1
|
Shang M, Ning J, Zang C, Ma J, Yang Y, Jiang Y, Chen Q, Dong Y, Wang J, Li F, Bao X, Zhang D. FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuu m. Acta Pharm Sin B 2025; 15:973-990. [PMID: 40177576 PMCID: PMC11959932 DOI: 10.1016/j.apsb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 04/05/2025] Open
Abstract
Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by Clostridium innocuum, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota-gut-brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.
Collapse
Affiliation(s)
- Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Chiang-Ni C, Huang JY, Hsu CY, Lo YC, Chen YYM, Lai CH, Chiu CH. Genetic diversity, biofilm formation, and Vancomycin resistance of clinical Clostridium innocuum isolates. BMC Microbiol 2024; 24:353. [PMID: 39294587 PMCID: PMC11409672 DOI: 10.1186/s12866-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Clostridium innocuum, previously considered a commensal microbe, is a spore-forming anaerobic bacterium. C. innocuum displays inherent resistance to vancomycin and is associated with extra-intestinal infections, antibiotic-associated diarrhea, and inflammatory bowel disease. This study seeks to establish a multilocus sequence typing (MLST) scheme to explore the correlation between C. innocuum genotyping and its potential pathogenic phenotypes. METHODS Fifty-two C. innocuum isolates from Linkou Chang Gung Memorial Hospital (CGMH) in Taiwan and 60 sequence-available C. innocuum isolates from the National Center for Biotechnolgy Information Genome Database were included. The concentrated sequence of housekeeping genes in C. innocuum was determined by amplicon sequencing and used for MLST and phylogenetic analyses. The biofilm production activity of the C. innocuum isolates was determined by crystal violet staining. RESULTS Of the 112 C. innocuum isolates, 58 sequence types were identified. Maximum likelihood estimation categorized 52 CGMH isolates into two phylogenetic clades. These isolates were found to be biofilm producers, with isolates in clade I exhibiting significantly higher biofilm production than isolates in clade II. The sub-inhibitory concentration of vancomycin seemed to minimally influence biofilm production by C. innocuum isolates. Nevertheless, C. innocuum embedded in the biofilm structure demonstrated resistance to vancomycin treatments at a concentration greater than 256 µg/mL. CONCLUSIONS This study suggests that a specific genetic clade of C. innocuum produces a substantial amount of biofilm. Furthermore, this phenotype assists C. innocuum in resisting high concentrations of vancomycin, which may potentially play undefined roles in C. innocuum pathogenesis.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Jing-Yi Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
| | - Yi-Chi Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333323, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
3
|
Rizzello F, Viciani E, Gionchetti P, Filippone E, Imbesi V, Melotti L, Dussias NK, Salice M, Santacroce B, Padella A, Velichevskaya A, Marcante A, Castagnetti A. Signatures of disease outcome severity in the intestinal fungal and bacterial microbiome of COVID-19 patients. Front Cell Infect Microbiol 2024; 14:1352202. [PMID: 38510960 PMCID: PMC10952111 DOI: 10.3389/fcimb.2024.1352202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background COVID-19, whose causative pathogen is the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic in March 2020. The gastrointestinal tract is one of the targets of this virus, and mounting evidence suggests that gastrointestinal symptoms may contribute to disease severity. The gut-lung axis is involved in the immune response to SARS-CoV-2; therefore, we investigated whether COVID-19 patients' bacterial and fungal gut microbiome composition was linked to disease clinical outcome. Methods In May 2020, we collected stool samples and patient records from 24 hospitalized patients with laboratory-confirmed SARS-CoV-2 infection. Fungal and bacterial gut microbiome was characterized by amplicon sequencing on the MiSeq, Illumina's integrated next generation sequencing instrument. A cohort of 201 age- and sex-matched healthy volunteers from the project PRJNA661289 was used as a control group for the bacterial gut microbiota analysis. Results We observed that female COVID-19 patients had a lower gut bacterial microbiota richness than male patients, which was consistent with a different latency in hospital admittance time between the two groups. Both sexes in the COVID-19 patient study group displayed multiple positive associations with opportunistic bacterial pathogens such as Enterococcus, Streptococcus, and Actinomyces. Of note, the Candida genus dominated the gut mycobiota of COVID-19 patients, and adult patients showed a higher intestinal fungal diversity than elderly patients. We found that Saccharomycetales unassigned fungal genera were positively associated with bacterial short-chain fatty acid (SCFA) producers and negatively associated with the proinflammatory genus Bilophila in COVID-19 patients, and we observed that none of the patients who harbored it were admitted to the high-intensity unit. Conclusions COVID-19 was associated with opportunistic bacterial pathogens, and Candida was the dominant fungal taxon in the intestine. Together, we found an association between commensal SCFA-producers and a fungal genus that was present in the intestines of patients who did not experience the most severe outcome of the disease. We believe that this taxon could have played a role in the disease outcome, and that further studies should be conducted to understand the role of fungi in gastrointestinal and health protection.
Collapse
Affiliation(s)
- Fernando Rizzello
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Gionchetti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Filippone
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Veronica Imbesi
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Laura Melotti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Nikolas Konstantine Dussias
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Marco Salice
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Wu HY, Kuo CJ, Chou CH, Ho MW, Chen CL, Hsu TS, Chen YC, Chiang-Ni C, Chen YYM, Chiu CH, Lai CH. Clostridium innocuum, an emerging pathogen that induces lipid raft-mediated cytotoxicity. Virulence 2023; 14:2265048. [PMID: 37798913 PMCID: PMC10561569 DOI: 10.1080/21505594.2023.2265048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Clostridium innocuum is an emerging spore-forming anaerobe that is often observed in Clostridioides difficile-associated inflammatory bowel disease (IBD) exacerbations. Unlike C. difficile, C. innocuum neither produces toxins nor possesses toxin-encoding genetic loci, but is commonly found in both intestinal and extra-intestinal infections. Membrane lipid rafts are composed of dynamic assemblies of cholesterol and sphingolipids, allowing bacteria to gain access to cells. However, the direct interaction between C. innocuum and lipid rafts that confers bacteria the ability to disrupt the intestinal barrier and induce pathogenesis remains unclear. In this study, we investigated the associations among nucleotide-binding oligomerization domain containing 2 (NOD2), lipid rafts, and cytotoxicity in C. innocuum-infected gut epithelial cells. Our results revealed that lipid rafts were involved in C. innocuum-induced NOD2 expression and nuclear factor (NF)-κB activation, triggering an inflammatory response. Reducing cholesterol by simvastatin significantly dampened C. innocuum-induced cell death, indicating that the C. innocuum-induced pathogenicity of cells was lipid raft-dependent. These results demonstrate that NOD2 mobilization into membrane rafts in response to C. innocuum-induced cytotoxicity results in aggravated pathogenicity.
Collapse
Affiliation(s)
- Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Kuo
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Huei Chou
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chyi-Liang Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Shan Hsu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chu Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ywan M. Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Cobo F, Pérez-Carrasco V, Tarriño-León M, Aguilera-Franco M, García-Salcedo JA, Navarro-Marí JM. Bacteremia due to Clostridium innocuum: Analysis of four cases and literature review. Anaerobe 2023; 83:102771. [PMID: 37562537 DOI: 10.1016/j.anaerobe.2023.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Clostridium innocuum is a Gram-positive anaerobic spore-forming bacillus that has been identified as part of the normal intestinal microbiota. This bacterium has been rarely associated with human infections, and only few severe infections have been reported until now. In this work, we report on four patients with bacteremia due to C. innocuum, which were well identified by MALDI-TOF MS. Moreover, a review of the previous published cases of bacteremia due to this anaerobic bacterium has been performed.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Virginia Pérez-Carrasco
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Tarriño-León
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Aguilera-Franco
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José A García-Salcedo
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
8
|
Rendeli C, Paradiso VF, Bucci V, Cretì G, D'Aleo C, Lisi G, Lombardi L, Marte A, Masnata G, Migliazza L, Gerocarni Nappo S, Raffaele A, Buzle DS, Viciani E, Castagnetti A, Ausili E. Gut microbiota and pediatric patients with spina bifida and neurogenic bowel dysfunction. Childs Nerv Syst 2023; 39:633-645. [PMID: 36180597 DOI: 10.1007/s00381-022-05688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Gut microbiota has recently been recognized to be influenced by a broad range of pathologies. Alterations of gut microbiota are known as dysbiosis and have found to be related to chronic constipation, a condition which affects also pediatric patients with spina bifida (SB). METHODS In this study, gut microbiota richness and composition were investigated by 16S rRNA sequencing and bioinformatic analysis in 48 SB patients (mean age, 11.9 ± 4.8 years) with secondary neurogenic constipation and 32 healthy controls (mean age, 18.0 ± 9.6 years). The study also aimed at exploring eventual effects of laxatives and transanal irrigation (TAI) adopted by SB subjects to get relief from the symptoms of neurogenic constipation. RESULTS Collected data demonstrated that the microbiota richness of SB patients was significantly increased compared to healthy controls, with a higher number of dominant bacteria rather than rare species. The absence of SB condition was associated with taxa Coprococcus 2, with the species C. eutactus and Roseburia, Dialister, and the [Eubacterium] coprostanoligenes group. On the other hand, the SB patients displayed a different group of positively associated taxa, namely, Blautia, Collinsella, Intestinibacter, and Romboutsia genera, the [Clostridium] innocuum group, and Clostridium sensu stricto 1. Bifidobacterium and the [Eubacterium] hallii group were also found to be positively associated with SB gut microbiome. CONCLUSIONS Among SB patients, the administration of laxatives and TAI did not negatively affect gut microbiota diversity and composition, even considering long-term use (up to 5 years) of TAI device.
Collapse
Affiliation(s)
- Claudia Rendeli
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy.
| | | | | | - Giuseppe Cretì
- Ospedale Casa del Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | - Laura Lombardi
- Azienda Ospedaliera - Universitaria, Centro Spina Bifida, Parma, Italy
| | - Antonio Marte
- Azienda Ospedaliera, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | | | | | | | | | | | - Emanuele Ausili
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
9
|
Bhattacharjee D, Flores C, Woelfel-Monsivais C, Seekatz AM. Diversity and Prevalence of Clostridium innocuum in the Human Gut Microbiota. mSphere 2023; 8:e0056922. [PMID: 36541771 PMCID: PMC9942572 DOI: 10.1128/msphere.00569-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Clostridia are a polyphyletic group of Gram-positive, spore-forming anaerobes in the Firmicutes phylum that significantly impact metabolism and functioning of the human gastrointestinal tract. Recently, Clostridia were divided into two separate classes, Clostridia and Erysipelotrichia, based on phenotypic and 16S rRNA gene-based differences. While Clostridia include many well-known pathogenic bacteria, Erysipelotrichia remain relatively uncharacterized, particularly regarding their role as a pathogen versus commensal. Despite wide recognition as a commensal, the erysipelotrichial species Clostridium innocuum has recently been associated with various disease states. To further understand the ecological and potential virulent role of C. innocuum, we conducted a genomic comparison across 38 C. innocuum isolates and 194 publicly available genomes. Based on colony morphology, we isolated multiple C. innocuum cultivars from the feces of healthy human volunteers (n = 5). Comparison of the 16S rRNA gene of our isolates against publicly available microbiota data sets in healthy individuals suggests a high prevalence of C. innocuum across the human population (>80%). Analysis of single nucleotide polymorphisms (SNPs) across core genes and average nucleotide identify (ANI) revealed the presence of four clades among all available genomes (n = 232 total). Investigation of carbohydrate and protein utilization pathways, including comparison against the carbohydrate-activating enzyme (CAZyme) database, demonstrated inter- and intraclade differences that were further substantiated in vitro. Collectively, these data indicate genetic variance within the C. innocuum species that may help clarify its role in human disease and health. IMPORTANCE Clostridia are a group of medically important anaerobes as both commensals and pathogens. Recently, a new class of Erysipelotrichia containing a number of reassigned clostridial species has emerged, including Clostridium innocuum. Recent studies have implicated C. innocuum as a potential causative agent of diarrhea in patients from whom Clostridioides difficile could not be isolated. Using genomic and in vitro comparison, this study sought to characterize C. innocuum in the healthy human gut. Our analyses suggest that C. innocuum is a highly prevalent and diverse species, demonstrating clade-specific differences in metabolism and potential virulence. Collectively, this study is the first investigation into a broader description of C. innocuum as a human gut inhabitant.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Clara Flores
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
10
|
Zakia LS, MacNicol JL, Borges AS, Yu S, Boerlin P, Gomez DE, Surette MG, Arroyo LG. Fecal prevalence of Clostridium innocuum DNA in healthy horses and horses with colitis. Anaerobe 2023; 79:102681. [PMID: 36481352 DOI: 10.1016/j.anaerobe.2022.102681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
This study compared the prevalence of C. innocuum DNA in the feces of healthy horses and horses with acute colitis. C. innocuum was identified in 22% (15/68) of colitis cases and 18% (12/68) of healthy horses (p = 0.416).
Collapse
Affiliation(s)
- Luiza S Zakia
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Jennifer L MacNicol
- Department of Animal Bioscience, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexandre S Borges
- São Paulo State University (Unesp), School of Veterinary Medicine and Animal Science, Department of Veterinary Clinical Science, Walter Mauricio Correa Street, No Number, Botucatu, Sao Paulo, 18618-681, Brazil.
| | - Serena Yu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
11
|
Chen YC, Le PH, Wang YH, Chuang TC, Yeh YM, Chiu CT, Chiu CH. Gut Colonization and Antibiotic-Associated Diarrhea by Clostridium innocuum in Children and Adults. Clin Infect Dis 2023; 76:369-371. [PMID: 36029096 DOI: 10.1093/cid/ciac696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yi-Ching Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Puo-Hsien Le
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Wang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chun Chuang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
12
|
Kiersnowska ZM, Lemiech-Mirowska E, Michałkiewicz M, Sierocka A, Marczak M. Detection and Analysis of Clostridioides difficile Spores in a Hospital Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15670. [PMID: 36497742 PMCID: PMC9740219 DOI: 10.3390/ijerph192315670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Clostridioides difficile, due to its long survival time in a hospital environment, is considered to be one of the most frequent factors in healthcare-associated infections. Patient care requires not only rapid and accurate diagnosis, but also knowledge of individual risk factors for infections, e.g., with C. difficile, in various clinical conditions. The goal of this study was to analyse the degree of contamination of a hospital environment with C. difficile spores. Culturing was performed using C diff Banana BrothTM medium, which enables germination of the spores of these bacteria. Samples were collected from inanimate objects within a hospital environment in a specialist hospital in Poland. The results of the study demonstrated the presence of 18 positive samples of Clostridioides spp. (15.4%). Of these, C. difficile spores were detected in six samples, Clostridioides perfringens in eight samples, Clostridioides sporogenes in two samples and Clostridioides innocuum and Clostridioides baratii in one sample each. Among the six samples of C. difficile, a total of four strains which produce the B toxin were cultured. The binary toxin related to ribotype 027 was not detected in our study. Nosocomial infection risk management is a significant problem, mainly concerning the issues of hygiene maintenance, cleaning policy and quality control, and awareness of infection risk.
Collapse
Affiliation(s)
- Zofia Maria Kiersnowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Michałkiewicz
- Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
13
|
Wei S, Jespersen ML, Baunwall SMD, Myers PN, Smith EM, Dahlerup JF, Rasmussen S, Nielsen HB, Licht TR, Bahl MI, Hvas CL. Cross-generational bacterial strain transfer to an infant after fecal microbiota transplantation to a pregnant patient: a case report. MICROBIOME 2022; 10:193. [PMID: 36352460 PMCID: PMC9647999 DOI: 10.1186/s40168-022-01394-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) effectively prevents the recurrence of Clostridioides difficile infection (CDI). Long-term engraftment of donor-specific microbial consortia may occur in the recipient, but potential further transfer to other sites, including the vertical transmission of donor-specific strains to future generations, has not been investigated. Here, we report, for the first time, the cross-generational transmission of specific bacterial strains from an FMT donor to a pregnant patient with CDI and further to her child, born at term, 26 weeks after the FMT treatment. METHODS A pregnant woman (gestation week 12 + 5) with CDI was treated with FMT via colonoscopy. She gave vaginal birth at term to a healthy baby. Fecal samples were collected from the feces donor, the mother (before FMT, and 1, 8, 15, 22, 26, and 50 weeks after FMT), and the infant (meconium at birth and 3 and 6 months after birth). Fecal samples were profiled by deep metagenomic sequencing for strain-level analysis. The microbial transfer was monitored using single nucleotide variants in metagenomes and further compared to a collection of metagenomic samples from 651 healthy infants and 58 healthy adults. RESULTS The single FMT procedure led to an uneventful and sustained clinical resolution in the patient, who experienced no further CDI-related symptoms up to 50 weeks after treatment. The gut microbiota of the patient with CDI differed considerably from the healthy donor and was characterized as low in alpha diversity and enriched for several potential pathogens. The FMT successfully normalized the patient's gut microbiota, likely by donor microbiota transfer and engraftment. Importantly, our analysis revealed that some specific strains were transferred from the donor to the patient and then further to the infant, thus demonstrating cross-generational microbial transfer. CONCLUSIONS The evidence for cross-generational strain transfer following FMT provides novel insights into the dynamics and engraftment of bacterial strains from healthy donors. The data suggests FMT treatment of pregnant women as a potential strategy to introduce beneficial strains or even bacterial consortia to infants, i.e., neonatal seeding. Video Abstract.
Collapse
Affiliation(s)
- Shaodong Wei
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Marie Louise Jespersen
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
- Clinical-Microbiomics A/S, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Mark Dahl Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Emilie Milton Smith
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800, Kgs Lyngby, Denmark.
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Gut Microbes and Neuropathology: Is There a Causal Nexus? Pathogens 2022; 11:pathogens11070796. [PMID: 35890040 PMCID: PMC9319901 DOI: 10.3390/pathogens11070796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a virtual organ which produces a myriad of molecules that the brain and other organs require. Humans and microbes are in a symbiotic relationship, we feed the microbes, and in turn, they provide us with essential molecules. Bacteroidetes and Firmicutes phyla account for around 80% of the total human gut microbiota, and approximately 1000 species of bacteria have been identified in the human gut. In adults, the main factors influencing microbiota structure are diet, exercise, stress, disease and medications. In this narrative review, we explore the involvement of the gut microbiota in Parkinson’s disease, Alzheimer’s disease, multiple sclerosis and autism, as these are such high-prevalence disorders. We focus on preclinical studies that increase the understanding of disease pathophysiology. We examine the potential for targeting the gut microbiota in the development of novel therapies and the limitations of the currently published clinical studies. We conclude that while the field shows enormous promise, further large-scale studies are required if a causal link between these disorders and gut microbes is to be definitively established.
Collapse
|
15
|
Png CW, Chua YK, Law JH, Zhang Y, Tan KK. Alterations in co-abundant bacteriome in colorectal cancer and its persistence after surgery: a pilot study. Sci Rep 2022; 12:9829. [PMID: 35701595 PMCID: PMC9198081 DOI: 10.1038/s41598-022-14203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in the role of gut microbiome in colorectal cancer (CRC), ranging from screening to disease recurrence. Our study aims to identify microbial markers characteristic of CRC and to examine if changes in bacteriome persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for analysis by bacterial 16S rRNA gene sequencing. Bacterial richness and diversity were reduced, while pro-carcinogenic bacteria such as Bacteroides fragilis and Odoribacter splanchnicus were increased in CRC patients compared to NC group. These differences were no longer observed after surgery. Comparison between pre-op and post-op CRC showed increased abundance of probiotic bacteria after surgery. Concomitantly, bacteria associated with CRC progression were observed to have increased after surgery, implying persistent dysbiosis. In addition, functional pathway predictions based on the bacterial 16S rRNA gene data showed that various pathways were differentially enriched in CRC compared to NC. Microbiome signatures characteristic of CRC comprise altered bacterial composition. Elements of these dysbiotic signatures persists even after surgery, suggesting possible field-change in remnant non-diseased colon. Future studies should involve a larger sample size with microbiome data collected at multiple time points after surgery to examine if these dysbiotic patterns truly persist and also correlate with disease outcomes.
Collapse
Affiliation(s)
- Chin-Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong-Kang Chua
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jia-Hao Law
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Le Floc'h N, Achard CS, Eugenio FA, Apper E, Combes S, Quesnel H. Effect of live yeast supplementation in sow diet during gestation and lactation on sow and piglet fecal microbiota, health and performance. J Anim Sci 2022; 100:6604467. [PMID: 35675760 DOI: 10.1093/jas/skac209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
Feeding probiotics like live yeast Saccharomyces cerevisiae var. boulardii (SB) in pig diets has been suggested to preserve health and reduce antibiotic use during critical periods like weaning. This study was conducted to determine whether SB added in the diet of sows during the last 2 mo of gestation and the 4 wk of lactation may contribute to supporting health and performance of piglets before and after weaning through changes in sow physiology, milk composition and fecal microbiota. Crossbred sows (n=45) from parity 1 to 9 were allocated to two dietary treatments, Control (n=23) and SB (n=22). Sows in the SB group were fed the same standard gestation then lactation diet as the Control sows but with the addition of SB at 1x10 9 colony forming units/kg of feed. Piglets were weaned under challenging conditions consisting in mixing of litters, no pen cleaning and a 2-h period of non-optimal temperature exposure. Blood and feces were collected from sows on d 28 and 113 of gestation and d 6 (feces only) and 28 of lactation, and from piglets on d 6 (feces) and 28 of lactation and d 5 after weaning. Colostrum was collected during parturition and milk on d 6 of lactation. Supplementation of sow diets with SB influenced the fecal microbiota of the sows and their piglets. Five days after weaning, the alpha-diversity was lower (P < 0.05) in piglets from SB sows than in piglets from Control sows. Analysis of microbiota with Partial Least Square Discriminant Analysis discriminated feces from SB sows from that of Control sows at 110 d of gestation (29.4% error rate). Piglet feces could also be discriminated according to the diet of their mother, with a better discrimination early after birth (d 6 of lactation) than after weaning (d 5 post-weaning, 3.4% vs 12.7% error rate). Five d after weaning, piglets had greater white blood cell count, plasma haptoglobin concentration, and oxidative stress than before weaning (P <0.001). Nevertheless, SB supplementation in sow diets had no effect (P > 0.05) on most of health criteria measured in blood and growth performance of piglets during lactation and the post-weaning period. Moreover, dietary supplementation of SB to sows did not elicit any changes (P > 0.05) in their reproductive performance, metabolic and health status, nor in the immunoglobulin and nutrient concentration of colostrum and milk. In the present experimental conditions, feeding SB to sows influenced sow and piglet microbiota with no consequences on their health and performance.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Combes
- INRAE, Université de Toulouse, ENVT, GenPhySE, Castanet Tolosan, France
| | | |
Collapse
|
17
|
Cherny KE, Balaji A, Mukherjee J, Goo YA, Hauser AR, Ozer E, Satchell KJF, Bachta KER, Kochan TJ, Mitra SD, Kociolek LK. Identification of Clostridium innocuum hypothetical protein that is cross-reactive with C. difficile anti-toxin antibodies. Anaerobe 2022; 75:102555. [PMID: 35367613 PMCID: PMC9197939 DOI: 10.1016/j.anaerobe.2022.102555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Previously considered solely an opportunistic pathogen, Clostridium innocuum (CI) was recently reported in Taiwan to be an emerging cause of antibiotic-associated diarrhea and clinically indistinguishable from Clostridioides difficile (CD) infection. We previously identified CI culture supernatant being cross-reactive with commercial CD toxin enzyme immunoassays. We aimed to identify and characterize the cross-reacting protein and determine whether it functioned as a human toxin. METHODS We performed western blots using CI culture supernatants and CD anti-toxin antibodies and identified interacting bands. We identified protein(s) using tandem mass spectrometry and evaluated them by cytotoxicity assays. RESULTS CI, but not CD, was isolated from stool of 12 children and adults with diarrhea. Culture supernatant from 6/12 CI isolates, and an ATCC reference strain, tested positive for CD toxins (total 7/13 isolates) by commercial EIA. Using two of these isolates, we identified two ∼40 kDa hypothetical proteins, CI_01447 and CI_01448, and confirmed cross-reactivity with CD anti-toxin antibodies by enzyme immunoassay and Western blot. Whole-genome sequencing confirmed all 13 isolates contained both genes, which were highly conserved. We observed no cytopathic or cytotoxic effects to HeLa cells when treated with these proteins. We identified amino acid sequence similarity to the NlpC/P60 family of proteins. CONCLUSIONS Our findings do not suggest CI proteins CI_01448 and CI_01447, which cross-react with antibodies against CD toxins A and B, are toxic to HeLa cells. Further studies are needed to determine the function of these cross-reacting proteins and the potential virulence factors that could be responsible for CI diarrheal disease.
Collapse
Affiliation(s)
- K E Cherny
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - A Balaji
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - J Mukherjee
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Y A Goo
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - A R Hauser
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - E Ozer
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - K J F Satchell
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - K E R Bachta
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T J Kochan
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - S D Mitra
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - L K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Hao Z, Tao K, Wu K, Luo Y, Lu Y, Li B, Shi P, Wang P, Zeng X, Lin Y. Alterations of gut microbiome and metabolite profiles in choledocholithiasis concurrent with cholangitis. Hepatol Int 2022; 16:447-462. [PMID: 34313944 DOI: 10.1007/s12072-021-10231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Gut microbiota and their metabolic products might play important roles in regulating the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to explore the characteristic gut dysbiosis, metabolite profiles and the possible roles in patients with CC. METHODS A case-control study was carried out to analyze the alterations in the intestinal microbiota and their metabolites in patients with CC (n = 25) compared with healthy controls (HCs) (n = 25) by metagenomic sequencing to define the gut microbiota community and liquid chromatography/mass spectrometry (LC/MS) analysis to characterize the metabolite profiles. RESULTS Significantly reduced Shannon diversity index (p = 0.043) and differential overall fecal microbiota community in CCs were observed. Twelve dominant altered species were identified and analyzed (LDA score > 3.0, p < 0.05) (Q value < 0.05), including unclassified_f_Enterobacteriaceae, Escherichia_coli, Roseburia_faecis and Eubacterium rectale. Moreover, the levels of KEGG pathways related to biofilm formation of Escherichia coli, lipopolysaccharide (LPS) biosynthesis, and the metabolism of propanoate and glutathione in CCs were significantly altered. Finally, 47 markedly changed metabolites (VIP > 1.0 and p < 0.05), including low level of kynurenic acid (KYNA) and high concentration of N-palmitoylsphingosine involving tryptophan metabolism and sphingolipid signaling pathways, were identified to validate aberrant metabolic patterns in CCs, and multiple correlated metabolic modules involving bile inflammation were altered in CCs. CONCLUSION Our study provides novel insights into compositional and functional alterations in the gut microbiome and metabolite profiles in CC and the underlying mechanisms between gut microbiota and bile inflammation.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kegong Tao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Binbin Li
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peiqin Wang
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
19
|
Chen YC, Kuo YC, Chen MC, Zhang YD, Chen CL, Le PH, Chiu CH. Case–Control Study of Clostridium innocuum Infection, Taiwan. Emerg Infect Dis 2022. [DOI: 10.3201/2803.204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Le PH, Chiu CT, Yeh PJ, Pan YB, Chiu CH. Clostridium innocuum infection in hospitalised patients with inflammatory bowel disease. J Infect 2022; 84:337-342. [PMID: 34963635 DOI: 10.1016/j.jinf.2021.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clostridium innocuum (CI) infection can lead to creeping fat in Crohn's disease and is associated with intestinal strictures. At present, no clinical study ever has evaluated the role of CI infection in inflammatory bowel disease (IBD). MATERIALS AND METHODS In this retrospective cohort study, we enrolled hospitalized IBD patients with culture results for both CI and Clostridioides difficile (CD) in a medical center between October 2019 and April 2021. They were divided into the CI (CI+/CD-), control (CI-/CD-), coinfection (CI+/CD+), and CD (CI-/CD+) groups. We analyzed the risk factors, clinical presentations, and outcomes by comparing the CI and control groups. RESULTS We enrolled a total of 90 patients, including 22, 39, 13, and 16 patients in the CI, control, coinfection, and CD groups. The incidence rates of CI (CI+) and CD (CD+) were 39% (35/90) and 32% (29/90), respectively. We analyzed the differences between CI and control groups. We identified the use of steroid (77.3% vs. 46.2%, P = 0.018) and 5-aminosalicylic acid (90.9% vs. 64.1%, P = 0.022) as risk factors of CI infection. Clinical analysis showed that more patients in CI group presented with bloody stool (77.3% vs. 51.3%, P = 0.046). Although CI group had significantly lower overall occurrence of intraabdominal abscess (0% vs. 17.9%, P = 0.042), it showed a lower clinical remission rate (50% vs. 87.5%, P = 0.044) and higher Mayo score at the end of follow-up (10 points vs. 3 points, P = 0.008) in ulcerative colitis. CONCLUSIONS CI infection may lead to a poorer clinical remission in ulcerative colitis. We should take it into consideration in IBD patents with active inflamamtion or refractory diarrhea with or without CD infection. Precise identification of CI is imperative to guide approproate antimicrobial therapy because of its intrinsic vancomycin resistance nature.
Collapse
Affiliation(s)
- Puo-Hsien Le
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Taiwan Association of the Study of Small Intestinal Disease, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Taiwan Association of the Study of Small Intestinal Disease, Taoyuan, Taiwan
| | - Pai-Jui Yeh
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yu-Bin Pan
- Biostatistical Section, Clinical Trial Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, 5, Fu-Hsin Street Guei-Shan District, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Liu L, Liu Y, Guo X, Jin X, Yan W, Lin B, Cai T, Wei Y. Activation of p38 mitogen-activated protein kinase pathway by lipopolysaccharide aggravates postoperative ileus in colorectal cancer patients. J Gastroenterol Hepatol 2022; 37:518-530. [PMID: 34907602 DOI: 10.1111/jgh.15760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Patients undergoing abdominal surgery can develop postoperative ileus (POI). Inflammation of the intestinal muscularis following intestinal manipulation may be caused by displaced bacteria or lipopolysaccharide (LPS). The aim of this study was to investigate the relationship between gut microbiota, LPS, and POI in colorectal cancer (CRC) patients and explore underlying mechanisms of LPS-triggered POI. METHODS Sixty CRC patients undergoing colorectal resection were included. Bacterial communities from fecal samples were characterized by 16S rRNA gene sequencing, and fecal LPS levels were determined by Limulus amebocyte lysate assay. Mice were used to mechanistically investigate the causal relationship between microbiota, LPS, and POI. RESULTS We discovered that CRC patients who developed prolonged POI (PPOI) had a unique pro-inflammatory gut microbial composition during the perioperative period. The highest proportions of Gram-negative bacteria at the genus level were Escherichia-Shigella and Bacteroides; the abundance of Escherichia-Shigella was higher throughout the perioperative period. Fecal LPS levels were significantly higher in patients with PPOI. In mice treated with an antibiotic cocktail, intestinal muscularis inflammation and intestinal dysfunction were significantly improved. Inflammation and dysfunction were significantly reduced in mice treated with polymyxin B, but were worsened by treatment with LPS. Moreover, LPS upregulated p38 phosphorylation in mice, and treatment with an inhibitor of p38 (SB203580) significantly alleviated intestinal inflammation and dysmotility. CONCLUSION Lipopolysaccharide increases intestinal muscularis inflammation via activation of p38 signaling, which aggravates POI. Removing bacterial sources of LPS during the perioperative period is promising for the prophylactic treatment of PPOI.
Collapse
Affiliation(s)
- Lujia Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yang Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Xiao Guo
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Cai
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yunwei Wei
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| |
Collapse
|
22
|
Chen YC, Kuo YC, Chen MC, Zhang YD, Chen CL, Le PH, Chiu CH. Case-Control Study of Clostridium innocuum Infection, Taiwan. Emerg Infect Dis 2022; 28:599-607. [PMID: 35195517 PMCID: PMC8888209 DOI: 10.3201/eid2803.204421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vancomycin-resistant Clostridium innocuum was recently identified as an etiologic agent for antibiotic-associated diarrhea in humans. We conducted a case–control study involving 152 C. innocuum-infected patients during 2014–2019 in Taiwan, using 304 cases of Clostridioides difficile infection (CDI) matched by diagnosis year, age (+2 years), and sex as controls. The baseline characteristics were similar between the 2 groups. C. innocuum–infected patients experienced more extraintestinal clostridial infection and gastrointestinal tract–related complications than did patients with CDI. The 30-day mortality rate among C. innocuum–infected patients was 14.5%, and the overall rate was 23.0%. Chronic kidney disease, solid tumor, intensive care unit admission, and shock status were 4 independent risk factors for death. C. innocuum identified from clinical specimens should be recognized as a pathogen requiring treatment, and because of its intrinsic vancomycin resistance, precise identification is necessary to guide appropriate and timely antimicrobial therapy.
Collapse
|
23
|
Answer to January 2022 Photo Quiz. J Clin Microbiol 2022; 60:e0033021. [PMID: 35045276 DOI: 10.1128/jcm.00330-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Zhao TS, Xie LW, Cai S, Xu JY, Zhou H, Tang LF, Yang C, Fang S, Li M, Tian Y. Dysbiosis of Gut Microbiota Is Associated With the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Front Cell Infect Microbiol 2021; 11:717636. [PMID: 34760714 PMCID: PMC8573182 DOI: 10.3389/fcimb.2021.717636] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The acute radiation-induced intestinal injury (RIII) has raised much concerns and is influenced by non-cytocidal radiation effects including the perturbations in gut microbiota. Although a number of studies have reported alteration in gut microbiota following radiation, little is known about its dynamic variation in the progression of acute RIII. In this study, mouse model were treated with total body irradiation (TBI) of 0, 4, 8 and 12 Gy, and the intestinal tissues and fecal samples were collected at 6 h, 3.5 d and 7 d post radiation. We found that the intestinal injuries were manifested in a radiation dose-dependent manner. Results from 16S rRNA gene sequencing demonstrated that the diversity of gut microbiota was not significantly affected at the prodromal stage of acute RIII, after 6 h of radiation. At the critical stage of acute RIII, after 3.5 d of radiation, the composition of gut microbiota was correlated with the radiation dose. The Pearson’s correlation analysis showed that the relative abundances of phylum Proteobacteria, genera Escherichia-Shigella and Eubacterium xylanophilum_group, and species Lactobacillus murinus exhibited linear correlations with radiation dose. At the recovery stage of acute RIII, after 7 d of radiation, the diversity of gut microbiota decreased as a whole, among which the relative abundance of phyla Proteobacteria and Bacteroides increased, while that of phylum Tenericutes and genus Roseburia decreased. The intra-gastric administration of compound probiotics for 14 days improved the survival duration of mice exposed to 9 Gy TBI, alleviated the intestinal epithelial injury and partially restored the diversity of gut microbiota. Our findings suggest that acute RIII is accompanied by the dysbiosis of gut microbiota, including its decreased diversity, reduced abundance of beneficial bacteria and increased abundance of pathogens. The gut microbiota cannot be used as sensitive biomarkers at the prodromal stage in acute RIII, but are potential biomarkers at the critical stage of acute RIII. The dysbiosis is persistent until the recovery stage of acute RIII, and interventions are needed to restore it. The administration of probiotics is an effective strategy to protect against acute RIII and subsequent dysbiosis.
Collapse
Affiliation(s)
- Tian-Shu Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Li-Wei Xie
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jia-Yu Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chao Yang
- Department of Nucleus Radiation-Related Injury Treatment, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Cherny KE, Muscat EB, Reyna ME, Kociolek LK. Clostridium innocuum: Microbiological and clinical characteristics of a potential emerging pathogen. Anaerobe 2021; 71:102418. [PMID: 34332070 PMCID: PMC9006188 DOI: 10.1016/j.anaerobe.2021.102418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Clostridium innocuum is an anaerobic, gram-positive, spore-forming bacterium identified by Smith and King in 1962 after being isolated from a patient with an appendiceal abscess. Its name, C. innocuum, reflected its clinically "innocuous" nature based on observed lack of virulence in animal models of infection. Since that time, C. innocuum has been identified as both part of the normal intestinal flora and the cause of a rare, intrinsically vancomycin-resistant opportunistic infection in immunocompromised patients. More recently, reports from Taiwan suggest that C. innocuum, in addition to being a known extraintestinal pathogen, may also be a diarrheal pathogen that causes a C. difficile infection-like antibiotic-associated diarrheal illness. However, unanswered questions about the clinical relevance of C. innocuum remain. Here we review the microbiological and clinical characteristics of this emerging pathogen.
Collapse
Affiliation(s)
- Kathryn E Cherny
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Emily B Muscat
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Megan E Reyna
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Guan Z, Goldfine H. Lipid diversity in clostridia. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158966. [PMID: 33974975 PMCID: PMC8238869 DOI: 10.1016/j.bbalip.2021.158966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Studies of the lipidomes of twenty-one species of clostridia have revealed considerable diversity. Even among those species now defined as Clostridium sensu stricto, which are related to Clostridium butyricum, the type species, lipid analysis has shown that a number of distinct clades have characteristic polar lipids. All species of Clostridium sensu stricto have phosphatidylethanolamine, phosphatidylglycerol and cardiolipin which are present as all acyl or alk-1'-enyl acyl (plasmalogen) species. In addition, almost every clade has specialized polar lipids. For example, the group closely related to Clostridium beijerinckii and several other solventogenic species has glycerol acetals of plasmenylethanolamine, which protects the membrane bilayer arrangement when the lipids are highly unsaturated or in the presence of solvents. The group related to Clostridium novyi has aminoacyl-phosphatidylglycerol, which protects these pathogens from cationic antimicrobial peptides (CAMPs) of innate immunity. Clostridium botulinum species, which fall into several groups, align with these clades, and have the same specific lipids. This review will present the current state of knowledge on clostridial lipids.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Howard Goldfine
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
27
|
Plichta DR, Somani J, Pichaud M, Wallace ZS, Fernandes AD, Perugino CA, Lähdesmäki H, Stone JH, Vlamakis H, Chung DC, Khanna D, Pillai S, Xavier RJ. Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Med 2021; 13:35. [PMID: 33648559 PMCID: PMC7919092 DOI: 10.1186/s13073-021-00853-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immunoglobulin G4-related disease (IgG4-RD) and systemic sclerosis (SSc) are rare autoimmune diseases characterized by the presence of CD4+ cytotoxic T cells in the blood as well as inflammation and fibrosis in various organs, but they have no established etiologies. Similar to other autoimmune diseases, the gut microbiome might encode disease-triggering or disease-sustaining factors. METHODS The gut microbiomes from IgG4-RD and SSc patients as well as healthy individuals with no recent antibiotic treatment were studied by metagenomic sequencing of stool DNA. De novo assembly-based taxonomic and functional characterization, followed by association and accessory gene set enrichment analysis, were applied to describe microbiome changes associated with both diseases. RESULTS Microbiomes of IgG4-RD and SSc patients distinctly separated from those of healthy controls: numerous opportunistic pathogenic Clostridium and typically oral Streptococcus species were significantly overabundant, while Alistipes, Bacteroides, and butyrate-producing species were depleted in the two diseases compared to healthy controls. Accessory gene content analysis in these species revealed an enrichment of Th17-activating Eggerthella lenta strains in IgG4-RD and SSc and a preferential colonization of a homocysteine-producing strain of Clostridium bolteae in SSc. Overabundance of the classical mevalonate pathway, hydroxyproline dehydratase, and fibronectin-binding protein in disease microbiomes reflects potential functional differences in host immune recognition and extracellular matrix utilization associated with fibrosis. Strikingly, the majority of species that were differentially abundant in IgG4-RD and SSc compared to controls showed the same directionality in both diseases. Compared with multiple sclerosis and rheumatoid arthritis, the gut microbiomes of IgG4-RD and SSc showed similar signatures; in contrast, the most differentially abundant taxa were not the facultative anaerobes consistently identified in inflammatory bowel diseases, suggesting the microbial signatures of IgG4-RD and SSc do not result from mucosal inflammation and decreased anaerobism. CONCLUSIONS These results provide an initial characterization of gut microbiome ecology in fibrosis-prone IgG4-RD and SSc and reveal microbial functions that offer insights into the pathophysiology of these rare diseases.
Collapse
Affiliation(s)
| | - Juhi Somani
- Department of Computer Science, Aalto University, 02150, Espoo, Finland
| | | | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Epidemiology Program and Rheumatology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana D Fernandes
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Cory A Perugino
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150, Espoo, Finland
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel C Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
28
|
Histamine H 2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis. Int J Mol Sci 2020; 21:ijms21218166. [PMID: 33142910 PMCID: PMC7662336 DOI: 10.3390/ijms21218166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Dysbiosis, an imbalance of intestinal flora, can cause serious conditions such as obesity, cancer, and psychoneurological disorders. One cause of dysbiosis is inflammation. Ulcerative enteritis is a side effect of non-steroidal anti-inflammatory drugs (NSAIDs). To counteract this side effect, we proposed the concurrent use of histamine H2 receptor antagonists (H2RA), and we examined the effect on the intestinal flora. We generated a murine model of NSAID-induced intestinal mucosal injury, and we administered oral H2RA to the mice. We collected stool samples, compared the composition of intestinal flora using terminal restriction fragment length polymorphism, and performed organic acid analysis using high-performance liquid chromatography. The intestinal flora analysis revealed that NSAID [indomethacin (IDM)] administration increased Erysipelotrichaceae and decreased Clostridiales but that both had improved with the concurrent administration of H2RA. Fecal levels of acetic, propionic, and n-butyric acids increased with IDM administration and decreased with the concurrent administration of H2RA. Although in NSAID-induced gastroenteritis the proportion of intestinal microorganisms changes, leading to the deterioration of the intestinal environment, concurrent administration of H2RA can normalize the intestinal flora.
Collapse
|
29
|
Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, Humphrey G, Sanders K, Ratnayake Y, Chan KSL, Hendrick G, Caldera JR, Arias C, Moskowitz JE, Ho Sui SJ, Yang S, Underhill D, Brady MJ, Knott S, Kaihara K, Steinbaugh MJ, Li H, McGovern DPB, Knight R, Fleshner P, Devkota S. Translocation of Viable Gut Microbiota to Mesenteric Adipose Drives Formation of Creeping Fat in Humans. Cell 2020; 183:666-683.e17. [PMID: 32991841 PMCID: PMC7521382 DOI: 10.1016/j.cell.2020.09.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 07/19/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.
Collapse
Affiliation(s)
- Connie W Y Ha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony Martin
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory D Sepich-Poore
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Baochen Shi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth Gouin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Gustaf Hendrick
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christian Arias
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob E Moskowitz
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shaohong Yang
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew J Brady
- Department of Medicine, Section of Endocrinology and Metabolism, The University of Chicago, Chicago, IL 60637, USA
| | - Simon Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Phillip Fleshner
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Colorectal Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
30
|
Fourie JCJ, Bezuidenhout CC, Sanko TJ, Mienie C, Adeleke R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. JOURNAL OF WATER AND HEALTH 2020; 18:477-493. [PMID: 32833675 DOI: 10.2166/wh.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide-lincosamide-streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.
Collapse
Affiliation(s)
| | | | - Tomasz Janusz Sanko
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Charlotte Mienie
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Rasheed Adeleke
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| |
Collapse
|
31
|
Cherny KE, Ozer EA, Kochan TJ, Kociolek LK. Complete Genome Sequence of Clostridium innocuum Strain ATCC 14501. Microbiol Resour Announc 2020; 9:e00452-20. [PMID: 32703829 PMCID: PMC7378028 DOI: 10.1128/mra.00452-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of Clostridium innocuum ATCC 14501, which was isolated in 1962 from an appendiceal abscess. At that time, the isolated strain was designated C. innocuum, given its suspected lack of virulence, but recent reports suggest that C. innocuum is an emerging pathogen.
Collapse
Affiliation(s)
- K E Cherny
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - E A Ozer
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - T J Kochan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - L K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Puerperal Sepsis Caused by Clostridium Innocuum in a Patient with Placenta Accreta and Literature Review. MATERNAL-FETAL MEDICINE 2020. [DOI: 10.1097/fm9.0000000000000027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
33
|
Efimov B, Chaplin A, Sokolova S, Chernaia Z, Pikina A, Savilova A, Kafarskaya L. Application of culture-based, mass spectrometry and molecular methods to the study of gut microbiota in children. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent decades, nucleic acid sequencing technologies used for metagenomic analysis have become the main methods for assessing the composition of microbiota. At the same time, the use of novel methods of cultivation and identification of microorganisms in microbiological research led to the renaissance of culture-based technologies, because facilitated the discovery and isolation of both new strains of well-known microorganisms as well as uncultivated and unexplored bacterial taxa. The aim of this study was to evaluate the potential of using the culture-based method for the assessment of the qualitative and quantitative composition of the intestinal microbiota in healthy children. Eleven growth media were inoculated with serial dilutions of stool samples in order to analyze the profile of dominant anaerobic bacteria, as well as aerobic bacteria and fungi in 20 healthy children aged 2–4 years. The identification of microorganisms was performed using MALDI TOF MS and 16S rRNA gene fragment sequencing were used. 1,819 isolated and identified strains belong to 7 phyla, 13 classes, 18 orders, 33 families, 77 genera and 149 species in the Bacteria domain. The Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria phyla were most abundant and frequent. The greatest species diversity (more than 85 species) was found in the Firmicutes phylum. Ten new previously uncharacterized bacterial strains were isolated.
Collapse
Affiliation(s)
- B.A. Efimov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.V. Chaplin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - S.R. Sokolova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Z.A. Chernaia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.P. Pikina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.M. Savilova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L.I. Kafarskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
34
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
35
|
Vujicic M, Saksida T, Despotovic S, Bajic SS, Lalić I, Koprivica I, Gajic D, Golic N, Tolinacki M, Stojanovic I. The Role of Macrophage Migration Inhibitory Factor in the Function of Intestinal Barrier. Sci Rep 2018; 8:6337. [PMID: 29679061 PMCID: PMC5910418 DOI: 10.1038/s41598-018-24706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein that is involved in the development of gut-related inflammation. To investigate the role of MIF in the function of the intestinal barrier, we have explored intestinal permeability and gut-associated immune response in MIF-deficient (MIF-KO) mice. The absence of MIF provoked impairment of tight and adherens epithelial junctions in the colon through the disturbance of E-cadherin, zonula occludens-1, occludin and claudin-2 expression, which lead to the increase of intestinal barrier permeability. In these circumstances the diversity and content of gut microbiota in MIF-KO mice was considerably different compared to wild type mice. This change in microbiota was accompanied by an increased intestinal IgA concentration and a higher production of pro-inflammatory cytokines TNF and IFN-γ in mesenteric lymph nodes of MIF-KO mice. The forced changes of microbiota executed by antibiotics prevented the "leakage" of the barrier in MIF-KO mice, probably through up-regulation of occludin expression and normalization of cellular pore diameters. In addition, cytokine secretion was normalized after the treatment with antibiotics. These results suggest that MIF participates in the maintenance of physiological microbiota diversity and immunosurveillance, which in turn enables the proper intestinal barrier function.
Collapse
Affiliation(s)
- Milica Vujicic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Sanja Despotovic
- Faculty of Medicine, University of Belgrade, Institute of Histology and Embryology, Belgrade, 11000, Serbia
| | - Svetlana Sokovic Bajic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Ivana Lalić
- Faculty of Medicine, University of Belgrade, Institute of Histology and Embryology, Belgrade, 11000, Serbia
| | - Ivan Koprivica
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Dragica Gajic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia
| | - Natasa Golic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Maja Tolinacki
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, 11000, Serbia
| | - Ivana Stojanovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Department of Immunology, Belgrade, 11060, Serbia.
| |
Collapse
|
36
|
Chia JH, Wu TS, Wu TL, Chen CL, Chuang CH, Su LH, Chang HJ, Lu CC, Kuo AJ, Lai HC, Chiu CH. Clostridium innocuum is a vancomycin-resistant pathogen that may cause antibiotic-associated diarrhoea. Clin Microbiol Infect 2018; 24:1195-1199. [PMID: 29458157 DOI: 10.1016/j.cmi.2018.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Clostridium innocuum can cause extraintestinal infection in patients with underlying diseases. The role of C. innocuum in antibiotic-associated diarrhoea (AAD) remains unknown. METHODS Clinical information of 103 patients from whom C. innocuum was isolated was reviewed. We carried out cellular and animal experiments to examine the pathogenic potential of C. innocuum in AAD. RESULTS Eighty-eight per cent (91/103) of the 103 patients received antibiotics within 2 weeks of diarrhoea onset. Patients were further classified into two groups, severe colitis and diarrhoea, according to clinical severity level. The mortality rate was 13.6% (14/103) among the patients from whom C. innocuum was isolated. The lowest concentrations at which 90% of the isolates were inhibited for metronidazole and vancomycin were 0.5 and 16 mg/L, respectively. All isolates tested were susceptible to metronidazole but resistant to vancomycin. Nineteen randomly selected isolates (ten from severe colitis group, nine from diarrhoea group) were subjected to further in vitro cellular examinations. The level of cytotoxicity to Vero cells was significantly higher in isolates from the severe colitis group at both 24 and 48 hours after inoculation (24 and 48 hours, p 0.042 and 0.033, respectively). We observed apoptotic changes that subsequently led to cell death in C. innocuum-infected Vero cells. Tissue damages, necrotic changes and oedema were observed in the mouse ileal loop infected by C. innocuum. CONCLUSIONS Vancomycin-resistant C. innocuum may play a potential role as a causative agent of AAD. The clinical manifestations of AAD caused by C. innocuum were diarrhoea or severe colitis, including pseudomembranous colitis.
Collapse
Affiliation(s)
- J-H Chia
- Department of Laboratory Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan
| | - T-S Wu
- Department of Internal Medicine, Division of Infectious Diseases, Taoyuan, Taiwan
| | - T-L Wu
- Department of Laboratory Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan
| | - C-L Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - C-H Chuang
- Department of Pediatrics, St Paul's Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - L-H Su
- Department of Laboratory Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan
| | - H-J Chang
- Department of Internal Medicine, Division of Infectious Diseases, Taoyuan, Taiwan
| | - C-C Lu
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei, Taiwan
| | - A-J Kuo
- Department of Laboratory Medicine, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan
| | - H-C Lai
- Department of Medical Biotechnology and Laboratory Science, Taoyuan, Taiwan.
| | - C-H Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|