zambia, Lusaka, Zambia ,grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt Institute for Global Health and Vanderbilt University Medical Center, Nashville, TN USA
| | - Wilbroad Mutale
- grid.12984.360000 0000 8914 5257School of Public Health and School of Medicine, University of Zambia, Lusaka, Zambia
| | - John R. Koethe
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt Institute for Global Health and Vanderbilt University Medical Center, Nashville, TN USA
| | - Annet Kirabo
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt Institute for Global Health and Vanderbilt University Medical Center, Nashville, TN USA
| | - Sody M. Munsaka
- grid.12984.360000 0000 8914 5257Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Fernando Elijovich
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt Institute for Global Health and Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
26
|
Minutolo R, De Nicola L, Mallamaci F, Zoccali C. Thiazide diuretics are back in CKD: the case of chlorthalidone. Clin Kidney J 2022; 16:41-51. [PMID: 36726437 PMCID: PMC9871852 DOI: 10.1093/ckj/sfac198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium and volume excess is the fundamental risk factor underlying hypertension in chronic kidney disease (CKD) patients, who represent the prototypical population characterized by salt-sensitive hypertension. Low salt diets and diuretics constitute the centrepiece for blood pressure control in CKD. In patients with CKD stage 4, loop diuretics are generally preferred to thiazides. Furthermore, thiazide diuretics have long been held as being of limited efficacy in this population. In this review, by systematically appraising published randomized trials of thiazides in CKD, we show that this class of drugs may be useful even among people with advanced CKD. Thiazides cause a negative sodium balance and reduce body fluids by 1-2 l within the first 2-4 weeks and these effects go along with improvement in hypertension control. The recent CLICK trial has documented the antihypertensive efficacy of chlorthalidone, a long-acting thiazide-like diuretic, in stage 4 CKD patients with poorly controlled hypertension. Overall, chlorthalidone use could be considered in patients with treatment-resistant hypertension when spironolactone cannot be administered or must be withdrawn due to side effects. Hyponatremia, hypokalaemia, volume depletion and acute kidney injury are side effects that demand a vigilant attitude by physicians prescribing these drugs. Well-powered randomized trials assessing hard outcomes are still necessary to more confidently recommend the use of these drugs in advanced CKD.
Collapse
Affiliation(s)
| | - Luca De Nicola
- Division of Nephrology, Department of Scienze Mediche e Chirurgiche Avanzate, University of Campania “Luigi Vanvitelli”Naples, Italy
| | - Francesca Mallamaci
- Unità Operativa di Nefrologia, Dialisi e Trapianto Renale, Grande Ospedale Metropolitano di Reggio Calabria, Rome, Italy,Institute of Clinical Physiology-Reggio Calabria Unit, National Research Council of Italy, Rome, Italy
| | | |
Collapse
|
27
|
Mahoney P, McFarlane G, Loch C, White S, Floyd B, Dunn EC, Pitfield R, Nava A, Guatelli-Steinberg D. Dental biorhythm is associated with adolescent weight gain. COMMUNICATIONS MEDICINE 2022; 2:99. [PMID: 36016726 PMCID: PMC9395425 DOI: 10.1038/s43856-022-00164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Evidence of a long-period biological rhythm present in mammalian hard tissue relates to species average body mass. Studies have just begun to investigate the role of this biorhythm in human physiology. Methods The biorhythm is calculated from naturally exfoliated primary molars for 61 adolescents. We determine if the timing relates to longitudinal measures of their weight, height, lower leg length and body mass collected over 14 months between September 2019 to October 2020. We use univariate and multivariate statistical analyses to isolate and identify relationships with the biorhythm. Results Participants with a faster biorhythm typically weigh less each month and gain significantly less weight and mass over 14-months, relative to those with a slower biorhythm. The biorhythm relates to sex differences in weight gain. Conclusions We identify a previously unknown factor that associates with the rapid change in body size that accompanies human adolescence. Our findings provide a basis from which to explore novel relationships between the biorhythm and weight-related health risks.
Collapse
Affiliation(s)
- Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Sophie White
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Bruce Floyd
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Erin C. Dunn
- Department of Psychiatry, Harvard Medical School and the Massachusetts General Hospital, Boston, MA USA
| | - Rosie Pitfield
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alessia Nava
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Debbie Guatelli-Steinberg
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Department of Anthropology, The Ohio State University, Columbus, OH USA
| |
Collapse
|
28
|
Ma H, Xue Q, Wang X, Li X, Franco OH, Li Y, Heianza Y, Manson JE, Qi L. Adding salt to foods and hazard of premature mortality. Eur Heart J 2022; 43:2878-2888. [PMID: 35808995 PMCID: PMC9890626 DOI: 10.1093/eurheartj/ehac208] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS We analyzed whether the frequency of adding salt to foods was associated with the hazard of premature mortality and life expectancy. METHODS AND RESULTS A total of 501 379 participants from UK biobank who completed the questionnaire on the frequency of adding salt to foods at baseline. The information on the frequency of adding salt to foods (do not include salt used in cooking) was collected through a touch-screen questionnaire at baseline. We found graded relationships between higher frequency of adding salt to foods and higher concentrations of spot urinary sodium or estimated 24-h sodium excretion. During a median of 9.0 years of follow-up, 18 474 premature deaths were documented. The multivariable hazard ratios [95% confidence interval (CI)] of all-cause premature mortality across the increasing frequency of adding salt to foods were 1.00 (reference), 1.02 (0.99, 1.06), 1.07 (1.02, 1.11), and 1.28 (1.20, 1.35) (P-trend < 0.001). We found that intakes of fruits and vegetables significantly modified the associations between the frequency of adding salt to foods and all-cause premature mortality, which were more pronounced in participants with low intakes than those with high intakes of these foods (P-interaction = 0.02). In addition, compared with the never/rarely group, always adding salt to foods was related to 1.50 (95% CI, 0.72-2.30) and 2.28 (95% CI, 1.66-2.90) years lower life expectancy at the age of 50 years in women and men, respectively. CONCLUSIONS Our findings indicate that higher frequency of adding salt to foods is associated with a higher hazard of all-cause premature mortality and lower life expectancy.
Collapse
Affiliation(s)
- Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Yanping Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1724, New Orleans, LA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Wheless JW, Friedman D, Krauss GL, Rao VR, Sperling MR, Carrazana E, Rabinowicz AL. Future Opportunities for Research in Rescue Treatments. Epilepsia 2022; 63 Suppl 1:S55-S68. [PMID: 35822912 PMCID: PMC9541657 DOI: 10.1111/epi.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Clinical studies of rescue medications for seizure clusters are limited and are designed to satisfy regulatory requirements, which may not fully consider the needs of the diverse patient population that experiences seizure clusters or utilize rescue medication. The purpose of this narrative review is to examine the factors that contribute to, or may influence the quality of, seizure cluster research with a goal of improving clinical practice. We address five areas of unmet needs and provide advice for how they could enhance future trials of seizure cluster treatments. The topics addressed in this article are: (1) unaddressed end points to pursue in future studies, (2) roles for devices to enhance rescue medication clinical development programs, (3) tools to study seizure cluster prediction and prevention, (4) the value of other designs for seizure cluster studies, and (5) unique challenges of future trial paradigms for seizure clusters. By focusing on novel end points and technologies with value to patients, caregivers, and clinicians, data obtained from future studies can benefit the diverse patient population that experiences seizure clusters, providing more effective, appropriate care as well as alleviating demands on health care resources.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikram R Rao
- University of California, San Francisco, California, USA
| | | | - Enrique Carrazana
- Neurelis, San Diego, California, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
30
|
McMullan CJ, McHill AW, Hull JT, Wang W, Forman JP, Klerman EB. Sleep Restriction and Recurrent Circadian Disruption Differentially Affects Blood Pressure, Sodium Retention, and Aldosterone Secretion. Front Physiol 2022; 13:914497. [PMID: 35874530 PMCID: PMC9305384 DOI: 10.3389/fphys.2022.914497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Prolonged exposure to chronic sleep restriction (CSR) and shiftwork are both associated with incident hypertension and cardiovascular disease. We hypothesized that the combination of CSR and shiftwork's rotating sleep schedule (causing recurrent circadian disruption, RCD) would increase blood pressure, renal sodium retention, potassium excretion, and aldosterone excretion. Seventeen healthy participants were studied during a 32-day inpatient protocol that included 20-h "days" with associated scheduled sleep/wake and eating behaviors. Participants were randomly assigned to restricted (1:3.3 sleep:wake, CSR group) or standard (1:2 sleep:wake, Control group) ratios of sleep:wake duration. Systolic blood pressure during circadian misalignment was ∼6% higher in CSR conditions. Renal sodium and potassium excretion showed robust circadian patterns; potassium excretion also displayed some influence of the scheduled behaviors (sleep/wake, fasting during sleep so made parallel fasting/feeding). In contrast, the timing of renal aldosterone excretion was affected predominately by scheduled behaviors. Per 20-h "day," total sodium excretion increased, and total potassium excretion decreased during RCD without a change in total aldosterone excretion. Lastly, a reduced total renal sodium excretion was found despite constant oral sodium consumption and total aldosterone excretion, suggesting a positive total body sodium balance independent of aldosterone excretion. These findings may provide mechanistic insight into the observed adverse cardiovascular and renal effects of shiftwork.
Collapse
Affiliation(s)
- Ciaran J. McMullan
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Andrew W. McHill
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States,Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Andrew W. McHill,
| | - Joseph T. Hull
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - John P. Forman
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
31
|
Canaud B, Kooman J, Maierhofer A, Raimann J, Titze J, Kotanko P. Sodium First Approach, to Reset Our Mind for Improving Management of Sodium, Water, Volume and Pressure in Hemodialysis Patients, and to Reduce Cardiovascular Burden and Improve Outcomes. FRONTIERS IN NEPHROLOGY 2022; 2:935388. [PMID: 37675006 PMCID: PMC10479686 DOI: 10.3389/fneph.2022.935388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 09/08/2023]
Abstract
New physiologic findings related to sodium homeostasis and pathophysiologic associations require a new vision for sodium, fluid and blood pressure management in dialysis-dependent chronic kidney disease patients. The traditional dry weight probing approach that has prevailed for many years must be reviewed in light of these findings and enriched by availability of new tools for monitoring and handling sodium and water imbalances. A comprehensive and integrated approach is needed to improve further cardiac health in hemodialysis (HD) patients. Adequate management of sodium, water, volume and hemodynamic control of HD patients relies on a stepwise approach: the first entails assessment and monitoring of fluid status and relies on clinical judgement supported by specific tools that are online embedded in the HD machine or devices used offline; the second consists of acting on correcting fluid imbalance mainly through dialysis prescription (treatment time, active tools embedded on HD machine) but also on guidance related to diet and thirst management; the third consist of fine tuning treatment prescription to patient responses and tolerance with the support of innovative tools such as artificial intelligence and remote pervasive health trackers. It is time to come back to sodium and water imbalance as the root cause of the problem and not to act primarily on their consequences (fluid overload, hypertension) or organ damage (heart; atherosclerosis, brain). We know the problem and have the tools to assess and manage in a more precise way sodium and fluid in HD patients. We strongly call for a sodium first approach to reduce disease burden and improve cardiac health in dialysis-dependent chronic kidney disease patients.
Collapse
Affiliation(s)
- Bernard Canaud
- School of Medicine, Montpellier University, Montpellier, France
- Global Medical Office, Freseenius Medical Care (FMC)-France, Fresnes, France
| | - Jeroen Kooman
- Maastricht University Maastricht Medical Center (UMC), Maastricht University, Maastricht, Netherlands
| | - Andreas Maierhofer
- Global Research Development, Fresenius Medical Care (FMC) Deutschland GmbH, Bad Homburg, Germany
| | - Jochen Raimann
- Research Division, Renal Research Institute, New York, NY, United States
| | - Jens Titze
- Cardiovascular and Metabolic Disease Programme, Duke-National University Singapore (NUS) Medical School, Singapore, Singapore
| | - Peter Kotanko
- Research Division, Renal Research Institute, New York, NY, United States
- Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Inverse Salt Sensitivity of Blood Pressure: Mechanisms and Potential Relevance for Prevention of Cardiovascular Disease. Curr Hypertens Rep 2022; 24:361-374. [PMID: 35708819 DOI: 10.1007/s11906-022-01201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To review the etiology of inverse salt sensitivity of blood pressure (BP). RECENT FINDINGS Both high and low sodium (Na+) intake can be associated with increased BP and cardiovascular morbidity and mortality. However, little is known regarding the mechanisms involved in the increase in BP in response to low Na+ intake, a condition termed inverse salt sensitivity of BP, which affects approximately 15% of the adult population. The renal proximal tubule is important in regulating up to 70% of renal Na+ transport. The renin-angiotensin and renal dopaminergic systems play both synergistic and opposing roles in the regulation of Na+ transport in this nephron segment. Clinical studies have demonstrated that individuals express a "personal salt index" (PSI) that marks whether they are salt-resistant, salt-sensitive, or inverse salt-sensitive. Inverse salt sensitivity results in part from genetic polymorphisms in various Na+ regulatory genes leading to a decrease in natriuretic activity and an increase in renal tubular Na+ reabsorption leading to an increase in BP. This article reviews the potential mechanisms of a new pathophysiologic entity, inverse salt sensitivity of BP, which affects approximately 15% of the general adult population.
Collapse
|
33
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Thowsen IM, Karlsen TV, Nikpey E, Haslene‐Hox H, Skogstrand T, Randolph GJ, Zinselmeyer BH, Tenstad O, Wiig H. Na + is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats. J Physiol 2022; 600:2293-2309. [PMID: 35377950 PMCID: PMC9324226 DOI: 10.1113/jp282715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.
Collapse
Affiliation(s)
| | | | - Elham Nikpey
- Department of BiomedicineUniversity of BergenBergenNorway,Department of MedicineHaukeland University HospitalBergenNorway
| | - Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | | | - Gwendalyn J. Randolph
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Bernd H. Zinselmeyer
- Department of Pathology & ImmunologyDivision of ImmunobiologyWashington UniversitySt LouisMOUSA
| | - Olav Tenstad
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Helge Wiig
- Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
35
|
Abstract
Purpose of Review The regulation of blood pressure is conventionally conceptualised into the product of “circulating blood volume” and “vasoconstriction components”. Over the last few years, however, demonstration of tissue sodium storage challenged this dichotomous view. Recent Findings We review the available evidence pertaining to this phenomenon and the early association made with blood pressure; we discuss open questions regarding its originally proposed hypertonic nature, recently challenged by the suggestion of a systemic, isotonic, water paralleled accumulation that mirrors absolute or relative extracellular volume expansion; we present the established and speculate on the putative implications of this extravascular sodium excess, in either volume-associated or -independent form, on blood pressure regulation; finally, we highlight the prevalence of high tissue sodium in cardiovascular, metabolic and inflammatory conditions other than hypertension. Summary We conclude on approaches to reduce sodium excess and on the potential of emerging imaging technologies in hypertension and other conditions.
Collapse
|
36
|
Paradis F, Lamarche B, Robitaille J, Couillard C, Lafrenière J, Tremblay AJ, Corneau L, Lemieux S. Validation of an automated self-administered 24-hour dietary recall web application against urinary recovery biomarkers in a sample of French-speaking adults of the province of Québec, Canada. Appl Physiol Nutr Metab 2022; 47:173-182. [PMID: 35057638 DOI: 10.1139/apnm-2021-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to validate an automated self-administered 24-hour dietary recall web application (R24W) against recovery biomarkers for sodium, potassium and protein intakes and to identify individual characteristics associated with misreporting in a sample of 61 men and 69 women aged 20-65 years from Québec City, Canada. Each participant completed 3 dietary recalls using the R24W, provided two 24-hour urinary samples and completed questionnaires to document psychosocial factors. Mean reported intakes were 2.2%, 2.1% and 5.0% lower than the urinary reference values, respectively, for sodium, potassium and proteins (significant difference for proteins only (p = 0.04)). Deattenuated correlations between the self-reported intake and biomarkers were significant for sodium (r = 0.48), potassium (r = 0.56) and proteins (r = 0.68). Cross-classification showed that 39.7% (sodium), 42.9% (potassium) and 42.1% (proteins) of participants were ranked into the same quartile with both methods and only 4.8% (sodium), 3.2% (potassium) and 0.8% (proteins) were ranked in opposite quartiles. Lower body esteem related to appearance was associated with sodium underreporting in women (r = 0.33, p = 0.006). No other individual factor was found to be associated with misreporting. These results suggest that the R24W has a good validity for the assessment of sodium, potassium and protein intakes in a sample of French-speaking adults. Novelty: The validity of an automated self-administered 24-hour dietary recall web application named the R24W was tested using urinary biomarkers. According to 7 criteria, the R24W was found to have a good validity to assess self-reported intakes of sodium, potassium and proteins.
Collapse
Affiliation(s)
- Frédérique Paradis
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Benoît Lamarche
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Julie Robitaille
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Charles Couillard
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jacynthe Lafrenière
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - André J Tremblay
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Louise Corneau
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Simone Lemieux
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
37
|
Increased Salt Intake Decreases Diet-Induced Thermogenesis in Healthy Volunteers: A Randomized Placebo-Controlled Study. Nutrients 2022; 14:nu14020253. [PMID: 35057434 PMCID: PMC8779306 DOI: 10.3390/nu14020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
High salt intake ranks among the most important risk factors for noncommunicable diseases. Western diets, which are typically high in salt, are associated with a high prevalence of obesity. High salt is thought to be a potential risk factor for obesity independent of energy intake, although the underlying mechanisms are insufficiently understood. A high salt diet could influence energy expenditure (EE), specifically diet-induced thermogenesis (DIT), which accounts for about 10% of total EE. We aimed to investigate the influence of high salt on DIT. In a randomized, double-blind, placebo-controlled, parallel-group study, 40 healthy subjects received either 6 g/d salt (NaCl) or placebo in capsules over 2 weeks. Before and after the intervention, resting EE, DIT, body composition, food intake, 24 h urine analysis, and blood pressure were obtained. EE was measured by indirect calorimetry after a 12 h overnight fast and a standardized 440 kcal meal. Thirty-eight subjects completed the study. Salt intake from foods was 6 g/d in both groups, resulting in a total salt intake of 12 g/d in the salt group and 6 g/d in the placebo group. Urine sodium increased by 2.29 g/d (p < 0.0001) in the salt group, indicating overall compliance. The change in DIT differed significantly between groups (placebo vs. salt, p = 0.023). DIT decreased by 1.3% in the salt group (p = 0.048), but increased by 0.6% in the placebo group (NS). Substrate oxidation indicated by respiratory exchange ratio, body composition, resting blood pressure, fluid intake, hydration, and urine volume did not change significantly in either group. A moderate short-term increase in salt intake decreased DIT after a standardized meal. This effect could at least partially contribute to the observed weight gain in populations consuming a Western diet high in salt.
Collapse
|
38
|
Schrauben SJ, Inamdar A, Yule C, Kwiecien S, Krekel C, Collins C, Anderson C, Bailey-Davis L, Chang AR. Effects of Dietary App-Supported Tele-Counseling on Sodium Intake, Diet Quality, and Blood Pressure in Patients With Diabetes and Kidney Disease. J Ren Nutr 2022; 32:39-50. [PMID: 34649784 PMCID: PMC8727497 DOI: 10.1053/j.jrn.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The aim of this study is to examine the effect of a telehealth intervention that used a dietary app, educational website, and weekly dietitian tele-counseling on sodium intake, diet quality, blood pressure, and albuminuria among individuals with diabetes and early-stage chronic kidney disease. DESIGN AND METHODS We examined the effects of a dietary app-supported tele-counseling intervention in a single center, single arm study of 44 participants with type 2 diabetes and stage 1-3a chronic kidney disease. Participants recorded and shared dietary data via MyFitnessPal with registered dietitians, who used motivational interviewing to provide telephone counseling weekly for 8 weeks. After the 8-week intensive intervention, participants were followed at 6 and 12 months. Outcomes included 24-hour urine sodium (2 collections per timepoint), Healthy Eating Index 2015 score (three 24-hour dietary recalls per timepoint), 24-hour systolic blood pressure (SBP) and diastolic blood pressure (DBP), and 24-hour urine albumin excretion. RESULTS Out of 44 consented participants (mean age 60.3 ± 11.9 years, 43% female, 89% white, median estimated glomerular filtration rate was 78.5 mL/min/1.73 m2, median urine albumin excretion 52.9 mg/day, 84% hypertension), 32 (73%) completed 8-week follow-up, 27 (61%) completed 6-month follow-up, and 25 (57%) completed 12-month follow-up. Among participants who completed 12-month follow-up, reported sodium intake decreased by 638 mg/day from baseline of 2,919 mg/day (P < .001). The 24-hour mean urine sodium and albumin excretion did not decline over the study period. Healthy Eating Index 2015 score improved by 7.76 points at 12 months from a mean baseline of 54.6 (P < .001). Both 24-hour SBP and DBP declined at 12 months from baseline (SBP -5.7 mm Hg, 95% confidence interval -10.5 to -1.0, P = .02; DBP -4.1 mm Hg, 95% confidence interval -7.2 to -1.1, P = .01). CONCLUSIONS Overall, this study demonstrates that a short, intensive, remotely delivered dietary intervention for adults with type 2 diabetes and early chronic kidney disease at high risk for disease progression and cardiovascular complications led to improvement in blood pressure and self-reported sodium intake and diet quality, but no improvement in albuminuria. Future research studies are needed to examine whether remotely delivered dietary interventions can ultimately improve kidney health over time.
Collapse
Affiliation(s)
- Sarah J. Schrauben
- Renal, Electrolyte-Hypertension Division; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | - Cheryl Anderson
- Department of Family Medicine and Public Health, University of California San Diego
| | - Lisa Bailey-Davis
- Obesity Institute, Geisinger Health,Department of Population Health Sciences, Geisinger Health
| | - Alex R. Chang
- Kidney Health Research Institute, Geisinger Health,Department of Population Health Sciences, Geisinger Health
| |
Collapse
|
39
|
Jhee JH, Park HC, Choi HY. Skin Sodium and Blood Pressure Regulation. Electrolyte Blood Press 2022; 20:1-9. [DOI: 10.5049/ebp.2022.20.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Shin J, Lee CH. The roles of sodium and volume overload on hypertension in chronic kidney disease. Kidney Res Clin Pract 2021; 40:542-554. [PMID: 34922428 PMCID: PMC8685361 DOI: 10.23876/j.krcp.21.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with increased risk of cardiovascular (CV) events, and the disease burden is rising rapidly. An important contributor to CV events and CKD progression is high blood pressure (BP). The main mechanisms of hypertension in early and advanced CKD are renin-angiotensin system activation and volume overload, respectively. Sodium retention is well known as a factor for high BP in CKD. However, a BP increase in response to total body sodium or volume overload can be limited by neurohormonal modulation. Recent clinical trial data favoring intensive BP lowering in CKD imply that the balance between volume and neurohormonal control could be revisited with respect to the safety and efficacy of strict volume control when using antihypertensive medications. In hemodialysis patients, the role of more liberal use of antihypertensive medications with the concept of functional dry weight for intensive BP control must be studied.
Collapse
Affiliation(s)
- Jinho Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Chang Hwa Lee
- Division of Nephrology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
41
|
Leeming RC, Karagas MR, Gilbert-Diamond D, Emond JA, Zens MS, Schned AR, Seigne JD, Passarelli MN. Diet Quality and Survival in a Population-Based Bladder Cancer Study. Nutr Cancer 2021; 74:2400-2411. [PMID: 34882045 PMCID: PMC9387520 DOI: 10.1080/01635581.2021.2008989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Nutrition may impact bladder cancer survival. We examined the association between diet quality and overall and bladder cancer-specific survival. Bladder cancer cases from a population-based study reported pre-diagnosis diet. Diet quality was assessed using the 2010 Alternate Healthy Eating Index (AHEI-2010). Vital status was ascertained from the National Death Index. Adjusted hazard ratios (HR) and 95% confidence intervals (CI) were estimated using proportional hazards and competing risks regression models. Overall AHEI-2010 adherence was not associated with overall or bladder cancer-specific survival among non-muscle invasive bladder cancer (NMIBC) cases (HR, 1.00; 95% CI, 0.98-1.01; HR, 1.00; 95% CI, 0.97-1.02) or muscle invasive bladder cancer (MIBC) cases (HR, 0.99; 95% CI, 0.96-1.03; HR, 1.01, 95% CI 0.97-1.06). AHEI-2010 sugar-sweetened beverages adherence was associated with poorer overall survival (HR, 1.04; 95% CI, 1.01-1.08) and AHEI-2010 sodium adherence was associated with better overall and bladder cancer-specific survival after NMIBC diagnosis (HR, 0.92, 95% CI, 0.85-1.00; HR, 0.82; 95% CI, 0.68-0.98). AHEI-2010 fruit adherence was associated with poorer overall and bladder cancer-specific survival after MIBC diagnosis (HR, 1.17; 95% CI, 1.02-1.33; HR, 1.26; 95% CI, 1.03-1.55). Consumption of sugar-sweetened beverages, sodium, and fruit, not overall AHEI-2010 adherence, may be associated with bladder cancer survival.
Collapse
Affiliation(s)
- Reno C. Leeming
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Michael S. Zens
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alan R. Schned
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - John D. Seigne
- Section of Urology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Michael N. Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
42
|
van den Bosch JJJON, Hessels NR, Visser FW, Krikken JA, Bakker SJL, Riphagen IJ, Navis GJ. Plasma sodium, extracellular fluid volume, and blood pressure in healthy men. Physiol Rep 2021; 9:e15103. [PMID: 34921521 PMCID: PMC8683787 DOI: 10.14814/phy2.15103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the general population we recently reported a consistent association between plasma sodium and volume markers, suggesting that individuals with higher plasma sodium have higher extracellular fluid volume (ECFV). To test this hypothesis, we analyzed the association between plasma sodium and directly measured ECFV (iothalamate distribution volume) in healthy men. Second, we studied whether plasma sodium is associated with blood pressure. We analyzed data from 70 men (age 24 ± 7 years) at the end of two 7-day periods on a low-sodium diet (LS, 50 mmol Na/24 h) and a high-sodium diet (HS, 200 mmol Na/24 h), respectively. The association of plasma sodium with blood pressure was assessed in the combined data of the different sodium intakes by linear mixed effects models. A positive univariable association between plasma sodium and ECFV was found during HS (β = 0.24, p = 0.042) and LS (β = 0.23, p = 0.058), respectively. Individual values of plasma sodium on LS and HS diet were strongly correlated (β = 0.68, p < 0.001), as were values for ECFV (β = 0.54, p < 0.001). In the combined data set plasma sodium level was significantly associated with ECFV (B [SE] = 0.10 [0.04], p = 0.02), and systolic blood pressure (SBP, B [SE] = 0.73 [0.26], p = 0.006), independent of ECFV. In conclusion, plasma sodium concentration is positively associated with ECFV on both LS and HS intake. Our data confirm and extend prior data on individual regulation of plasma sodium and suggest that this is associated with individuality of the regulation of ECFV. Finally, plasma sodium level is associated with SBP, independent of ECFV and diet.
Collapse
Affiliation(s)
- Jacqueline J. J. O. N. van den Bosch
- Department of Internal MedicineDivision of NephrologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Present address:
Department of OphthalmologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Niek R. Hessels
- Department of Internal MedicineDivision of NephrologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Folkert W. Visser
- Department of Internal MedicineDivision of NephrologyZorggroep TwenteAlmeloThe Netherlands
| | - Jan A. Krikken
- Department of Internal MedicineDivision of CardiologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineDivision of NephrologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ineke J. Riphagen
- Department of Laboratory MedicineUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Gerjan J. Navis
- Department of Internal MedicineDivision of NephrologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
43
|
Kannenkeril D, Jung S, Harazny J, Striepe K, Ott C, Dahlmann A, Kopp C, Schiffer M, Linz P, Nagel AM, Uder M, Schmieder RE. Tissue sodium content correlates with hypertrophic vascular remodeling in type 2 diabetes. J Diabetes Complications 2021; 35:108055. [PMID: 34620556 DOI: 10.1016/j.jdiacomp.2021.108055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/16/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prospective studies describe a linkage between increased sodium intake and higher incidence of cardiovascular organ damage and end points. We analyzed whether tissue sodium content in the skin and muscles correlate with vascular hypertrophic remodeling, a risk factor for cardiovascular disease. METHODS In patients with type 2 diabetes we assessed tissue sodium content and vascular structural parameters of the retinal arterioles. The structural parameters of retinal arterioles assessed by Scanning Laser Doppler Flowmetry were vessel (VD) and lumen diameter (LD), wall thickness (WT), wall-to-lumen ratio (WLR) and wall cross sectional area (WCSA). Tissue sodium content was measured with a 3.0 T clinical 23Sodium-Magnetic Resonance Imaging (23Na-MRI) system. RESULTS In patients with type 2 diabetes (N = 52) we observed a significant correlation between muscle sodium content and VD (p = 0.005), WT (p = 0.003), WCSA (p = 0.002) and WLR (p = 0.013). With respect to skin sodium content a significant correlation has been found with VD (p = 0.042), WT (p = 0.023) and WCSA (p = 0.019). Further analysis demonstrated that tissue sodium content of skin and muscle is a significant determinant of hypertrophic vascular remodeling independent of age, gender, diuretic use and 24-hour ambulatory BP. CONCLUSION With the 23Na-MRI technology we could demonstrate that high tissue sodium content is independently linked to hypertrophic vascular remodeling in type 2 diabetes. TRIAL REGISTRATION Trial registration number: NCT02383238 Date of registration: March 9, 2015.
Collapse
Affiliation(s)
- Dennis Kannenkeril
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Susanne Jung
- Department of Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Joanna Harazny
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany; Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Kristina Striepe
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Anke Dahlmann
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
44
|
Borrelli S, De Nicola L, De Gregorio I, Polese L, Pennino L, Elefante C, Carbone A, Rappa T, Minutolo R, Garofalo C. Volume-Independent Sodium Toxicity in Peritoneal Dialysis: New Insights from Bench to Bed. Int J Mol Sci 2021; 22:ijms222312804. [PMID: 34884617 PMCID: PMC8657906 DOI: 10.3390/ijms222312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Sodium overload is common in end-stage kidney disease (ESKD) and is associated with increased cardiovascular mortality that is traditionally considered a result of extracellular volume expansion. Recently, sodium storage was detected by Na23 magnetic resonance imaging in the interstitial tissue of the skin and other tissues. This amount of sodium is osmotically active, regulated by immune cells and the lymphatic system, escapes renal control, and, more importantly, is associated with salt-sensitive hypertension. In chronic kidney disease, the interstitial sodium storage increases as the glomerular filtration rate declines and is related to cardiovascular damage, regardless of the fluid overload. This sodium accumulation in the interstitial tissues becomes more significant in ESKD, especially in older and African American patients. The possible negative effects of interstitial sodium are still under study, though a higher sodium intake might induce abnormal structural and functional changes in the peritoneal wall. Interestingly, sodium stored in the interstial tissue is not unmodifiable, since it is removable by dialysis. Nevertheless, the sodium removal by peritoneal dialysis (PD) remains challenging, and new PD solutions are desirable. In this narrative review, we carried out an update on the pathophysiological mechanisms of volume-independent sodium toxicity and possible future strategies to improve sodium removal by PD.
Collapse
|
45
|
Oppelaar JJ, Rorije NMG, Olde Engberink RHG, Chahid Y, van Vlies N, Verberne HJ, van den Born BJH, Vogt L. Perturbed body fluid distribution and osmoregulation in response to high salt intake in patients with hereditary multiple exostoses. Mol Genet Metab Rep 2021; 29:100797. [PMID: 34815940 PMCID: PMC8591465 DOI: 10.1016/j.ymgmr.2021.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Hereditary Multiple Exostoses (HME) is a rare autosomal disorder characterized by the presence of multiple exostoses (osteochondromas) caused by a heterozygous loss of function mutation in EXT1 or EXT2; genes involved in heparan sulfate (HS) chain elongation. Considering that HS and other glycosaminoglycans play an important role in sodium and water homeostasis, we hypothesized that HME patients have perturbed whole body volume regulation and osmolality in response to high sodium conditions. Methods We performed a randomized cross-over study in 7 male HME patients and 12 healthy controls, matched for age, BMI, blood pressure and renal function. All subjects followed both an 8-day low sodium diet (LSD, <50 mmol/d) and high sodium diet (HSD, >200 mmol/d) in randomized order. After each diet, blood and urine samples were collected. Body fluid compartment measurements were performed by using the distribution curve of iohexol and 125I-albumin. Results In HME patients, HSD resulted in significant increase of intracellular fluid volume (ICFV) (1.2 L, p = 0.01). In this group, solute-mediated water clearance was significantly lower after HSD, and no changes in interstitial fluid volume (IFV), plasma sodium, and effective osmolality were observed. In healthy controls, HSD did not influence ICFV, but expanded IFV (1.8 L, p = 0.058) and increased plasma sodium and effective osmolality. Conclusion HME patients show altered body fluid distribution and osmoregulation after HSD compared to controls. Our results might indicate reduced interstitial sodium accumulation capacity in HME, leading to ICFV increase. Therefore, this study provides additional support that HS is crucial for maintaining constancy of the internal environment.
Collapse
Key Words
- BMI, Body mass index
- BP, Blood pressure
- ECFV, Extracellular fluid volume
- EXT1/EXT2, Extosin-1 / Extosin-2
- GAG, Glycosaminoglycan
- Glycosaminoglycans
- HME, Hereditary Multiple Exostoses
- HSD, High sodium diet
- Heparan sulfate
- Hereditary Multiple Exostoses
- ICFV, Intracellular fluid volume
- IFV, Interstital fluid volume
- LSD, Low sodium diet
- Osmoregulation
- PV, Plasma volume
- Sodium
- TBW, Total body water
- Water balance
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Nienke M G Rorije
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rik H G Olde Engberink
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Youssef Chahid
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Naomi van Vlies
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hein J Verberne
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Liffert Vogt
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Affiliation(s)
- David H Ellison
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| | - Paul Welling
- From the Oregon Clinical and Translational Research Institute, Oregon Health and Science University (D.H.E) and the VA Portland Health Care System (D.H.E.) - both in Portland; and LeDucq Transatlantic Network of Excellence (D.H.E., P.W.) and the Departments of Medicine and Physiology, Johns Hopkins University (P.W.) - both in Baltimore
| |
Collapse
|
47
|
Artyukov I, Arutyunov G, Bobrov M, Bukreeva I, Cedola A, Dragunov D, Feshchenko R, Fratini M, Mitrokhin V, Sokolova A, Vinogradov A, Gianoncelli A. The first observation of osmotically neutral sodium accumulation in the myocardial interstitium. Sci Rep 2021; 11:22025. [PMID: 34764351 PMCID: PMC8585917 DOI: 10.1038/s41598-021-01443-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was the detection and quantification of the Na+ depositions in the extracellular matrix of myocardial tissue, which are suggested to be bound by negatively charged glycosaminoglycan (GAG) structures. The presented experimental results are based on high resolution X-ray fluorescence (XRF) spectromicroscopy technique used to perform a comparative analysis of sodium containment in intracellular and interstitial spaces of cardiac tissues taken from animals selected by low and high sodium intake rates. The experimental results obtained show that high sodium daily intake can result in a remarkable increase of sodium content in the myocardial interstitium.
Collapse
Affiliation(s)
- I Artyukov
- P.N.Lebedev Physical Institute RAS, 53 Leninsky Prospekt, Moscow, 119991, Russia.
| | - G Arutyunov
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russia
| | - M Bobrov
- Moscow Regional Research and Clinical Institute (MONIKI), 61/2 Shchepkina St., Moscow, 129110, Russia
| | - I Bukreeva
- P.N.Lebedev Physical Institute RAS, 53 Leninsky Prospekt, Moscow, 119991, Russia
- CNR-Institute of Nanotechnology, 5 Piazzale Aldo Moro, 00185, Rome, Italy
| | - A Cedola
- CNR-Institute of Nanotechnology, 5 Piazzale Aldo Moro, 00185, Rome, Italy
| | - D Dragunov
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russia
| | - R Feshchenko
- P.N.Lebedev Physical Institute RAS, 53 Leninsky Prospekt, Moscow, 119991, Russia
| | - M Fratini
- CNR-Institute of Nanotechnology, 5 Piazzale Aldo Moro, 00185, Rome, Italy
| | - V Mitrokhin
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russia
| | - A Sokolova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russia
| | - A Vinogradov
- P.N.Lebedev Physical Institute RAS, 53 Leninsky Prospekt, Moscow, 119991, Russia
| | - A Gianoncelli
- Elettra-Sincrotrone Trieste, S.S. 14, km 163.5 in Area Science Park, 34149, Basovizza-Trieste, Italy
| |
Collapse
|
48
|
Appel LJ, Foti K. Extreme Variability in Urinary Sodium Excretion: Time to Stop Use of Spot Urines to Predict Clinical Outcomes. Hypertension 2021; 78:1637-1639. [PMID: 34644168 PMCID: PMC8525899 DOI: 10.1161/hypertensionaha.121.18154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lawrence J. Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD 21205, USA
- Division of General Internal Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kathryn Foti
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Total Body Sodium Balance in Chronic Kidney Disease. Int J Nephrol 2021; 2021:7562357. [PMID: 34603798 PMCID: PMC8481067 DOI: 10.1155/2021/7562357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Excess sodium intake is a leading but modifiable risk factor for mortality, with implications on hypertension, inflammation, cardiovascular disease, and chronic kidney disease (CKD). This review will focus mainly on the limitations of current measurement methods of sodium balance particularly in patients with CKD who have complex sodium physiology. The suboptimal accuracy of sodium intake and excretion measurement is seemingly more marked with the evolving understanding of tissue (skin and muscle) sodium. Tissue sodium represents an extrarenal influence on sodium homeostasis with demonstrated clinical associations of hypertension and inflammation. Measurement of tissue sodium has been largely unexplored in patients with CKD. Development and adoption of more comprehensive and dynamic assessment of body sodium balance is needed to better understand sodium physiology in the human body and explore therapeutic strategies to improve the clinical outcomes in the CKD population.
Collapse
|
50
|
Arakawa M, Watanabe T, Suzuki K, Nishino J, Sekizuka H, Iwahori T, Ono SI, Hidaka S. Validation of Self-Monitoring Devices Supporting Sodium Intake Reduction: An Experimental Feeding Study Using Standardized Low-Salt and High-Salt Meals among Healthy Japanese Volunteers. ANNALS OF NUTRITION AND METABOLISM 2021; 77:289-298. [PMID: 34569491 DOI: 10.1159/000519097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Although several approaches for approximating daily Na intake and the Na/K ratio using casual urine are available, the most useful method remains unclear during daily practice and at home. METHODS Twenty-seven participants measured their casual urinary Na/K ratio repeatedly using a Na/K ratio monitor and also measured overnight urine once daily using a monitoring device which delivers on-site feedback to estimate their salt intake under unrestricted, low-salt (LS) (6 g/day), and high-salt (HS) (12 g/day) diets. RESULTS The monitoring method utilizing overnight urine to estimate daily Na remained insensitive, resulting in significant overestimation during the LS diet and underestimation during the HS diet periods; estimated salt intake during the LS and HS diet periods plateaued at 7-8 g/day and 9-10 g/day within 3 day; mean estimated salt intake was 11.3 g/day, 7.9 g/day, and 9.8 g/day on the last day of the unrestricted, LS, and HS diets; the coefficient of variation (CV) of the estimated Na intake was 0.23 and 0.17 in the latter half of the low- and high-salt diet periods, respectively. The mean urinary Na/K molar ratio was 5.6, 2.5, and 5.3 on the last day of the unrestricted, LS, and HS diets; the CV of the daily mean Na/K ratio was 0.41 and 0.36 in the latter half of the LS and HS diet periods, respectively. The urinary Na/K ratio during the LS and HS diet periods plateaued within 2 days. The monitoring method based on the daily mean of the casual urinary Na/K ratio reflected the actual change in Na intake, and the estimated value tracked the actual changes in salt intake with smaller difference than the overnight urine estimates when using the estimation coefficient set at 2; estimated salt intake during the LS and HS diet periods plateaued at 5-6 g/day and 10-12 g/day within 2-3 day; mean estimated salt intake was 11.0 g/day, 5.7 g/day, and 10.7 g/day on the last day of the unrestricted, LS, and HS diets, respectively. DISCUSSION/CONCLUSION Estimates of daily Na intake derived from overnight urine may remain insensitive during dietary interventions. The urinary Na/K ratio reflects the actual change in Na intake during dietary modification and may serve as a practical marker, particularly during short-term interventions. Conversion from the urinary Na/K ratio to estimated salt intake may be useful, if the coefficient was set appropriate by further investigations.
Collapse
Affiliation(s)
- Motoki Arakawa
- Laboratory of Pharmaceutical Regulatory Science, Faculty of Practical Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Takayuki Watanabe
- Laboratory of Pharmaceutical Regulatory Science, Faculty of Practical Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Koya Suzuki
- Laboratory of Pharmaceutical Regulatory Science, Faculty of Practical Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Junichi Nishino
- Laboratory of Pharmaceutical Regulatory Science, Faculty of Practical Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | | | - Toshiyuki Iwahori
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Shin-Ichi Ono
- Laboratory of Clinical Medicine, Faculty of Applied Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| | - Shinji Hidaka
- Laboratory of Pharmaceutical Regulatory Science, Faculty of Practical Pharmaceutical Sciences, School of Pharmacy, Nihon University, Chiba, Japan
| |
Collapse
|