1
|
Jean SS, Liu CY, Huang TY, Lai CC, Liu IM, Hsieh PC, Hsueh PR. Potentially effective antimicrobial treatment for pneumonia caused by isolates of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii complex species: what can we expect in the future? Expert Rev Anti Infect Ther 2024:1-17. [PMID: 39381911 DOI: 10.1080/14787210.2024.2412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the β-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chia-Ying Liu
- Department of Infectious Diseases and Department of Hospitalist, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Huang
- Department of Pharmacy, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Huang C, Lin L, Kuo S. Comparing the Outcomes of Cefoperazone/Sulbactam-Based and Non-Cefoperazone/Sulbactam-Based Therapeutic Regimens in Patients with Multiresistant Acinetobacter baumannii Infections-A Meta-Analysis. Antibiotics (Basel) 2024; 13:907. [PMID: 39335080 PMCID: PMC11428705 DOI: 10.3390/antibiotics13090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The addition of sulbactam restores the complete range of cefoperazone activity against bacteria and extends its spectrum of action to include the Acinetobacter species. The effectiveness of cefoperazone/sulbactam against multiresistant Acinetobacter baumannii has not been investigated. The purpose of the current meta-analysis was to compare the efficacy of cefoperazone/sulbactam-based therapeutic regimens and non-cefoperazone/sulbactam-based therapeutic regimens in the treatment of multiresistant Acinetobacter baumannii infections. The current meta-analysis of 10 retrospective studies provides evidence that cefoperazone/sulbactam-based therapeutic regimens are superior to non-cefoperazone/sulbactam-based therapeutic regimens in terms of 30-day mortality and clinical improvement in patients with multiresistant Acinetobacter baumannii infections. The risk of mortality was reduced by 38% among multiresistant Acinetobacter baumannii infections in patients who received cefoperazone/sulbactam-based therapeutic regimens. The cefoperazone/sulbactam-based combination therapy was superior to the cefoperazone/sulbactam monotherapy in terms of 30-day mortality when both therapeutic regimens were compared to the tigecycline monotherapy in patients with multiresistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Chienhsiu Huang
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Lichen Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Sufang Kuo
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
3
|
Covvey JR, Guarascio AJ. Sulbactam-durlobactam for the treatment of Acinetobacter baumannii-calcoaceticus complex. Expert Rev Anti Infect Ther 2024:1-10. [PMID: 39234753 DOI: 10.1080/14787210.2024.2400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Infections with Acinetobacter baumannii-calcoaceticus complex (ABC) pose difficulty for clinicians given a limited arsenal of effective antimicrobials. Sulbactam/durlobactam provides a novel treatment option for patients experiencing hospital- or ventilator-acquired pneumonia with susceptible strains. AREAS COVERED This review provides a comprehensive discussion of sulbactam/durlobactam, including basic characteristics, in vitro activity, and clinical trial data supporting its use for the treatment of ABC. Manufacturer's data, published literature to date, and conference data are utilized in this review. EXPERT OPINION Sulbactam/durlobactam offers clinicians a new and effective treatment option for resistant ABC infection. Sulbactam, when combined with durlobactam, displays enhanced potency against ABC isolates, which has translated into positive clinical outcomes observed in clinical trials and post-marketing case studies. Although overall treatment indications and clinical experience are limited to date, sulbactam/durlobactam offers a familiar and favorable safety profile in comparison with alternative agents. Factors associated with use of combination antibiotic therapy, availability of commercial drug susceptibility testing, and cost-effectiveness are all currently key considerations for sulbactam/durlobactam use.
Collapse
Affiliation(s)
- Jordan R Covvey
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Anthony J Guarascio
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
- Department of Pharmacy, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1395260. [PMID: 39081869 PMCID: PMC11287075 DOI: 10.3389/fcimb.2024.1395260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with severe carbapenem-resistant Acinetobacter baumannii (CRAB) infections currently face significant treatment challenges. When patients display signs of infection and the clinical suspicion of CRAB infections is high, appropriate treatment should be immediately provided. However, current treatment plans and clinical data for CRAB are limited. Inherent and acquired resistance mechanisms, as well as host factors, significantly restrict options for empirical medication. Moreover, inappropriate drug coverage can have detrimental effects on patients. Most existing studies have limitations, such as a restricted sample size, and are predominantly observational or non-randomized, which report significant variability in patient infection severity and comorbidities. Therefore, a gold-standard therapy remains lacking. Current and future treatment options of infections due to CRAB were described in this review. The dose and considerable side effects restrict treatment options for polymyxins, and high doses of ampicillin-sulbactam or tigecycline appear to be the best option at the time of initial treatment. Moreover, new drugs such as durlobactam and cefiderocol have substantial therapeutic capabilities and may be effective salvage treatments. Bacteriophages and antimicrobial peptides may serve as alternative treatment options in the near future. The advantages of a combination antimicrobial regimen appear to predominate those of a single regimen. Despite its significant nephrotoxicity, colistin is considered a primary treatment and is often used in combination with antimicrobials, such as tigecycline, ampicillin-sulbactam, meropenem, or fosfomycin. The Infectious Diseases Society of America (IDSA) has deemed high-dose ampicillin-sulbactam, which is typically combined with high-dose tigecycline, polymyxin, and other antibacterial agents, the best option for treating serious CRAB infections. A rational combination of drug use and the exploration of new therapeutic drugs can alleviate or prevent the effects of CRAB infections, shorten hospital stays, and reduce patient mortality.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First People’s Hospital, Tongxiang, Zhejiang, China
| | - Yan Qi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qian
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
5
|
Choi SJ, Kim ES. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect Chemother 2024; 56:171-187. [PMID: 38960737 PMCID: PMC11224036 DOI: 10.3947/ic.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii complex (CRAB) poses a significant global health challenge owing to its resistance to multiple antibiotics and limited treatment options. Polymyxin-based therapies have been widely used to treat CRAB infections; however, they are associated with high mortality rates and common adverse events such as nephrotoxicity. Recent developments include numerous observational studies and randomized clinical trials investigating antibiotic combinations, repurposing existing antibiotics, and the development of novel agents. Consequently, recommendations for treating CRAB are undergoing significant changes. The importance of colistin is decreasing, and the role of sulbactam, which exhibits direct antibacterial activity against A. baumannii complex, is being reassessed. High-dose ampicillin-sulbactam-based combination therapies, as well as combinations of sulbactam and durlobactam, which prevent the hydrolysis of sulbactam and binds to penicillin-binding protein 2, have shown promising results. This review introduces recent advancements in CRAB infection treatment based on clinical trial data, highlighting the need for optimized treatment protocols and comprehensive clinical trials to combat the evolving threat of CRAB effectively.
Collapse
Affiliation(s)
- Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
6
|
Sun K, Peng F, Xu K, Liu Y, Zhou X, Shang N, Li C. A novel multivariate logistic model for predicting risk factors of failed treatment with carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Front Public Health 2024; 12:1385118. [PMID: 38784576 PMCID: PMC11111873 DOI: 10.3389/fpubh.2024.1385118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background This study aimed to explore the risk factors for failed treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia (CRAB-VAP) with tigecycline and to establish a predictive model to predict the incidence of failed treatment and the prognosis of CRAB-VAP. Methods A total of 189 CRAB-VAP patients were included in the safety analysis set from two Grade 3 A national-level hospitals between 1 January 2022 and 31 December 2022. The risk factors for failed treatment with CRAB-VAP were identified using univariate analysis, multivariate logistic analysis, and an independent nomogram to show the results. Results Of the 189 patients, 106 (56.1%) patients were in the successful treatment group, and 83 (43.9%) patients were in the failed treatment group. The multivariate logistic model analysis showed that age (OR = 1.04, 95% CI: 1.02, 1.07, p = 0.001), yes. of hypoproteinemia (OR = 2.43, 95% CI: 1.20, 4.90, p = 0.013), the daily dose of 200 mg (OR = 2.31, 95% CI: 1.07, 5.00, p = 0.034), yes. of medication within 14 days prior to surgical intervention (OR = 2.98, 95% CI: 1.19, 7.44, p = 0.019), and no. of microbial clearance (OR = 0.31, 95% CI: 0.14, 0.70, p = 0.005) were risk factors for the failure of tigecycline treatment. Receiver operating characteristic (ROC) analysis showed that the AUC area of the prediction model was 0.745 (0.675-0.815), and the decision curve analysis (DCA) showed that the model was effective in clinical practice. Conclusion Age, hypoproteinemia, daily dose, medication within 14 days prior to surgical intervention, and microbial clearance are all significant risk factors for failed treatment with CRAB-VAP, with the nomogram model indicating that high age was the most important factor. Because the failure rate of CRAB-VAP treatment with tigecycline was high, this prediction model can help doctors correct or avoid risk factors during clinical treatment.
Collapse
Affiliation(s)
- Ke Sun
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Kaiqiang Xu
- Qinhuangdao Center for Disease Control and Prevention, Qinhuangdao, Hebei, China
| | - Yong Liu
- Shandong Public Health Clinical Center, Jinan, Shangdong, China
| | - Xuanping Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chao Li
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Franzone JP, Mackow N, van Duin D. Current treatment options for pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Curr Opin Infect Dis 2024; 37:137-143. [PMID: 38179988 PMCID: PMC10922681 DOI: 10.1097/qco.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS In a multicenter, randomized, and controlled trial the novel β-lactam-β-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.
Collapse
Affiliation(s)
- John P. Franzone
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Natalie Mackow
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Wang SH, Yang KY, Sheu CC, Lin YC, Chan MC, Feng JY, Chen CM, Chen CY, Zheng ZR, Chou YC, Peng CK. Efficacy of combination therapy with standard-dose carbapenem for treating nosocomial pneumonia caused by carbapenem-resistant Acinetobacter baumannii in intensive care units: A multicentre retrospective propensity score-matched study. Int J Antimicrob Agents 2024; 63:107044. [PMID: 38040319 DOI: 10.1016/j.ijantimicag.2023.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infection is common worldwide. Despite carbapenem resistance, standard-dose carbapenems are still used in clinical practice. Hence in this study, we aimed to compare the efficacy and outcomes of a regimen containing standard-dose carbapenems with those of a regimen lacking carbapenems during the treatment of critically ill patients with CRAB nosocomial pneumonia in the intensive care unit (ICU). Initially, 735 patients were recruited for this multicentre retrospective cohort study. After exclusion, time-window bias adjustment, and propensity score matching, multiple clinical outcomes were compared between the carbapenem-containing (CC) (n = 166) and no carbapenem-containing (NCC) (n = 166) groups. The CC group showed a higher risk of clinical failure on day 7 than the NCC group (44.6% vs. 33.1%, P = 0.043). The lengths of ICU stay (21 and 16 days, P = 0.024) and hospital stay (61 and 44 days, P = 0.003) were longer in the CC group than in the NCC group. Multivariate analysis showed that the CC regimen was associated with higher clinical failure (adjusted odds ratio (aOR) = 1.64, 95% CI = 1.05-2.56, P = 0.031) and lower microbiological eradication (aOR = 0.48, 95% CI = 0.23-1.00, P = 0.049) at day 7 than the NCC group. Thus, a regimen containing a standard dose of carbapenem should be prescribed with caution for treating CRAB nosocomial pneumonia in the ICU.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Rodjun V, Montakantikul P, Houngsaitong J, Jitaree K, Nosoongnoen W. Pharmacokinetic/pharmacodynamic (PK/PD) simulation for dosage optimization of colistin and sitafloxacin, alone and in combination, against carbapenem-, multidrug-, and colistin-resistant Acinetobacter baumannii. Front Microbiol 2023; 14:1275909. [PMID: 38098659 PMCID: PMC10720588 DOI: 10.3389/fmicb.2023.1275909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 12/17/2023] Open
Abstract
To the best of our knowledge, to date, no study has investigated the optimal dosage regimens of either colistin or sitafloxacin against drug-resistant Acinetobacter baumannii (A. baumannii) infections by using specific parameters. In the current study, we aimed to explore the optimal dosage regimens of colistin and sitafloxacin, either in monotherapy or in combination therapy, for the treatment of carbapenem-, multidrug-, and colistin-resistant A. baumannii infections. A Monte Carlo simulation was applied to determine the dosage regimen that could achieve the optimal probability of target attainment (PTA) and cumulative fraction of response (CFR) (≥90%) based on the specific parameters of each agent and the minimal inhibitory concentration (MIC) of the clinical isolates. This study explored the dosage regimen of 90, 50, 30, and 10 mL/min for patients with creatinine clearance (CrCL). We also explored the dosage regimen for each patient with CrCL using combination therapy because there is a higher possibility of reaching the desired PTA or CFR. Focusing on the MIC90 of each agent in combination therapy, the dosage regimen for colistin was a loading dose of 300 mg followed by a maintenance dose ranging from 50 mg every 48 h to 225 mg every 12 h and the dosage regimen for sitafloxacin was 325 mg every 48 h to 750 mg every 12 h. We concluded that a lower-than-usual dose of colistin based on specific pharmacokinetic data in combination with a higher-than-usual dose of sitafloxacin could be an option for the treatment of carbapenem-, multidrug-, and colistin-resistant. A. baumannii. The lower dose of colistin might show a low probability of adverse reaction, while the high dose of sitafloxacin should be considered. In the current study, we attempted to find if there is a strong possibility of drug selection against crucial drug-resistant pathogen infections in a situation where there is a lack of new antibiotics. However, further study is needed to confirm the results of this simulation study.
Collapse
Affiliation(s)
| | - Preecha Montakantikul
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jantana Houngsaitong
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kamonchanok Jitaree
- Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Wichit Nosoongnoen
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Tuon FF, Yamada CH, de Andrade AP, Arend LNVS, Dos Santos Oliveira D, Telles JP. Oral doxycycline to carbapenem-resistant Acinetobacter baumannii infection as a polymyxin-sparing strategy: results from a retrospective cohort. Braz J Microbiol 2023; 54:1795-1802. [PMID: 37278889 PMCID: PMC10243254 DOI: 10.1007/s42770-023-01015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Acinetobacter baumannii infection presents a high mortality rate and few therapeutic options. This study aimed to evaluate clinical-microbiological characteristics and prognosis factors of patients diagnosed with A. baumanni. infections treated with oral doxycycline. A retrospective cohort of hospitalized patients with confirmed Acinetobacter spp. infection between 2018 and 2020 receives at least 3 days of oral doxycycline. Clinical and microbiological data were evaluated, including the outcome and molecular characterization of A. baumannii. Doxycycline minimal inhibitory concentrations were evaluated by the broth dilution method. One hundred patients were included with a median age of 51 years. The leading site of infection was pulmonary (n = 62), followed by the soft tissues and skin (n = 28). A. baumannii resistant to carbapenem was found on 94%. The gene blaOXA-23 and blaOXA-51 were amplified in all recovered isolates of A. baumannii (n = 44). Doxycycline MIC50 and MIC90 were 1 µg/mL and 2 µg/mL, respectively. Death rate at 14 days and 28 days of follow-up was 9% and 14%, respectively. The prognostic factors related to death at end of follow-up were age > 49 years [85.7% vs. 46%, CI 95% 6.9 (1.4-32.6), P = 0.015] and hemodialysis [28.6% vs. 7%, CI 95% 5.33 (1.2-22.1), P = 0.021]. Patients treated with doxycycline to A. baumannii presented a relatively low death rate, and risk factors related to death were age and hemodialysis. Further and larger studies should compare polymyxin to doxycycline to better understand the differences between these therapeutic options.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil.
| | - Carolina Hikari Yamada
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Ana Paula de Andrade
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Lavinia Nery Villa Stangler Arend
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - Dayana Dos Santos Oliveira
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica Do Paraná, Rua Imaculada Conceição, PR, 1155 80215-901, Curitiba, Brazil
| | - João Paulo Telles
- Department of Infection Control, Hospital Universitário Evangélico Mackenzie, Curitiba, Brazil
- Department of Infectious Disease, AC Camargo Cancer Center, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Zeng M, Xia J, Zong Z, Shi Y, Ni Y, Hu F, Chen Y, Zhuo C, Hu B, Lv X, Li J, Liu Z, Zhang J, Yang W, Yang F, Yang Q, Zhou H, Li X, Wang J, Li Y, Ren J, Chen B, Chen D, Wu A, Guan X, Qu J, Wu D, Huang X, Qiu H, Xu Y, Yu Y, Wang M. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:653-671. [PMID: 36868960 DOI: 10.1016/j.jmii.2023.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The dissemination of carbapenem-resistant Gram-negative bacilli (CRGNB) is a global public health issue. CRGNB isolates are usually extensively drug-resistant or pandrug-resistant, resulting in limited antimicrobial treatment options and high mortality. A multidisciplinary guideline development group covering clinical infectious diseases, clinical microbiology, clinical pharmacology, infection control, and guideline methodology experts jointly developed the present clinical practice guidelines based on best available scientific evidence to address the clinical issues regarding laboratory testing, antimicrobial therapy, and prevention of CRGNB infections. This guideline focuses on carbapenem-resistant Enterobacteriales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Sixteen clinical questions were proposed from the perspective of current clinical practice and translated into research questions using PICO (population, intervention, comparator, and outcomes) format to collect and synthesize relevant evidence to inform corresponding recommendations. The grading of recommendations, assessment, development and evaluation (GRADE) approach was used to evaluate the quality of evidence, benefit and risk profile of corresponding interventions and formulate recommendations or suggestions. Evidence extracted from systematic reviews and randomized controlled trials (RCTs) was considered preferentially for treatment-related clinical questions. Observational studies, non-controlled studies, and expert opinions were considered as supplementary evidence in the absence of RCTs. The strength of recommendations was classified as strong or conditional (weak). The evidence informing recommendations derives from studies worldwide, while the implementation suggestions combined the Chinese experience. The target audience of this guideline is clinician and related professionals involved in management of infectious diseases.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 200032, China
| | - Jun Xia
- The Nottingham Ningbo GRADE Centre, University of Nottingham Ningbo China, Ningbo, China; Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Chao Zhuo
- Department of Infectious Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Wenjie Yang
- Department of Infectious Diseases, Tianjin First Center Hospital, Tianjin 300192, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China
| | - Qiwen Yang
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha 410015, China
| | - Jianhua Wang
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yimin Li
- Department of Critical Care Medicine,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jian'an Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Baiyi Chen
- Divison of Infectious Diseases, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing 100044, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yingchun Xu
- Department and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, And Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People's Republic of China, Shanghai 200040, China.
| |
Collapse
|
13
|
Sodeifian F, Zangiabadian M, Arabpour E, Kian N, Yazarlou F, Goudarzi M, Centis R, Seghatoleslami ZS, Kameh MC, Danaei B, Goudarzi H, Nasiri MJ, Sotgiu G, Migliori GB. Tigecycline-Containing Regimens and Multi Drug-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Microb Drug Resist 2023. [PMID: 37192494 DOI: 10.1089/mdr.2022.0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Introduction: The use of tigecycline (TG) for the treatment of Acinetobacter baumannii is controversial. In this systematic review and meta-analysis, we aimed to better explore the safety and efficacy of TG for the treatment of multi drug-resistant (MDR) Acinetobacter. Methods: We searched PubMed/MEDLINE, Scopus, Cochrane Central, and Web of Science to identify studies reporting the clinical and microbiological efficacy and safety of regimens containing TG in patients with drug susceptibility testing (DST)-confirmed MDR A. baumannii, published until December 30, 2022. Observational studies were included if they reported clinical and microbiological efficacy of TG-based regimens. The Newcastle-Ottawa Scale (NOS) and Joana Briggs Institute (JBI) critical appraisal tool were used to assess the quality of included studies. Results: There were 30 observational studies, of which 19 studies were cohort and 11 studies were single group studies. Pooled clinical response and failure rates in the TG-containing regimens group were 58.1 (95% confidence interval [CI] 49.2-66.6) and 40.2 (95% CI 31.1-50.0), respectively. The pooled microbiological response rate was 32.1 (95% CI 19.8-47.5), and the pooled all-cause mortality rate was 41.1 (95% CI 34.1-48.4). Pooled clinical response and failure rates in the colistin-based regimens group were 52.7 (42.7-62.5) and 43.1 (33.1-53.8), respectively. The pooled microbiological response rate was 42.9 (16.2-74.5), and the pooled all-cause mortality rate was 34.3 (26.1-43.5). Conclusions: According to our results, the efficacy of the TG-based regimen is the same as other antibiotics. However, our study showed a high mortality rate and a lower rate of microbiological eradication for TG compared with colistin-based regimen. Therefore, our study does not recommend it for the treatment of MDR A. baumannii. However, this was a prevalence meta-analysis of observational studies, and for better conclusion experimental studies are required.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Arabpour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Kian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fartous Yazarlou
- Department of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | | | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
14
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Gontijo AVL, Cavalieri AVG. Individualized optimization of colistin loading doses. J Pharmacokinet Pharmacodyn 2023; 50:11-20. [PMID: 36323974 DOI: 10.1007/s10928-022-09831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Colistin remains one of the few available options for the treatment of infections caused by resistant bacteria. Pharmacokinetic (PK) studies have been successful in estimating the appropriate colistin methanesulfonate (CMS) dose to achieve a target colistin concentration. Currently, there is a consensus that the dose of CMS should vary according to the patient renal function since CMS is mainly eliminated by renal route. For this same reason, the loading dose should vary according to the patient's renal capacity; however, this is not the current clinical practice. In this study we develop a framework to determine two key parameters for the loading dose regimen: (1) the optimal dose according to the characteristics (renal function and weight) of the patient; (2) the waiting time before the maintenance dose. Based on a previous PK model, our framework allows a fast parameter sweep so as to select optimal loading dose and waiting time minimizing the deviation between the plasma concentration and a target value. The results showed that patients presenting low creatinine clearance (CrCL) should receive a lower CMS loading dose with longer interval to start maintenance treatment to avoid nephrotoxic colistin concentrations. In cases of high CrCL, the dose should be higher and the interval to the next dose shorter to avoid subtherapeutic concentrations. Optimization of the loading dose should considerably improve colistin therapy, as the target concentration is reached more quickly, without reaching toxic values.
Collapse
Affiliation(s)
- Aline Vidal Lacerda Gontijo
- Department of Pharmacy, Anhanguera University, Av. Dr. João Batista de Souza Soares, 4009 - Cidade Morumbi, São José dos Campos, SP, 12236-660, Brazil.
| | - André V G Cavalieri
- Divisão de Engenharia Aeroespacial, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
| |
Collapse
|
16
|
Zha L, Zhang X, Cheng Y, Xu Q, Liu L, Chen S, Lu Z, Guo J, Tefsen B. Intravenous Polymyxin B as Adjunctive Therapy to High-Dose Tigecycline for the Treatment of Nosocomial Pneumonia Due to Carbapenem-Resistant Acinetobacter baumannii and Klebsiella pneumoniae: A Propensity Score-Matched Cohort Study. Antibiotics (Basel) 2023; 12:antibiotics12020273. [PMID: 36830183 PMCID: PMC9952519 DOI: 10.3390/antibiotics12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Although the combination of polymyxin and tigecycline is widely used in treating carbapenem-resistant bacterial infections, the benefit of this combination is still uncertain. To assess whether adding polymyxin B to the high-dose tigecycline regimen would result in better clinical outcomes than the high-dose tigecycline therapy in patients with pneumonia caused by carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, we conducted a propensity score-matched cohort study in a single center between July 2019 and December 2021. Of the 162 eligible patients, 102 were included in the 1:1 matched cohort. The overall 14-day mortality in the matched cohort was 24.5%. Compared with high-dose tigecycline, the combination therapy was not associated with better clinical outcomes, and showed similar 14-day mortality (OR, 0.72, 95% CI 0.27-1.83, p = 0.486), clinical cure (OR, 1.09, 95% CI 0.48-2.54, p = 0.823), microbiological cure (OR, 0.96, 95% CI 0.39-2.53, p = 0.928) and rate of nephrotoxicity (OR 0.85, 95% CI 0.36-1.99, p = 0.712). Subgroup analyses also did not demonstrate any statistical differences. Based on these results, it is reasonable to recommend against adding polymyxin B to the high-dose tigecycline regimen in treating pneumonia caused by carbapenem-resistant K. pneumoniae and A. baumannii.
Collapse
Affiliation(s)
- Lei Zha
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Xue Zhang
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yusheng Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Lingxi Liu
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Simin Chen
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwei Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Jun Guo
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.G.); (B.T.)
| | - Boris Tefsen
- Division of Microbiology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA
- Correspondence: (J.G.); (B.T.)
| |
Collapse
|
17
|
Wang SH, Yang KY, Sheu CC, Lin YC, Chan MC, Feng JY, Chen CM, Chen CY, Zheng ZR, Chou YC, Peng CK. The prevalence, presentation and outcome of colistin susceptible-only Acinetobacter Baumannii-associated pneumonia in intensive care unit: a multicenter observational study. Sci Rep 2023; 13:140. [PMID: 36599842 DOI: 10.1038/s41598-022-26009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) are both associated with significant morbidity and mortality in daily clinical practice, as well as in a critical care setting. It is unclear whether colistin susceptible-only Acinetobacter baumannii (CSO AB) is a unique phenotype separate from or a subset of CRAB-associated pneumonia. The aim of this study is to investigate the prevalence of CSO AB pneumonia and compare the presentation and outcome between CSO AB and CRAB-associated pneumonia in critically ill patients. This multicenter retrospective cohort study initially recruited 955 patients with CR-GNB pneumonia. After exclusion, 575 patients left who were ICU-admitted and had CRAB nosocomial pneumonia remained. Among them, 79 patients had CSO AB pneumonia, classified as the CSO AB group. The other 496 patients were classified as the CRAB group. We compared demographic characteristics, disease severity, and treatment outcomes between the two groups. The prevalence of CSO AB among all cases of CRAB pneumonia was 13.74% (79/575). The CSO AB and CRAB groups had similar demographic characteristics and disease severities at initial presentation. The in-hospital mortality rate was 45.6% and 46.4% for CSO AB and CRAB groups, respectively (p = 0.991). The CSO AB group had significantly better clinical outcomes at day 7 (65.8% vs 52.4%, p = 0.036) but longer length of ICU stay (27 days vs 19 days, p = 0.043) compared to the CRAB group. However, other treatment outcomes, including clinical outcomes at day 14 and 28, mortality, microbiological eradication, ventilator weaning, and newly onset dialysis, were similar. In conclusion, CSO AB accounted for 13.74% of all cases of CRAB pneumonia, and the clinical presentation and treatment outcomes of CSO AB and CRAB pneumonia were similar.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Rd, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
18
|
Yang KY, Peng CK, Sheu CC, Lin YC, Chan MC, Wang SH, Chen CM, Chen CY, Zheng ZR, Feng JY. Clinical effectiveness of tigecycline in combination therapy against nosocomial pneumonia caused by CR-GNB in intensive care units: a retrospective multi-centre observational study. J Intensive Care 2023; 11:1. [PMID: 36597165 PMCID: PMC9808925 DOI: 10.1186/s40560-022-00647-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tigecycline has in vitro bacteriostatic activity against a broad spectrum of bacteria, including carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the role of tigecycline in treatment of nosocomial pneumonia caused by CR-GNB remains controversial and clinical evidences are limited. We aimed to investigate the clinical benefits of tigecycline as part of the combination treatment of nosocomial CR-GNB pneumonia in intensive care unit (ICU). METHODS This multi-centre cohort study retrospectively enrolled ICU-admitted patients with nosocomial pneumonia caused by CR-GNB. Patients were categorized based on whether add-on tigecycline was used in combination with at least one anti-CR-GNB antibiotic. Clinical outcomes and all-cause mortality between patients with and without tigecycline were compared in the original and propensity score (PS)-matched cohorts. A subgroup analysis was also performed to explore the differences of clinical efficacies of add-on tigecycline treatment when combined with various anti-CR-GNB agents. RESULTS We analysed 395 patients with CR-GNB nosocomial pneumonia, of whom 148 received tigecycline and 247 did not. More than 80% of the enrolled patients were infected by CR-Acinetobacter baumannii (CRAB). A trend of lower all-cause mortality on day 28 was noted in tigecycline group in the original cohort (27.7% vs. 36.0%, p = 0.088). In PS-matched cohort (102 patient pairs), patients with tigecycline had significantly lower clinical failure (46.1% vs. 62.7%, p = 0.017) and mortality rates (28.4% vs. 52.9%, p < 0.001) on day 28. In multivariate analysis, tigecycline treatment was a protective factor against clinical failure (PS-matched cohort: aOR 0.52, 95% CI 0.28-0.95) and all-cause mortality (original cohort: aHR 0.69, 95% CI 0.47-0.99; PS-matched cohort: aHR 0.47, 95% CI 0.30-0.74) at 28 days. Kaplan-Meier survival analysis in subgroups of patients suggested significant clinical benefits of tigecycline when added to a colistin-included (log rank p value 0.005) and carbapenem-included (log rank p value 0.007) combination regimen. CONCLUSIONS In this retrospective observational study that included ICU-admitted patients with nosocomial pneumonia caused by tigecycline-susceptible CR-GNB, mostly CRAB, tigecycline as part of a combination treatment regimen was associated with lower clinical failure and all-cause mortality rates.
Collapse
Affiliation(s)
- Kuang-Yao Yang
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Kan Peng
- grid.260565.20000 0004 0634 0356Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chau-Chyun Sheu
- grid.412019.f0000 0000 9476 5696Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- grid.411508.90000 0004 0572 9415Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- grid.410764.00000 0004 0573 0731Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan ,grid.260542.70000 0004 0532 3749 School of Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Huei Wang
- grid.260565.20000 0004 0634 0356Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Min Chen
- grid.412019.f0000 0000 9476 5696Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yu Chen
- grid.411508.90000 0004 0572 9415Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- grid.411645.30000 0004 0638 9256Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan ,grid.410764.00000 0004 0573 0731Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Yih Feng
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | |
Collapse
|
19
|
Abushanab D, Nasr ZG, Al-Badriyeh D. Efficacy and Safety of Colistin versus Tigecycline for Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Pathogens-A Meta-Analysis. Antibiotics (Basel) 2022; 11:1630. [PMID: 36421274 PMCID: PMC9686723 DOI: 10.3390/antibiotics11111630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: We intended to compare the efficacy and safety outcomes of colistin versus tigecycline as monotherapy or combination therapy against multi-drug resistant (MDR) and extensively drug-resistant (XDR) pathogens. Methods: A search was conducted in PubMed, Cochrane CENTRAL, EMBASE, and in the grey literature (i.e., ClinicalTrials.gov and Google Scholar) up to May 2021. Outcomes were clinical response, mortality, infection recurrence, and renal and hepatic toxicity. We pooled odd ratios (OR) using heterogeneity-guided random or fixed models at a statistical significance of p < 0.05. Results: Fourteen observational studies involving 1163 MDR/XDR pathogens, receiving tigecycline versus colistin monotherapy or combination, were included. Base-case analyses revealed insignificant differences in the clinical response, reinfection, and hepatic impairment. The 30-day mortality was significantly relatively reduced with tigecycline monotherapy (OR = 0.35, 95% CI 0.16−0.75, p = 0.007). The colistin monotherapy significantly relatively reduced in-hospital mortality (OR = 2.27, 95%CI 1.24−4.16, p = 0.008). Renal impairment rates were lower with tigecycline monotherapy or in combination, and were lower with monotherapy versus colistin-tigecycline combination. Low-risk of bias and moderate/high evidence quality were associated with all studies. Conclusions: Within the limitations of this study, it can be concluded that there were no statistically significant differences in main efficacy outcomes between colistin and tigecycline monotherapies or combinations against MDR/XDR infections, except for lower rates of 30-day mortality with tigecycline and in-hospital mortality with colistin. Tigecycline was associated with favourable renal toxicity outcomes.
Collapse
Affiliation(s)
- Dina Abushanab
- Department of Pharmacy, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ziad G. Nasr
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
20
|
The magnitude of mortality and its determinants in Ethiopian adult intensive care units: A systematic review and meta-analysis. Ann Med Surg (Lond) 2022; 84:104810. [PMID: 36582907 PMCID: PMC9793120 DOI: 10.1016/j.amsu.2022.104810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Despite mortality in intensive care units being a global burden, it is higher in low-resource countries, including Ethiopia. A sufficient number of evidence is not yet established regarding mortality in the intensive care unit and its determinants. This study intended to determine the prevalence of ICU mortality and its determinants in Ethiopia. Methods PubMed, Google Scholar, The Cochrane Library, HINARI, and African Journals Online (AJOL) databases were systematically explored for potentially eligible studies on mortality prevalence and determinants reported by studies done in Ethiopia. Using a Microsoft Excel spreadsheet, two reviewers independently screen, select, review, and extract data for further analysis using STATA/MP version 17. A meta-analysis using a random-effects model was performed to calculate the pooled prevalence and odds ratio with a 95% confidence interval. In addition, using study region and sample size, subgroup analysis was also performed. Results 9799 potential articles were found after removing duplicates and screening for eligibility, 14 were reviewed. Ethiopia's pooled national prevalence of adult intensive care unit mortality was 39.70% (95% CI: 33.66, 45.74). Mechanical ventilation, length of staying more than two weeks, GCS below 9, and acute respiratory distress syndrome were major predictors of mortality in intensive care units of Ethiopia. Conclusion Mortality in adult ICU is high in Ethiopia. We strongly recommend that all health care professionals and other stakeholders should act to decrease the high mortality among critically ill patients in Ethiopia.
Collapse
|
21
|
Kim SE, Choi SM, Yu Y, Shin SU, Oh TH, Kang SJ, Park KH, Shin JH, Kim UJ, Jung SI. Replacement of the Dominant ST191 Clone by ST369 Among Carbapenem-Resistant Acinetobacter baumannii Bloodstream Isolates at a Tertiary Care Hospital in South Korea. Front Microbiol 2022; 13:949060. [PMID: 35910596 PMCID: PMC9335038 DOI: 10.3389/fmicb.2022.949060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The clonal dissemination of carbapenem-resistant Acinetobacter baumannii (CRAB) bacteremia is a serious clinical problem worldwide. However, the factors related to the emergence and replacement of predominant CRAB clones in nosocomial settings are unclear. By multilocus sequence typing (MLST), we evaluated the genetic relatedness of CRAB bloodstream isolates at a tertiary care hospital over a 3.5-year period and investigated the clinical and microbiologic characteristics of the predominant sequence types (STs). One hundred and seventy-nine CRAB bloodstream isolates were collected from June 2016 to December 2019, and their MLSTs according to Oxford scheme and clinical data were obtained. The predominant STs were assessed for in vitro growth, competitive growth, and virulence in a mouse model of intraperitoneal infection. Two dominant clones—ST369 (n = 98) and ST191 (n = 48)—belonging to international clone 2 (IC2) were recovered from patients admitted to intensive care units (ICUs) or wards. ST191 predominated (61%, 27/43) from June 2016 to July 2017, whereas ST369 (72%, 98/136), which was first isolated from a patient admitted to the emergency room, replaced ST191 (15%, 21/136) after August 2017. In a multivariate analysis, leukopenia (OR = 3.62, 95% CI 1.04–12.6, p = 0.04) and ST191 or 369 (OR = 5.32, 95% CI 1.25–22.65, p = 0.02) were independent risk factors for 7-day mortality. Compared with non-ST369, ST369 was associated with a shorter time to bacteremia from ICU admission (7 vs. 11 days, p = 0.01), pneumonia as an origin of bacteremia (67 vs. 52%, p = 0.04), leukopenia (28 vs. 11%, p < 0.01), and a lower 7-day survival rate (41 vs. 70%, p < 0.01). In vitro, ST 369 isolates had significantly higher growth rates and enhanced competitive growth compared to ST191. Finally, ST369 had greater virulence and a higher mortality rate than other STs in a mouse infection model. We report almost-complete replacement of the predominant ST191 clone by ST369 within an 8-month period at our hospital. ST369 had a high incidence density rate of CRAB bacteremia, a short time to bacteremia after ICU admission, and a high early mortality rate, which may be in part explained by its faster competitive growth rate and higher virulence than ST191.
Collapse
Affiliation(s)
- Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Su-Mi Choi
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Yohan Yu
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung Un Shin
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Tae Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
- Uh Jin Kim,
| | - Sook In Jung
- Department of Infectious Diseases, Chonnam National University Medical School, Gwangju, South Korea
- *Correspondence: Sook In Jung,
| |
Collapse
|
22
|
Chang K, Wang H, Zhao J, Yang X, Wu B, Sun W, Huang M, Cheng Z, Chen H, Song Y, Chen P, Chen X, Gan X, Ma W, Xing L, Wang Y, Gu X, Zou X, Cao B. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2022; 9:772372. [PMID: 35755062 PMCID: PMC9226555 DOI: 10.3389/fmed.2022.772372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction It is not clear whether polymyxin B/tigecycline (PMB/TGC) combination is better than PMB or TGC alone in the treatment of hospital-acquired pneumonia (HAP) caused by carbapenem-resistant organisms (CROs). Methods We conducted a multicenter, retrospective cohort study in patients with HAP caused by CROs. The primary outcome was 28-day mortality, and the secondary outcomes included clinical success and the incidence of acute kidney injury (AKI). Multivariate Cox regression analysis was performed to examine the relationship between antimicrobial treatments and 28-day mortality by adjusting other potential confounding factors. Results A total of 364 eligible patients were included in the final analysis, i.e., 99 in the PMB group, 173 in the TGC group, and 92 in the PMB/TGC combination group. The 28-day mortality rate was 28.3% (28/99) in the PMB group, 39.3% (68/173) in the TGC group, and 48.9% (45/92) in the PMB/TGC combination group (p = 0.014). The multivariate Cox regression model showed that there was a statistically significant lower risk of 28-day mortality among participants in the PMB group when compared with the PMB/TGC combination group [hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31–0.81, p = 0.004] and that participants in the TGC group had a lower risk of 28-day mortality than in the PMB/TGC combination group but without statistical significance. The incidence of AKI in the PMB group (52.5%) and the PMB/TGC combination group (53.3%) was significantly higher than that in the TGC group (33.5%, p = 0.001). Conclusion The appropriate PMB/TGC combination was not superior to appropriate PMB therapy in the treatment of HAP caused by carbapenem-resistant Enterobacteriaceae/carbapenem-resistant Acinetobacter baumannii (CRE/CRAB) in terms of 28-day mortality.
Collapse
Affiliation(s)
- Kang Chang
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenkui Sun
- Department of Respirology and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Xing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Capasso R, Pinto A, Serra N, Atripaldi U, Corcione A, Bocchini G, Guarino S, Lieto R, Rea G, Sica G, Valente T. Alert Germ Infections: Chest X-ray and CT Findings in Hospitalized Patients Affected by Multidrug-Resistant Acinetobacter baumannii Pneumonia. Tomography 2022; 8:1534-1543. [PMID: 35736874 PMCID: PMC9228714 DOI: 10.3390/tomography8030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii (Ab) is an opportunistic Gram-negative pathogen intrinsically resistant to many antimicrobials. The aim of this retrospective study was to describe the imaging features on chest X-ray (CXR) and computed tomography (CT) scans in hospitalized patients with multidrug-resistant (MDR) Ab pneumonia. CXR and CT findings were graded on a three-point scale: 1 represents normal attenuation, 2 represents ground-glass attenuation, and 3 represents consolidation. For each lung zone, with a total of six lung zones in each patient, the extent of disease was graded using a five-point scale: 0, no involvement; 1, involving 25% of the zone; 2, 25−50%; 3, 50−75%; and 4, involving >75% of the zone. Points from all zones were added for a final total cumulative score ranging from 0 to 72. Among 94 patients who tested positive for MDR Ab and underwent CXR (males 52.9%, females 47.1%; mean age 64.2 years; range 1−90 years), 68 patients underwent both CXR and chest CT examinations. The percentage of patients with a positive CT score was significantly higher than that obtained on CXR (67.65% > 35.94%, p-value = 0.00258). CT score (21.88 ± 15.77) was significantly (p-value = 0.0014) higher than CXR score (15.06 ± 18.29). CXR and CT revealed prevalent bilateral abnormal findings mainly located in the inferior and middle zones of the lungs. They primarily consisted of peripheral ground-glass opacities and consolidations which predominated on CXR and CT, respectively.
Collapse
Affiliation(s)
- Raffaella Capasso
- Department of Radiology, CTO Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-706-2629
| | - Antonio Pinto
- Department of Radiology, CTO Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Nicola Serra
- Department of Public Health, University Federico II of Naples, 80138 Napoli, Italy;
| | - Umberto Atripaldi
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Adele Corcione
- Department of Translational Medical Sciences, Section of Pediatrics, University Federico II of Naples, 80138 Napoli, Italy;
| | - Giorgio Bocchini
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Salvatore Guarino
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Roberta Lieto
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Gaetano Rea
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| | - Tullio Valente
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy; (U.A.); (G.B.); (S.G.); (R.L.); (G.R.); (G.S.); (T.V.)
| |
Collapse
|
24
|
Sy CL, Chen PY, Cheng CW, Huang LJ, Wang CH, Chang TH, Chang YC, Chang CJ, Hii IM, Hsu YL, Hu YL, Hung PL, Kuo CY, Lin PC, Liu PY, Lo CL, Lo SH, Ting PJ, Tseng CF, Wang HW, Yang CH, Lee SSJ, Chen YS, Liu YC, Wang FD. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:359-386. [PMID: 35370082 DOI: 10.1016/j.jmii.2022.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/12/2023]
Abstract
Antimicrobial drug resistance is one of the major threats to global health. It has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Infection rates due to multidrug-resistant organisms (MDRO) are increasing globally. Active agents against MDRO are limited despite an increased in the availability of novel antibiotics in recent years. This guideline aims to assist clinicians in the management of infections due to MDRO. The 2019 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, comprising of infectious disease specialists from 14 medical centers in Taiwan, reviewed current evidences and drafted recommendations for the treatment of infections due to MDRO. A nationwide expert panel reviewed the recommendations during a consensus meeting in Aug 2020, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes recommendations for selecting antimicrobial therapy for infections caused by carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and vancomycin-resistant Enterococcus. The guideline takes into consideration the local epidemiology, and includes antimicrobial agents that may not yet be available in Taiwan. It is intended to serve as a clinical guide and not to supersede the clinical judgment of physicians in the management of individual patients.
Collapse
Affiliation(s)
- Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pao-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wen Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Chang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pi-Lien Hung
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yen Liu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hao Lo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Pei-Ju Ting
- Division of Infectious Diseases, Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Fang Tseng
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Hsiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2094-2104. [DOI: 10.1093/jac/dkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
|
26
|
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, de Waele J, Daikos GL, Akova M, Harbarth S, Pulcini C, Garnacho-Montero J, Seme K, Tumbarello M, Lindemann PC, Gandra S, Yu Y, Bassetti M, Mouton JW, Tacconelli E, Baño JR. European Society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by Multidrug-resistant Gram-negative bacilli (endorsed by ESICM -European Society of intensive care Medicine). Clin Microbiol Infect 2021; 28:521-547. [PMID: 34923128 DOI: 10.1016/j.cmi.2021.11.025] [Citation(s) in RCA: 387] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
SCOPE These ESCMID guidelines address the targeted antibiotic treatment of 3rd generation cephalosporin-resistant Enterobacterales (3GCephRE) and carbapenem-resistant Gram-negative bacteria, focusing on the effectiveness of individual antibiotics and on combination vs. monotherapy. METHODS An expert panel was convened by ESCMID. A systematic review was performed including randomized controlled trials and observational studies, examining different antibiotic treatment regimens for the targeted treatment of infections caused by the 3GCephRE, carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumanni (CRAB). Treatments were classified as head-to-head comparisons between individual antibiotics and monotherapy vs. combination therapy regimens, including defined monotherapy and combination regimens only. The primary outcome was all-cause mortality, preferably at 30 days and secondary outcomes included clinical failure, microbiological failure, development of resistance, relapse/recurrence, adverse events and length of hospital stay. The last search of all databases was conducted in December 2019, followed by a focused search for relevant studies up until ECCMID 2021. Data were summarized narratively. The certainty of the evidence for each comparison between antibiotics and between monotherapy vs. combination therapy regimens was classified by the GRADE recommendations. The strength of the recommendations for or against treatments was classified as strong or conditional (weak). RECOMMENDATIONS The guideline panel reviewed the evidence per pathogen, preferably per site of infection, critically appraising the existing studies. Many of the comparisons were addressed in small observational studies at high risk of bias only. Notably, there was very little evidence on the effects of the new, recently approved, beta-lactam beta-lactamase inhibitors on infections caused by carbapenem-resistant Gram-negative bacteria. Most recommendations are based on very-low and low certainty evidence. A high value was placed on antibiotic stewardship considerations in all recommendations, searching for carbapenem-sparing options for 3GCephRE and limiting the recommendations of the new antibiotics for severe infections, as defined by the sepsis-3 criteria. Research needs are addressed.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Pilar Retamar
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roni Bitterman
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA;; VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens
| | - Murat Akova
- Hacettepe University School of Medicine, Department Of Infectious Diseases, Ankara, Turkey
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Celine Pulcini
- Université de Lorraine, APEMAC, Nancy, France; Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; Clinica Malattie Infettive, San Martino Policlinico Hospital, Genoa, Italy
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| | - Jesus Rodriguez Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
27
|
Gontijo AVL, Pereira SL, de Lacerda Bonfante H. Can Drug Repurposing be Effective Against Carbapenem-Resistant Acinetobacter baumannii? Curr Microbiol 2021; 79:13. [PMID: 34905109 PMCID: PMC8669236 DOI: 10.1007/s00284-021-02693-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been classified as a top priority for the development of new therapies due to its resistance to most antibiotics. Drug repurposing may be a fast and inexpensive strategy for treating this pathogen. This review aims to critically evaluate repurposed drugs for the treatment of infections caused by carbapenem-resistant A. baumannii, correlating their antimicrobial activity with data available for toxicity and side effects. Some drugs have been suggested as promising candidates for repurposing; however, in some cases, high toxicity and low plasma concentrations reduce applicability in clinical practice. The most favorable applicability is offered by fusidic acid and colistin, possibly combined with a third agent, promising to be well tolerated and achieving satisfactory plasma concentrations.
Collapse
Affiliation(s)
- Aline Vidal Lacerda Gontijo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| | - Sharlene Lopes Pereira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Herval de Lacerda Bonfante
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Division of Rheumatology, Hospital Santa Casa de Misericórdia de Juiz de Fora (SCMJF), Juiz de Fora, Minas Gerais, Brazil
- Department of Internal Medicine, School of Medical Sciences, Health of Juiz de Fora (SUPREMA), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
28
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Woon JJ, Teh CSJ, Chong CW, Abdul Jabar K, Ponnampalavanar S, Idris N. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from the Intensive Care Unit in a Tertiary Teaching Hospital in Malaysia. Antibiotics (Basel) 2021; 10:antibiotics10111340. [PMID: 34827278 PMCID: PMC8615160 DOI: 10.3390/antibiotics10111340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) has now become a global sentinel event. CRAB infections often instigate severe clinical complications and are potentially fatal, especially for debilitated patients. The present study aimed to conduct molecular characterization on CRAB isolated from patients in the intensive care unit from 2015 to 2016 and determine the risk factors associated with patients’ mortality. One hundred CRAB isolates were retrospectively selected and included in this study. Antimicrobial susceptibility testing showed that all isolates remained susceptible to colistin, even though 62% of them conferred resistance to all other classes of antibiotics tested. OXA carbapenemase gene was found to be the predominant carbapenemase gene, with 99% of the isolates coharbouring blaOXA-23-like and blaOXA-51-like carbapenemase genes. All isolates were carrying intact CarO genes, with the presence of various degree of nucleotide insertion, deletion and substitution. Overall, PFGE subtyped the isolates into 13 distinct pulsotypes, with the presence of 2 predominant pulsotypes. Univariate analysis implied that age, infection/colonization by CRAB, ethnicity, comorbidity and CRAB specimen source were significantly associated with in-hospital mortality. Multivariate analysis identified a higher risk of mortality for patients who are of Chinese ethnicity with diabetes as an underlying disease. As CRAB infection could lead to high rate of mortality, comprehensive infection control measures are needed to minimize the spread of this pathogen.
Collapse
Affiliation(s)
- Jia Jie Woon
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.J.W.); (C.S.J.T.); (K.A.J.)
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.J.W.); (C.S.J.T.); (K.A.J.)
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Correspondence: (C.W.C.); (N.I.); Tel.: +60-379-676-671 (N.I.)
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.J.W.); (C.S.J.T.); (K.A.J.)
| | - Sasheela Ponnampalavanar
- Department of Infectious Diseases, University of Malaya Medical Centre, Kuala Lumpur 50603, Malaysia;
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (J.J.W.); (C.S.J.T.); (K.A.J.)
- Correspondence: (C.W.C.); (N.I.); Tel.: +60-379-676-671 (N.I.)
| |
Collapse
|
30
|
The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics (Basel) 2021; 10:antibiotics10101146. [PMID: 34680727 PMCID: PMC8532680 DOI: 10.3390/antibiotics10101146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Hospital-acquired infections (HAIs) are a global public health concern. As the COVID-19 pandemic continues, its contribution to mortality and antimicrobial resistance (AMR) grows, particularly in intensive care units (ICUs). A two-year retrospective study from April 2019-April 2021 was conducted in an adult ICU at the Hospital for Infectious and Tropical Diseases, Belgrade, Serbia to assess causative agents of HAIs and AMR rates, with the COVID-19 pandemic ensuing halfway through the study. Resistance rates >80% were observed for the majority of tested antimicrobials. In COVID-19 patients, Acinetobacter spp. was the dominant cause of HAIs and more frequently isolated than in non-COVID-19 patients. (67 vs. 18, p = 0.001). Also, resistance was higher for imipenem (56.8% vs. 24.5%, p < 0.001), meropenem (61.1% vs. 24.3%, p < 0.001) and ciprofloxacin (59.5% vs. 36.9%, p = 0.04). AMR rates were aggregated with findings from our previous study to identify resistance trends and establish empiric treatment recommendations. The increased presence of Acinetobacter spp. and a positive trend in Klebsiella spp. resistance to fluoroquinolones (R2 = 0.980, p = 0.01) and carbapenems (R2 = 0.963, p = 0.02) could have contributed to alarming resistance rates across bloodstream infections (BSIs), pneumonia (PN), and urinary tract infections (UTIs). Exceptions were vancomycin (16.0%) and linezolid (2.6%) in BSIs; tigecycline (14.3%) and colistin (0%) in PNs; and colistin (12.0%) and linezolid (0%) in UTIs. COVID-19 has changed the landscape of HAIs in our ICUs. Approval of new drugs and rigorous surveillance is urgently needed.
Collapse
|
31
|
Park JM, Yang KS, Chung YS, Lee KB, Kim JY, Kim SB, Sohn JW, Yoon YK. Clinical Outcomes and Safety of Meropenem-Colistin versus Meropenem-Tigecycline in Patients with Carbapenem-Resistant Acinetobacter baumannii Pneumonia. Antibiotics (Basel) 2021; 10:antibiotics10080903. [PMID: 34438953 PMCID: PMC8388669 DOI: 10.3390/antibiotics10080903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
This study compared the clinical outcomes and safety of meropenem–colistin versus meropenem–tigecycline in the treatment of adult patients with carbapenem-resistant Acinetobacter baumannii (CRAB) pneumonia. A retrospective observational study of patients with CRAB pneumonia was performed at a 1048-bed university-affiliated hospital in the Republic of Korea between June 2013 and January 2020. All adult patients initially treated with meropenem–colistin were compared with those treated with meropenem–tigecycline to evaluate in-hospital mortality and adverse events. Altogether, 66 patients prescribed meropenem–colistin and 24 patients prescribed meropenem–tigecycline were included. All patients had nosocomial pneumonia, and 31.1% had ventilator-associated pneumonia. The minimum inhibitory concentrations of meropenem ≤ 8 μg/mL and tigecycline ≤ 2 μg/mL were 20.0% and 81.1%, respectively. The in-hospital and 28-day mortality rates were 40% and 32%, respectively. In the Cox proportional hazard regression analysis, predictors associated with in-hospital mortality included procalcitonin ≥ 1 ng/mL (adjusted hazard ratio (aHR), 3.39; 95% confidence interval (CI) 1.40–8.19; p = 0.007) and meropenem–colistin combination therapy (aHR, 2.58; 95% CI, 1.07–6.23; p = 0.036). Episodes of nephrotoxicity were significantly more common in the meropenem–colistin group than in the meropenem–tigecycline group (51.5% vs. 12.5%, p = 0.001). Meropenem–tigecycline combination therapy might be a valuable treatment option for patients with CRAB pneumonia.
Collapse
Affiliation(s)
- Jae-Min Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Kyung-Sook Yang
- Department of Biostatistics, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - You-Seung Chung
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Ki-Byung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Jeong-Yeon Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Sun-Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Jang-Wook Sohn
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
| | - Young-Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.-M.P.); (Y.-S.C.); (K.-B.L.); (J.-Y.K.); (S.-B.K.); (J.-W.S.)
- Correspondence: ; Tel.: +82-2-920-5341
| |
Collapse
|
32
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
33
|
Abate SM, Assen S, Yinges M, Basu B. Survival and predictors of mortality among patients admitted to the intensive care units in southern Ethiopia: A multi-center cohort study. Ann Med Surg (Lond) 2021; 65:102318. [PMID: 33996053 PMCID: PMC8091884 DOI: 10.1016/j.amsu.2021.102318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The burden of life-threatening conditions requiring intensive care units has grown substantially in low-income countries related to an emerging pandemic, urbanization, and hospital expansion. The rate of ICU mortality varied from region to region in Ethiopia. However, the body of evidence on ICU mortality and its predictors is uncertain. This study was designed to investigate the pattern of disease and predictors of mortality in Southern Ethiopia. METHODS After obtaining ethical clearance from the Institutional Review Board (IRB), a multi-center cohort study was conducted among three teaching referral hospital ICUs in Ethiopia from June 2018 to May 2020. Five hundred and seventeen Adult ICU patients were selected. Data were entered in Statistical Package for Social Sciences version 22 and STATA version 16 for analysis. Descriptive statistics were run to see the overall distribution of the variables. Chi-square test and odds ratio were determined to identify the association between independent and dependent variables. Multivariate analysis was conducted to control possible confounders and identify independent predictors of ICU mortality. RESULTS The mean (±SD) of the patients admitted in ICU was 34.25(±5.25). The overall ICU mortality rate was 46.8%. The study identified different independent predictors of mortality. Patients with cardiac arrest were approximately 12 times more likely to die as compared to those who didn't, AOR = 11.9(95% CI:6.1 to 23.2). CONCLUSION The overall mortality rate in ICU was very high as compared to other studies in Ethiopia as well as globally which entails a rigorous activity from different stakeholders.
Collapse
Key Words
- ACLS, advanced cardiac life support
- AOR, Adjusted Odds Ratio
- APACHE, Acute Physiologic and Chronic Health Evaluation
- ARDS, Acute Respiratory Distress Syndrome
- BMI, Body Mass Index
- CI, Confidence Interval
- CT, Computerized Tomography
- DURH, Dilla University referral hospital
- GCS, Glasgow Coma Scale
- HURH, Hawassa university referral hospital
- Hospital
- ICU, Intensive Care Unit
- IQR, Inter Quartile e Range
- IRB, Institutional Review Board
- Intensive care unit
- LOS, Length of Stay
- Mortality
- Predictor
- SAPS, Simplified Acute Physiology Score
- SD, Standard Deviation
- SOFA, Sequential Organ Failure Assessment
- STROBE, Strengthening the Reporting of Observational Studies in Epidemiology
- WURH, Wolaita Sodo referral hospital
Collapse
Affiliation(s)
- Semagn Mekonnen Abate
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Ethiopia
| | - Sofia Assen
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Ethiopia
| | - Mengistu Yinges
- Departemnt of Anesthesiology, College of Health Sciences and Medicine, Hawassa University, Ethiopia
| | - Bivash Basu
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Ethiopia
| |
Collapse
|
34
|
Li X, Song Y, Wang L, Kang G, Wang P, Yin H, Huang H. A Potential Combination Therapy of Berberine Hydrochloride With Antibiotics Against Multidrug-Resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:660431. [PMID: 33842399 PMCID: PMC8027359 DOI: 10.3389/fcimb.2021.660431] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii strains can cause severe infections in intensive care units, and are rapidly developing resistance to the last-resort of existing antibiotics, posing a major global threat to health care system. Berberine hydrochloride (BBH), a kind of isoquinoline alkaloids extracted from Berberis and other plants, has been widely used as an antibacterial medicine for its reliable therapeutic efficiency. The in vitro synergistic effects of BBH with antibiotics against MDR A. baumannii were determined. BBH alone had weak antimicrobial activity (e.g., MIC≥256 mg/L) against MDR A. baumannii. However, it dramatically increased the susceptibility of MDR strains against antibiotics with FICI values <0.5, even reversed their resistance to antibiotics (e.g., tigecycline, sulbactam, meropenem and ciprofloxacin). In vivo study has suggested BBH with sulbactam had stronger antimicrobial efficiency than monotherapy in a neutropenic murine thigh infection model. The antibiotic-sensitizing mechanism of action of BBH was evaluated as well. BBH boosted adeB gene expression and bound to the AdeB transporter protein, resulting in low uptake of BBH, which may contribute to less extrusion of antibiotics by the AdeABC pump. Knockout of the adeB gene increased uptake of BBH and diminished the antibiotic sensitization and synergistic effects between antibiotics and BBH in MDR strains. Together, BBH effectively re-sensitizes this MDR pathogen to a range of antibiotics that have become barely effective due to antibiotic resistance, which indicates BBH may be a promising therapeutic adjuvant candidate to combat MDR A. baumannii.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.,Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Yanqing Song
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Lina Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., Tianjin, China
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - He Huang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
35
|
Treatment outcomes of Acinetobacter baumannii -associated pneumonia and/or bacteraemia at the intensive care unit of Universitas Academic Hospital, Bloemfontein, South Africa. Afr J Thorac Crit Care Med 2021; 27. [PMID: 34240044 PMCID: PMC8203074 DOI: 10.7196/ajtccm.2021.v27i1.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/08/2022] Open
Abstract
Background
Nosocomial infection with multidrug-resistant (MDR) Acinetobacterbaumannii is associated with high mortality rates and
the optimal treatment regimen is uncertain.
Objectives
To compare outcomes, as well as ICU and in-hospital survival rates of patients with A. baumannii pneumonia and/or bacteraemia
who were treated with colistin monotherapy v. colistin/tigecycline combination therapy
Methods
This was a retrospective cross-sectional study of patients admitted to the multidisciplinary ICU of Universitas Academic Hospital,
Bloemfontein, South Africa, between 1 January 2018 and 31 December 2019.
Results
Sixteen patients were included in the study. Nine patients were treated with a combination of colistin and tigecycline, while 7
patients were treated with colistin only. Seven out of 9 (77.8%) patients in the colistin/tigecycline combination therapy group were treated
successfully and survived until discharge from ICU, as opposed to 2 out of 7 (28.6%) in the colistin monotherapy group (relative risk (RR)
2.7; 95% CI 0.80 - 9.24). Five out of 9 (55.6%) in the colistin/tigecycline combination therapy group v. 2 out of 7 (28.6%) in the colistin
monotherapy group survived until discharge from hospital (RR 1.94; 95% CI 0.53 - 7.20).
Conclusion
Although ICU survival in patients with A. baumannii infection was better when treated with colistin/tigecycline combination
therapy compared with colistin monotherapy, a statistically significant difference could not be detected. Adequately powered prospective
clinical trials are required to detect statistically significant differences in treatment outcomes.
Collapse
|
36
|
Qu J, Feng C, Li H, Lv X. Antibiotic strategies and clinical outcomes for patients with carbapenem-resistant Gram-negative bacterial bloodstream infection. Int J Antimicrob Agents 2021; 57:106284. [PMID: 33484833 DOI: 10.1016/j.ijantimicag.2021.106284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/09/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Carbapenem-resistant Gram-negative bacterial bloodstream infection (CRGNB-BSI) has become a rapidly growing global threat with limited antibiotic options and significant mortality. The aim of this study was to explore the antibiotic strategies and clinical outcomes of patients with CRGNB-BSI in Western China. We retrospectively investigated the demographic, microbiological and clinical characteristics of 355 patients with CRGNB-BSI from 2012-2017. Treatment failure and 28-day in-hospital mortality rates were 49.3% (175/355) and 23.7% (84/355), respectively. The most frequently isolated micro-organism was Acinetobacter baumannii (58.6%; 208/355). Patients with treatment failure had higher procalcitonin and interleukin-6 levels (P < 0.05). High-dosage tigecycline therapy (200 mg loading dose followed by 100 mg every 12 h) was not superior to standard tigecycline dosing (P > 0.05). Multivariable analysis revealed that multiple organ dysfunction syndrome (MODS) (OR = 2.226, 95% CI 1.376-3.602; P = 0.001) and intensive care unit (ICU) admission (OR = 3.116, 95% CI 1.905-5.097; P = 0.000) were independent risk factors for treatment failure, whereas monotherapy (OR = 0.386, 95% CI 0.203-0.735; P = 0.004) had a protective effect. Survival analysis revealed that inappropriate therapy, MODS and ICU admission were associated with a higher 28-day in-hospital mortality rate (P < 0.001). Combination antimicrobial therapy was not superior to monotherapy (P = 0.387). This study demonstrates that appropriate therapy is significantly associated with lower treatment failure and 28-day in-hospital mortality rates. Tigecycline might not be a suitable option for CRGBN-BSI. Patients with MODS and admitted to the ICU had poor clinical outcomes.
Collapse
Affiliation(s)
- Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu 610041, China
| | - Chunlu Feng
- Center of Infectious Disease, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu 610041, China
| | - Huan Li
- Center of Infectious Disease, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu 610041, China
| | - Xiaoju Lv
- Center of Infectious Disease, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu 610041, China.
| |
Collapse
|
37
|
Antigen Epitope Developed Based on Acinetobacter baumannii MacB Protein Can Provide Partial Immune Protection in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1975875. [PMID: 33134372 PMCID: PMC7593726 DOI: 10.1155/2020/1975875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen widely present in medical environment. Given its complex drug resistance, A. baumannii poses a serious threat to the safety of critically ill patients. Given the limited alternative antibiotics, nonantibiotic-based functional anti-A. baumannii infection proteins must be developed. In this study, we firstly used a series of biological software to predict potential epitopes in the MacB protein sequence and verified them by antibody recognition and lymphocyte proliferation tests. We finally screened out B cell epitope 2, CD8+ T cell epitope 7, and CD4+ T cell epitope 11 and connected them to construct a recombinant antigen epitope (RAE). The determination of IgG in the serum of immunised mice and cytokines in the supernatant of lymphocytes showed that the constructed epitope induced an immune response mediated by Th-1 cells. Finally, the challenge experiment of A. baumannii infection in mice confirmed that the epitope developed based on MacB, especially RAE, provided incomplete immune protection for mice.
Collapse
|
38
|
A Comparison of Colistin versus Colistin Plus Meropenem for the Treatment of Carbapenem-Resistant Acinetobacter baumannii in Critically Ill Patients: A Propensity Score-Matched Analysis. Antibiotics (Basel) 2020; 9:antibiotics9100647. [PMID: 32998187 PMCID: PMC7599589 DOI: 10.3390/antibiotics9100647] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB), an important nosocomial pathogen, occurs particularly in the intensive care unit (ICU). Thus, the aim of this study was to compare the efficacy and safety of documented treatment with colistin monotherapy versus colistin plus meropenem in critically ill patients with CRAB infections at Chiang Mai University Hospital (CMUH). We conducted a retrospective cohort study of critically ill patients with CRAB infections in an ICU from 2015 to 2017, who received colistin monotherapy versus colistin plus meropenem. After propensity score matching, an adjusted odds ratio (aOR) of a 30-day mortality rate in patients who received colistin plus meropenem was 0.43 compared to those who received colistin monotherapy (95% CI, 0.23–0.82, p = 0.01). aORs of clinical response and microbiological response were also higher in patients who received colistin plus meropenem (1.81, 95% CI 1.01–3.26, p = 0.048 and 2.08, 95% CI 1.11–3.91, p = 0.023, respectively). There was no significant difference in nephrotoxicity (aOR, 0.76, 95% CI, 0.43–1.36, p = 0.363) between colistin monotherapy and colistin plus meropenem. In conclusion, the addition of meropenem to colistin caused a reduction in 30-day mortality, higher clinical and microbiological responses, and did not increase nephrotoxicity compared to colistin monotherapy. Furthermore, 30-day mortality was significantly related with age, receiving vasopressor, having malignancy, and the APACHE II score.
Collapse
|
39
|
Mei H, Yang T, Wang J, Wang R, Cai Y. Efficacy and safety of tigecycline in treatment of pneumonia caused by MDR Acinetobacter baumannii: a systematic review and meta-analysis. J Antimicrob Chemother 2020; 74:3423-3431. [PMID: 31377765 DOI: 10.1093/jac/dkz337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Use of tigecycline in treating MDR Acinetobacter baumannii (MDRAB) remains controversial. OBJECTIVES To comprehensively assess the safety and efficacy of tigecycline in pneumonia caused by Acinetobacter baumannii. METHODS PubMed, Embase, Web of Science and Cochrane library databases were searched up to 12 March 2019. Studies were included if they compared tigecycline-based regimens with other antibiotic regimens for treating AB pulmonary infections and we pooled the clinical outcomes, microbiological response, adverse events or mortality. RESULTS One prospective study and nine retrospective studies were included in this meta-analysis. The results showed similar clinical cure rates (OR = 1.04, 95% CI = 0.60-1.81; P = 0.89) and mortality rates (OR = 1.11, 95% CI = 0.65-1.89; P = 0.71) comparing tigecycline groups with the control groups. However, a significantly lower microbiological eradication rate was found in the tigecycline groups (OR = 0.43, 95% CI = 0.27-0.66; P = 0.0001). Incidence of nephrotoxicity in tigecycline-based regimens was significantly lower than in colistin-based regimens (OR = 0.34, 95% CI = 0.16-0.74, I2 = 35%, P = 0.006). There were no randomized controlled trials (RCTs) included; incomplete safety data and regional bias caused by the majority of the studies originating in China are the main limitations of this meta-analysis. CONCLUSIONS Tigecycline can be used for treating MDRAB pulmonary infections owing to efficacy similar to that of other antibiotics. Moreover, tigecycline did not show a higher risk of mortality. Considering the lower microbiological eradication rate for tigecycline, which is likely to induce antimicrobial resistance, well-designed RCTs for high-dose tigecycline in treating pneumonia caused by AB are still needed.
Collapse
Affiliation(s)
- Hekun Mei
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Tianli Yang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Lin Q, Wang Y, Luo Y, Tang G, Li S, Zhang Y, Mao L, Liu W, Wang F, Sun Z. The Effect of Host Immunity on Predicting the Mortality of Carbapenem-Resistant Organism Infection. Front Cell Infect Microbiol 2020; 10:480. [PMID: 33072617 PMCID: PMC7533642 DOI: 10.3389/fcimb.2020.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Carbapenem-resistant organisms (CROs) are associated with considerable mortality clinically. There is a lack of effective tool to predict individual prognosis. We aim to determine if host immunity can be utilized to predict the prognosis of patients infected with CRO. From December 2018 to August 2019, we recruited CRO-infected patients to evaluate risk factors for 30-day mortality. Clinical, routine laboratory, immune and microbiological features were investigated and subjected to univariate and multivariate analyses. The final predictive models were established based on the regression coefficients of multivariate logistic regression. A total of 127 CRO-infected patients were enrolled in our study, including 85 survivors and 42 non-survivors. The number and IFN-γ producing ability of lymphocytes were remarkably decreased in non-survivors. The number of IFN-γ+CD4+ T cells could effectively predict 30-day mortality of CRO infection. Its area under the receiver operating characteristic (ROC) curve, sensitivity, specificity and accuracy, were 0.889 (95% confidence interval [CI], 0.834-0.945), 81.0, 80.0, and 80.3%, respectively. In multivariate analysis of laboratory parameters, IFN-γ+CD4+ T cell number and creatinine concentration were selected for the 2-marker model to predict prognosis fleetly. Its area under the ROC curve, sensitivity, specificity and accuracy were 0.894 (95% CI, 0.841-0.947), 83.3, 82.4, and 82.7%, respectively. Impaired lymphocyte function was an important factor to affect the outcome of CRO-infected patients. A 2-marker model based on the combination of IFN-γ+CD4+ T cell number and creatinine showed good performance in predicting the prognosis of CRO infection.
Collapse
Affiliation(s)
- Qun Lin
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wang
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Haematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Park JJ, Seo YB, Lee J, Choi YK, Jeon J. Colistin monotherapy versus colistin-based combination therapy for treatment of bacteremia in burn patients due to carbapenem-resistant gram negative bacteria. Burns 2020; 46:1848-1856. [PMID: 32622621 DOI: 10.1016/j.burns.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Carbapenem-resistant gram negative pathogen (CR-GNP) infection in burn patients is a growing concern since treatment options are limited and resistance to the main line of treatment, colistin, is increasing. The goal of this study was to compare treatment outcomes of colistin monotherapy versus colistin-based combination therapy for CR-GNP bacteremia in burn patients. A retrospective observational study was conducted between 2014 and 2017 in Hangang Sacred Heart Hospital located in Seoul, South Korea. Among the burn patients admitted to the burn intensive care unit with CR-GNP bacteremia due to wound infections, colistin monotherapy or colistin-based combination therapy were investigated. We determined both eradication rate within seven days as well as mortality rate within 30 days. A total of 84 burn patients with CR-GNP bacteremia were analyzed-32 were treated with colistin monotherapy and 52 with colistin-based combination therapy. We found that eradication rate within 7 days and 30-day mortality rate were not significantly different between the two groups (71.9% versus 75.0%, P = 0.752 and 31.2% versus 38.5%, P = 0.503). In the Cox regression analysis, Charlson's comorbidity index, renal replacement therapy before colistin use, and duration of antibiotics were associated with 30-day mortality (HR, 1.23; 95% CI, 1.02-1.49; P = 0.030, HR, 2.28; 95% CI, 1.05-4.94; P = 0.037 and HR, 0.94; 95% CI, 0.89-0.99, P = 0.042, respectively). Colistin-based combination therapy did not show significant differences with regard to microbiologic and clinical outcomes compared with colistin monotherapy.
Collapse
Affiliation(s)
- Jin Ju Park
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| | - Yu Bin Seo
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| | - Jacob Lee
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| | - Young Kyun Choi
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| | - Jinwoo Jeon
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Lyu C, Zhang Y, Liu X, Wu J, Zhang J. Clinical efficacy and safety of polymyxins based versus non-polymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:296. [PMID: 32316926 PMCID: PMC7175513 DOI: 10.1186/s12879-020-05026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background The prevalence of infections due to carbapenem-resistant Acinetobacter baumannii (CRAB) is on the rise worldwide. Polymyxins are considered as last-resort drugs for CRAB infections, but there is still controversy regarding the efficacy and safety of polymyxins based therapies in CRAB infections. The present systematic review was designed to compare the efficacy and safety of polymyxins based therapies versus non-polymyxins based therapies in CRAB infections. Methods We performed a systematic literature search in PubMed, Embase, CINAHL, Cochrane Library, and clinicaltrials.gov to identify eligible studies reporting the clinical outcomes of patients with CRAB infections. The meta-analysis employed a random-effects model to estimate the odds ratio (OR) and standardized mean difference (SMD) with 95% confidence interval (CI). The primary outcome was 1-month mortality for any cause. We also examined clinical response, microbiological response, length of stay in hospital, and adverse events. Results Eleven eligible studies were analyzed (1052 patients in total), including 2 randomized clinical trials. Serious risk of bias was found in 8 out of the 11 studies. There was no statistically significant difference between polymyxins based therapies and non-polymyxins based therapies in 1-month mortality for any cause (OR, 0.95; 95% CI, 0.59 to 1.53), microbiological response (OR, 3.83; 95% CI, 0.90 to 16.29) and length of stay in hospital (SMD, 0.24; 95% CI, − 0.08 to 0.56). The pooled OR of clinical response indicated a significant difference in favor of polymyxin based therapies (OR, 1.99; 95% CI, 1.31 to 3.03). The pooled OR of adverse events showed that non-polymyxins based therapies were associated with fewer adverse events (OR, 4.32; 95% CI, 1.39 to 13.48). Conclusion The performance of polymyxins based therapies was better than non-polymyxin based therapies in clinical response rate and similar to non-polymyxin based therapies in terms of 1-month mortality and microbiological response in treating CRAB infections. Due to the limitations of our study, we cannot draw a firm conclusion on the optimal treatment of CRAB infections, but polymyxins would be a relatively effective treatment for CRAB infections. Adequate and well-designed large scale randomized controlled trials are required to clarify the relative efficacy of polymyxins based and non-polymyxins based therapies.
Collapse
Affiliation(s)
- Cheng Lyu
- Institute of Antibiotics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Yuyi Zhang
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Jufang Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To describe recent data about Acinetobacter baumannii pneumonia epidemiology and the therapeutic options including adjunctive nebulized therapy. RECENT FINDINGS A. baumannii is a major cause of nosocomial pneumonia in certain geographic areas affecting mainly debilitated patients, with prolonged hospitalization and broad-spectrum antimicrobials. Inappropriate empirical treatment has clearly been associated with increased mortality in A. baumannii pneumonia. Carbapenems may not be considered the treatment of choice in areas with high rates of carbapenem-resistant A. baumannii. Nowadays, polymyxins are the antimicrobials with the greatest level of in-vitro activity. Colistin is the antimicrobial most widely used although polymyxin B is associated with less renal toxicity. It is clear that lung concentrations of polymyxins are suboptimal in a substantial proportion of patients. This issue has justified the use of combination therapy or adjunctive nebulized antibiotics. Current evidence does not allow us to recommend combination therapy for A. baumannii pneumonia. Regarding nebulized antibiotics, it seems reasonable to use in patients who are nonresponsive to systemic antibiotics or A. baumannii isolates with colistin minimum inhibitory concentrations close to the susceptibility breakpoints. Cefiderocol, a novel cephalosporin active against A. baumannii, may represent an attractive therapeutic option if ongoing clinical trials confirm preliminary results. SUMMARY The optimal treatment for multidrug-resistant A. baumannii pneumonia has not been established. New therapeutic options are urgently needed. Well designed, randomized controlled trials must been conducted to comprehensively evaluate the effectiveness and safety of nebulized antibiotics for the treatment of A. baumannii pneumonia.
Collapse
|
44
|
Niederman MS. Clinical Impact of Antimicrobial Resistance: Using New Tools to Answer Old Questions. Chest 2020; 155:1088-1089. [PMID: 31174629 DOI: 10.1016/j.chest.2019.02.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michael S Niederman
- Weill Cornell Medical College, New York, NY; Pulmonary and Critical Care Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY.
| |
Collapse
|
45
|
Kofteridis DP, Andrianaki AM, Maraki S, Mathioudaki A, Plataki M, Alexopoulou C, Ioannou P, Samonis G, Valachis A. Treatment pattern, prognostic factors, and outcome in patients with infection due to pan-drug-resistant gram-negative bacteria. Eur J Clin Microbiol Infect Dis 2020; 39:965-970. [PMID: 31933017 DOI: 10.1007/s10096-019-03784-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
The present study investigated the clinical course, treatment pattern, prognostic factors, and outcome of patients with pun-drug resistant (PDR) infections. This was a retrospective single-center cohort study including consecutive eligible patients with a PDR infection hospitalized at the University Hospital of Heraklion, Crete, Greece, between January 2010 and June 2018. In total, 65 patients with infections due to PDR gram-negative pathogens were identified. The median age was 64 years (interquartile range, IQR: 45.5-74.5) and the median Charlson comorbidity index 3.0 (IQR: 1.0-5.75). Of the 65 PDR isolates, 31 (48%) were Klebsiella pneumoniae, 28 (43%) Acinetobacter baumannii, and 6 (9%) Pseudomonas aeruginosa. The most common empirical therapy was colistin-based combination (n = 32; 49%), followed by non-colistin, non-tigecycline combination (n = 25; 39%), and carbapenemes + tigecycline (n = 8; 12%). The empirical therapy was effective in 50%, 37.5%, and 8% of patients receiving colistin combination, carbapenemes - tigecycline, and non-colistin, non-tigecycline combination, respectively (p value = 0.003). The infection-related in-hospital mortality was 32% (95% confidence interval, CI: 21-45%). Three factors were significantly associated with infection-related in-hospital mortality in multivariate analysis: Charlson comorbidity index (odds ratio, OR: 1.5, 95% CI: 1.0-2.3, p value = 0.030), prior steroid use (OR: 4.1, 95% CI: 1.0-17.0, p value = 0.049), and empirical treatment with non-colistin, non-tigecycline combination (OR: 7.5; 95% CI: 1.7-32.8, p value = 0.008). Infections due to PDR pathogens are associated with considerable mortality. Our results support the use of colistin and/or tigecycline-based combinations as empirical therapy when infection due to PDR pathogens is suspected.
Collapse
Affiliation(s)
- Diamantis P Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece.
| | - Angeliki M Andrianaki
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Anna Mathioudaki
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Marina Plataki
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Christina Alexopoulou
- Department of Intensive Care Unit, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - George Samonis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Antonis Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, SE 70182, Örebro, Sweden
| |
Collapse
|
46
|
Butler DA, Biagi M, Tan X, Qasmieh S, Bulman ZP, Wenzler E. Multidrug Resistant Acinetobacter baumannii: Resistance by Any Other Name Would Still be Hard to Treat. Curr Infect Dis Rep 2019; 21:46. [PMID: 31734740 DOI: 10.1007/s11908-019-0706-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Acinetobacter baumannii (AB) is an infamous nosocomial pathogen with a seemingly limitless capacity for antimicrobial resistance, leading to few treatment options and poor clinical outcomes. The debatably low pathogenicity and virulence of AB are juxtaposed by its exceptionally high rate of infection-related mortality, likely due to delays in time to effective antimicrobial therapy secondary to its predilection for resistance to first-line agents. Recent studies of AB and its infections have led to a burgeoning understanding of this critical microbial threat and provided clinicians with new ammunition for which to target this elusive pathogen. This review will provide an update on the virulence, resistance, diagnosis, and treatment of multidrug resistant (MDR) AB. RECENT FINDINGS Advances in bacterial genomics have led to a deeper understanding of the unique mechanisms of resistance often present in MDR AB and how they may be exploited by new antimicrobials or optimized combinations of existing agents. Further, improvements in rapid diagnostic tests (RDTs) and their more pervasive use in combination with antimicrobial stewardship interventions have allowed for more rapid diagnosis of AB and decreases in time to effective therapy. Unfortunately, there remains a paucity of high-quality clinical data for which to inform the optimal treatment of MDR AB infections. In fact, recently completed studies have failed to identify a combination regimen that is consistently superior to monotherapy, despite the benefits demonstrated in vitro. Encouragingly, new and updated guidelines offer strategies for the treatment of MDR AB and may help to harmonize the use of high toxicity agents such as the polymyxins. Finally, new antimicrobial agents such as eravacycline and cefiderocol have promising in vitro activity against MDR AB but their place in therapy for these infections remains to be determined. Notwithstanding available clinical trial data, polymyxin-based combination therapies with either a carbapenem, minocycline, or eravacycline remain the treatment of choice for MDR, particularly carbapenem-resistant, AB. Incorporating antimicrobial stewardship intervention with RDTs relevant to MDR AB can help avoid potentially toxic combination therapies and catalyze the most important modifiable risk factor for mortality-time to effective therapy. Further research efforts into pharmacokinetic/pharmacodynamic-based dose optimization and clinical outcomes data for MDR AB continue to be desperately needed.
Collapse
Affiliation(s)
- David A Butler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Mark Biagi
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Samah Qasmieh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 164 (M/C 886), Chicago, IL, 60612, USA.
| |
Collapse
|
47
|
Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am J Infect Control 2019; 47:1140-1145. [PMID: 31003750 DOI: 10.1016/j.ajic.2019.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) tops the list of threats to human health. Studies exploring predictors of mortality in patients with CRAB infection produced conflicting results. METHODS A systematic search of the PubMed, Embase, and the Cochrane Library databases was performed from inception to June 2018 to identify studies reporting mortality predictors in patients infected with CRAB. Two authors independently assessed trials for inclusion and data extraction. RESULTS A total of 19 observational studies were enrolled in this study. Factors associated with mortality of patients infected with CRAB were inappropriate empirical antimicrobial treatment (odds ratio [OR], 5.04; 95% confidence interval [CI], 2.56-9.94), septic shock (OR, 5.65; 95% CI, 2.35-13.57), chronic liver disease (OR, 2.36; 95% CI, 1.33-4.16), chronic renal disease (OR, 2.02; 95% CI, 1.37-2.99), hypertension (OR, 1.74; 95% CI, 1.08-2.80), neutropenia (OR, 3.31; 95% CI, 1.25-8.77), immunosuppressant use (OR, 3.15; 95% CI, 1.94-5.11), total parenteral nutrition (OR, 1.66; 95% CI, 1.08-2.56), and intubation (OR, 5.03; 95% CI, 2.33-10.87). Acute Physiology and Chronic Health Evaluation II score at admission and Pitt bacteremia score at the onset of CRAB bacteremia were higher in nonsurvivors. CONCLUSIONS Our study suggests that severity of baseline condition and receiving inappropriate experience antibiotic therapy are major risk factors for higher mortality in patients with CRAB infections. These findings may help clinicians to take appropriate preventive measures and decrease mortality in such patients.
Collapse
|
48
|
Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect 2019; 25:951-957. [DOI: 10.1016/j.cmi.2019.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
|
49
|
Lee YL, Lu MC, Shao PL, Lu PL, Chen YH, Cheng SH, Ko WC, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Lee WS, Shi ZY, Chen YS, Wang FD, Tseng SH, Lin CN, Chen YH, Sheng WH, Lee CM, Liao MH, Hsueh PR. Nationwide surveillance of antimicrobial resistance among clinically important Gram-negative bacteria, with an emphasis on carbapenems and colistin: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2018. Int J Antimicrob Agents 2019; 54:318-328. [PMID: 31202925 DOI: 10.1016/j.ijantimicag.2019.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Multicentre surveillance of antimicrobial susceptibility of clinically important Gram-negative bacteria (GNB) from 16 Taiwanese hospitals was performed. Escherichia coli (n = 398), Klebsiella pneumoniae (n = 346), Pseudomonas aeruginosa (n = 252) and Acinetobacter baumannii complex (ABC) (n = 188) bloodstream isolates, non-typhoidal Salmonella (n = 230) and Shigella flexneri (n = 18) from various sources were collected. Antimicrobial MICs were determined using broth microdilution. Genes encoding K. pneumoniae carbapenemases (KPCs), New Delhi metallo-β-lactamases (NDMs), Verona integron-encoded metallo-β-lactamase (VIM), OXA-48-like carbapenemase (OXA-48) as well as mcr-1-5 genes were detected by molecular methods. Rates of carbapenem non-susceptibility were 2.8%, 9.0%, 0.4%, 0%, 10.3% and 48.8% for E. coli, K. pneumoniae, Salmonella, Shigella, P. aeruginosa and ABC, respectively. For carbapenemases, one (0.3%) E. coli harboured blaNDM-1. Fifteen (4.3%), two (0.6%) and two (0.6%) K. pneumoniae contained blaKPC, blaOXA-48 and blaVIM, respectively. Two (0.5%) E. coli and fourteen (4.0%) K. pneumoniae were non-wild-type according to the colistin MIC. Among Enterobacteriaceae with a colistin MIC ≥ 2 mg/L, mcr-1 was detected in one E. coli, two K. pneumoniae and three Salmonella spp. All three mcr-1-positive Salmonella isolates were collected from community-acquired infections; none of the six mcr-1-positive Enterobacteriaceae were carbapenem-resistant. Carbapenem resistance has increased among clinically important GNB, especially among hospital-acquired infections. blaKPC, especially the blaKPC-2 variant, was detected in approximately one-half of the carbapenem-resistant K. pneumoniae isolates in this study. Although resistance rates to colistin remained low among Enterobacteriaceae, the finding of mcr-1 from different species raises concern of potential dissemination.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, and School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, and National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, and MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, and Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, and Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hui Chen
- Infection Control Center, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan, and MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Ming-Huei Liao
- National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
50
|
In vitro activity of eravacycline in combination with colistin against carbapenem-resistant A. baumannii isolates. J Antibiot (Tokyo) 2019; 72:600-604. [PMID: 31028352 DOI: 10.1038/s41429-019-0188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
The synergistic activity of eravacycline in combination with colistin on carbapenem-resistant A. baumannii (CRAB) isolates was evaluated in this study. Minimum inhibitory concentrations (MICs) of eravacycline and colistin were determined by the broth microdilution method. MICs values ranged between 1 to 4 mg and 0.5 to 256 mg l-1 for eravacycline and colistin, respectively. In vitro synergy between eravacycline and colistin was evaluated by using the chequerboard methodology. Synergistic activity was found in 10% of the strains, and additive effect in 30%. No antagonism was detected. Similar activity was also observed in colistin-resistant CRAB isolates. The result of this study indicates that eravacycline and colistin combination may be a potential therapeutic option for the treatment of CRAB related infections.
Collapse
|