1
|
Yang J, Luo W, Chen Y, Zhou Y, Wang J, Mi L, Shi G. Molecular docking- and reporter-based screening identify dicoumarol against ER stress-induced liver injury in mice through inhibiting IRE1α activity. Life Sci 2025; 369:123526. [PMID: 40049366 DOI: 10.1016/j.lfs.2025.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
AIMS Drug-induced liver injury is among the most challenging liver disorders. Endoplasmic reticulum (ER) is responsible for the correct protein folding and secretion, which are highly active in hepatocytes. Failure in maintaining the proper protein folding under pathological condition or external stimuli leads to the unfolded protein response (UPR) to restore ER homeostasis or induce cell death. IRE1α pathway is the most conserved UPR branch with diverse physiological and pathological functions. This study aimed to screen for natural compounds to alleviate hepatic ER stress and liver injury by modulating IRE1α activity. MATERIALS AND METHODS ATP-competitive molecules from chemical libraries were recognized by virtual screening for targeting the IRE1α kinase domain. IRE1α activity-based XBP1s-reporter cell lines with flow cytometric analysis were employed to validate candidates from chemical libraries. Then the functions of the top candidate compound on IRE1α signaling were analyzed followed by the treatment with ER stress agonists in vitro. Finally, the candidate compound was used to treat ER stress-induced acute liver injury to evaluate its protective effect in vivo. KEY FINDINGS Dicoumarol (DIC) was discovered as a potential inhibitor of IRE1α activation in HEK293T cells, HepG2 cells and primary hepatocytes. Particularly, DIC ameliorates tunicamycin (Tm)- and carbon tetrachloride (CCl4)-induced acute hepatic ER stress to protect against liver injury. SIGNIFICANCE This study established a drug screening strategy against IRE1α activation and identified potential new therapeutic effects of DIC in treating liver injury-related diseases.
Collapse
Affiliation(s)
- Jifeng Yang
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Luo
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yanyu Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yimin Zhou
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiahai Wang
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Lin Mi
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Guojun Shi
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Schreiber A, Ludwig S. Host-targeted antivirals against SARS-CoV-2 in clinical development - Prospect or disappointment? Antiviral Res 2025; 235:106101. [PMID: 39923941 DOI: 10.1016/j.antiviral.2025.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The global response to the COVID-19 pandemic, caused by the novel SARS-CoV-2 virus, has seen an unprecedented increase in the development of antiviral therapies. Traditional antiviral strategies have primarily focused on direct-acting antivirals (DAAs), which specifically target viral components. In recent years, increasing attention was given to an alternative approach aiming to exploit host cellular pathways or immune responses to inhibit viral replication, which has led to development of so-called host-targeted antivirals (HTAs). The emergence of SARS-CoV-2 and COVID-19 has promoted a boost in this field. Numerous HTAs have been tested and demonstrated their potential against SARS-CoV-2 through in vitro and in vivo studies. However, in striking contrast, only a limited number have successfully progressed to advanced clinical trial phases (2-4), and even less have entered clinical practice. This review aims to explore the current landscape of HTAs targeting SARS-CoV-2 that have reached phase 2-4 clinical trials. Additionally, it will explore the challenges faced in the development of HTAs and in gaining regulatory approval and market availability.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
3
|
Zhou M, Song T, Huang M, Zheng L, Zhao M. Differential Mechanisms of Soybean-Derived ACE2-Activating Peptides IVPQ and IAVPT in ACE2-Mediated Endothelial Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4065-4077. [PMID: 39920612 DOI: 10.1021/acs.jafc.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
This study aimed to investigate the modulatory effects of soybean-derived peptides IVPQ and IAVPT, which were initially identified as potent ACE2-activating peptides, on Ang II-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms via ACE2 activation. IVPQ and IAVPT ameliorated Ang II-induced malignant migration and NO reduction in HUVECs via the activation of the ACE2/Ang-(1-7)/MasR axis, resulting in Ang II degradation and decreased Ang II signaling. These protective effects were attenuated by ACE2 knockdown to different degrees, which was possibly due to different mechanisms of activating ACE2, where IAVPT directly activated ACE2 at a concentration of 1.0 × 10-4 M and IVPQ upregulated ACE2 likely through effects on ACE2 mRNA stability. These results contributed to our understanding of the mechanism of ACE2-activating peptides regulating endothelial function.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Luo YW, Huang AL, Tang KF. Angiotensin-converting enzyme 2 and hepatic SARS-CoV-2 infection: Regulation, association, and therapeutic implications. World J Gastroenterol 2025; 31:100864. [PMID: 39958440 PMCID: PMC11752700 DOI: 10.3748/wjg.v31.i6.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/10/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Mounting evidence has indicated the presence of hepatic SARS-CoV-2 infection and liver injury in patients with coronavirus disease 2019 (COVID-19). Understanding the mechanisms of hepatic SARS-CoV-2 infection is crucial for addressing COVID-19-related liver pathology and developing targeted therapies. This editorial discusses the significance of ACE2 in hepatic SARS-CoV-2 infection, drawing on the research by Jacobs et al. Their findings indicate that hepatic ACE2 expression, frequency of hepatic SARS-CoV-2 infection, and severity of liver injury are elevated in patients with pre-existing chronic liver diseases. These data suggest that hepatic ACE2 could be a promising therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Gutiérrez-Jiménez E, Rasmussen PM, Mikkelsen IK, Kura S, Fruekilde SK, Hansen B, Bordoni L, Carlsen J, Palmfeldt J, Boas DA, Sakadžić S, Vinogradov S, Khatib ME, Ramos-Cejudo J, Wied B, Leduc-Galindo D, Canepa E, Mar AC, Gamallo-Lana B, Fossati S, Østergaard L. Carbonic anhydrase inhibitors prevent presymptomatic capillary flow disturbances in a model of cerebral amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609091. [PMID: 39229198 PMCID: PMC11370441 DOI: 10.1101/2024.08.22.609091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Disturbances in microvascular flow dynamics are hypothesized to precede the symptomatic phase of Alzheimer's disease (AD). However, evidence in presymptomatic AD remains elusive, underscoring the need for therapies targeting these early vascular changes. METHODS We employed a multimodal approach, combining in vivo optical imaging, molecular techniques, and ex vivo MRI, to investigate early capillary dysfunction in Tg-SwDI mice without memory impairment. We also assessed the efficacy of carbonic anhydrase inhibitors (CAIs) in preventing capillary flow disturbances. RESULTS Our study revealed capillary flow disturbances associated with alterations in capillary morphology, adhesion molecule expression, and Amyloid-β (Aβ) load in 9-10-month-old Tg-SwDI mice without memory impairment. CAI treatment ameliorated these capillary flow disturbances, enhanced oxygen availability, and reduced Aβ load. DISCUSSION These findings underscore the importance of capillary flow disturbances as early biomarkers in presymptomatic AD and highlight the potential of CAIs for preserving vascular integrity in the early stages of AD.
Collapse
|
6
|
Yan T, Sun J, Zheng J, Yang J. An analysis combining proteomics and transcriptomics revealed a regulation target of sea cucumber autolysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101274. [PMID: 38906042 DOI: 10.1016/j.cbd.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Sea cucumber is a valuable seafood product and autolysis is the main concern for the aquaculture industry. This study employed proteomics and transcriptomics to investigate the autolysis mechanism of sea cucumbers. The fresh sea cucumber was exposed to UV light to induce autolysis. The body wall samples were cut off to analyze by proteomics and transcriptomics. The angiotensin-converting enzyme (ACE) inhibitor of teprotide and the activator of imatinib were gastric gavage to live sea cucumbers, respectively, to identify the regulation target. Autolysis occurrence was evaluated by appearance, soluble peptide, and hydroxyproline content. Four gene-protein pairs were ACE, AJAP10923, Heme-binding protein 2-like, and Ficolin-2-like. Only the ACE protein and gene changed synchronously and a significant down-regulation of ACE occurred in the autolysis sea cucumbers. Teprotide led to a 1.58-fold increase in the TCA-soluble protein content and a 1.57-fold increase in hydroxyproline content. No significant differences were observed between imatinib-treated sea cucumbers and fresh ones regarding TCA-soluble protein content or hydroxyproline levels (P > 0.05). ACE inhibitor accelerated the autolysis of sea cucumber, but ACE activator inhibited the autolysis. Therefore, ACE can serve as a regulatory target for autolysis in sea cucumbers.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Xiao X, Li JX, Li HH, Teng F. ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-κB/STAT1 signals. Cell Biol Toxicol 2024; 40:82. [PMID: 39320524 PMCID: PMC11424656 DOI: 10.1007/s10565-024-09923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| |
Collapse
|
8
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
9
|
Wu Z, Chen S, Wang Y, Li F, Xu H, Li M, Zeng Y, Wu Z, Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int J Surg 2024; 110:3848-3878. [PMID: 38502850 PMCID: PMC11175770 DOI: 10.1097/js9.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
AIM Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Huanhua Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Yingjian Zeng
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Zhenfeng Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
11
|
Meng H, Liao Z, Ji Y, Wang D, Han Y, Huang C, Hu X, Chen J, Zhang H, Li Z, Wang C, Sun H, Sun J, Chen L, Yin J, Zhao J, Xu T, Liu H. FGF7 enhances the expression of ACE2 in human islet organoids aggravating SARS-CoV-2 infection. Signal Transduct Target Ther 2024; 9:104. [PMID: 38654010 PMCID: PMC11039711 DOI: 10.1038/s41392-024-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells. This upregulation increases both insulin secretion and susceptibility of β cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.
Collapse
Affiliation(s)
- Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Yanting Ji
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hengrui Zhang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zonghong Li
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Changliang Wang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Hui Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaqi Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Lihua Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaxiang Yin
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jincun Zhao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
12
|
Bhattacharjee A, Ahammad I, Chowdhury ZM, Das KC, Keya CA, Salimullah M. Proteome-Based Investigation Identified Potential Drug Repurposable Small Molecules Against Monkeypox Disease. Mol Biotechnol 2024; 66:626-640. [PMID: 36357534 PMCID: PMC9648865 DOI: 10.1007/s12033-022-00595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Monkeypox Virus (MPXV), the causative agent of Monkeypox (MPX) disease, is an emerging zoonotic pathogen spreading in different endemic and non-endemic nations and creating outbreaks. MPX treatment mainly includes Cidofovir and Tecovirimat but they have several side effects and solely depending on these drugs may promote the emergence of drug-resistant variants. Hence, new drugs are required to control the spread of the disease. In this study, we explored the MPXV proteome to suggest repurposable drugs. DrugBank screening revealed drugs such as Brinzolamide, Dorzolamide, Methazolamide, Zidovudine, Gemcitabine, Hydroxyurea, Fludarabine, and Tecovirimat as controls. Structural analogs of these compounds were extracted from ChEMBL Database. After Molecular docking and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)-based screening, we identified Zidovudine (binding affinity-5.9 kcal/mol) and a Harmala alkaloid (2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol (binding affinity - 6.6 kcal/mol) against L2R receptor (Thymidine Kinase). Moreover, Fludarabine (binding affinity - 6.4 kcal/mol) and 5'-Dehydroadenosine (binding affinity - 6.4 kcal/mol) can strongly interact with the I4L receptor (Ribonucleotide reductase large subunit R1). Molecular Dynamics (MD) simulations suggest all of these compounds can change the C-alpha backbone, residue mobility, compactness, and solvent accessible surface area of L2R and I4L. Our results strongly suggest that these drug repurposing small molecules are worth exploring in vivo and in vitro for clinical applications.
Collapse
Affiliation(s)
- Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh.
| |
Collapse
|
13
|
Zhang J, Cao Y, Ren R, Sui W, Zhang Y, Zhang M, Zhang C. Medium-Dose Formoterol Attenuated Abdominal Aortic Aneurysm Induced by EPO via β2AR/cAMP/SIRT1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306232. [PMID: 38353392 PMCID: PMC11022707 DOI: 10.1002/advs.202306232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Indexed: 04/18/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease but effective drugs for treatment of AAA are still lacking. Recently, erythropoietin (EPO) is reported to induce AAA formation in apolipoprotein-E knock out (ApoE-/-) mice but an effective antagonist is unknown. In this study, formoterol, a β2 adrenergic receptor (β2AR) agonist, is found to be a promising agent for inhibiting AAA. To test this hypothesis, ApoE-/- mice are treated with vehicle, EPO, and EPO plus low-, medium-, and high-dose formoterol, respectively. The incidence of AAA is 0, 55%, 35%,10%, and 55% in these 5 groups, respectively. Mechanistically, senescence of vascular smooth muscle cell (VSMC) is increased by EPO while decreased by medium-dose formoterol both in vivo and in vitro, manifested by the altered expression of senescence biomarkers including phosphorylation of H2AXserine139, senescence-associated β-galactosidase activity, and P21 protein level. In addition, expression of sirtuin 1 (SIRT1) in aorta is decreased in EPO-induced AAA but remarkably elevated by medium-dose formoterol. Knockdown of β2AR and blockage of cyclic adenosine monophosphate (cAMP) attenuate the inhibitory role of formoterol in EPO-induced VSMC senescence. In summary, medium-dose formoterol attenuates EPO-induced AAA via β2AR/cAMP/SIRT1 pathways, which provides a promising medication for the treatment of AAA.
Collapse
Affiliation(s)
- Jianlin Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yu Cao
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Ruiqing Ren
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing TheoryThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinanShandong250012China
- Cardiovascular Disease Research Center of Shandong First Medical UniversityCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013China
| |
Collapse
|
14
|
Brilakis L, Theofilogiannakou E, Lykoudis PM. Current remarks and future directions on the interactions between metabolic dysfunction-associated fatty liver disease and COVID-19. World J Gastroenterol 2024; 30:1480-1487. [PMID: 38617460 PMCID: PMC11008415 DOI: 10.3748/wjg.v30.i11.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
During the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, particular interest rose regarding the interaction between metabolic dysfunction-associated fatty liver disease (MAFLD) and the COVID-19 infection. Several studies highlighted the fact that individuals with MAFLD had higher probability of severe acute respiratory syndrome coronavirus 2 infection and more severe adverse clinical outcomes. One of the proposed mechanisms is the inflammatory response pathway, especially the one involving cytokines, such as interleukin 6, which appeared particularly elevated in those patients and was deemed responsible for additional insult to the already damaged liver. This should increase our vigilance in terms of early detection, close follow up and early treatment for individuals with MAFLD and COVID-19 infection. In the direction of early diagnosis, biomarkers such as cytokeratin-18 and scoring systems such as Fibrosis-4 index score are proposed. COVID-19 is a newly described entity, expected to be of concern for the years to come, and MAFLD is a condition with an ever-increasing impact. Delineating the interaction between these two entities should be brought into the focus of research. Reducing morbidity and mortality of patients with COVID-19 and MAFLD should be the ultimate objective, and the optimal way to achieve this is by designing evidence-based prevention and treatment policies.
Collapse
Affiliation(s)
- Leonidas Brilakis
- School of Medicine, National & Kapodistrian University of Athens, Athens 11527, Greece
| | | | - Panagis M Lykoudis
- School of Medicine, National & Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
16
|
Supuran CT. Drug interactions of carbonic anhydrase inhibitors and activators. Expert Opin Drug Metab Toxicol 2024; 20:143-155. [PMID: 38450431 DOI: 10.1080/17425255.2024.2328152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) have been established drug targets for decades, with their inhibitors and activators possessing relevant pharmacological activity and applications in various fields. At least 11 sulfonamides/sulfamates are clinically used as diuretics, antiglaucoma, antiepileptic, or antiobesity agents and one derivative, SLC-0111, is in clinical trials as antitumor/antimetastatic agent. The activators were less investigated with no clinically used agent. AREAS COVERED Drug interactions between CA inhibitors/activators and various other agents are reviewed in publications from the period March 2020 - January 2024. EXPERT OPINION Drug interactions involving these agents revealed several interesting findings. Acetazolamide plus loop diuretics is highy effective in acute decompensated heart failure, whereas ocular diseases such as X-linked retinoschisis and macular edema were treated by acetazolamide plus bevacizumab or topical NSAIDs. Potent anti-infective effects of acetazolamide and other CAIs, alone or in combination with other agents were demonstrated for the management of Neisseria gonorrhoea, vancomycin resistant enterococci, Acanthamoeba castellanii, Trichinella spiralis, and Cryptococcus neoformans infections. Topiramate, in combination with phentermine is incresingly used for the management of obesity, whereas zonisamide plus levodopa is highly effective for Parkinson's disease. Acetazolamide, methazolamide, ethoxzolamide, and SLC-0111 showed synergistic antitumor/antimetastatic action in combination with many other antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
17
|
Duijvelaar E, Pan X, Bogaard HJ, Eringa EC, Aman J. Imatinib treatment improves hyperglycaemic dysregulation in severe COVID-19: a secondary analysis of blood biomarkers in a randomised controlled trial. Crit Care 2024; 28:65. [PMID: 38424569 PMCID: PMC10905916 DOI: 10.1186/s13054-024-04829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
SARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.
Collapse
Affiliation(s)
- Erik Duijvelaar
- Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Xiaoke Pan
- Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Jurjan Aman
- Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zhao X, Hu C, Chen X, Ren S, Gao F. Drug Repositioning of Inflammatory Bowel Disease Based on Co-Target Gene Expression Signature of Glucocorticoid Receptor and TET2. BIOLOGY 2024; 13:82. [PMID: 38392301 PMCID: PMC10886832 DOI: 10.3390/biology13020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The glucocorticoid receptor (GR) and ten-eleven translocation 2 (TET2), respectively, play a crucial role in regulating immunity and inflammation, and GR interacts with TET2. However, their synergetic roles in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), remain unclear. This study aimed to investigate the co-target gene signatures of GR and TET2 in IBD and provide potential therapeutic interventions for IBD. By integrating public data, we identified 179 GR- and TET2-targeted differentially expressed genes (DEGs) in CD and 401 in UC. These genes were found to be closely associated with immunometabolism, inflammatory responses, and cell stress pathways. In vitro inflammatory cellular models were constructed using LPS-treated HT29 and HCT116 cells, respectively. Drug repositioning based on the co-target gene signatures of GR and TET2 derived from transcriptomic data of UC, CD, and the in vitro model was performed using the Connectivity Map (CMap). BMS-536924 emerged as a top therapeutic candidate, and its validation experiment within the in vitro inflammatory model confirmed its efficacy in mitigating the LPS-induced inflammatory response. This study sheds light on the pathogenesis of IBD from a new perspective and may accelerate the development of novel therapeutic agents for inflammatory diseases including IBD.
Collapse
Affiliation(s)
- Xianglin Zhao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Henan University, Shenzhen 518000, China
| | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Duijvelaar E, Gisby J, Peters JE, Bogaard HJ, Aman J. Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients. Nat Commun 2024; 15:744. [PMID: 38272877 PMCID: PMC10811341 DOI: 10.1038/s41467-024-44986-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).
Collapse
Affiliation(s)
- Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jack Gisby
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - James E Peters
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Xie G, Zhu L, Liu S, Li C, Diao X, Zhang Y, Su X, Song Y, Cao G, Zhong L, Wang P, Liu X, Mok BWY, Zhang S, Jin DY, Zhou J, Chen H, Cai Z. Multi-omics analysis of attenuated variant reveals potential evaluation marker of host damaging for SARS-CoV-2 variants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:83-95. [PMID: 37721637 DOI: 10.1007/s11427-022-2379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 continues to threaten human society by generating novel variants via mutation and recombination. The high number of mutations that appeared in emerging variants not only enhanced their immune-escaping ability but also made it difficult to predict the pathogenicity and virulence based on viral nucleotide sequences. Molecular markers for evaluating the pathogenicity of new variants are therefore needed. By comparing host responses to wild-type and variants with attenuated pathogenicity at proteome and metabolome levels, six key molecules on the polyamine biosynthesis pathway including putrescine, SAM, dc-SAM, ODC1, SAMS, and SAMDC were found to be differentially upregulated and associated with pathogenicity of variants. To validate our discovery, human airway organoids were subsequently used which recapitulates SARS-CoV-2 replication in the airway epithelial cells of COVID-19 patients. Using ODC1 as a proof-of-concept, differential activation of polyamine biosynthesis was found to be modulated by the renin-angiotensin system (RAS) and positively associated with ACE2 activity. Further experiments demonstrated that ODC1 expression could be differentially activated upon a panel of SARS-CoV-2 variants of concern (VOCs) and was found to be correlated with each VOCs' pathogenic properties. Particularly, the presented study revealed the discriminative ability of key molecules on polyamine biosynthesis as a predictive marker for virulence evaluation and assessment of SARS-CoV-2 variants in cell or organoid models. Our work, therefore, presented a practical strategy that could be potentially applied as an evaluation tool for the pathogenicity of current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, 518000, China.
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cun Li
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Diao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiuli Su
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaojuan Liu
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
- HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, 518000, China.
| |
Collapse
|
21
|
Zhang ML, Li WX, Wang XY, Zhang H, Wu YL, Yang LQ, Chen XF, Zhang SQ, Chen YL, Feng KR, Tang JF. A gene expression profile-based approach to screen the occurrence and predisposed host characteristics of drug-induced liver injury: a case study of Psoralea corylifolia Linn. Front Chem 2023; 11:1259569. [PMID: 37867998 PMCID: PMC10588485 DOI: 10.3389/fchem.2023.1259569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the most common causes of a drug being withdrawn, and identifying the culprit drugs and the host factors at risk of causing DILI has become a current challenge. Recent studies have found that immune status plays a considerable role in the development of DILI. In this study, DILI-related differentially expressed genes mediated by immunoinflammatory cytokines were obtained from the Gene Expression Omnibus (GEO) database to predict the occurrence of DILI (named the DILI predictive gene set, DILI_PGS), and the predictability of the DILI_PGS was verified using the Connectivity Map (CMap) and LiverTox platforms. The results obtained DILI_PGS from the GEO database could predict 81.25% of liver injury drugs. In addition, the Coexpedia platform was used to predict the DILI_PGS-related characteristics of common host diseases and found that the DILI_PGS mainly involved immune-related diseases and tumor-related diseases. Then, animal models of immune stress (IS) and immunosuppressive (IP) were selected to simulate the immune status of the above diseases. Meanwhile, psoralen, a main component derived from Psoralea corylifolia Linn. with definite hepatotoxicity, was selected as an experimental drug with highly similar molecular fingerprints to three idiosyncratic hepatotoxic drugs (nefazodone, trovafloxacin, and nimesulide) from the same DILI_PGS dataset. The animal experiment results found a single administration of psoralen could significantly induce liver injury in IS mice, while there was no obvious liver function change in IP mice by repeatedly administering the same dose of psoralen, and the potential mechanism of psoralen-induced liver injury in IS mice may be related to regulating the expression of the TNF-related pathway. In conclusion, this study constructed the DILI_PGS with high accuracy to predict the occurrence of DILI and preliminarily identified the characteristics of host factors inducing DILI.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Xia Li
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Liu-Qing Yang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Fei Chen
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Shu-Qi Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ke-Ran Feng
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Jin-Fa Tang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
22
|
Tanzadehpanah H, Lotfian E, Avan A, Saki S, Nobari S, Mahmoodian R, Sheykhhasan M, Froutagh MHS, Ghotbani F, Jamshidi R, Mahaki H. Role of SARS-COV-2 and ACE2 in the pathophysiology of peripheral vascular diseases. Biomed Pharmacother 2023; 166:115321. [PMID: 37597321 DOI: 10.1016/j.biopha.2023.115321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The occurrence of a novel coronavirus known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), created a serious challenge worldwide. SARS-CoV-2 has high infectivity, the ability to be transmitted even during the asymptomatic phase, and relatively low virulence, which has resulted in rapid transmission. SARS-CoV-2 can invade epithelial cells, hence, many patients infected with SARS-CoV-2 have suffered from vascular diseases (VDs) in addition to pulmonary manifestations. Accordingly, SARS-CoV-2 may can worsen the clinical condition of the patients with pre-existing VDs. Endothelial cells express angiotensin-converting enzyme 2 (ACE2). ACE2 is a biological enzyme that converts angiotensin (Ang)- 2 to Ang-(1-7). SARS-CoV-2 uses ACE2 as a cell receptor for viral entry. Thus, the SARS-CoV-2 virus promotes downregulation of ACE2, Ang-(1-7), and anti-inflammatory cytokines, as well as, an increase in Ang-2, resulting in pro-inflammatory cytokines. SARS-CoV-2 infection can cause hypertension, and endothelial damage, which can lead to intravascular thrombosis. In this review, we have concentrated on the effect of SARS-CoV-2 in peripheral vascular diseases (PVDs) and ACE2 as an enzyme in Renin-angiotensin aldosterone system (RAAS). A comprehensive search was performed on PubMed, Google Scholar, Scopus, using related keywords. Articles focusing on ("SARS-CoV-2", OR "COVID-19"), AND ("Vascular disease", OR "Peripheral vascular disease", OR interested disease name) with regard to MeSH terms, were selected. According to the studies, it is supposed that vascular diseases may increase susceptibility to severe SARS-CoV-2 infection due to increased thrombotic burden and endothelial dysfunction. Understanding SARS-CoV-2 infection mechanism and vascular system pathogenesis is crucial for effective management and treatment in pre-existing vascular diseases.
Collapse
Affiliation(s)
- Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Lotfian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences; Medical Genetics Research Center, Mashhad University of Medical Sciences; Medical Genetics Research center, Mashhad University of Medical Sciences; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Saki
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Sima Nobari
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Roghaye Mahmoodian
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | | | - Farzaneh Ghotbani
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Raoufeh Jamshidi
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Yu H, Yuan L, Yan Z, Zhou M, Ye J, Wu K, Chen W, Chen R, Xia N, Guan Y, Zhu H. Butyrate Protects against SARS-CoV-2-Induced Tissue Damage in Golden Hamsters. Int J Mol Sci 2023; 24:14191. [PMID: 37762492 PMCID: PMC10532055 DOI: 10.3390/ijms241814191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Butyrate, produced by gut microbe during dietary fiber fermentation, has anti-inflammatory and antioxidant effects on chronic inflammation diseases, yet it remains to be explored whether butyrate has protective effects against viral infections. Here, we demonstrated that butyrate alleviated tissue injury in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected golden hamsters supplemented with butyrate before and during the infection. Butyrate-treated hamsters showed augmentation of type I interferon (IFN) response and activation of endothelial cells without exaggerated inflammation. In addition, butyrate regulated redox homeostasis by enhancing the activity of superoxide dismutase (SOD) to inhibit excessive apoptotic cell death. Therefore, butyrate exhibited effective prevention against SARS-CoV-2 by upregulating antiviral immune responses and promoting cell survival.
Collapse
Affiliation(s)
- Huan Yu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhigang Yan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Ming Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenjia Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Advanced Pathogen Research Institute, Futian District, Shenzhen 518045, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University Medical College, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Advanced Pathogen Research Institute, Futian District, Shenzhen 518045, China
| |
Collapse
|
24
|
Zhou M, Song T, Li W, Huang M, Zheng L, Zhao M. Identification and Screening of Potential ACE2 Activating Peptides from Soybean Protein Isolate Hydrolysate against Ang II-Induced Endothelial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11957-11969. [PMID: 37501259 DOI: 10.1021/acs.jafc.3c03013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a counterregulator against ACE by converting angiotensin II (Ang II) to Ang-(1-7), and its down-regulation leads to endothelial dysfunction in the vascular system. In the present study, we investigated the effects of soybean protein isolate hydrolysate (SPIH) on Ang II-induced endothelial dysfunction with its underlying mechanisms via ACE2 activation in human umbilical vein endothelial cells (HUVECs). We further screened potential ACE2 activating peptides by peptidomics analysis combined with bioinformatics tools. Results showed that SPIH remarkably attenuated Ang II-induced cell migration from 129 to 92%, decreased the ROS level from 2.22-fold to 1.45-fold, and increased NO concentration from 31.4 ± 0.7 to 43.7 ± 0.1 μM in HUVECs. However, these beneficial effects were reversed by ACE2 inhibitor MLN-4760 to a certain extent, indicating the modulation of ACE2. Further results revealed that SPIH (1 mg/mL) significantly increased the expression and activity of ACE2 and two novel ACE2 activating peptides with different mechanisms were explored from SPIH. IVPQ and IAVPT (50 μM) enhanced ACE2 activity, and only IVPQ (50 μM) increased ACE2 protein expression in HUVECs. These findings furthered our understanding of the antihypertensive mechanism of SPIH mediating the ACE2 activation on vascular endothelium.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P.R. China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, P.R. China
| | - Wen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, P.R. China
| |
Collapse
|
25
|
Yong SJ, Halim A, Halim M, Ming LC, Goh KW, Alfaresi M, AlShehail BM, Al Fares MA, Alissa M, Sulaiman T, Alsalem Z, Alwashmi ASS, Khamis F, Al Kaabi NA, Albayat H, Alsheheri A, Garout M, Alsalman J, Alfaraj AH, Alhajri M, Dhama K, Alburaiky LM, Alsanad AH, AlShurbaji AT, Rabaan AA. Experimental drugs in randomized controlled trials for long-COVID: what's in the pipeline? A systematic and critical review. Expert Opin Investig Drugs 2023; 32:655-667. [PMID: 37534972 DOI: 10.1080/13543784.2023.2242773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Over three years have passed since the emergence of coronavirus disease 2019 (COVID-19), and yet the treatment for long-COVID, a post-COVID-19 syndrome, remains long overdue. Currently, there is no standardized treatment available for long-COVID, primarily due to the lack of funding for post-acute infection syndromes (PAIS). Nevertheless, the past few years have seen a renewed interest in long-COVID research, with billions of dollars allocated for this purpose. As a result, multiple randomized controlled trials (RCTs) have been funded in the quest to find an effective treatment for long-COVID. AREAS COVERED This systematic review identified and evaluated the potential of current drug treatments for long-COVID, examining both completed and ongoing RCTs. EXPERT OPINION We identified four completed and 22 ongoing RCTs, investigating 22 unique drugs. However, most drugs were deemed to not have high potential for treating long-COVID, according to three pre-specified domains, a testament to the ordeal of treating long-COVID. Given that long-COVID is highly multifaceted with several proposed subtypes, treatments likely need to be tailored accordingly. Currently, rintatolimod appears to have modest to high potential for treating the myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) subtype, LTY-100 and Treamid for pulmonary fibrosis subtype, and metformin for general long-COVID prevention.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Alice Halim
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Michael Halim
- Department of Biomedical Science, School of Science, Engineering and Environment, University of Salford, Greater Manchester, UK
| | - Long Chiau Ming
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat, Oman
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Ahmed Alsheheri
- Infectious Disease Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama, Bahrain
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Lamees M Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Dammam, Saudi Arabia
| | - Ahlam H Alsanad
- Neonatal Intensive Care Unit, Pediatrics Department, Maternity and Children Hospital, Dammam, Saudi Arabia
| | | | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
26
|
Dechtman ID, Ankory R, Sokolinsky K, Krasner E, Weiss L, Gal Y. Clinically Evaluated COVID-19 Drugs with Therapeutic Potential for Biological Warfare Agents. Microorganisms 2023; 11:1577. [PMID: 37375079 PMCID: PMC10304720 DOI: 10.3390/microorganisms11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak resulted in hundreds of millions of coronavirus cases, as well as millions of deaths worldwide. Coronavirus Disease 2019 (COVID-19), the disease resulting from exposure to this pathogen, is characterized, among other features, by a pulmonary pathology, which can progress to "cytokine storm", acute respiratory distress syndrome (ARDS), respiratory failure and death. Vaccines are the unsurpassed strategy for prevention and protection against the SARS-CoV-2 infection. However, there is still an extremely high number of severely ill people from at-risk populations. This may be attributed to waning immune response, variant-induced breakthrough infections, unvaccinated population, etc. It is therefore of high importance to utilize pharmacological-based treatments, despite the progression of the global vaccination campaign. Until the approval of Paxlovid, an efficient and highly selective anti-SARS-CoV-2 drug, and the broad-spectrum antiviral agent Lagevrio, many pharmacological-based countermeasures were, and still are, being evaluated in clinical trials. Some of these are host-directed therapies (HDTs), which modulate the endogenic response against the virus, and therefore may confer efficient protection against a wide array of pathogens. These could potentially include Biological Warfare Agents (BWAs), exposure to which may lead to mass casualties due to disease severity and a possible lack of efficient treatment. In this review, we assessed the recent literature on drugs under advanced clinical evaluation for COVID-19 with broad spectrum activity, including antiviral agents and HDTs, which may be relevant for future coping with BWAs, as well as with other agents, in particular respiratory infections.
Collapse
Affiliation(s)
- Ido-David Dechtman
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ran Ankory
- The Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Military Post 02149, Israel;
| | - Keren Sokolinsky
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel; (K.S.); (E.K.)
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
27
|
Wu Q, Burley G, Li L, Lin S, Shi Y. The role of dietary salt in metabolism and energy balance: Insights beyond cardiovascular disease. Diabetes Obes Metab 2023; 25:1147-1161. [PMID: 36655379 PMCID: PMC10946535 DOI: 10.1111/dom.14980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dietary salt (NaCl) is essential to an organism's survival. However, today's diets are dominated by excessive salt intake, which significantly impacts individual and population health. High salt intake is closely linked to cardiovascular disease (CVD), especially hypertension, through a number of well-studied mechanisms. Emerging evidence indicates that salt overconsumption may also be associated with metabolic disorders. In this review, we first summarize recent updates on the mechanisms of salt-induced CVD, the effects of salt reduction and the use of salt substitution as a therapy. Next, we focus on how high salt intake can impact metabolism and energy balance, describing the mechanisms through which this occurs, including leptin resistance, the overproduction of fructose and ghrelin, insulin resistance and altered hormonal factors. A further influence on metabolism worth noting is the reported role of salt in inducing thermogenesis and increasing body temperature, leading to an increase in energy expenditure. While this result could be viewed as a positive metabolic effect because it promotes a negative energy balance to combat obesity, caution must be taken with this frame of thinking given the deleterious consequences of chronic high salt intake on cardiovascular health. Nevertheless, this review highlights the importance of salt as a noncaloric nutrient in regulating whole-body energy homeostasis. Through this review, we hope to provide a scientific framework for future studies to systematically address the metabolic impacts of dietary salt and salt replacement treatments. In addition, we hope to form a foundation for future clinical trials to explore how these salt-induced metabolic changes impact obesity development and progression, and to elucidate the regulatory mechanisms that drive these changes, with the aim of developing novel therapeutics for obesity and CVD.
Collapse
Affiliation(s)
- Qi Wu
- Obesity and Metabolic Disease Research GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - George Burley
- Obesity and Metabolic Disease Research GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Li‐Cheng Li
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Shu Lin
- Obesity and Metabolic Disease Research GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Yan‐Chuan Shi
- Obesity and Metabolic Disease Research GroupGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
- School of Clinical Medicine, St Vincent's Clinical CampusFaculty of Medicine and HealthSydneyNew South WalesAustralia
| |
Collapse
|
28
|
Hasankhani A, Bahrami A, Tavakoli-Far B, Iranshahi S, Ghaemi F, Akbarizadeh MR, Amin AH, Abedi Kiasari B, Mohammadzadeh Shabestari A. The role of peroxisome proliferator-activated receptors in the modulation of hyperinflammation induced by SARS-CoV-2 infection: A perspective for COVID-19 therapy. Front Immunol 2023; 14:1127358. [PMID: 36875108 PMCID: PMC9981974 DOI: 10.3389/fimmu.2023.1127358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the lower and upper respiratory tract in humans. SARS-CoV-2 infection is associated with the induction of a cascade of uncontrolled inflammatory responses in the host, ultimately leading to hyperinflammation or cytokine storm. Indeed, cytokine storm is a hallmark of SARS-CoV-2 immunopathogenesis, directly related to the severity of the disease and mortality in COVID-19 patients. Considering the lack of any definitive treatment for COVID-19, targeting key inflammatory factors to regulate the inflammatory response in COVID-19 patients could be a fundamental step to developing effective therapeutic strategies against SARS-CoV-2 infection. Currently, in addition to well-defined metabolic actions, especially lipid metabolism and glucose utilization, there is growing evidence of a central role of the ligand-dependent nuclear receptors and peroxisome proliferator-activated receptors (PPARs) including PPARα, PPARβ/δ, and PPARγ in the control of inflammatory signals in various human inflammatory diseases. This makes them attractive targets for developing therapeutic approaches to control/suppress the hyperinflammatory response in patients with severe COVID-19. In this review, we (1) investigate the anti-inflammatory mechanisms mediated by PPARs and their ligands during SARS-CoV-2 infection, and (2) on the basis of the recent literature, highlight the importance of PPAR subtypes for the development of promising therapeutic approaches against the cytokine storm in severe COVID-19 patients.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Setare Iranshahi
- School of Pharmacy, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Farnaz Ghaemi
- Department of Biochemistry, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, School of Medicine, Amir al momenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Mohammadzadeh Shabestari
- Department of Dental Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
- Khorasan Covid-19 Scientific Committee, Mashhad, Iran
| |
Collapse
|
29
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
30
|
Jeeyavudeen MS, Chaudhari R, Pappachan JM, Fouda S. Clinical implications of COVID-19 in patients with metabolic-associated fatty liver disease. World J Gastroenterol 2023; 29:487-502. [PMID: 36688018 PMCID: PMC9850935 DOI: 10.3748/wjg.v29.i3.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
People across the world are affected by the "coronavirus disease 2019 (COVID-19)", brought on by the "SARS-CoV type-2 coronavirus". Due to its high incidence in individuals with diabetes, metabolic syndrome, and metabolic-associated fatty liver disease (MAFLD), COVID-19 has gained much attention. The metabolic syndrome's hepatic manifestation, MAFLD, carries a significant risk of type-2-diabetes. The link between the above two conditions has also drawn increasing consideration since MAFLD is intricately linked to the obesity epidemic. Independent of the metabolic syndrome, MAFLD may impact the severity of the viral infections, including COVID-19 or may even be a risk factor. An important question is whether the present COVID-19 pandemic has been fueled by the obesity and MAFLD epidemics. Many liver markers are seen elevated in COVID-19. MAFLD patients with associated comorbid conditions like obesity, cardiovascular disease, renal disease, malignancy, hypertension, and old age are prone to develop severe disease. There is an urgent need for more studies to determine the link between the two conditions and whether it might account for racial differences in the mortality and morbidity rates linked to COVID-19. The role of innate and adaptive immunity alterations in MAFLD patients may influence the severity of COVID-19. This review investigates the implications of COVID-19 on liver injury and disease severity and vice-versa. We also addressed the severity of COVID-19 in patients with prior MAFLD and its potential implications and therapeutic administration in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Sadiq Jeeyavudeen
- Department of Endocrinology and Metabolism, University Hospitals of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Rahul Chaudhari
- Department of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne VIC, Australia
| |
Collapse
|
31
|
Ming X, Cai W, Li Z, Yang X, Yang M, Pan D, Chen X. CD40LG and GZMB were correlated with adipose tissue macrophage infiltration and involved in obstructive sleep apnea related metabolic dysregulation: Evidence from bioinformatics analysis. Front Genet 2023; 14:1128139. [PMID: 36923793 PMCID: PMC10009156 DOI: 10.3389/fgene.2023.1128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman's correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman's correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications.
Collapse
Affiliation(s)
- Xiaoping Ming
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weisong Cai
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Bariatric and Metabolic Disease Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dingyu Pan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Bariatric and Metabolic Disease Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Mteremko D, Chilongola J, Paluch AS, Chacha M. Targeting human thymidylate synthase: Ensemble-based virtual screening for drug repositioning and the role of water. J Mol Graph Model 2023; 118:108348. [PMID: 36257147 DOI: 10.1016/j.jmgm.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
A drug repositioning computational approach was carried to search inhibitors for human thymidylate synthase. An ensemble-based virtual screening of FDA-approved drugs showed the drugs Imatinib, Lumacaftor and Naldemedine to be likely candidates for repurposing. The role of water in the drug-receptor interactions was revealed by the application of an extended AutoDock scoring function that included the water forcefield. The binding affinity scores when hydrated ligands were docked were improved in the drugs considered. Further binding free energy calculations based on the Molecular Mechanics Poisson-Boltzmann Surface Area method revealed that Imatinib, Lumacaftor and Naldemedine scored -130.7 ± 28.1, -210.6 ± 29.9 and -238.0 ± 25.4 kJ/mol, respectively, showing good binding affinity for the candidates considered. Overall, the analysis of the molecular dynamics trajectory of the receptor-drug complexes revealed stable structures for Imatinib, Lumacaftor and Naldemedine, for the entire simulation time.
Collapse
Affiliation(s)
- Denis Mteremko
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
| | - Jaffu Chilongola
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andrew S Paluch
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - Musa Chacha
- The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania; Arusha Technical College, Arusha, Tanzania
| |
Collapse
|
33
|
Yang J, Zhi Y, Wen S, Pan X, Wang H, He X, Lu Y, Zhu Y, Chen Y, Shi G. Characterization of dietary and herbal sourced natural compounds that modulate SEL1L-HRD1 ERAD activity and alleviate protein misfolding in the ER. J Nutr Biochem 2023; 111:109178. [PMID: 36228974 DOI: 10.1016/j.jnutbio.2022.109178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Dysregulated production of peptide hormones is the key pathogenic factor of various endocrine diseases. Endoplasmic reticulum (ER) associated degradation (ERAD) is a critical machinery in maintaining ER proteostasis in mammalian cells by degrading misfolded proteins. Dysfunction of ERAD leads to maturation defect of many peptide hormones, such as provasopressin (proAVP), which results in the occurrence of Central Diabetes Insipidus. However, drugs targeting ERAD to regulate the production of peptide hormones are very limited. Herbal products provide not only nutritional sources, but also alternative therapeutics for chronic diseases. Virtual screening provides an effective and high-throughput strategy for identifying protein structure-based interacting compounds extracted from a variety of dietary or herbal sources, which could be served as (pro)drugs for preventing or treating endocrine diseases. Here, we performed a virtual screening by directly targeting SEL1L of the most conserved SEL1L-HRD1 ERAD machinery. Further, we analyzed 58 top-ranked compounds and demonstrated that Cryptochlorogenic acid (CCA) showed strong affinity with the binding pocket of SEL1L with HRD1. Through structure-based docking, protein expression assays, and FACS analysis, we revealed that CCA enhanced ERAD activity and promoted the degradation of misfolded proAVP, thus facilitated the secretion of well-folded proAVP. These results provide us with insights into drug discovery strategies targeting ER protein homeostasis, as well as candidate compounds for treating hormone-related diseases.
Collapse
Affiliation(s)
- Jifeng Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Zhi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyi Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuya Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Lu
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Rawat S, Gilhotra R, Singh SK, Bhat AA, Ojha A, Dhaundhiyal K, Dhramshaktu IS, Gupta G. Epigenetics of SARS-CoV2 (COVID-19). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:199-208. [DOI: 10.1007/978-981-99-4780-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Zheng W, Zeng Z, Lin S, Hou P. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell Biosci 2022; 12:165. [PMID: 36182930 PMCID: PMC9526459 DOI: 10.1186/s13578-022-00899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Since an outbreak started in China in 2019, coronavirus disease 2019 (COVID-19) has rapidly become a worldwide epidemic with high contagiousness and caused mass mortalities of infected cases around the world. Currently, available treatments for COVID-19, including supportive care, respiratory support and antiviral therapy, have shown limited efficacy. Thus, more effective therapeutic modalities are highly warranted. Drug repurposing, as an efficient strategy to explore a potential broader scope of the application of approved drugs beyond their original indications, accelerates the process of discovering safe and effective agents for a given disease. Since the outbreak of COVID-19 pandemic, drug repurposing strategy has been widely used to discover potential antiviral agents, and some of these drugs have advanced into clinical trials. Antitumor drugs compromise a vast variety of compounds and exhibit extensive mechanism of action, showing promising properties in drug repurposing. In this review, we revisit the potential value of antitumor drugs in the treatment of COVID-19 and systematically discuss their possible underlying mechanisms of the antiviral actions.
Collapse
Affiliation(s)
- Wenfang Zheng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Zekun Zeng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Shumei Lin
- grid.452438.c0000 0004 1760 8119Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
36
|
Chen P, Liu C, Zhang Z, Li Z, Chen S, Lu Y. Protocol for high-throughput screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications. STAR Protoc 2022; 3:101641. [PMID: 36035796 PMCID: PMC9350712 DOI: 10.1016/j.xpro.2022.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Drug repositioning represents a cost- and time-efficient strategy for drug development. Here, we present a workflow of in silico screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications. By using structure-based virtual screening and signature-based off-target effect identification via the Connectivity Map database, we provide a ranked list of the repositioning candidates as potential ACE2 enzymatic activators to ameliorate COVID-19-induced metabolic complications. The workflow can also be applied to other diseases with ACE2 as a potential target. For complete details on the use and execution of this protocol, please refer to Li et al. (2022). Structure-based high-throughput virtual screening for ACE2 enzymatic activators Signature-based drug repositioning for COVID-19-induced metabolic complications Workflow applicable for other diseases with ACE2 as a potential target
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
37
|
Gang J, Wang H, Xue X, Zhang S. Microbiota and COVID-19: Long-term and complex influencing factors. Front Microbiol 2022; 13:963488. [PMID: 36033885 PMCID: PMC9417543 DOI: 10.3389/fmicb.2022.963488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the World Health Organization statistics, more than 500 million individuals have been infected and more than 6 million deaths have resulted worldwide. Although COVID-19 mainly affects the respiratory system, considerable evidence shows that the digestive, cardiovascular, nervous, and reproductive systems can all be involved. Angiotensin-converting enzyme 2 (AEC2), the target of SARS-CoV-2 invasion of the host is mainly distributed in the respiratory and gastrointestinal tract. Studies found that microbiota contributes to the onset and progression of many diseases, including COVID-19. Here, we firstly conclude the characterization of respiratory, gut, and oral microbial dysbiosis, including bacteria, fungi, and viruses. Then we explore the potential mechanisms of microbial involvement in COVID-19. Microbial dysbiosis could influence COVID-19 by complex interactions with SARS-CoV-2 and host immunity. Moreover, microbiota may have an impact on COVID-19 through their metabolites or modulation of ACE2 expression. Subsequently, we generalize the potential of microbiota as diagnostic markers for COVID-19 patients and its possible association with post-acute COVID-19 syndrome (PACS) and relapse after recovery. Finally, we proposed directed microbiota-targeted treatments from the perspective of gut microecology such as probiotics and prebiotics, fecal transplantation and antibiotics, and other interventions such as traditional Chinese medicine, COVID-19 vaccines, and ACE2-based treatments.
Collapse
Affiliation(s)
- Jiaqi Gang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangsheng Xue
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Shu Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Chen H, Chen Q. COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. Int J Biol Sci 2022; 18:4756-4767. [PMID: 35874945 PMCID: PMC9305262 DOI: 10.7150/ijbs.72461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an ongoing global health pandemic. Since 2019, the pandemic continues to cast a long shadow on all aspects of our lives, bringing huge health and economic burdens to all societies. With our in-depth understanding of COVID-19, from the initial respiratory tract to the later gastrointestinal tract and cardiovascular systems, the multiorgan involvement of this infectious disease has been discovered. Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named nonalcoholic fatty liver disease (NAFLD), is a major health issue closely related to metabolic dysfunctions, affecting a quarter of the world's adult population. The association of COVID-19 with MAFLD has received increasing attention, as MAFLD is a potential risk factor for SARS-CoV-2 infection and severe COVID-19 symptoms. In this review, we provide an update on the interactions between COVID-19 and MAFLD and its underlying mechanisms.
Collapse
Affiliation(s)
- Hanfei Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
39
|
Gao X, Zhang S, Gou J, Wen Y, Fan L, Zhou J, Zhou G, Xu G, Zhang Z. Spike-mediated ACE2 down-regulation involved in the pathogenesis of SARS-CoV-2 infection. J Infect 2022; 85:418-427. [PMID: 35793758 PMCID: PMC9250808 DOI: 10.1016/j.jinf.2022.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
The ongoing global pandemic of Coronavirus disease 2019 (COVID-19) poses a serious threat to human health, with patients reportedly suffering from thrombus, vascular injury and coagulation in addition to acute and diffuse lung injury and respiratory diseases. Angiotensin converting enzyme 2 (ACE2) as the receptor for SARS-CoV-2 entry, is also an important regulator of renin-angiotensin system (RAS) homeostasis, which plays an unsettled role in the pathogenesis of COVID-19. Here, we demonstrated that SARS-CoV-2 Spike protein activated intracellular signals to degrade ACE2 mRNA. The decrease of ACE2 and higher level of angiotensin (Ang) II were verified in COVID-19 patients. High dose of Ang II induced pulmonary artery endothelial cell death in vitro, which was also observed in the lung of COVID-19 patients. Our finding indicates that the downregulation of ACE2 potentially links COVID-19 to the imbalance of RAS.
Collapse
Affiliation(s)
- Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Jizhou Gou
- Department for Pathology, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanling Wen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Guangde Zhou
- Department for Pathology, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China; Guangdong Key laboratory for anti-infection Drug Quality Evaluation, Shenzhen, Guangdong 518112, China; Shenzhen Research Center for Communicable Disease Diagnosis, Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong 518112, China.
| |
Collapse
|
40
|
Shen Q, He Q, Pan Y, Sun C. Detection, identification, characterization, and HPLC quantification of five impurities from a methazolamide product. J Sep Sci 2022; 45:3128-3138. [PMID: 35691018 DOI: 10.1002/jssc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/14/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Methazolamide is an important carbonic anhydrase inhibitor and is mainly used for the treatment of glaucoma. Studies are extremely rare regarding the impurities in methazolamide products. In this work, the HPLC/HPLC-MS methods were established for the analysis of impurities in methazolamide products. Five impurities (A, B, C, D and E) were detected using the established HPLC/HPLC-MS methods. Of these impurities, impurities A, B, and D are known compounds, and impurities C and E are novel compounds that have never been reported before. The identities of impurities A, B, D, and E were recognized by comparing their retention times and mass spectra with those of synthesized standard compounds under the same HPLC-MS conditions. Moreover, the structures of impurities C and E were characterized using a variety of analytical techniques including multidimensional nuclear magnetic resonance spectroscopy, Fourier transforming infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and high-resolution quadrupole time-of-flight mass spectrometry. All of the five impurities are structural analogs of methazolamide. The formation mechanisms of these impurities were discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qirong Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Hangzhou Qianyuan Pollen Pharmaceutical CO., LTD., Hangzhou, Zhejiang, 310018, China
| | - Quan He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|