1
|
Osorio JC, Armijo A, Carvajal FJ, Corvalán AH, Castillo A, Fuentes-Pananá EM, Moreno-León C, Romero C, Aguayo F. Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells 2024; 13:1578. [PMID: 39329759 PMCID: PMC11430695 DOI: 10.3390/cells13181578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is involved in the development of lymphomas, nasopharyngeal carcinomas (NPC), and a subgroup of gastric carcinomas (GC), and has also been detected in lung carcinomas, even though the role of the virus in this malignancy has not yet been established. BamH1-A Rightward Frame 1 (BARF1), a suggested exclusive epithelial EBV oncoprotein, is detected in both EBV-associated GCs (EBVaGC) and NPC. The expression and role of BARF1 in lung cancer is unknown. METHODS A total of 158 lung carcinomas including 80 adenocarcinomas (AdCs) and 78 squamous cell carcinomas (SQCs) from Chilean patients were analyzed for EBV presence via polymerase chain reaction (PCR), Immunohistochemistry (IHC), or chromogenic in situ hybridization (CISH). The expression of BARF1 was evaluated using Reverse Transcription Real-Time PCR (RT-qPCR). Additionally, A549 and BEAS-2B lung epithelial cells were transfected with a construct for ectopic BARF1 expression. Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were evaluated. RESULTS We found that EBV was present in 37 out of 158 (23%) lung carcinomas using PCR. Considering EBV-positive specimens using PCR, IHC for Epstein-Barr nuclear antigen 1 (EBNA1) detected EBV in 24 out of 30 (80%) cases, while EBERs were detected using CISH in 13 out of 16 (81%) cases. Overall, 13 out of 158 (8%) lung carcinomas were shown to be EBV-positive using PCR/IHC/CISH. BARF1 transcripts were detected in 6 out of 13 (46%) EBV-positive lung carcinomas using RT qPCR. Finally, lung cells ectopically expressing BARF1 showed increased migration, invasion, and EMT. CONCLUSIONS EBV is frequently found in lung carcinomas from Chile with the expression of BARF1 in a significant subset of cases, suggesting that this viral protein may be involved in EBV-associated lung cancer progression.
Collapse
Affiliation(s)
- Julio C. Osorio
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Alvaro Armijo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco J. Carvajal
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Alejandro H. Corvalán
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Andrés Castillo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760032, Colombia;
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Carolina Moreno-León
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| |
Collapse
|
2
|
Wang D, Chen H, Zhao C, Song H, Zhang J, Zhao F, Liang J, Xu W, Tang Y, Xu X. The impact of neutrophil count on the results of metagenomic next-generation sequencing in immunocompromised febrile children. Heliyon 2024; 10:e32816. [PMID: 38975197 PMCID: PMC11226820 DOI: 10.1016/j.heliyon.2024.e32816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) has revolutionized the detection of pathogens, particularly in immunocompromised individuals such as pediatric patients undergoing intensive chemotherapy and hematopoietic stem cell transplantation. This study aims to explore the impact of neutrophil count on the diagnostic efficacy of mNGS in diagnosing infections in pediatric patients with febrile diseases. We conducted a retrospective analysis of pediatric patients with febrile diseases in the hematology/oncology department from January 2019 to September 2022. The study included 387 patients with 516 febrile episodes. Analyzing data from 516 pediatric cases, our study found that 70.7 % had febrile neutropenia (FN) and 29.3 % had febrile without neutropenia (FWN). mNGS demonstrated a high positive detection rate of 84.9 %, compared to 29.7 % for conventional microbiological tests (CMT). While the positive detection rates of mNGS were similar in both FN and FWN groups, bacterial pathogens were more frequently detected in FN patients. Furthermore, the rate of identifying a "probable" microbial etiology was lower in the FN group (46.8 %) compared to the FWN group (65.6 %, p<0.001). When analyzing the types of organisms and specimens, the "probable" identification rates were particularly lower for viruses and fungi detected by mNGS, as well as in blood and nasopharyngeal swab samples. These findings underscore the significant influence of neutrophil counts on mNGS results in pediatric febrile patients and highlight the necessity for tailored diagnostic approaches in this population.
Collapse
Affiliation(s)
- Di Wang
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Haipin Chen
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
| | - Cheng Zhao
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
| | - Hua Song
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Jingying Zhang
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Fenying Zhao
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Juan Liang
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Weiqun Xu
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| | - Xiaojun Xu
- Division/Center of Pediatric Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, PR China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, PR China
| |
Collapse
|
3
|
Conradie T, Caparros-Martin JA, Egan S, Kicic A, Koks S, Stick SM, Agudelo-Romero P. Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories. Viruses 2024; 16:953. [PMID: 38932245 PMCID: PMC11209621 DOI: 10.3390/v16060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.
Collapse
Affiliation(s)
- Talya Conradie
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | | | - Siobhon Egan
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Future Institute, Murdoch University, Perth, WA 6150, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
- School of Population Health, Curtin University, Perth, WA 6102, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Stephen M. Stick
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- European Virus Bioinformatics Centre, Friedrich-Schiller-Universitat Jena, 07737 Jena, Germany
| |
Collapse
|
4
|
Sulaiman A, Isah MA, Usman A. An assessment of the index of rational drug prescribing for severe acute respiratory infections among hospitalised children in Northern Nigeria: a retrospective study. Expert Rev Anti Infect Ther 2024; 22:479-486. [PMID: 38334431 DOI: 10.1080/14787210.2024.2307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND This study evaluated drug use pattern among hospitalized children with severe acute respiratory infection (SARI) in Nigeria. RESEARCH DESIGN AND METHODS A retrospective assessment of prescribed medicines for children aged 13 years and below who were admitted and treated for SARI from 1 January 2016 to 31 December 2018 was conducted. The WHO prescribing indicators and the Index of Rational Drug Prescribing were used to evaluate prescriptions. RESULTS A total of 259 patients were included, mostly diagnosed with bronchopneumonia (56%). A summary of WHO-core prescribing indicators showed the average number of drugs per encounter was 3.9, medicines prescribed by generic name was 82.1%, and an encounter with at least an antibiotic was 99.7%. The percentage of drugs prescribed from the Essential Medicine List for children was 79%. The most frequently prescribed pharmacological class of medicines was antibiotics (41.4%). Cephalosporins (40.0%), aminoglycosides (34.1%), and penicillins (21.5%) were the most commonly prescribed antibiotic classes. Gentamicin (34.1%) and cefuroxime (21.5%) were the most commonly prescribed antibiotics. CONCLUSIONS Drug prescribing for hospitalized children with SARI was suboptimal, especially with regard to polypharmacy, antibiotics, and injection use. Interventions to promote rational use of medicines including antimicrobial stewardship interventions are recommended.
Collapse
Affiliation(s)
- Aliyu Sulaiman
- Pharmacy Department, Federal Medical Centre, Bida, Nigeria
| | - Mohammad Alfa Isah
- Hospital Management Board, Niger State Ministry of Health, Minna, Nigeria
| | - Abubakar Usman
- Department of Clinical Pharmacy and Practice, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Kaszab E, Bali K, Marton S, Ursu K, Farkas SL, Fehér E, Domán M, Martella V, Bányai K. Metagenomic Identification of Novel Eukaryotic Viruses with Small DNA Genomes in Pheasants. Animals (Basel) 2024; 14:237. [PMID: 38254406 PMCID: PMC10812470 DOI: 10.3390/ani14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A panel of intestinal samples collected from common pheasants (Phasianus colchicus) between 2008 and 2017 was used for metagenomic investigation using an unbiased enrichment protocol and different bioinformatic pipelines. The number of sequence reads in the metagenomic analysis ranged from 1,419,265 to 17,507,704 with a viral sequence read rate ranging from 0.01% to 59%. When considering the sequence reads of eukaryotic viruses, RNA and DNA viruses were identified in the samples, including but not limited to coronaviruses, reoviruses, parvoviruses, and CRESS DNA viruses (i.e., circular Rep-encoding single-stranded DNA viruses). Partial or nearly complete genome sequences were reconstructed of at least three different parvoviruses (dependoparvovirus, aveparvovirus and chaphamaparvovirus), as well as gyroviruses and diverse CRESS DNA viruses. Generating information of virus diversity will serve as a basis for developing specific diagnostic tools and for structured epidemiological investigations, useful to assess the impact of these novel viruses on animal health.
Collapse
Affiliation(s)
- Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Bali
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
| | - Szilvia Marton
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary;
| | - Szilvia L. Farkas
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
| | - Marianna Domán
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (E.K.); (K.B.); (S.M.); (E.F.); (M.D.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
8
|
Evaluation of extraction and enrichment methods for recovery of respiratory RNA viruses in a metagenomics approach. J Virol Methods 2023; 314:114677. [PMID: 36657602 PMCID: PMC10009504 DOI: 10.1016/j.jviromet.2023.114677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Viral metagenomics is increasingly applied in viral detection and virome characterization. Different extraction and enrichment techniques may be adopted, however, reports on their effective influence on viral recovery is often conflicting. Using a three step enrichment steps, the effect of three extraction kits and the influence of DNase treatment with or without rRNA removal for respiratory RNA virus recovery from nasopharyngeal swab samples was evaluated. The viral cocktail containing six different RNA viruses pooled in equal volume were subjected to the different extraction and enrichment methods, sequenced using the Illumina MiSeq, and analysed using Genome Detective. The PureLink® Viral RNA/DNA Mini Kit (PureLink) was highly efficient with better recovery of all the viral agents in the cocktail. The use of rRNA treatment resulted in increased viral recovery with PureLink and QIAamp® Viral RNA Mini kit, while having comparable recovery rate as DNase only with the QIAamp® MinElute Virus Spin Kit. The observed low reads and genome coverage of some of the viruses could be attributed to their low abundance. Depending on sample matrix, extraction choice and enrichment strategy may influence recovery of respiratory RNA virus in metagenomics studies, therefore individual evaluation and adoption may be necessary for a robust result.
Collapse
|
9
|
Zhao L, Luo JL, Ali MK, Spiekerkoetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. Am J Respir Cell Mol Biol 2023; 68:245-255. [PMID: 36476129 PMCID: PMC9989478 DOI: 10.1165/rcmb.2022-0208tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.
Collapse
Affiliation(s)
- Lan Zhao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mohammed Khadem Ali
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| |
Collapse
|
10
|
The Lung Microbiome: A New Frontier for Lung and Brain Disease. Int J Mol Sci 2023; 24:ijms24032170. [PMID: 36768494 PMCID: PMC9916971 DOI: 10.3390/ijms24032170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Due to the limitations of culture techniques, the lung in a healthy state is traditionally considered to be a sterile organ. With the development of non-culture-dependent techniques, the presence of low-biomass microbiomes in the lungs has been identified. The species of the lung microbiome are similar to those of the oral microbiome, suggesting that the microbiome is derived passively within the lungs from the oral cavity via micro-aspiration. Elimination, immigration, and relative growth within its communities all contribute to the composition of the lung microbiome. The lung microbiome is reportedly altered in many lung diseases that have not traditionally been considered infectious or microbial, and potential pathways of microbe-host crosstalk are emerging. Recent studies have shown that the lung microbiome also plays an important role in brain autoimmunity. There is a close relationship between the lungs and the brain, which can be called the lung-brain axis. However, the problem now is that it is not well understood how the lung microbiota plays a role in the disease-specifically, whether there is a causal connection between disease and the lung microbiome. The lung microbiome includes bacteria, archaea, fungi, protozoa, and viruses. However, fungi and viruses have not been fully studied compared to bacteria in the lungs. In this review, we mainly discuss the role of the lung microbiome in chronic lung diseases and, in particular, we summarize the recent progress of the lung microbiome in multiple sclerosis, as well as the lung-brain axis.
Collapse
|
11
|
Ogunbayo AE, Mogotsi MT, Sondlane H, Nkwadipo KR, Sabiu S, Nyaga MM. Metagenomic Analysis of Respiratory RNA Virome of Children with and without Severe Acute Respiratory Infection from the Free State, South Africa during COVID-19 Pandemic Reveals Higher Diversity and Abundance in Summer Compared with Winter Period. Viruses 2022; 14:2516. [PMID: 36423125 PMCID: PMC9692838 DOI: 10.3390/v14112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Viral respiratory infections contribute to significant morbidity and mortality in children. Currently, there are limited reports on the composition and abundance of the normal commensal respiratory virome in comparison to those in severe acute respiratory infections (SARIs) state. This study characterised the respiratory RNA virome in children ≤ 5 years with (n = 149) and without (n = 139) SARI during the summer and winter of 2020/2021 seasons in South Africa. Nasopharyngeal swabs were, collected, pooled, enriched for viral RNA detection, sequenced using Illumina MiSeq, and analysed using the Genome Detective bioinformatic tool. Overall, Picornaviridae, Paramoxyviridae, Pneumoviridae, Picobirnaviridae, Totiviridae, and Retroviridae families were the most abundant viral population in both groups across both seasons. Human rhinovirus and endogenous retrovirus K113 were detected in most pools, with exclusive detection of Pneumoviridae in SARI pools. Generally, higher viral diversity/abundance was seen in children with SARI and in the summer pools. Several plant/animal viruses, eukaryotic viruses with unclear pathogenicity including a distinct rhinovirus A type, were detected. This study provides remarkable data on the respiratory RNA virome in children with and without SARI with a degree of heterogeneity of known viruses colonizing their respiratory tract. The implication of the detected viruses in the dynamics/progression of SARI requires further investigations.
Collapse
Affiliation(s)
- Ayodeji E. Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kelebogile R. Nkwadipo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
12
|
Progress in the application of metagenomic next-generation sequencing in pediatric infectious diseases. Pediatr Neonatol 2022; 63:445-451. [PMID: 35810069 DOI: 10.1016/j.pedneo.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases are the major cause of children's deaths all over the world. With the development of evidence-based medicine, etiological diagnosis becomes more and more important. Since traditional methods have been unable to meet the needs of diagnosis and treatment, metagenomic next-generation sequencing (mNGS) gradually shows its unique advantages for pathogen diagnosis. This article aimed to introduce the application of mNGS technology in the diagnosis and treatment of neonatal and puerile infectious diseases by providing some examples.
Collapse
|
13
|
Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review. Microorganisms 2022; 10:microorganisms10071405. [PMID: 35889124 PMCID: PMC9320618 DOI: 10.3390/microorganisms10071405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
The nasal region is one of the distinct environments for the survival of various microbiota. The human microbial niche begins to inhabit the human body right from birth, and the microbiota survive as commensals or opportunistic pathogens throughout the life of humans in their bodies in various habitats. These microbial communities help to maintain a healthy microenvironment by preventing the attack of pathogens and being involved in immune regulation. Any dysbiosis of microbiota residing in the mucosal surfaces, such as the nasal passages, guts, and genital regions, causes immune modulation and severe infections. The coexistence of microorganisms in the mucosal layers of respiratory passage, resulting in infections due to their co-abundance and interactions, and the background molecular mechanisms responsible for such interactions, need to be considered for investigation. Additional clinical evaluations can explain the interactions among the nasal microbiota, nasal dysbiosis and neurodegenerative diseases (NDs). The respiratory airways usually act as a substratum place for the microbes and can act as the base for respiratory tract infections. The microbial metabolites and the microbes can cross the blood–brain barrier and may cause NDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and multiple sclerosis (MS). The scientific investigations on the potential role of the nasal microbiota in olfactory functions and the relationship between their dysfunction and neurological diseases are limited. Recently, the consequences of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in patients with neurological diseases are under exploration. The crosstalk between the gut and the nasal microbiota is highly influential, because their mucosal regions are the prominent microbial niche and are connected to the olfaction, immune regulation, and homeostasis of the central nervous system. Diet is one of the major factors, which strongly influences the mucosal membranes of the airways, gut, and lung. Unhealthy diet practices cause dysbiosis in gut microbiota and the mucosal barrier. The current review summarizes the interrelationship between the nasal microbiota dysbiosis, resulting olfactory dysfunctions, and the progression of NDs during aging and the involvement of coronavirus disease 2019 in provoking the NDs.
Collapse
|
14
|
Porto BN. Insights Into the Role of the Lung Virome During Respiratory Viral Infections. Front Immunol 2022; 13:885341. [PMID: 35572506 PMCID: PMC9091589 DOI: 10.3389/fimmu.2022.885341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The virome constitutes the viral component of the microbiome and it consists of the genomes of all the viruses that inhabit a particular region of the human body, including those that cause acute, persistent or latent infection, and retroviral elements integrated to host chromosomes. The human virome is composed by eukaryotic viruses, bacteriophages and archaeal viruses. The understanding of the virome composition and role on human health has been delayed by the absence of specific tools and techniques to accurately characterize viruses. However, more recently, advanced methods for viral diagnostics, such as deep sequencing and metagenomics, have allowed a better understanding of the diverse viral species present in the human body. Previous studies have shown that the respiratory virome modulates the host immunity and that, since childhood, the human lung is populated by viruses for whom there is no disease association. Whether these viruses are potentially pathogenic and the reason for their persistence remain elusive. Increased respiratory viral load can cause exacerbation of chronic pulmonary diseases, including COPD, cystic fibrosis, and asthma. Moreover, the presence of resident viral populations may contribute to the pathogenesis of community-acquired respiratory virus infections. In this mini review, I will discuss the recent progress on our understanding of the human lung virome and summarize the up-to-date knowledge on the relationships among community-acquired respiratory viruses, the lung virome and the immune response to better understand disease pathophysiology and the factors that may lead to viral persistence.
Collapse
Affiliation(s)
- Bárbara N Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Bal A, Destras G, Sabatier M, Pichon M, Regue H, Oriol G, Gillet Y, Lina B, Brengel-Pesce K, Josset L, Morfin F. Metagenomic Analysis Reveals High Abundance of Torque Teno Mini Virus in the Respiratory Tract of Children with Acute Respiratory Illness. Viruses 2022; 14:955. [PMID: 35632697 PMCID: PMC9143613 DOI: 10.3390/v14050955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/30/2023] Open
Abstract
Human Anelloviridae is a highly prevalent viral family, including three main genera—Alphatorquevirus (Torque teno virus, TTV), Betatorquevirus (Torque teno mini virus, TTMV), and Gammatorquevirus (Torque teno midi virus, TTMDV). To date, the characterization of Anelloviridae in the respiratory tract of children with acute respiratory infection (ARI) has been poorly reported and mainly focused on TTV. We performed a metagenomic analysis of eight respiratory samples collected from children with an ARI of unknown etiology (eight samples tested negative with a multiplex PCR assay, out of the 39 samples initially selected based on negative routine diagnostic testing). A total of 19 pediatric respiratory samples that tested positive for respiratory syncytial virus (RSV, n = 13) or influenza virus (n = 6) were also sequenced. Anelloviridae reads were detected in 16/27 samples, including 6/8 negative samples, 7/13 RSV samples and 3/6 influenza samples. For samples with a detection of at least one Anelloviridae genus, TTMV represented 87.1 (66.1−99.2)% of Anelloviridae reads, while TTV and TTMDV represented 0.8 (0.0−9.6)% and 0.7 (0.0−7.1)%, respectively (p < 0.001). Our findings highlight a high prevalence of TTMV in respiratory samples of children with an ARI of unknown etiology, as well as in samples with an RSV or influenza infection. Larger studies are needed to explore the role of TTMV in childhood respiratory diseases.
Collapse
Affiliation(s)
- Antonin Bal
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| | - Gregory Destras
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| | - Marina Sabatier
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
| | - Maxime Pichon
- Bacteriology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France;
- Inserm U1070 Pharmacology of Antimicrobial Agents and Resistance, University of Poitiers, 86073 Poitiers, France
| | - Hadrien Regue
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| | - Guy Oriol
- Laboratoire Commun de Recherche HCL-bioMerieux, Centre Hospitalier Lyon Sud, 69495 Pierre-Bénite, France; (G.O.); (K.B.-P.)
| | - Yves Gillet
- Hospices Civils de Lyon, Urgences Pédiatriques, Hôpital Femme Mère Enfant, 69500 Bron, France;
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| | - Karen Brengel-Pesce
- Laboratoire Commun de Recherche HCL-bioMerieux, Centre Hospitalier Lyon Sud, 69495 Pierre-Bénite, France; (G.O.); (K.B.-P.)
| | - Laurence Josset
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| | - Florence Morfin
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire Associé au Centre National de Référence des Virus des Infections Respiratoires, Hospices Civils de Lyon, 69004 Lyon, France; (A.B.); (G.D.); (M.S.); (B.L.)
- Univ Lyon, Université Lyon 1, CIRI, Inserm U1111 CNRS UMR5308, Virpath, 69007 Lyon, France
- GenEPII Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France;
| |
Collapse
|
16
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
17
|
Zhang L, Zhao L, Zhang Z, Hong W, Wang J, Qiu S, Yang H, Gan M, Sun J, Zhao J, Wang Y, Zhao J, Zhang F. Genetic and pathogenicity diversity of dengue virus type 2 strains circulating in Guangdong, China. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
18
|
Arunasri K, Sai Prashanthi G, Tyagi M, Pappuru RR, Shivaji S. Intraocular Viral Communities Associated With Post-fever Retinitis. Front Med (Lausanne) 2021; 8:724195. [PMID: 34869420 PMCID: PMC8639604 DOI: 10.3389/fmed.2021.724195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
The virome of ocular fluids is naive. The results of this study highlight the virome in the vitreous fluid of the eye of individuals without any ocular infection and compare it with the virome of the vitreous fluid of individuals with retinitis. A total of 1,016,037 viral reads were generated from 25 vitreous fluid samples comprising control and post-fever retinitis (PFR) samples. The top 10 viral families in the vitreous fluids comprised of Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae, Poxviridae, Iridoviridae, Podoviridae, Retroviridae, Baculoviridae, and Flaviviridae. Principal coordinate analysis and heat map analysis clearly discriminated the virome of the vitreous fluid of the controls from that of the PFR virome. The abundance of 10 viral genera increased significantly in the vitreous fluid virome of the post-fever retinitis group compared with the control group. Genus Lymphocryptovirus, comprising the human pathogen Epstein-Barr virus (EBV) that is also implicated in ocular infections was significantly abundant in eight out of the nine vitreous fluid viromes of post-fever retinitis group samples compared with the control viromes. Human viruses, such as Hepacivirus, Circovirus, and Kobuvirus, were also significantly increased in abundance in the vitreous fluid viromes of post-fever retinitis group samples compared with the control viromes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis and the network analysis depicted an increase in the immune response by the host in the post-fever retinitis group compared with the control group. All together, the results of the study indicate changes in the virome in the vitreous fluid of patients with the post-fever retinitis group compared to the control group.
Collapse
Affiliation(s)
- Kotakonda Arunasri
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Mudit Tyagi
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, India
| | - Rajeev R. Pappuru
- Smt. Kanuri Santhamma Center for Vitreo Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, India
| | - Sisinthy Shivaji
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
19
|
Chong YM, Chan YF, Jamaluddin MFH, Hasan MS, Pang YK, Ponnampalavanar S, Syed Omar SF, Voon KGL, Sam IC. Detection of respiratory viruses in adults with suspected COVID-19 in Kuala Lumpur, Malaysia. J Clin Virol 2021; 145:105000. [PMID: 34739838 PMCID: PMC8526124 DOI: 10.1016/j.jcv.2021.105000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
Background Reports of co-circulation of respiratory viruses during the COVID-19 pandemic and co-infections with SARS-CoV-2 vary. However, limited information is available from developing countries. Objectives We aimed to investigate the incidence of respiratory viruses in adult patients with suspected COVID-19 in Kuala Lumpur, Malaysia. Study Design We collected 198 respiratory samples from adult patients hospitalized with suspected COVID-19 in a single teaching hospital in Kuala Lumpur in February-May 2020 and tested combined oro-nasopharyngeal swabs with the NxTAG Respiratory Pathogen Panel (Luminex) and Allplex RV Essential (Seegene) assays. Forty-five negative samples further underwent viral metagenomics analysis. Results Of the 198 samples, 74 (37.4%) had respiratory pathogens, including 56 (28.3%) with SARS-CoV-2 and 18 (9.1%) positive for other respiratory pathogens. There were five (2.5%) SARS-CoV-2 co-infections, all with rhinovirus/enterovirus. Three samples (6.7%; 3/45) had viruses identified by metagenomics, including one case of enterovirus D68 and one of Saffold virus genotype 6 in a patient requiring ICU care. Most of the COVID-19 patients (91.1%; 51/56) had mild symptoms but 5.4% (3/56) died. Conclusion During the early COVID-19 period, common respiratory viruses other than SARS-CoV-2 only accounted for 9.1% of hospitalization cases with ARI and co-infections with SARS-CoV-2 were rare. Continued surveillance is important to understand the impact of COVID-19 and its associated public health control measures on circulation of other respiratory viruses. Metagenomics can identify unexpected or rare pathogens, such as Saffold virus, which is rarely described in adults.
Collapse
Affiliation(s)
- Yoong Min Chong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - M Shahnaz Hasan
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yong Kek Pang
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Kenny Gah Leong Voon
- Division of Pathology, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Medical Microbiology, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Abstract
The nasopharyngeal microbiome is a dynamic microbial interface of the aerodigestive tract, and a diagnostic window in the fight against respiratory infections and antimicrobial resistance. As its constituent bacteria, viruses and mycobacteria become better understood and sampling accuracy improves, diagnostics of the nasopharynx could guide more personalized care of infections of surrounding areas including the lungs, ears and sinuses. This review will summarize the current literature from a clinical perspective and highlight its growing importance in diagnostics and infectious disease management.
Collapse
Affiliation(s)
- Matthew Flynn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Otolaryngology Department, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - James Dooley
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
21
|
Iorio A, Biazzo M, Gardini S, Muda AO, Perno CF, Dallapiccola B, Putignani L. Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol 2021; 30:34-46. [PMID: 34052095 DOI: 10.1016/j.tim.2021.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A comprehensive understanding of the microbiome-host relationship in respiratory diseases can be elucidated by exploring the landscape of virome-bacteriome-host metabolome data through unsupervised 'multi-omics' approaches. Here, we describe how the composition and function of airway and gut virome and bacteriome may contribute to pathogen establishment and propagation in airway districts and how the virome-bacteriome communities may react to respiratory diseases. A new systems medicine approach, including the characterization of respiratory and gut microbiome, may be crucial to demonstrate the likelihood and odds of respiratory disease pathophysiology, opening new avenues to the discovery of a chain of causation for key bacteria and viruses in disease severity.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuele Biazzo
- The BioArte Ltd, The Victoria Centre, Mosta, Malta; SienaBioActive, University of Siena, Siena, Italy
| | | | - Andrea Onetti Muda
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Unit of Microbiology and Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Children's Hospital and Research Institute 'Bambino Gesù', IRCCS, Rome
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
22
|
Al Bataineh MT, Hamoudi RA, Dash NR, Ramakrishnan RK, Almasalmeh MA, Sharif HA, Al-Hajjaj MS, Hamid Q. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC Infect Dis 2020; 20:697. [PMID: 32962658 PMCID: PMC7510324 DOI: 10.1186/s12879-020-05427-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota of the respiratory tract has an important role in maintaining respiratory health. However, little is known on the respiratory microbiota in asthmatic patients among Middle Eastern populations. This study investigated the respiratory microbiota composition and functionality associated with asthma in Emirati subjects. Methods We performed 16S rRNA and ITS2-gene based microbial profiling of 40 expectorated sputum samples from adult and pediatric Emirati individuals averaging 52 and 7 years of age, respectively with or without asthma. Results We report bacterial difference belonging to Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria phyla between asthmatic and non-asthmatic controls. Similarly, fungal difference belonging to Ascomycota, Basidiomycota phyla and other unclassified fungi. Differential abundance testing among asthmatic individuals with relation to Asthma Control Test show a significant depletion of Penicillium aethiopicum and Alternaria spp., among poorly controlled asthmatics. Moreover, data suggest a significant expansion of Malassezia spp. and other unclassified fungi in the airways of those receiving steroids and leukotriene receptor antagonists’ combination therapy, in contrast to those receiving steroids alone. Functional profiling from 16S data showed marked differences between pediatric asthmatic and non-asthmatic controls, with pediatric asthmatic patients showing an increase in amino acid (p-value < 5.03 × 10− 7), carbohydrate (p-value < 4.76 × 10− 7), and fatty acid degradation (p-value < 6.65 × 10− 7) pathways, whereas non-asthmatic controls are associated with increase in amino acid (p-value < 8.34 × 10− 7), carbohydrate (p-value < 3.65 × 10− 7), and fatty acid (p-value < 2.18 × 10− 6) biosynthesis pathways in concordance with enterotype composition. Conclusions These differences provide an insight into respiratory microbiota composition in Emirati population and its possible role in the development of asthma early in life. This study provides important information that may eventually lead to the development of screening biomarkers to predict early asthma development and novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad T Al Bataineh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates. .,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Rifat A Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Nihar R Dash
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Hanan A Sharif
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohamed S Al-Hajjaj
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
24
|
Li Y, Liu H, Xu Q, Wu R, Zhang Y, Li N, He X, Yang M, Liang M, Ma X. OASL as a Diagnostic Marker for Influenza Infection Revealed by Integrative Bioinformatics Analysis With XGBoost. Front Bioeng Biotechnol 2020; 8:729. [PMID: 32714913 PMCID: PMC7343705 DOI: 10.3389/fbioe.2020.00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Host response biomarkers offer a promising alternative diagnostic solution for identifying acute respiratory infection (ARI) cases involving influenza infection. However, most of the published panels involve multiple genes, which is problematic in clinical settings because polymerase chain reaction (PCR)-based technology is the most widely used genomic technology in these settings, and it can only be used to measure a small number of targets. This study aimed to identify a single-gene biomarker with a high diagnostic accuracy by using integrated bioinformatics analysis with XGBoost. The gene expression profiles in dataset GSE68310 were used to construct a co-expression network using weighted correlation network analysis (WGCNA). Fourteen hub genes related to influenza infection (blue module) that were common to both the co-expression network and the protein–protein interaction network were identified. Thereafter, a single hub gene was selected using XGBoost, with feature selection conducted using recursive feature elimination with cross-validation (RFECV). The identified biomarker was oligoadenylate synthetases-like (OASL). The robustness of this biomarker was further examined using three external datasets. OASL expression profiling triggered by various infections was different enough to discriminate between influenza and non-influenza ARI infections. Thus, this study presented a workflow to identify a single-gene classifier across multiple datasets. Moreover, OASL was revealed as a biomarker that could identify influenza patients from among those with flu-like ARI. OASL has great potential for improving influenza diagnosis accuracy in ARI patients in the clinical setting.
Collapse
Affiliation(s)
- Yang Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongjie Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Quan Xu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naizhe Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaozhou He
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mifang Liang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuejun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Complete Genome Sequences of Five Human Coronavirus NL63 Strains Causing Respiratory Illness in Hospitalized Children in China. Microbiol Resour Announc 2020; 9:9/8/e01597-19. [PMID: 32079638 PMCID: PMC7033275 DOI: 10.1128/mra.01597-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report the complete genome sequences of five human coronavirus NL63 (HCoV-NL63) strains obtained using next-generation sequencing. The five HCoV-NL63 strains were obtained from hospitalized children with severe acute respiratory infection detected in Guangdong, China. This study provides several complete genomes of HCoV-NL63 and improves our understanding of HCoV-NL63 evolution in China. We report the complete genome sequences of five human coronavirus NL63 (HCoV-NL63) strains obtained using next-generation sequencing. The five HCoV-NL63 strains were obtained from hospitalized children with severe acute respiratory infection detected in Guangdong, China. This study provides several complete genomes of HCoV-NL63 and improves our understanding of HCoV-NL63 evolution in China.
Collapse
|
26
|
Nazareth R, Chasqueira MJ, Rodrigues ML, Paulino C, Conceição C, Lêdo L, Segura Ú, Santos M, Messias A, Póvoa P, Paixão P. Respiratory viruses in mechanically ventilated patients: a pilot study. BMC Pulm Med 2020; 20:39. [PMID: 32054471 PMCID: PMC7020345 DOI: 10.1186/s12890-020-1082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Respiratory virome is an integral part of the human microbiome and its characterization may contribute to a better understanding of the changes that arise in the disease and, consequently, influence the approach and treatment of patients with acute lower respiratory infections. The aim of this study was to evaluate the presence of respiratory viruses in the lower airways of individuals undergoing invasive mechanical ventilation, with and without acute lower respiratory infection (respectively WRI and WORI groups). METHODS We studied 44 mini-bronchoalveolar lavage samples (collected with a double catheter, Combicath® kit) from patients with mean age in the seventh decade, 20 from WORI group and 24 from WRI group, who were hospitalized for acute respiratory failure in Intensive Care Units of two hospitals in the Lisbon area. Real-time PCR was applied to verify analyse the presence of 15 common respiratory viruses (adenovirus, human bocavirus, influenza virus A and B, repiratory syncytial virus, human parainfluenza virus types 1, 2, 3 and 4, human enterovirus, human rhinovirus, human metapneumovirus, human coronavirus group 1 (229E, NL63) and 2 (OC43, HKU1). RESULTS Respiratory viruses were detected in six of the 20 patients in the WORI group: influenza AH3 (n = 2), parainfluenza virus 1/3 (n = 2), human rhinovirus (n = 2), respiratory syncytial virus (n = 1) and human metapneumovirus (n = 1). In the WRI group, respiratory viruses were detected in 12 of the 24 patients: influenza AH3 (n = 3), human rhinovirus (n = 3), respiratory syncytial virus (n = 3), human metapneumovirus (n = 3), human bocavirus (n = 2) and human enterovirus (n = 1). Simultaneous detection of two viruses was recorded in two samples in both groups. CONCLUSIONS The results of this study suggest the presence of common respiratory viruses in the lower respiratory tract without causing symptomatic infection, even in carefully collected lower samples. This may have important implications on the interpretation of the results on the diagnostic setting.
Collapse
Affiliation(s)
- Raquel Nazareth
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal. .,Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
| | - Maria-Jesus Chasqueira
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Maria-Lúcia Rodrigues
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Carolina Paulino
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Catarina Conceição
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Lia Lêdo
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Úrsula Segura
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal
| | - Madalena Santos
- Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, Rua da Beneficiência n° 8, 1069-166, Lisbon, Portugal
| | - António Messias
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal
| | - Pedro Póvoa
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal.,Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Paulo Paixão
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Clinical Pathology Laboratory (Synlab), Hospital da Luz, Av Lusíada, 100, 1500-650, Lisbon, Portugal
| |
Collapse
|
27
|
Wang Y, Li X, Liu W, Gan M, Zhang L, Wang J, Zhang Z, Zhu A, Li F, Sun J, Zhang G, Zhuang Z, Luo J, Chen D, Qiu S, Zhang L, Xu D, Mok CKP, Zhang F, Zhao J, Zhou R, Zhao J. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg Microbes Infect 2020; 9:246-255. [PMID: 31996093 PMCID: PMC7034077 DOI: 10.1080/22221751.2020.1717999] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is primarily associated with common cold in children, elderly and immunocompromised individuals. Outbreaks caused by HCoV-NL63 are rare. Here we report a cluster of HCoV-NL63 cases with severe lower respiratory tract infection that arose in Guangzhou, China, in 2018. Twenty-three hospitalized children were confirmed to be HCoV-NL63 positive, and most of whom were hospitalized with severe pneumonia or acute bronchitis. Whole genomes of HCoV-NL63 were obtained using next-generation sequencing. Phylogenetic and single amino acid polymorphism analyses showed that this outbreak was associated with two subgenotypes (C3 and B) of HCoV-NL63. Half of patients were identified to be related to a new subgenotype C3. One unique amino acid mutation at I507 L in spike protein receptor binding domain (RBD) was detected, which segregated this subgenotype C3 from other known subgenotypes. Pseudotyped virus bearing the I507 L mutation in RBD showed enhanced entry into host cells as compared to the prototype virus. This study proved that HCoV-NL63 was undergoing continuous mutation and has the potential to cause severe lower respiratory disease in humans.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guoxian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiaying Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dehui Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Duo Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fuchun Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019; 25:719-729.e4. [PMID: 31071295 DOI: 10.1016/j.chom.2019.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.
Collapse
|
29
|
Pérez-Sautu U, Wiley MR, Iglesias-Caballero M, Pozo F, Prieto K, Chitty JA, García-García ML, Calvo C, Casas I, Palacios G. Target-independent high-throughput sequencing methods provide evidence that already known human viral pathogens play a main role in respiratory infections with unexplained etiology. Emerg Microbes Infect 2019; 8:1054-1065. [PMID: 31335277 PMCID: PMC6691886 DOI: 10.1080/22221751.2019.1640587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the advanced PCR-based assays available, a fraction of the pediatric respiratory infections remain unexplained every epidemic season, and there is a perception that novel viruses might be present in these specimens. We systematically collected samples from a prospective cohort of pediatric patients with respiratory infections, that returned negative results by validated molecular RT–PCR assays, and studied them with a target-independent, high-throughput sequencing-based approach. We also included a matched cohort of children with no symptoms of respiratory infection, as a contrast study population. More than fifty percent of the specimens from the group of patients with unexplained respiratory infections were resolved. However, the higher rate of detection was not due to the presence of novel viruses, but to the identification of well-known viral respiratory pathogens. Our results show that already known viral pathogens are responsible for the majority of cases that remain unexplained after the epidemic season. High-throughput sequencing approaches that use pathogen-specific probes are easier to standardize because they ensure reproducible library enrichment and sequencing. In consequence, these techniques might be desirable from a regulatory standpoint for diagnostic laboratories seeking to benefit from the many advantages of these sequencing technologies.
Collapse
Affiliation(s)
- Unai Pérez-Sautu
- a Influenza and Respiratory Viruses Unit, National Center for Microbiology, Instituto de Salud Carlos III (ISCIII) , Madrid , Spain.,b Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick , MD , USA
| | - Michael Ross Wiley
- b Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick , MD , USA.,c College of Public Health, University of Nebraska Medical Center , Omaha , NE , USA
| | - María Iglesias-Caballero
- a Influenza and Respiratory Viruses Unit, National Center for Microbiology, Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Francisco Pozo
- a Influenza and Respiratory Viruses Unit, National Center for Microbiology, Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Karla Prieto
- b Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick , MD , USA.,c College of Public Health, University of Nebraska Medical Center , Omaha , NE , USA
| | - Joseph Alex Chitty
- b Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick , MD , USA
| | | | | | - Inmaculada Casas
- a Influenza and Respiratory Viruses Unit, National Center for Microbiology, Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Gustavo Palacios
- b Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID) , Frederick , MD , USA
| |
Collapse
|
30
|
van Rijn AL, van Boheemen S, Sidorov I, Carbo EC, Pappas N, Mei H, Feltkamp M, Aanerud M, Bakke P, Claas ECJ, Eagan TM, Hiemstra PS, Kroes ACM, de Vries JJC. The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease. PLoS One 2019; 14:e0223952. [PMID: 31647831 PMCID: PMC6812800 DOI: 10.1371/journal.pone.0223952] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Exacerbations are major contributors to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), and respiratory bacterial and viral infections are an important trigger. However, using conventional diagnostic techniques, a causative agent is not always found. Metagenomic next-generation sequencing (mNGS) allows analysis of the complete virome, but has not yet been applied in COPD exacerbations. OBJECTIVES To study the respiratory virome in nasopharyngeal samples during COPD exacerbations using mNGS. STUDY DESIGN 88 nasopharyngeal swabs from 63 patients from the Bergen COPD Exacerbation Study (2006-2010) were analysed by mNGS and in-house qPCR for respiratory viruses. Both DNA and RNA were sequenced simultaneously using an Illumina library preparation protocol with in-house adaptations. RESULTS By mNGS, 24/88 samples tested positive. Sensitivity and specificity, as compared with PCR, were 96% and 98% for diagnostic targets (23/24 and 1093/1120, respectively). Additional viral pathogens detected by mNGS were herpes simplex virus type 1 and coronavirus OC43. A positive correlation was found between Cq value and mNGS viral normalized species reads (log value) (p = 0.002). Patients with viral pathogens had lower percentages of bacteriophages (p<0.001). No correlation was found between viral reads and clinical markers. CONCLUSIONS The mNGS protocol used was highly sensitive and specific for semi-quantitative detection of respiratory viruses. Excellent negative predictive value implicates the power of mNGS to exclude any pathogenic respiratory viral infectious cause in one test, with consequences for clinical decision making. Reduced abundance of bacteriophages in COPD patients with viral pathogens implicates skewing of the virome during infection, with potential consequences for the bacterial populations, during infection.
Collapse
Affiliation(s)
- Anneloes L. van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander van Boheemen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen C. Carbo
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nikos Pappas
- Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marianne Aanerud
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eric C. J. Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tomas M. Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aloys C. M. Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jutte J. C. de Vries
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
31
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Zhao Y, Lu R, Shen J, Xie Z, Liu G, Tan W. Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China. BMC Infect Dis 2019; 19:729. [PMID: 31429710 PMCID: PMC6701130 DOI: 10.1186/s12879-019-4385-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background No comparison data have been reported on viral and epidemiological profiles of hospitalized children with severe acute respiratory infection (SARI) in Beijing or Shanghai, China. Methods We collected 700 nasopharyngeal aspirates (NPA) from hospitalized children with SARI in Beijing (northern China) and Shanghai (southern China). Multiple respiratory viruses (including 15 common viruses) were screened by validated polymerase chain reaction (PCR) or real-time reverse transcription-PCR assays and confirmed by sequencing. Demographic data and the distribution of viral infections were also examined. Results Of 700 samples, 547 (78.1%) tested positive for viral infections. The picornaviruses (PIC), which included rhinovirus (RV) and enterovirus (EV), were the most common (34.0%), followed by respiratory syncytial virus (RSV) (28.3%), human bocavirus (HBoV) (19.1%), adenovirus (ADV) (13.7%), human coronaviruses (HCoV) (10.7%), influenza A and B (8.9%), parainfluenza virus (PIV 1–3) (7.9%), and human metapneumovirus (HMPV) (5.0%). PIC (RV/EV) and RSV were the most prevalent etiological agents of SARI in both cities. The total and age-matched prevalence of RSV, HCoV, and hMPV among SARI children under 5 years old were significantly higher in Beijing than in Shanghai. Different age and seasonal distribution patterns of the viral infections were found between Beijing and Shanghai. Conclusions Viral infection was tested and shown to be the most prevalent etiological agent among children with SARI in either the Beijing or the Shanghai area, while showing different patterns of viral and epidemiological profiles. Our findings provide a better understanding of the roles of geographic location and climate in respiratory viral infections in hospitalized children with SARI.
Collapse
Affiliation(s)
- Yanjie Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China.,National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, 102206, Changping District, China
| | - Roujian Lu
- National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, 102206, Changping District, China
| | - Jun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Gaoshan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China
| | - Wenjie Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China. .,National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, 102206, Changping District, China.
| |
Collapse
|
33
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
34
|
Li Y, Fu X, Ma J, Zhang J, Hu Y, Dong W, Wan Z, Li Q, Kuang YQ, Lan K, Jin X, Wang JH, Zhang C. Altered respiratory virome and serum cytokine profile associated with recurrent respiratory tract infections in children. Nat Commun 2019; 10:2288. [PMID: 31123265 PMCID: PMC6533328 DOI: 10.1038/s41467-019-10294-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Recurrent acute respiratory tract infections (ARTIs) affect a large population, yet the specific decisive factors are largely unknown. Here we study a population of 4407 children diagnosed with ARTI, comparing respiratory virome and serum cytokine profiles associated with multiple ARTIs and single ARTI during a six-year period. The relative abundance of Propionibacterium phages is significantly elevated in multiple ARTIs compared to single ARTI group. Serum levels of TIMP-1 and PDGF-BB are markedly increased in multiple ARTIs compared to single-ARTI and non-ARTI controls, making these two cytokines potential predictors for multiple ARTIs. The presence of Propionibacterium phages is associated with higher levels of TIMP-1 and PDGF-BB. Receiver operating characteristic (ROC) curve analyses show that the combination of TIMP-1, PDGF-BB and Propionibacterium phages could be a strong predictor for multiple ARTIs. These findings indicate that respiratory microbe homeostasis and specific cytokines are associated with the onset of multiple ARTIs over time.
Collapse
Affiliation(s)
- Yanpeng Li
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuemin Fu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jianhui Zhang
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Yihong Hu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei Dong
- Pediatric Department, Shanghai Nanxiang Hospital, Jiading District, Shanghai, 201800, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, Jiangsu, 225300, China
| | | | - Yi-Qun Kuang
- Institute of Infection and Immunity, Henan University, Kaifeng, 475000, China
| | - Ke Lan
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Jin
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Chiyu Zhang
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center (Guangzhou, 510623, China) and Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200031, China.
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
35
|
Mitchell AB, Glanville AR. Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome. Methods Mol Biol 2019; 1838:111-123. [PMID: 30128993 DOI: 10.1007/978-1-4939-8682-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There have been great advances in the methodologies available for the detection of respiratory viruses. Accompanying this, our knowledge surrounding the impact of these viruses has also made a great leap forward. We have come a long way from the once commonly accepted belief that the lower respiratory tract was sterile and that the detection of any microbial species must represent a breach in host defence and likely be associated with symptomatic infection. With the advent of molecular detection techniques and improvements in sequencing-based methodologies to make these tools more accessible and cost effective, we now know that there is an abundant and diverse ecosystem within the lower-respiratory tract. This chapter will outline the clinical impact of the human respiratory virome, techniques for sampling the lower respiratory tract, the evolution of the diagnostic tools available, and the current limitations in our instruments and knowledge in this area. The human respiratory virome is an exciting new area of research that will continue to grow with the aid of the methodologies outlined in the following chapters and the advent of even more efficient tools in the future.
Collapse
Affiliation(s)
- Alicia B Mitchell
- The Woolcock Institute of Medical Research, Sydney, NSW, Australia. .,University of Technology Sydney, Sydney, NSW, Australia. .,The Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Allan R Glanville
- The Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
36
|
Zhang D, Lou X, Yan H, Pan J, Mao H, Tang H, Shu Y, Zhao Y, Liu L, Li J, Chen J, Zhang Y, Ma X. Metagenomic analysis of viral nucleic acid extraction methods in respiratory clinical samples. BMC Genomics 2018; 19:773. [PMID: 30359242 PMCID: PMC6202819 DOI: 10.1186/s12864-018-5152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Numerous protocols for viral enrichment and genome amplification have been created. However, the direct identification of viral genomes from clinical specimens using next-generation sequencing (NGS) still has its challenges. As a selected viral nucleic acid extraction method may determine the sensitivity and reliability of NGS, it is still valuable to evaluate the extraction efficiency of different extraction kits using clinical specimens directly. RESULTS In this study, we performed qRT-PCR and viral metagenomic analysis of the extraction efficiency of four commonly used Qiagen extraction kits: QIAamp Viral RNA Mini Kit (VRMK), QIAamp MinElute Virus Spin Kit (MVSK), RNeasy Mini Kit (RMK), and RNeasy Plus Micro Kit (RPMK), using a mixed respiratory clinical sample without any pre-treatment. This sample contained an adenovirus (ADV), influenza virus A (Flu A), human parainfluenza virus 3 (PIV3), human coronavirus OC43 (OC43), and human metapneumovirus (HMPV). The quantity and quality of the viral extracts were significantly different among these kits. The highest threshold cycle(Ct)values for ADV and OC43 were obtained by using the RPMK. The MVSK had the lowest Ct values for ADV and PIV3. The RMK revealed the lowest detectability for HMPV and PIV3. The most effective rate of NGS data at 67.47% was observed with the RPMK. The other three kits ranged between 12.1-26.79% effectiveness rates for the NGS data. Most importantly, compared to the other three kits the highest proportion of non-host reads was obtained by the RPMK. The MVSK performed best with the lowest Ct value of 20.5 in the extraction of ADV, while the RMK revealed the best extraction efficiency by NGS analysis. CONCLUSIONS The evaluation of viral nucleic acid extraction efficiency is different between NGS and qRT-PCR analysis. The RPMK was most applicable for the metagenomic analysis of viral RNA and enabled more sensitive identification of the RNA virus genome in respiratory clinical samples. In addition, viral RNA extraction kits were also applicable for metagenomic analysis of the DNA virus. Our results highlighted the importance of nucleic acid extraction kit selection, which has a major impact on the yield and number of viral reads by NGS analysis. Therefore, the choice of extraction method for a given viral pathogen needs to be carefully considered.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China.,Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xiuyu Lou
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hao Yan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Junhang Pan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Haiyan Mao
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hongfeng Tang
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yan Shu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yun Zhao
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lei Liu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Junping Li
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jiang Chen
- College Of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yanjun Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Xuejun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China.
| |
Collapse
|
37
|
Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Sci Rep 2018; 8:13341. [PMID: 30190594 PMCID: PMC6127300 DOI: 10.1038/s41598-018-31554-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Porcine respiratory disease complex (PRDC), a common piglet disease, causes substantive economic losses in pig farming. To investigate the viral diversity associated with PRDC, the viral communities in serum and nasal swabs from 26 PRDC-affected piglets were investigated using metagenomics. By deep sequencing and de novo assembly, 17 viruses were identified in two pooled libraries (16 viruses from serum, nine from nasal swabs). Porcine circovirus (PCV)-2, porcine reproductive and respiratory syndrome virus (PRRSV) and pseudorabies virus, all commonly associated with PRDC, were identified in the two pooled samples by metagenomics, but most viruses comprised small linear and circular DNAs (e.g. parvoviruses, bocaviruses and circoviruses). PCR was used to compare the detection rates of each virus in the serum samples from 36 PRDC-affected piglets versus 38 location-matched clinically healthy controls. The average virus category per sample was 6.81 for the PRDC-affected piglets and 4.09 for the controls. Single or co-infections with PCV-2 or PRRSV had very high detection rates in the PRDC-affected piglets. Interestingly, porcine parvovirus (PPV)-2, PPV-3, PPV-6 and torque teno sus virus 1a were significantly associated with PRDC. These results illustrate the complexity of viral communities in the PRDC-affected piglets and highlight the candidate viruses associated with it.
Collapse
|
38
|
Zhao Y, Shen J, Wu B, Liu G, Lu R, Tan W. Genotypic Diversity and Epidemiology of Human Rhinovirus Among Children With Severe Acute Respiratory Tract Infection in Shanghai, 2013-2015. Front Microbiol 2018; 9:1836. [PMID: 30131797 PMCID: PMC6090050 DOI: 10.3389/fmicb.2018.01836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Human rhinovirus (HRV), and particularly HRV-C, is increasingly recognized as a cause of severe acute respiratory infections (SARIs). However, little is known about the genotypic diversity and epidemiology of HRV among children with SARI. Thus, we investigated the genotypic diversity and epidemiology of HRV in children with SARI in China over a 2-year period. In total 1,003, nasopharyngeal aspirates were collected from children hospitalized with SARI in Shanghai from 2013 to 2015. HRV was screened for by a PCR method targeting the viral 5' UTR and was genotyped by sequencing of the VP4-VP2 region of the HRV genome. We also screened for 15 other common respiratory viruses to assess the prevalence of co-infection with HRV. The patient demographic and clinical data were reviewed. HRV was detected in 280 (27.9%) of the 1,003 specimens: HRV-A in 140 (14.0%), HRV-B in 21 (2.1%), HRV-C in 56 (5.6%), and HRV-untyped in 63 (6.3%). A phylogenetic analysis identified 77 genotypes (43 HRV-A, 10 HRV-B, and 24 HRV-C), among which A78, A12, A89, B70, C2, C6, and C24 predominated. HRV-A was detected mainly in winter 2013 and autumn 2014, while HRV-C detection peaked in autumn 2013 and 2014. The detection frequency of HRV-A was highest in patients <5 years old. Most HRV co-infections involved adenovirus, human bocavirus, and/or human respiratory syncytial virus. In conclusion, HRV-A and -C predominate in children with SARI in Shanghai. Among the 77 genotypes detected, A78, A12, A89, B70, C2, C6, and C24 were the most frequent. The HRV species responsible for SARIs differs according to season and age.
Collapse
Affiliation(s)
- Yanjie Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Wenzhou, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Shen
- Infectious Disease Department, Children's Hospital of Fudan University, Shanghai, China
| | - Bingjie Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Wenzhou, China
| | - Gaoshan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Wenzhou, China
| | - Roujian Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Wenzhou, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Wenzhou, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
39
|
van der Does AM, Amatngalim GD, Keijser B, Hiemstra PS, Villenave R. Contribution of Host Defence Proteins and Peptides to Host-Microbiota Interactions in Chronic Inflammatory Lung Diseases. Vaccines (Basel) 2018; 6:vaccines6030049. [PMID: 30060554 PMCID: PMC6161034 DOI: 10.3390/vaccines6030049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
The respiratory tract harbours a variety of microorganisms, collectively called the respiratory microbiota. Over the past few years, alterations in respiratory and gut microbiota composition have been associated with chronic inflammatory diseases of the lungs. How these changes influence disease development and progression is an active field of investigation. Identifying and understanding host-microbiota interactions and factors contributing to these interactions could promote the development of novel therapeutic strategies aimed at restoring host-microbiota homeostasis. In this review, we discuss recent literature on host-microbiota interactions in the respiratory tract, with a specific focus on the influence of endogenous host defence peptides and proteins (HDPs) on the composition of microbiota populations in vivo and explore possible HDPs-related therapeutic approaches targeting microbiota dysbiosis in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3508 AB, The Netherlands.
| | - Bart Keijser
- Research Group Microbiology and Systems Biology, TNO (The Netherlands Organization for Applied Scientific Research), Zeist 3704 HE, The Netherlands.
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam 1008 AA, The Netherlands.
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
| | | |
Collapse
|
40
|
A fatal case associated with respiratory syncytial virus infection in a young child. BMC Infect Dis 2018; 18:217. [PMID: 29751747 PMCID: PMC5948794 DOI: 10.1186/s12879-018-3123-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/30/2018] [Indexed: 11/16/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is the most common viral cause of pediatric bronchiolitis and pneumonia worldwide. Risk factors for high mortality and prolonged morbidity after RSV infection include premature birth, bronchopulmonary dysplasia, congenital heart disease, and Down syndrome. However, some previously healthy, full-term children who are infected with RSV also require hospitalization and even experience severe sequelae or death. Case presentation In this report, we present the case of an RSV-associated death of a child who was born at full-term and developed normally up to the age of 2 years old. Cardiopulmonary arrest occurred within 3 days after the onset of symptoms, which included cough and high fever. Complete brain edema was prominent, and encephalopathy was developing. Viral antigen detection and microbiome analyses of oral swab and nasopharyngeal aspirate specimens verified an RSV infection, while bacterial culture of blood specimens yielded negative results. The RSV strain detected in this patient was subtyped as RSVB9, and no mutation was found in the six antigenic sites for targeted drugs or vaccines. Conclusions The patient had a severe infection associated with RSV, which was very likely the cause of her central nervous system infection and acute neurological complications.
Collapse
|
41
|
Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood. Front Microbiol 2018; 9:686. [PMID: 29692764 PMCID: PMC5902699 DOI: 10.3389/fmicb.2018.00686] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Massimo Pifferi
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Maria E Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Romero-Espinoza JA, Moreno-Valencia Y, Coronel-Tellez RH, Castillejos-Lopez M, Hernandez A, Dominguez A, Miliar-Garcia A, Barbachano-Guerrero A, Perez-Padilla R, Alejandre-Garcia A, Vazquez-Perez JA. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PLoS One 2018; 13:e0192878. [PMID: 29447223 PMCID: PMC5813968 DOI: 10.1371/journal.pone.0192878] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Acute asthma exacerbations and pneumonia are important causes of morbidity and mortality in children and may coexist in the same children, although symptom overlap may lead to difficulties in diagnosis. Microbial and viral diversity and differential abundance of either may play an important role in infection susceptibility and the development of acute and chronic respiratory diseases. Objectives To describe the virome and bacteriome present in the upper respiratory tract of hospitalized children with a clinical diagnosis of asthma and pneumonia during an acute exacerbation and an acute respiratory illness ARI episode respectively. Methods During the winter seasons of 2013–2014 and 2014–2015, 134 nasopharyngeal swabs samples of children <15 years of age with ARI hospitalized at a referral hospital for respiratory diseases were selected based on clinical diagnosis of asthma or pneumonia. The virome and bacteriome were characterized using Whole Genome Sequencing (WGS) and in-house bioinformatics analysis pipeline. Results The Asthma group was represented mainly by RV-C, BoV-1 and RSV-B and the pneumonia group by Bacteriophage EJ-1 and TTMV. TTV was found in both groups with a similar amount of reads. About bacterial composition Moraxella catarrhalis, Propionibacterium acnes and Acinetobacter were present in asthma and Veillonella parvula and Mycoplasma pneumoniae in pneumonia. Streptococcus pneumoniae and Haemophilus influenzae were mostly found with both asthma and pneumonia. Conclusions Our results show a complex viral and bacterial composition in asthma and pneumonia groups with a strong association of RV-C presence in asthmatic children. We observed Streptococcus pneumoniae and Haemophilus influenzae concurrently in both groups.
Collapse
Affiliation(s)
- Jose A. Romero-Espinoza
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Yazmin Moreno-Valencia
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Rodrigo H. Coronel-Tellez
- Signalisation et Réseaux de Régulations Bactériens, Institut de Biologie Intégrative de la Cellule, Paris, France
| | - Manuel Castillejos-Lopez
- Vigilancia Epidemiológica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Andres Hernandez
- Vigilancia Epidemiológica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Aaron Dominguez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Angel Miliar-Garcia
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Barbachano-Guerrero
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Rogelio Perez-Padilla
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Alejandro Alejandre-Garcia
- Unidad de Urgencias Pediátricas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Joel A. Vazquez-Perez
- Departamento de Investigación en Virología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
43
|
Shekhar S, Schenck K, Petersen FC. Exploring Host-Commensal Interactions in the Respiratory Tract. Front Immunol 2018; 8:1971. [PMID: 29387057 PMCID: PMC5776090 DOI: 10.3389/fimmu.2017.01971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Commensal microbes are currently in the limelight in biomedical research because they play an important role in health and disease. Humans harbor an enormous diversity of commensals in various parts of the body, including the gastrointestinal and respiratory tracts. Advancement in metagenomic and other omic approaches, and development of suitable animal models have provided an unprecedented appreciation into the diversity of commensals, and the intricacies of their intimate communication with the host immune system. Most studies have focused on the host–commensal interaction in the gut, while less is known on this relationship in other sites of the body, such as the respiratory tract. In this article, we review emerging data from human and animal studies on the host responses to respiratory commensals, immune cross-reactivity between commensals and pathogens, and use of commensals as a vaccine delivery system. A better understanding of the delicate interplay between commensals and host may aid in efforts to develop effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
44
|
The lung microbiome. Emerg Top Life Sci 2017; 1:313-324. [PMID: 33525774 DOI: 10.1042/etls20170043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022]
Abstract
Historically, our understanding of lung microbiology has relied on insight gained through culture-based diagnostic approaches that employ selective culture conditions to isolate specific pathogens. The relatively recent development of culture-independent microbiota-profiling techniques, particularly 16S rRNA (ribosomal ribonucleic acid) gene amplicon sequencing, has enabled more comprehensive characterisation of the microbial content of respiratory samples. The widespread application of such techniques has led to a fundamental shift in our view of respiratory microbiology. Rather than a sterile lung environment that can become colonised by microbes during infection, it appears that a more nuanced balance exists between what we consider respiratory health and disease, mediated by mechanisms that influence the clearance of microbes from the lungs. Where airway defences are compromised, the ongoing transient exposure of the lower airways to microbes can lead to the establishment of complex microbial communities within the lung. Importantly, the characteristics of these communities, and the manner in which they influence lung pathogenesis, can be very different from those of their constituent members when viewed in isolation. The lung microbiome, a construct that incorporates microbes, their genetic material, and the products of microbial genes, is increasingly central to our understanding of the regulation of respiratory physiology and the processes that underlie lung pathogenesis.
Collapse
|
45
|
Zárate S, Taboada B, Yocupicio-Monroy M, Arias CF. Human Virome. Arch Med Res 2017; 48:701-716. [DOI: 10.1016/j.arcmed.2018.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
|
46
|
Schlaberg R, Queen K, Simmon K, Tardif K, Stockmann C, Flygare S, Kennedy B, Voelkerding K, Bramley A, Zhang J, Eilbeck K, Yandell M, Jain S, Pavia AT, Tong S, Ampofo K. Viral Pathogen Detection by Metagenomics and Pan-Viral Group Polymerase Chain Reaction in Children With Pneumonia Lacking Identifiable Etiology. J Infect Dis 2017; 215:1407-1415. [PMID: 28368491 PMCID: PMC5565793 DOI: 10.1093/infdis/jix148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background. Community-acquired pneumonia (CAP) is a leading cause of pediatric hospitalization. Pathogen identification fails in approximately 20% of children but is critical for optimal treatment and prevention of hospital-acquired infections. We used two broad-spectrum detection strategies to identify pathogens in test-negative children with CAP and asymptomatic controls. Methods. Nasopharyngeal/oropharyngeal (NP/OP) swabs from 70 children <5 years with CAP of unknown etiology and 90 asymptomatic controls were tested by next-generation sequencing (RNA-seq) and pan viral group (PVG) PCR for 19 viral families. Association of viruses with CAP was assessed by adjusted odds ratios (aOR) and 95% confidence intervals controlling for season and age group. Results. RNA-seq/PVG PCR detected previously missed, putative pathogens in 34% of patients. Putative viral pathogens included human parainfluenza virus 4 (aOR 9.3, P = .12), human bocavirus (aOR 9.1, P < .01), Coxsackieviruses (aOR 5.1, P = .09), rhinovirus A (aOR 3.5, P = .34), and rhinovirus C (aOR 2.9, P = .57). RNA-seq was more sensitive for RNA viruses whereas PVG PCR detected more DNA viruses. Conclusions. RNA-seq and PVG PCR identified additional viruses, some known to be pathogenic, in NP/OP specimens from one-third of children hospitalized with CAP without a previously identified etiology. Both broad-range methods could be useful tools in future epidemiologic and diagnostic studies.
Collapse
Affiliation(s)
- Robert Schlaberg
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah ; and
| | - Krista Queen
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Keith Tardif
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; and
| | | | | | - Brett Kennedy
- Department of Human Genetics, University of Utah, and
| | - Karl Voelkerding
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah ; and
| | - Anna Bramley
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jing Zhang
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, and
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Suxiang Tong
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
47
|
Xu L, Zhu Y, Ren L, Xu B, Liu C, Xie Z, Shen K. Characterization of the nasopharyngeal viral microbiome from children with community-acquired pneumonia but negative for Luminex xTAG respiratory viral panel assay detection. J Med Virol 2017; 89:2098-2107. [PMID: 28671295 PMCID: PMC7166964 DOI: 10.1002/jmv.24895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/17/2017] [Indexed: 12/24/2022]
Abstract
In the present study, 50 nasopharyngeal swabs from children with community‐acquired pneumonia (CAP) but negative for 18 common respiratory viruses, as measured by the Luminex xTAG Respiratory Viral Panel Assay, were subjected to multiplex metagenomic analyses using a next‐generation sequencing platform. Taxonomic analysis showed that all sequence reads could be assigned to a specific species. An average of 95.13% were assigned to the Bacteria kingdom, whereas, only 0.72% were potentially virus derived. This snapshot of the respiratory tract virome revealed most viral reads to be respiratory tract related, classified into four known virus families: Paramyxoviridae, Herpesviridae, Anelloviridae, and Polyomaviridae. Importantly, we detected a novel human parainfluenza virus 3 (HPIV 3) strain with a 32‐bp insertion in the haemagglutinin‐neuraminidase (HN) gene that produced a negative result in the Luminex assay, highlighting the strength of virome metagenomic analysis to identify not only novel viruses but also viruses likely to be missed by ordinary clinical tests. Thus, virome metagenomic analysis could become a viable clinical diagnostic method.
Collapse
Affiliation(s)
- Lili Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yun Zhu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lili Ren
- Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Baoping Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chunyan Liu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhengde Xie
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kunling Shen
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Lin HH, Liao YC. drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes. Gigascience 2017; 6:1-10. [PMID: 28369462 PMCID: PMC5466706 DOI: 10.1093/gigascience/gix003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background: Virus discovery using high-throughput next-generation sequencing has become more commonplace. However, although analysis of deep next-generation sequencing data allows us to identity potential pathogens, the entire analytical procedure requires competency in the bioinformatics domain, which includes implementing proper software packages and preparing prerequisite databases. Simple and user-friendly bioinformatics pipelines are urgently required to obtain complete viral genome sequences from metagenomic data. Results: This manuscript presents a pipeline, drVM (detect and reconstruct known viral genomes from metagenomes), for rapid viral read identification, genus-level read partition, read normalization, de novo assembly, sequence annotation, and coverage profiling. The first two procedures and sequence annotation rely on known viral genomes as a reference database. drVM was validated via the analysis of over 300 sequencing runs generated by Illumina and Ion Torrent platforms to provide complete viral genome assemblies for a variety of virus types including DNA viruses, RNA viruses, and retroviruses. drVM is available for free download at: https://sourceforge.net/projects/sb2nhri/files/drVM/ and is also assembled as a Docker container, an Amazon machine image, and a virtual machine to facilitate seamless deployment. Conclusions: drVM was compared with other viral detection tools to demonstrate its merits in terms of viral genome completeness and reduced computation time. This substantiates the platform's potential to produce prompt and accurate viral genome sequences from clinical samples.
Collapse
|
49
|
Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1. Virus Res 2017; 237:7-13. [PMID: 28506792 PMCID: PMC7114567 DOI: 10.1016/j.virusres.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023]
Abstract
Although canine respiratory coronavirus (CRCoV) is an important respiratory pathogen that is prevalent in many countries, only one complete genome sequence of CRCoV (South Korea strain K37) has been obtained to date. Genome-wide analyses and recombination have rarely been conducted, as small numbers of samples and limited genomic characterization have previously prevented further analyses. Herein, we report a unique CRCoV strain, denoted strain BJ232, derived from a CRCoV-positive dog with a mild respiratory infection. Phylogenetic analysis based on complete genome of all available coronaviruses consistently show that CRCoV BJ232 is most closely related to human coronavirus OC43 (HCoV-OC43) and BCoV, forming a separate clade that split off early from other Betacoronavirus 1. Based on the phylogenetic and SimPlot analysis we propose that CRCoV-K37 was derived from genetic recombination between CRCoV-BJ232 and BCoV. In detail, spike (S) gene of CRCoV-K37 clustered with CRCoV-BJ232. However orf1ab, membrane (M) and nucleocapsid (N) genes were more related to Bovine coronavirus (BCoV) than CRCoV-B232. Molecular epidemic analysis confirmed the prevalence of CRCoV-BJ232 lineage around the world for a long time. Recombinant events among Betacoronavirus 1 may have implications for CRCoV transmissibility. All these findings provide further information regarding the origin of CRCoV.
Collapse
|
50
|
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15:259-270. [PMID: 28316330 PMCID: PMC7097736 DOI: 10.1038/nrmicro.2017.14] [Citation(s) in RCA: 773] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.
Collapse
Affiliation(s)
- Wing Ho Man
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- Spaarne Gasthuis Academy, Spaarnepoort 1, Hoofddorp, 2134 TM The Netherlands
| | - Wouter A.A. de Steenhuijsen Piters
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|