1
|
Domnich A, Massaro E, Icardi G, Orsi A. Multiplex molecular assays for the laboratory-based and point-of-care diagnosis of infections caused by seasonal influenza, COVID-19, and RSV. Expert Rev Mol Diagn 2024:1-12. [PMID: 39364620 DOI: 10.1080/14737159.2024.2408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION SARS-CoV-2, seasonal influenza, and respiratory syncytial virus (RSV) are major causes of acute respiratory infections in all age groups and responsible for an enormous socio-economic burden. The recently coined term 'tripledemic' describes co-circulation of these three viruses, a novel epidemiological paradigm that poses profound public health implications. AREAS COVERED Real-time reverse transcription polymerase chain reaction (RT-PCR) is now considered the reference method for the diagnosis of SARS-CoV-2, influenza, and RSV infections. Syndromic-based multiplex RT-PCR panels that simultaneously detect several respiratory viruses have become increasingly common. This review explores available molecular diagnostics (MDx) platforms for the diagnosis of SARS-CoV-2, influenza, and RSV in the same biological sample. Within some limitations of the published validation and diagnostic accuracy studies, both laboratory-based and point-of-care multiplex panels proved highly performant in identifying SARS-CoV-2, influenza A, influenza B, and RSV. Improved operational efficiency and faster turnaround times make these assays potentially cost-effective or even cost-saving. EXPERT OPINION The adoption of multiplex MDx assays for the contemporary detection of SARS-CoV-2, influenza, RSV, and other respiratory pathogens will likely increase in the next few years. To maximize the clinical usefulness and cost-effectiveness of these assays, locally issued guidelines and protocols on their implementation should be adopted.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Elvira Massaro
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| |
Collapse
|
2
|
Trifonova I, Madzharova I, Korsun N, Levterova V, Velikov P, Voleva S, Ivanov I, Ivanov D, Yordanova R, Tcherveniakova T, Angelova S, Christova I. Bacterial and Viral Co-Infections in COVID-19 Patients: Etiology and Clinical Impact. Biomedicines 2024; 12:2210. [PMID: 39457522 PMCID: PMC11505336 DOI: 10.3390/biomedicines12102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Mixed infections can worsen disease symptoms. This study investigated the impact of mixed infections with viral and bacterial pathogens in patients positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Using the in-house multiplex PCR method, we tested 337 SARS-CoV-2 positive samples for co-infections with three bacterial and 14 other viral pathogens. RESULTS Between August 2021 and May 2022, 8% of 337 SARS-CoV-2-positive patients had bacterial co-infections, 5.6% had viral co-infections, and 1.4% had triple mixed infections. The most common causes of mixed infections were Haemophilus influenzae (5.93%) and respiratory syncytial virus (RSV) (1.18%). Children < 5 years old had more frequent co-infections than adults < 65 years old (20.8% vs. 16.4%), while adults showed a more severe clinical picture with a higher C-reactive protein (CRP) level (78.1 vs.16.2 mg/L; p = 0.033), a lower oxygen saturation (SpO2) (89.5 vs. 93.2%), and a longer hospital stay (8.1 vs. 3.1 days; p = 0.025) (mean levels). The risk of a fatal outcome was 41% in unvaccinated patients (p = 0.713), which increased by 2.66% with co-infection with two pathogens (p = 0.342) and by 26% with three pathogens (p = 0.005). Additionally, 50% of intensive care unit (ICU) patients had a triple infection, compared with only 1.3% in the inpatient unit (p = 0.0029). The risk of death and/or ICU admission was 12 times higher (p = 0.042) with an additional pathogen and increased by 95% (p = 0.003) with a third concomitant pathogen. CONCLUSIONS Regular multiplex testing is important for prompt treatment and targeted antibiotic use.
Collapse
Affiliation(s)
- Ivelina Trifonova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (N.K.); (V.L.); (I.C.)
| | - Iveta Madzharova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (N.K.); (V.L.); (I.C.)
| | - Neli Korsun
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (N.K.); (V.L.); (I.C.)
| | - Viktoria Levterova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (N.K.); (V.L.); (I.C.)
| | - Petar Velikov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Silvya Voleva
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Ivan Ivanov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Daniel Ivanov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Ralitsa Yordanova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Tatiana Tcherveniakova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.V.); (S.V.); (I.I.); (D.I.); (R.Y.); (T.T.)
| | - Svetla Angelova
- Clinical Virology Laboratory, University Hospital “Prof. Dr. Stoyan Kirkovich”, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Iva Christova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (N.K.); (V.L.); (I.C.)
| |
Collapse
|
3
|
Arimura K, Kikuchi K, Sato Y, Miura H, Sato A, Katsura H, Kondo M, Itabashi M, Tagaya E. SARS-CoV-2 co-detection with other respiratory pathogens-descriptive epidemiological study. Respir Investig 2024; 62:884-888. [PMID: 39098246 DOI: 10.1016/j.resinv.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Co-detection of respiratory pathogens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood. This descriptive epidemiological study aimed to determine the effect of the interaction of different respiratory pathogens on clinical variables. METHODS We retrospectively reviewed the results of comprehensive multiplex polymerase chain reaction (PCR) testing from November 2020 to March 2023 to estimate respiratory pathogen co-detection rates in Shinjuku, Tokyo. We evaluated the interactions of respiratory pathogens, particularly SARS-CoV-2, between observed and expected co-detection. We estimated the trend of co-detection with SARS-CoV-2 in terms of age and sex and applied a multiple logistic regression model adjusted for age, testing period, and sex to identify influencing factors between co-detection and single detection for each pathogen. RESULTS Among 57,746 patients who underwent multiplex PCR testing, 10,516 (18.2%) had positive for at least one of the 22 pathogens. Additionally, 881 (1.5%) patients were confirmed to have a co-detection. SARS-CoV-2 exhibited negative interactions with adenovirus, coronavirus, human metapneumovirus, parainfluenza virus, respiratory syncytial virus, and rhino/enterovirus. SARS-CoV-2 co-detection with other pathogens occurred most frequently in patients of the youngest age group (0-4 years). A multiple logistic regression model indicated that younger age was the most influential factor for SARS-CoV-2 co-detection with other respiratory pathogens. CONCLUSION The study highlights the prevalence of SARS-CoV-2 co-detection with other respiratory pathogens in younger age groups, necessitating further exploration of the clinical implications and severity of SARS-CoV-2 co-detection.
Collapse
Affiliation(s)
- Ken Arimura
- Tokyo Women's Medical University, Department of Respiratory Medicine, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan.
| | - Ken Kikuchi
- Tokyo Women's Medical University, Department of Infectious Diseases, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Yasuto Sato
- Shizuoka Graduate University of Public Health, Graduate School of Public Health, 4-27-2, Kita ando, Aoi, Shizuoka, Shizuoka, 4200881, Japan
| | - Hitomi Miura
- Tokyo Women's Medical University Hospital, Central Clinical Laboratory, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Asako Sato
- Tokyo Women's Medical University Hospital, Department of Clinical Laboratory, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Hideki Katsura
- Tokyo Women's Medical University, Department of Respiratory Medicine, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Mitsuko Kondo
- Tokyo Women's Medical University, Department of Respiratory Medicine, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Michio Itabashi
- Tokyo Women's Medical University, Department of Surgery, Division of Inflammatory Bowel Disease Surgery, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| | - Etsuko Tagaya
- Tokyo Women's Medical University, Department of Respiratory Medicine, 8-1, Kawadacho, Shinjuku, Tokyo, 1628666, Japan
| |
Collapse
|
4
|
Ferrari A, Schiavetti I, Ogliastro M, Minet C, Sibilio R, Giberti I, Costa E, Massaro E, Lai PL, Mosca S, Bruzzone B, Orsi A, Panatto D, Icardi G. Co-detection of respiratory pathogens among ILI patients: characterization of samples collected during the 2018/19 and 2019/20 pre-pandemic seasons. BMC Infect Dis 2024; 24:881. [PMID: 39210273 PMCID: PMC11361097 DOI: 10.1186/s12879-024-09687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Influenza-like illness (ILI) patients co-detected with respiratory pathogens exhibit poorer health outcomes than those with single infections. To address the paucity of knowledge concerning the incidence of concurrent respiratory pathogens, their relationships, and the clinical differences between patients detected with single and multiple pathogens, we performed an in-depth characterization of the oropharyngeal samples of primary care patients collected in Genoa (Northwest Italy), during winter seasons 2018/19-2019/20.The apriori algorithm was employed to evaluate the incidence of viral, bacterial, and viral-bacterial pairs during the study period. The grade of correlation between pathogens was investigated using the Phi coefficient. Factors associated with viral, bacterial or viral-bacterial co-detection were assessed using logistic regression.The most frequently identified pathogens included influenza A, rhinovirus, Haemophilus influenzae and Streptococcus pneumoniae. The highest correlations were found between bacterial-bacterial and viral-bacterial pairs, such as Haemophilus influenzae-Streptococcus pneumoniae, adenovirus-Haemophilus influenzae, adenovirus-Streptococcus pneumoniae, RSV-A-Bordetella pertussis, and influenza B Victoria-Bordetella parapertussis. Viruses were detected together at significantly lower rates. Notably, rhinovirus, influenza, and RSV exhibited significant negative correlations with each other. Co-detection was more prevalent in children aged < 4, and cough was shown to be a reliable indicator of viral co-detection.Given the evolving epidemiological landscape following the COVID-19 pandemic, future research utilizing the methodology described here, while considering the circulation of SARS-CoV-2, could further enrich the understanding of concurrent respiratory pathogens.
Collapse
Affiliation(s)
- Allegra Ferrari
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| | - Irene Schiavetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matilde Ogliastro
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Carola Minet
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Raffaella Sibilio
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Irene Giberti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Elisabetta Costa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Elvira Massaro
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Piero Luigi Lai
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center On Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Stefano Mosca
- Interuniversity Research Center On Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | | | - Andrea Orsi
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center On Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center On Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Giancarlo Icardi
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Center On Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Tomşa NA, Meliţ LE, Bucur G, Văsieșiu AM, Mărginean CO. Cytomegalovirus, a "Friend" of SARS-CoV-2: A Case Report. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1010. [PMID: 39201944 PMCID: PMC11352378 DOI: 10.3390/children11081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is present in a latent state in 70-90% of the immunocompetent population, and its reactivation might be triggered by inflammatory conditions such as post-COVID multisystem inflammatory syndrome (MIS-C) or by immunosuppression induced by steroids. The aim of this paper was to highlight the unexpected complications associated with SARS-CoV-2 infection that require a complex clinical approach for accurate diagnosis. MATERIALS AND METHODS We present the case of a 4-year-old male patient who, during an initially favorable course of PIMS, experienced symptoms of respiratory failure. RESULTS The patient initially presented with clinical and paraclinical signs of PIMS with cardiac involvement, for which high-dose corticosteroid therapy was initiated, followed by gradual tapering, along with immunoglobulins, anticoagulants, antiplatelet agents, and symptomatic treatment. After 10 days of favorable progress, the patient's general condition deteriorated, showing tachypnea, desaturation, and a ground-glass appearance on thoracic CT. Negative inflammatory markers and favorable cardiac lesion evolution ruled out MIS-C relapse. The presence of anti-CMV IgM antibodies and viral DNA in the blood confirmed acute CMV infection, likely triggered by prior severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) infection and secondary immunosuppression due to steroids. Non-specific immunomodulatory treatment was initiated but led to worsening of pulmonary lesions, prompting the initiation of specific antiviral treatment with ganciclovir, resulting in rapid clinical and imaging improvement. CONCLUSIONS CMV infection can be reactivated by immunosuppression induced by corticosteroid therapy for MIS-C and may require specific etiological treatment.
Collapse
Affiliation(s)
- Nicoleta-Ana Tomşa
- Pediatrics Clinic, Emergency Clinical County Hospital, 540140 Targu Mures, Romania; (N.-A.T.); (G.B.)
| | - Lorena Elena Meliţ
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania;
| | - Gabriela Bucur
- Pediatrics Clinic, Emergency Clinical County Hospital, 540140 Targu Mures, Romania; (N.-A.T.); (G.B.)
| | - Anca-Meda Văsieșiu
- Department of Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics 1, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania;
| |
Collapse
|
6
|
Kovacs D, Mambule I, Read JM, Kiran A, Chilombe M, Bvumbwe T, Aston S, Menyere M, Masina M, Kamzati M, Ganiza TN, Iuliano D, McMorrow M, Bar-Zeev N, Everett D, French N, Ho A. Epidemiology of Human Seasonal Coronaviruses Among People With Mild and Severe Acute Respiratory Illness in Blantyre, Malawi, 2011-2017. J Infect Dis 2024; 230:e363-e373. [PMID: 38365443 PMCID: PMC11322416 DOI: 10.1093/infdis/jiad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The aim of this study was to characterize the epidemiology of human seasonal coronaviruses (HCoVs) in southern Malawi. METHODS We tested for HCoVs 229E, OC43, NL63, and HKU1 using real-time polymerase chain reaction (PCR) on upper respiratory specimens from asymptomatic controls and individuals of all ages recruited through severe acute respiratory illness (SARI) surveillance at Queen Elizabeth Central Hospital, Blantyre, and a prospective influenza-like illness (ILI) observational study between 2011 and 2017. We modeled the probability of having a positive PCR for each HCoV using negative binomial models, and calculated pathogen-attributable fractions (PAFs). RESULTS Overall, 8.8% (539/6107) of specimens were positive for ≥1 HCoV. OC43 was the most frequently detected HCoV (3.1% [191/6107]). NL63 was more frequently detected in ILI patients (adjusted incidence rate ratio [aIRR], 9.60 [95% confidence interval {CI}, 3.25-28.30]), while 229E (aIRR, 8.99 [95% CI, 1.81-44.70]) was more frequent in SARI patients than asymptomatic controls. In adults, 229E and OC43 were associated with SARI (PAF, 86.5% and 89.4%, respectively), while NL63 was associated with ILI (PAF, 85.1%). The prevalence of HCoVs was similar between children with SARI and controls. All HCoVs had bimodal peaks but distinct seasonality. CONCLUSIONS OC43 was the most prevalent HCoV in acute respiratory illness of all ages. Individual HCoVs had distinct seasonality that differed from temperate settings.
Collapse
Affiliation(s)
- Dory Kovacs
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ivan Mambule
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
| | - Jonathan M. Read
- Centre for Health Information Computation and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Anmol Kiran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Chilombe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thandiwe Bvumbwe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Blantyre, Malawi
| | - Stephen Aston
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mavis Menyere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mazuba Masina
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Kamzati
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Thokozani Namale Ganiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Danielle Iuliano
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meredith McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naor Bar-Zeev
- International Vaccine Access Center, Department of international Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Dean Everett
- Department of Pathology and Infectious Diseases, College of Medicine and Health Sciences, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Neil French
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antonia Ho
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Zhang G, Zhang Y, Ba L, Liu L, Su T, Sun Y, Dian Z. Epidemiological changes in respiratory pathogen transmission among children with acute respiratory infections during the COVID-19 pandemic in Kunming, China. BMC Infect Dis 2024; 24:826. [PMID: 39143516 PMCID: PMC11323578 DOI: 10.1186/s12879-024-09733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Acute respiratory infections are a leading cause of morbidity and mortality in children. However, studies on the prevalence of respiratory viruses among children with acute respiratory infections in Kunming, China, are lacking. Therefore, we aimed to investigate the epidemiological characteristics of respiratory pathogens among children with acute respiratory infections in Kunming during the coronavirus disease 2019 pandemic. METHODS Nasopharyngeal swab samples were collected from 4956 children with acute respiratory infections at Yunnan Provincial First People's Hospital between January 2020 and December 2022, patients with COVID-19 were excluded from the study. Multiplex reverse transcription polymerase chain reaction was used to detect respiratory pathogens. RESULTS The frequency of respiratory pathogens among children was significantly lower in 2020 than in 2021 and 2022. The following pathogens had the highest prevalence rates (in descending order) from 2020 to 2022: HRV > RSV > PIV > ADV > MP; HRV > RSV > HADV > PIV > MP and HRV > Mp > HADV > H3N2 > HMPV. The overall frequency of respiratory pathogens exhibited an inverted U-shape with increasing age among the children. Human bocavirus, human parainfluenza virus, and human respiratory syncytial virus were the dominant respiratory viruses in children aged ≤ 3 years, whereas Mycoplasma pneumoniae was the dominant respiratory pathogen in children aged > 3 years. HRV has the highest prevalence and is the main pathogen of mixed infection. The prevalence of the influenza A virus has decreased significantly, whereas HRSV and Mp are found to be seasonal. CONCLUSIONS Our findings offer an objective evaluation of transmission dynamics and epidemiological shifts in respiratory pathogens during the coronavirus disease 2019 pandemic in Kunming, serving as a basis for informed decision-making, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Guiqian Zhang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Limei Ba
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Luping Liu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ting Su
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi Sun
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
8
|
Shi Y, Ren Y. Severe Adenovirus Pneumonia Masked by Influenza Virus in an 11-Year-Old Child: A Case Report. Infect Drug Resist 2024; 17:3395-3402. [PMID: 39131517 PMCID: PMC11317053 DOI: 10.2147/idr.s465870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Background Adenovirus pneumonia progresses rapidly, with a high rate of progression to severe pneumonia, but the early clinical manifestations lack specificity and are not easy to be recognized. Methods Reviewing the relevant literatures, we studied and summarized the early recognition, clinical features and treatment outlook of severe adenovirus pneumonia Case Presentation: An 11-year-old child with community-acquired pneumonia, with influenza A antigen positive by colloidal gold, which further developed into acute respiratory distress syndrome after hospitalization. Three days later, adenovirus was detected positively by PCR of throat swab and diagnosed as severe adenovirus pneumonia. After aggressive treatment, her condition improved and was discharged from the hospital. Conclusion Clinically, adenovirus combined with influenza virus infection is uncommon, and adenovirus infection is even rarer in adolescent children.
Collapse
Affiliation(s)
- Yi Shi
- Department of Pediatrics, Shaoxing Keqiao Women and Children’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Yifan Ren
- Department of Pediatrics, Shaoxing Keqiao Women and Children’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| |
Collapse
|
9
|
Ai J, Wang H, Zhang H, Song J, Zhang Y, Lin K, Qu L, Zhang Y, Zhang S, Xiang Q, Geng J, Jin G, Song W, Zhang L, Hu X, Liu H, Yuan G, Jiang N, Zhou Y, Xu Y, Ying J, Wu J, Xing Y, Fang K, Yan H, Chen F, Xu T, Wang S, Qian Z, Zhang W. Alterations of pathogen transmission patterns and attenuated immune stimulation might be the cause of increased adult respiratory infections cases in 2023, results from a multi-center study in mainland China. Heliyon 2024; 10:e32304. [PMID: 38948033 PMCID: PMC11209019 DOI: 10.1016/j.heliyon.2024.e32304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Several respiratory infections outbreaks have been observed in mainland China after reduction of non-pharmaceutical interventions. Other countries have seen increases in respiratory infections outside typical seasons post-COVID-19, warranting investigation into underlying causes. Methods We established monitoring networks for suspected respiratory infection in 14 tertiary hospitals nationwide. PCR for SARS-CoV-2, influenza A and B were performed on 3708 respiratory specimens and deep sequencing were conducted to identify co-infections or newly emerging microbes in 2023. Viral evolutionary analysis was completed. We retrospectively detected serum antibody level for various respiratory pathogens from 4324 adults without respiratory infections over 7 years to observe its dynamic curves. Findings SARS-CoV-2 and influenza A were the main pathogens during outbreaks in 2023, bacterial-virus and bacterial-bacterial co-infections were most detected, but community co-infections didn't significantly increase pneumonia incidence. Different SARS-CoV-2 and influenza variants were present in different outbreaks, and no novel pathogens were found. The epidemiological patterns of influenza A, COVID-19 and etc. were altered, exhibiting characteristics of being "staggered" compared to most global regions, and potentially led to "overlapping prevalence". Binding antibody testing showed regular fluctuation, without significant decrease against common respiratory pathogens in adults. Influenza A antibody stimulation was attenuated during the 2023 outbreak. Conclusions "Misaligned" alteration in seasonal respiratory disease patterns possibly caused combined epidemics, leading to cases spike in China, 2023. In adults, antibody levels didn't show significant decline, but reduced immune response to influenza during 2020-2023 emphasizes the need for consistent vaccination during pandemics.
Collapse
Affiliation(s)
- Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
| | - Lihong Qu
- Department of Infectious Disease, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong New Area, Shanghai, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No. 157, Daming Road, Qinhuai District, Nanjing, China
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, China
| | - Shiliang Zhang
- The Fifth People's Hospital of Wuxi, No. 1215, Guangrui Road, Liangxi District, Wuxi, Jiangsu, China
| | - Qiyun Xiang
- The Third People's Hospital of Yichang City, No. 23, Gangyao Road, Xiling District, Yichang, Hubei, China
| | - Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, No. 157, Jinbi Road, Xishan District, Kunming, China
| | - Guangxia Jin
- Jining City Public Health Medical Center, No. 66, Chenyang Road, Rencheng District, Jining, Shandong, China
| | - Wei Song
- Department of General Practice, Jinyang Community Health Service Center, No. 121, Jin Yang Road, Pudong New Area, Shanghai, China
| | - Liaoyun Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, China
| | - Xiaoli Hu
- Department of Infectious Disease, Heilongjiang Province Hospital, No. 82, Zhongshan Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Hongyan Liu
- Liaoning Emergency Treatment and Innovation Center of Public Health Emergencies, The Sixth People's Hospital of Shenyang, No. 85, South Heping Street, Heping District, Shenyang, Liaoning, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
| | - Ning Jiang
- School of Life Sciences Fudan University, No. 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Yuanyuan Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Jun Ying
- Fudan University Library, No. 220, Handan Road, Yangpu District, Shanghai, China
| | - Jiqin Wu
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Yajiao Xing
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Kai Fang
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Hui Yan
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Feiying Chen
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Tailin Xu
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, China
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Room 201, No. 6, Lane 1220, Huashan Road, Changning District, Shanghai, China
- Institute of Infection and Health, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Falsaperla R, Sortino V, La Cognata D, Barberi C, Corsello G, Malaventura C, Suppiej A, Collotta AD, Polizzi A, Grassi P, Ruggieri M. Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy. Diagnostics (Basel) 2024; 14:1341. [PMID: 39001232 PMCID: PMC11240751 DOI: 10.3390/diagnostics14131341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
In Sicily (Italy), respiratory syncytial virus (RSV), rhinovirus (HRV), and influenza virus triggered epidemics among children, resulting in an increase in acute respiratory tract infections (ARTIs). Our objective was to capture the epidemiology of respiratory infections in children, determining which pathogens were associated with respiratory infections following the lockdown and whether there were changes in the epidemiological landscape during the post-SARS-CoV-2 pandemic era. MATERIALS AND METHODS We analyzed multiplex respiratory viral PCR data (BioFire® FilmArray® Respiratory Panel 2.1 Plus) from 204 children presenting with respiratory symptoms and/or fever to our Unit of Pediatrics and Pediatric Emergency. RESULTS Viruses were predominantly responsible for ARTIs (99%), with RSV emerging as the most common agent involved in respiratory infections, followed by human rhinovirus/enterovirus and influenza A. RSV and rhinovirus were also the primary agents in coinfections. RSV predominated during winter months, while HRV/EV exhibited greater prevalence than RSV during the fall. Some viruses spread exclusively in coinfections (human coronavirus NL63, adenovirus, metapneumovirus, and parainfluenza viruses 1-3), while others primarily caused mono-infections (influenza A and B). SARS-CoV-2 was detected equally in both mono-infections (41%) and coinfections (59%). CONCLUSIONS Our analysis underlines the predominance of RSV and the importance of implementing preventive strategies for RSV.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, San Marco Hospital, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", University of Catania, 95121 Catania, Italy
- Unit of Clinical Paediatrics, San Marco Hospital, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", 95121 Catania, Italy
- Medical Sciences Department, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Unit of Clinical Paediatrics, San Marco Hospital, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", 95121 Catania, Italy
| | - Daria La Cognata
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Chiara Barberi
- Postgraduate Training Program in Pediatrics, University of Palermo, 90121 Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, 90121 Palermo, Italy
| | | | - Agnese Suppiej
- Medical Sciences Department, University of Ferrara, 44124 Ferrara, Italy
| | - Ausilia Desiree Collotta
- Unit of Clinical Paediatrics, San Marco Hospital, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco", 95121 Catania, Italy
| | - Agata Polizzi
- Department of Educational Science, University of Catania, 95123 Catania, Italy
| | - Patrizia Grassi
- Analysis Laboratory, San Marco Hospital, 95121 Catania, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, AOU "Policlinico", PO "G. Rodolico", University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Krammer M, Hoffmann R, Ruf HG, Neumann AU, Traidl-Hoffmann C, Goekkaya M, Gilles S. Ten-year retrospective data analysis reveals frequent respiratory co-infections in hospitalized patients in Augsburg. iScience 2024; 27:110136. [PMID: 38966568 PMCID: PMC11223076 DOI: 10.1016/j.isci.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
Clinical data on the types of respiratory pathogens which are most frequently engaged in respiratory co-infections of children and adults are lacking. We analyzed 10 years of data on a total of over 15,000 tests for 16 viral and bacterial pathogens detected in clinical samples at the University Hospital of Augsburg, Germany. Co-infection frequencies and their seasonal patterns were examined using a proportional distribution model. Co-infections were detected in 7.3% of samples, with a higher incidence in children and males. The incidence of interbacterial and interviral co-infections was higher than expected, whereas bacterial-viral co-infections were less frequent. H. influenzae, S. pneumoniae, rhinovirus, and respiratory syncytial virus (RSV) were most frequently involved. Most co-infections occurred in winter, but distinct summer peaks were also observed, which occurred even in children, albeit less pronounced than in adults. Seasonality of respiratory (co-)infections decreased with age. Our results suggest to adjust existing testing strategies during high-incidence periods.
Collapse
Affiliation(s)
- Martin Krammer
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology - IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Reinhard Hoffmann
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Hans-Georg Ruf
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Avidan U. Neumann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Christine-Kühne-Center for Allergy Research & Education (CK-Care), Davos, Switzerland
| | - Mehmet Goekkaya
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
12
|
Trifonova I, Korsun N, Madzharova I, Alexiev I, Ivanov I, Levterova V, Grigorova L, Stoikov I, Donchev D, Christova I. Epidemiological and Genetic Characteristics of Respiratory Viral Coinfections with Different Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Viruses 2024; 16:958. [PMID: 38932250 PMCID: PMC11209099 DOI: 10.3390/v16060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to determine the incidence and etiological, seasonal, and genetic characteristics of respiratory viral coinfections involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Between October 2020 and January 2024, nasopharyngeal samples were collected from 2277 SARS-CoV-2-positive patients. Two multiplex approaches were used to detect and sequence SARS-CoV-2, influenza A/B viruses, and other seasonal respiratory viruses: multiplex real-time polymerase chain reaction (PCR) and multiplex next-generation sequencing. Coinfections of SARS-CoV-2 with other respiratory viruses were detected in 164 (7.2%) patients. The most common co-infecting virus was respiratory syncytial virus (RSV) (38 cases, 1.7%), followed by bocavirus (BoV) (1.2%) and rhinovirus (RV) (1.1%). Patients ≤ 16 years of age had the highest rate (15%) of mixed infections. Whole-genome sequencing produced 19 complete genomes of seasonal respiratory viral co-pathogens, which were subjected to phylogenetic and amino acid analyses. The detected influenza viruses were classified into the genetic groups 6B.1A.5a.2a and 6B.1A.5a.2a.1 for A(H1N1)pdm09, 3C.2a1b.2a.2a.1 and 3C.2a.2b for A(H3N2), and V1A.3a.2 for the B/Victoria lineage. The RSV-B sequences belonged to the genetic group GB5.0.5a, with HAdV-C belonging to type 1, BoV to genotype VP1, and PIV3 to lineage 1a(i). Multiple amino acid substitutions were identified, including at the antibody-binding sites. This study provides insights into respiratory viral coinfections involving SARS-CoV-2 and reinforces the importance of genetic characterization of co-pathogens in the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Ivelina Trifonova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Neli Korsun
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Iveta Madzharova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivailo Alexiev
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivan Ivanov
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Viktoria Levterova
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Lyubomira Grigorova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivan Stoikov
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Dean Donchev
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Iva Christova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| |
Collapse
|
13
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
14
|
Di Maio VC, Scutari R, Forqué L, Colagrossi L, Coltella L, Ranno S, Linardos G, Gentile L, Galeno E, Vittucci AC, Pisani M, Cristaldi S, Villani A, Raponi M, Bernaschi P, Russo C, Perno CF. Presence and Significance of Multiple Respiratory Viral Infections in Children Admitted to a Tertiary Pediatric Hospital in Italy. Viruses 2024; 16:750. [PMID: 38793631 PMCID: PMC11126044 DOI: 10.3390/v16050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Viral co-infections are frequently observed among children, but whether specific viral interactions enhance or diminish the severity of respiratory disease is still controversial. This study aimed to investigate the type of viral mono- and co-infections by also evaluating viral correlations in 3525 respiratory samples from 3525 pediatric in/outpatients screened by the Allplex Respiratory Panel Assays and with a Severe Acute Respiratory Syndrome-COronaVirus 2 (SARS-CoV-2) test available. Overall, viral co-infections were detected in 37.8% of patients and were more frequently observed in specimens from children with lower respiratory tract infections compared to those with upper respiratory tract infections (47.1% vs. 36.0%, p = 0.003). SARS-CoV-2 and influenza A were more commonly detected in mono-infections, whereas human bocavirus showed the highest co-infection rate (87.8% in co-infection). After analyzing viral pairings using Spearman's correlation test, it was noted that SARS-CoV-2 was negatively associated with all other respiratory viruses, whereas a markedly significant positive correlation (p < 0.001) was observed for five viral pairings (involving adenovirus/human bocavirus/human enterovirus/metapneumoviruses/rhinovirus). The correlation between co-infection and clinical outcome may be linked to the type of virus(es) involved in the co-infection rather than simple co-presence. Further studies dedicated to this important point are needed, since it has obvious implications from a diagnostic and clinical point of view.
Collapse
Affiliation(s)
- Velia Chiara Di Maio
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Rossana Scutari
- Multimodal Laboratory Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Lorena Forqué
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Luana Coltella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Stefania Ranno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Giulia Linardos
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Leonarda Gentile
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Eugenia Galeno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Anna Chiara Vittucci
- Hospital University Pediatrics Clinical Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy (S.C.)
| | - Mara Pisani
- Hospital University Pediatrics Clinical Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy (S.C.)
| | - Sebastian Cristaldi
- Hospital University Pediatrics Clinical Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy (S.C.)
| | - Alberto Villani
- Hospital University Pediatrics Clinical Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy (S.C.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Paola Bernaschi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Cristina Russo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.C.D.M.)
| |
Collapse
|
15
|
Babawale PI, Guerrero-Plata A. Respiratory Viral Coinfections: Insights into Epidemiology, Immune Response, Pathology, and Clinical Outcomes. Pathogens 2024; 13:316. [PMID: 38668271 PMCID: PMC11053695 DOI: 10.3390/pathogens13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Respiratory viral coinfections are a global public health threat that poses an economic burden on individuals, families, and healthcare infrastructure. Viruses may coinfect and interact synergistically or antagonistically, or their coinfection may not affect their replication rate. These interactions are specific to different virus combinations, which underlines the importance of understanding the mechanisms behind these differential viral interactions and the need for novel diagnostic methods to accurately identify multiple viruses causing a disease in a patient to avoid misdiagnosis. This review examines epidemiological patterns, pathology manifestations, and the immune response modulation of different respiratory viral combinations that occur during coinfections using different experimental models to better understand the dynamics respiratory viral coinfection takes in driving disease outcomes and severity, which is crucial to guide the development of prevention and treatment strategies.
Collapse
Affiliation(s)
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
16
|
Delgado-Maldonado T, Moreno-Herrera A, Rivera G. Advances in the Development of Non-Structural Protein 1 (NsP1) Inhibitors for the Treatment of Chikungunya Virus Infection. Mini Rev Med Chem 2024; 24:1972-1982. [PMID: 38910486 DOI: 10.2174/0113895575301735240607055839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Chikungunya is a re-emerging viral infection of worldwide concern, and new antiviral therapeutics are necessary to combat this disease. Inhibitors of the non-structural protein 1 (NsP1), which shows Methyltransferase (MTase) activity and plays a crucial in the Chikungunya virus (ChikV) replication, are exhibiting promising results. This review aimed to describe recent advances in the development of NsP1 inhibitors for the treatment of Chikungunya disease. High-throughput screening of novel ChikV NsP1 inhibitors has been widely performed for the identification of new molecule hits through fluorescence polarization, Western blotting, ELISA-based assay, and capillary electrophoresis assays. Additionally, cell-based assays confirmed that the inhibition of ChikV NsP1 abolishes viral replication. In summary, pyrimidine and pyrimidin-7(6H)-one derivatives, GTP and nucleoside analogs have been demonstrated to show inhibitory activity and are considered promising scaffolds that provide useful knowledge for the research and development of new NsP1 inhibitors as potential treatment of Chikungunya re-emerging disease.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Dept. of Biotechnologia Farmaceutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Dept. of Biotechnologia Farmaceutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Dept. of Biotechnologia Farmaceutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| |
Collapse
|
17
|
Nieto-Rivera B, Saldaña-Ahuactzi Z, Parra-Ortega I, Flores-Alanis A, Carbajal-Franco E, Cruz-Rangel A, Galaviz-Hernández S, Romero-Navarro B, de la Rosa-Zamboni D, Salazar-García M, Contreras CA, Ortega-Riosvelasco F, López-Martínez I, Barrera-Badillo G, Diaz-Garcia H, Romo-Castillo M, Moreno-Espinosa S, Luna-Pineda VM. Frequency of respiratory virus-associated infection among children and adolescents from a tertiary-care hospital in Mexico City. Sci Rep 2023; 13:19763. [PMID: 37957308 PMCID: PMC10643542 DOI: 10.1038/s41598-023-47035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Acute respiratory infections (ARIs) are a major cause of morbidity and mortality among children. The causative pathogens show geographic and seasonal variations. We retrospectively evaluated the frequency and seasonality of respiratory pathogens in children and adolescents (age: 0-19 years) with ARIs treated between January 1, 2021, and March 31, 2022, at a single center in Mexico. Out of 2400 patients, 1,603 were diagnosed with SARS-CoV-2 infection and 797 were diagnosed with other common respiratory pathogens (CRPs). Of the 797 patients, 632 were infected with one CRP and 165 with > 2 CRPs. Deaths occurred only in SARS-CoV-2-infected patients. Rhinovirus/Enterovirus, respiratory syncytial virus B, and parainfluenza virus 3 were the most prevalent in cases with single and multiple infections. CRP showed a high frequency between autumn and winter of 2021, with higher incidence of hospitalization compared to COVID-19. The main comorbidities were immunosuppression, cardiovascular disease (CD), and asthma. The frequency of CRPs showed a downward trend throughout the first half of 2021. CRPs increased in single- and co-infection cases between the fourth and fifth waves of COVID-19, probably due to decreased nonpharmaceutical interventions and changes in diagnostic tests. Age, cyanosis (symptom), and immunosuppression (comorbidity) were found to differentiate between SARS-CoV-2 infection and CRP infection.
Collapse
Affiliation(s)
- Brenda Nieto-Rivera
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Santa Inés Tecuexcomac, Tepetitla de Lardizábal, Tlaxcala, México
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ebzadrel Carbajal-Franco
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Benjamín Romero-Navarro
- Subdirección de Servicios Auxiliares de Diagnóstico, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Daniela de la Rosa-Zamboni
- Subdirección de Atención Integral al Paciente, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Carmen A Contreras
- Facultad de Medicina, Universidad Privada Antenor Orrego, Trujillo, Peru
| | | | - Irma López-Martínez
- Dirección de Diagnóstico y Referencia, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Gisela Barrera-Badillo
- Laboratorio de Virus Respiratorios, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Hector Diaz-Garcia
- Centro de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Escuela Superior de Enfermería y Obstetricia, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mariana Romo-Castillo
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Victor M Luna-Pineda
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| |
Collapse
|
18
|
Madewell ZJ, Wang L, Dean NE, Zhang H, Wang Y, Zhang X, Liu W, Yang W, Longini IM, Gao GF, Li Z, Fang L, Yang Y. Interactions among acute respiratory viruses in Beijing, Chongqing, Guangzhou, and Shanghai, China, 2009-2019. Influenza Other Respir Viruses 2023; 17:e13212. [PMID: 37964991 PMCID: PMC10640964 DOI: 10.1111/irv.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Background A viral infection can modify the risk to subsequent viral infections via cross-protective immunity, increased immunopathology, or disease-driven behavioral change. There is limited understanding of virus-virus interactions due to lack of long-term population-level data. Methods Our study leverages passive surveillance data of 10 human acute respiratory viruses from Beijing, Chongqing, Guangzhou, and Shanghai collected during 2009 to 2019: influenza A and B viruses; respiratory syncytial virus A and B; human parainfluenza virus (HPIV), adenovirus, metapneumovirus (HMPV), coronavirus, bocavirus (HBoV), and rhinovirus (HRV). We used a multivariate Bayesian hierarchical model to evaluate correlations in monthly prevalence of test-positive samples between virus pairs, adjusting for potential confounders. Results Of 101,643 lab-tested patients, 33,650 tested positive for any acute respiratory virus, and 4,113 were co-infected with multiple viruses. After adjusting for intrinsic seasonality, long-term trends and multiple comparisons, Bayesian multivariate modeling found positive correlations for HPIV/HRV in all cities and for HBoV/HRV and HBoV/HMPV in three cities. Models restricted to children further revealed statistically significant associations for another ten pairs in three of the four cities. In contrast, no consistent correlation across cities was found among adults. Most virus-virus interactions exhibited substantial spatial heterogeneity. Conclusions There was strong evidence for interactions among common respiratory viruses in highly populated urban settings. Consistent positive interactions across multiple cities were observed in viruses known to typically infect children. Future intervention programs such as development of combination vaccines may consider spatially consistent virus-virus interactions for more effective control.
Collapse
Affiliation(s)
- Zachary J. Madewell
- Department of Biostatistics, College of Public Health and Health Professions & Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Li‐Ping Wang
- Division of Infectious DiseaseKey Laboratory of Surveillance and Early‐Warning on Infectious Diseases, Chinese Center for Disease Control and PreventionBeijingChina
| | - Natalie E. Dean
- Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Hai‐Yang Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yi‐Fei Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xiao‐Ai Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wei Liu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wei‐Zhong Yang
- Division of Infectious DiseaseKey Laboratory of Surveillance and Early‐Warning on Infectious Diseases, Chinese Center for Disease Control and PreventionBeijingChina
| | - Ira M. Longini
- Department of Biostatistics, College of Public Health and Health Professions & Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - George F. Gao
- Division of Infectious DiseaseKey Laboratory of Surveillance and Early‐Warning on Infectious Diseases, Chinese Center for Disease Control and PreventionBeijingChina
| | - Zhong‐Jie Li
- Division of Infectious DiseaseKey Laboratory of Surveillance and Early‐Warning on Infectious Diseases, Chinese Center for Disease Control and PreventionBeijingChina
| | - Li‐Qun Fang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yang Yang
- Department of Statistics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
19
|
Yan X, Li K, Lei Z, Luo J, Wang Q, Wei S. Prevalence and associated outcomes of coinfection between SARS-CoV-2 and influenza: a systematic review and meta-analysis. Int J Infect Dis 2023; 136:29-36. [PMID: 37648094 DOI: 10.1016/j.ijid.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVES To estimate the prevalence of influenza coinfection in COVID-19 patients and investigate its association with severe clinical outcomes. METHODS We systematically searched the Web of Science, PubMed, Scopus, Embase, The Cochrane Library, and CNKI for studies published between January 01, 2020, and May 31, 2023. Meta-analysis was performed to estimate the pooled prevalence of coinfection and the impact on clinical outcomes. Systematic review registered in PROSPERO (CRD42023423113). RESULTS A total of 95 studies involving 62,107 COVID-19 patients were included. The pooled prevalence of coinfection with influenza virus was 2.45% (95% confidence interval [CI]: 1.67-3.58%), with a high proportion of influenza A. Compared with mono-infected patients (COVID-19 only), the odds ratio (OR) for severe outcomes (including intensive care unit admission [OR = 2.20, 95% CI: 1.68-2.87, P < 0.001], mechanical ventilation support [OR = 2.73, 95% CI: 1.46-5.10, P = 0.002], and mortality [OR = 2.92, 95% CI: 1.16-7.30, P = 0.022]) was significantly higher among patients coinfected influenza A. CONCLUSION Although the prevalence of coinfection is low, coinfected patients are at higher risk of severe outcomes. Enhanced identification of both viruses, as well as individualized treatment protocols for coinfection, are recommended to reduce the occurrence of serious disease outcomes in the future.
Collapse
Affiliation(s)
- Xiaolong Yan
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Department of Public Health and Preventive Medicine, Medical College, Shihezi University, Shihezi, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Luo
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
20
|
Hung SK, Wu CC, Singh A, Li JH, Lee C, Chou EH, Pekosz A, Rothman R, Chen KF. Developing and validating clinical features-based machine learning algorithms to predict influenza infection in influenza-like illness patients. Biomed J 2023; 46:100561. [PMID: 36150651 PMCID: PMC10498408 DOI: 10.1016/j.bj.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Seasonal influenza poses a significant risk, and patients can benefit from early diagnosis and treatment. However, underdiagnosis and undertreatment remain widespread. We developed and compared clinical feature-based machine learning (ML) algorithms that can accurately predict influenza infection in emergency departments (EDs) among patients with influenza-like illness (ILI). MATERIAL AND METHODS We conducted a prospective cohort study in five EDs in the US and Taiwan from 2015 to 2020. Adult patients visiting the EDs with symptoms of ILI were recruited and tested by real-time RT-PCR for influenza. We evaluated seven ML algorithms and compared their results with previously developed clinical prediction models. RESULTS Out of the 2189 enrolled patients, 1104 tested positive for influenza. The eXtreme Gradient Boosting achieved superior performance with an area under the receiver operating characteristic curve of 0.82 (95% confidence interval [CI] = 0.79-0.85), with a sensitivity of 0.92 (95% CI = 0.88-0.95), specificity of 0.89 (95% CI = 0.86-0.92), and accuracy of 0.72 (95% CI = 0.69-0.76) in the testing set over cut-offs of 0.4, 0.6 and 0.5, respectively. These results were superior to those of previously proposed clinical prediction models. The model interpretation revealed that body temperature, cough, rhinorrhea, and exposure history were positively associated with and the days of illness and influenza vaccine were negatively associated with influenza infection. We also found the week of the influenza season, pulse rate, and oxygen saturation to be associated with influenza infection. CONCLUSIONS The clinical feature-based ML model outperformed conventional models for predicting influenza infection.
Collapse
Affiliation(s)
- Shang-Kai Hung
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chin-Chieh Wu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Avichandra Singh
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Hua Li
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Christian Lee
- Department of Emergency Medicine, Baylor Scott and White All Saints Medical Center, Fort Worth, TX, USA
| | - Eric H Chou
- Department of Emergency Medicine, Baylor Scott and White All Saints Medical Center, Fort Worth, TX, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
21
|
Lee DH, Choi YJ, Kim J, Han E, Bae MH. Pre-Pandemic Distribution of Bacterial Species in Nasopharyngeal Swab Specimens from Pediatric and Adult Patients Detected via RT-PCR Using the Allplex Respiratory Panel. Life (Basel) 2023; 13:1840. [PMID: 37763244 PMCID: PMC10532938 DOI: 10.3390/life13091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Recently, panel-based molecular diagnostics for the simultaneous detection of respiratory viruses and bacteria in nasopharyngeal swab (NPS) specimens have been highlighted. We identified the distribution of bacterial species in NPS specimens collected from pediatric and adult patients by employing RT-PCR (Allplex respiratory panel 4, RP4, Seegene) to estimate its applicability in a panel-based assay for detecting respiratory viruses. Methods: We used 271 and 173 NPS specimens from pediatric and adult patients, respectively. The results of the Allplex RP4 panel using NPS (NPS-RP4) from adult patients were compared with those of the Seeplex PneumoBacter ACE Detection assay (Seegene), which used sputum for testing (sputum-Seeplex). Results: A total of 147 specimens (54.2%) were positive for the NPS-RP4 panel in pediatric patients. There were 94, 77, 10, 3, 3, and 2 specimens that were positive for Haemophilus influenzae (HI), Streptococcus pneumoniae (SP), Mycoplasma pneumoniae (MP), Chlamydia pneumoniae (CP), Bordetella pertussis (BP), and B. parapertussis (BPP), respectively. Among 173 adult patients, 39 specimens (22.5%) were positive in the NPS-RP4. Thirty specimens were positive for HI, and 13 were positive for SP. One specimen tested positive for both MP and Legionella pneumophila (LP). CP, BP, and BPP results were all negative. However, 126 specimens (72.8%) had positive results with sputum-Seeplex (99 SP, 59 HI, three LP, and two MP), and the overall percentage of agreement between the two assays was 39.3% in the adult patients. Conclusions: Bacterial species in NPS from more than half of pediatric patients were detected. Performing the Allplex RP4 assay with NPS revealed additional respiratory bacteria that are not detected in current clinical practices, which do not include bacterial testing, demanding the use of sputum specimens. However, the use of NPS showed low agreement with standard assays using sputum in adult patients. Thus, more research is needed to develop a reliable RT-PCR method using NPS specimens in adult patients.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Young-Jin Choi
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Republic of Korea
| | - Jieun Kim
- Division of Infectious Disease, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Republic of Korea
| | - Eunhee Han
- Department of Laboratory Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi-Hyun Bae
- Department of Laboratory Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Republic of Korea
| |
Collapse
|
22
|
Fischer N, Moreels S, Dauby N, Reynders M, Petit E, Gérard M, Lacor P, Daelemans S, Lissoir B, Holemans X, Magerman K, Jouck D, Bourgeois M, Delaere B, Quoilin S, Van Gucht S, Thomas I, Bossuyt N, Barbezange C. Influenza versus other respiratory viruses - assessing severity among hospitalised children, Belgium, 2011 to 2020. Euro Surveill 2023; 28:2300056. [PMID: 37470740 PMCID: PMC10360368 DOI: 10.2807/1560-7917.es.2023.28.29.2300056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023] Open
Abstract
BackgroundKnowledge on the burden attributed to influenza viruses vs other respiratory viruses in children hospitalised with severe acute respiratory infections (SARI) in Belgium is limited.AimThis observational study aimed at describing the epidemiology and assessing risk factors for severe disease.MethodsWe retrospectively analysed data from routine national sentinel SARI surveillance in Belgium. Respiratory specimens collected during winter seasons 2011 to 2020 were tested by multiplex real-time quantitative PCR (RT-qPCR) for influenza and other respiratory viruses. Demographic data and risk factors were collected through questionnaires. Patients were followed-up for complications or death during hospital stay. Analysis focused on children younger than 15 years. Binomial logistic regression was used to identify risk factors for severe disease in relation to infection status.ResultsDuring the winter seasons 2011 to 2020, 2,944 specimens met the study case definition. Complications were more common in children with underlying risk factors, especially asthma (adjusted risk ratio (aRR): 1.87; 95% confidence interval (CI): 1.46-2.30) and chronic respiratory disease (aRR: 1.88; 95% CI: 1.44-2.32), regardless of infection status and age. Children infected with non-influenza respiratory viruses had a 32% higher risk of complications (aRR: 1.32; 95% CI: 1.06-1.66) compared with children with influenza only.ConclusionMulti-virus testing in children with SARI allows a more accurate assessment of the risk of complications and attribution of burden to respiratory viruses beyond influenza. Children with asthma and respiratory disease should be prioritised for clinical care, regardless of their virological test result and age, and targeted for prevention campaigns.
Collapse
Affiliation(s)
- Natalie Fischer
- National Influenza Centre, Sciensano, Brussels, Belgium
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Sarah Moreels
- Health Services Research - Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Nicolas Dauby
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende AV, Belgium
| | - Evelyn Petit
- Department of Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende AV, Belgium
| | - Michèle Gérard
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Lacor
- Internal Medicine-Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Siel Daelemans
- Paediatric Pulmonary and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Xavier Holemans
- General Internal Medicine and Infectiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Ziekenhuis, Hasselt, Belgium
- Infection Control, Jessa Ziekenhuis, Hasselt, Belgium
| | - Door Jouck
- Infection Control, Jessa Ziekenhuis, Hasselt, Belgium
| | - Marc Bourgeois
- Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | | | - Sophie Quoilin
- Epidemiology of Infectious Diseases - Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | | | - Nathalie Bossuyt
- Epidemiology of Infectious Diseases - Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | |
Collapse
|
23
|
Edderdouri K, Kabbaj H, Laamara L, Lahmouddi N, Lamdarsi O, Zouaki A, El Amin G, Zirar J, Seffar M. Contribution of the FilmArray BioFire® Technology in the Diagnosis of Viral Respiratory Infections during the COVID-19 Pandemic at Ibn Sina University Hospital Center in Rabat: Epidemiological Study about 503 Cases. Adv Virol 2023; 2023:2679770. [PMID: 37384256 PMCID: PMC10299880 DOI: 10.1155/2023/2679770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Respiratory viruses are the most involved pathogens in acute respiratory infections. During the COVID-19 pandemic, new elements have been brought to this topic, especially at the diagnostic and therapeutic level. The objective of this work is to describe the epidemiology of respiratory viruses in patients admitted to the Ibn Sina University Hospital of Rabat during a period characterized by the emergence and spread of SARS-CoV-2. We conducted a retrospective study from January 1 to December 31. We included all patients treated for acute respiratory infection and for whom a multiplex respiratory panel PCR was requested. Virus detection was performed using a FilmArray RP 2.1 plus BioFire multiplex respiratory panel. The study population was relatively adults with a mean age of 39 years. The sex ratio M/F was 1.20. The survey revealed a high prevalence of 42.3% of patients hospitalized in the adult intensive care unit whose respiratory distress was the most common reason for hospitalization (58%). The positivity rate was 48.1%. This rate was higher in the pediatric population 83.13% compared to adults 29.7%. Monoinfection was found in 36.4% of cases, and codetection in 11.7% of cases. This survey revealed that a total of 322 viruses were detected, HRV being the most incriminated virus (48.7%), followed by RSV in 13.8% of patients. Considering the five most detected viruses in our study (HRV, RSV, PIV3, ADV, and hMPV), we found that the incidence was significantly higher in the pediatric population. SARS-CoV-2 was detected only in adult's population. In our study, we found that influenza A and B viruses, PIV2, MERS, and all bacteria were not detected by this kit during the study period. Regarding the seasonal distribution, RSV and hMPV showed a significantly high incidence during autumn and summer and SARS-CoV-2 and CoV OC43 showed a high peak during winter. In this study, we found a lack of detection of influenza virus and a shift in the usual winter peak of RSV to the summer, while the detection of ADV and HRV was less affected. This difference in detection could be due on the one hand to the difference in stability between enveloped and nonenveloped viruses and on the other hand to the escape of certain viruses to the different sanitary measures introduced after the declaration of the COVID-19 pandemic. These same measures were effective against enveloped viruses such as RSV and influenza viruses. The emergence of SARS-CoV-2 has modified the epidemiology of other respiratory viruses, either directly by viral interference or indirectly by the preventive measures taken.
Collapse
Affiliation(s)
- Khalid Edderdouri
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Hakima Kabbaj
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Leila Laamara
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Noureddine Lahmouddi
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Oumayma Lamdarsi
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Amal Zouaki
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Ghizlane El Amin
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Jalila Zirar
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| | - Myriam Seffar
- Mohamed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco
- Ibn Sina University Hospital Center, Central Laboratory of Virology, Rabat, Morocco
| |
Collapse
|
24
|
Morris DR, Qu Y, Thomason KS, de Mello AH, Preble R, Menachery VD, Casola A, Garofalo RP. The impact of RSV/SARS-CoV-2 co-infection on clinical disease and viral replication: insights from a BALB/c mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542043. [PMID: 37292863 PMCID: PMC10245946 DOI: 10.1101/2023.05.24.542043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RSV and SARS-CoV-2 are prone to co-infection with other respiratory viruses. In this study, we use RSV/SARS-CoV-2 co-infection to evaluate changes to clinical disease and viral replication in vivo. To consider the severity of RSV infection, effect of sequential infection, and the impact of infection timing, mice were co-infected with varying doses and timing. Compared with a single infection of RSV or SARS-CoV-2, the co-infection of RSV/SARS-CoV-2 and the primary infection of RSV followed by SARS-CoV-2 results in protection from SARS-CoV-2-induced clinical disease and reduces SARS-CoV-2 replication. Co-infection also augmented RSV replication at early timepoints with only the low dose. Additionally, the sequential infection of RSV followed by SARS-CoV-2 led to improved RSV clearance regardless of viral load. However, SARS-CoV-2 infection followed by RSV results in enhanced SARS-CoV-2-induced disease while protecting from RSV-induced disease. SARS-CoV-2/RSV sequential infection also reduced RSV replication in the lung tissue, regardless of viral load. Collectively, these data suggest that RSV and SARS-CoV-2 co-infection may afford protection from or enhancement of disease based on variation in infection timing, viral infection order, and/or viral dose. In the pediatric population, understanding these infection dynamics will be critical to treat patients and mitigate disease outcomes.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX
- School of Public & Population Health, The University of Texas Medical Branch, Galveston, TX
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| | - Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| | - Kerrie S. Thomason
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| | - Richard Preble
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX
| | - Vineet D. Menachery
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX
| | - Antonella Casola
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| | - Roberto P. Garofalo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
25
|
Krumbein H, Kümmel LS, Fragkou PC, Thölken C, Hünerbein BL, Reiter R, Papathanasiou KA, Renz H, Skevaki C. Respiratory viral co-infections in patients with COVID-19 and associated outcomes: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2365. [PMID: 35686619 PMCID: PMC9347814 DOI: 10.1002/rmv.2365] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023]
Abstract
The aim of this systematic review and meta-analysis was to critically assess the published literature related to community-acquired viral co-infections and COVID-19 and to evaluate the prevalence, most identified co-pathogens, and relevant risk factors. Furthermore, we aimed to examine the clinical features and outcomes of co-infected compared to mono-infected COVID-19 patients. We systematically searched PubMed, Web of Science, Embase, Scopus, and The Cochrane Library for studies published from 1 November 2019 to 13 August 2021. We included patients of all ages and any COVID-19 severity who were screened for respiratory viral co-infection within 48 h of COVID-19 diagnosis. The main outcome was the proportion of patients with a respiratory viral co-infection. The systematic review was registered to PROSPERO (CRD42021272235). Out of 6053 initially retrieved studies, 59 studies with a total of 16,643 SARS-CoV-2 positive patients were included. The global pooled prevalence was 5.01% (95% CI 3.34%-7.27%; I2 = 95%) based on a random-effects model, with Influenza Viruses (1.54%) and Enteroviruses (1.32%) being the most prevalent pathogens. Subgroup analyses showed that co-infection was significantly higher in paediatric (9.39%) than adult (3.51%) patients (p-value = 0.02). Furthermore, co-infected patients were more likely to be dyspnoeic and the odds of fatality (OR = 1.66) were increased. Although a relatively low proportion of COVID-19 patients have a respiratory viral co-infection, our findings show that multiplex viral panel testing may be advisable in patients with compatible symptoms. Indeed, respiratory virus co-infections may be associated with adverse clinical outcomes and therefore have therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Hanna Krumbein
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| | - Lara S. Kümmel
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| | - Paraskevi C. Fragkou
- Fourth Department of Internal MedicineMedical School of AthensNational and Kapodistrian University of AthensAttikon University HospitalAthensGreece
| | - Clemens Thölken
- Institute of Medical Bioinformatics and BiostatisticsMedical FacultyPhilipps University of MarburgMarburgGermany
| | - Ben L. Hünerbein
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| | - Rieke Reiter
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| | | | - Harald Renz
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| | - Chrysanthi Skevaki
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)Philipps Universität MarburgGerman Center for Lung Research (DZL) MarburgMarburgGermany
| |
Collapse
|
26
|
Li J, Wu C, Tseng Y, Han S, Pekosz A, Rothman R, Chen K. Applying symptom dynamics to accurately predict influenza virus infection: An international multicenter influenza-like illness surveillance study. Influenza Other Respir Viruses 2022; 17:e13081. [PMID: 36480419 PMCID: PMC9835452 DOI: 10.1111/irv.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Public health organizations have recommended various definitions of influenza-like illnesses under the assumption that the symptoms do not change during influenza virus infection. To explore the relationship between symptoms and influenza over time, we analyzed a dataset from an international multicenter prospective emergency department (ED)-based influenza-like illness cohort study. METHODS We recruited patients in the US and Taiwan between 2015 and 2020 with: (1) flu-like symptoms (fever and cough, headache, or sore throat), (2) absence of any of the respiratory infection symptoms, or (3) positive laboratory test results for influenza from the current ED visit. We evaluated the association between the symptoms and influenza virus infection on different days of illness. The association was evaluated among different subgroups, including different study countries, influenza subtypes, and only patients with influenza. RESULTS Among the 2471 recruited patients, 45.7% tested positive for influenza virus. Cough was the most predictive symptom throughout the week (odds ratios [OR]: 7.08-11.15). In general, all symptoms were more predictive during the first 2 days (OR: 1.55-10.28). Upper respiratory symptoms, such as sore throat and productive cough, and general symptoms, such as body ache and fatigue, were more predictive in the first half of the week (OR: 1.51-3.25). Lower respiratory symptoms, such as shortness of breath and wheezing, were more predictive in the second half of the week (OR: 1.52-2.52). Similar trends were observed for most symptoms in the different subgroups. CONCLUSIONS The time course is an important factor to be considered when evaluating the symptoms of influenza virus infection.
Collapse
Affiliation(s)
- Jin‐Hua Li
- Clinical Informatics and Medical Statistics Research CenterChang Gung UniversityTaoyuanTaiwan,Department of Medical EducationChang Gung Memorial HospitalChiayiTaiwan
| | - Chin‐Chieh Wu
- Clinical Informatics and Medical Statistics Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Yi‐Ju Tseng
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Shih‐Tsung Han
- Department of Emergency MedicineChang Gung Memorial HospitalLinkouTaiwan
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyThe Johns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Richard Rothman
- Department of Emergency MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kuan‐Fu Chen
- Clinical Informatics and Medical Statistics Research CenterChang Gung UniversityTaoyuanTaiwan,Department of Emergency MedicineChang Gung Memorial HospitalKeelungTaiwan
| |
Collapse
|
27
|
Vink E, Davis C, MacLean A, Pascall D, McDonald SE, Gunson R, Hardwick HE, Oosthuyzen W, Openshaw PJM, Baillie JK, Semple MG, Ho A. Viral Coinfections in Hospitalized Coronavirus Disease 2019 Patients Recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK Study. Open Forum Infect Dis 2022; 9:ofac531. [PMID: 36381618 PMCID: PMC9619746 DOI: 10.1093/ofid/ofac531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background We conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity. Methods Multiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge. Results A coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity. Conclusions Viral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward.
Collapse
Affiliation(s)
- Elen Vink
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Chris Davis
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Alasdair MacLean
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - David Pascall
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Joint Universities Pandemic and Epidemiological Research (JUNIPER) Consortium
| | - Sarah E McDonald
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Hayley E Hardwick
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wilna Oosthuyzen
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Pandemic Institute, University of Liverpool, Liverpool, United Kingdom
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Distribution of Viral Respiratory Infections during the COVID-19 Pandemic Using the FilmArray Respiratory Panel. Biomedicines 2022; 10:biomedicines10112734. [DOI: 10.3390/biomedicines10112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to evaluate the distribution of respiratory viral pathogens in the emergency department during the coronavirus disease 2019 (COVID-19) pandemic. Between May 2020 and September 2022, patients aged between 0.1 and 98 years arrived at the emergency department of Asia University Hospital, and samples from nasopharyngeal swabs were tested by the FilmArrayTM Respiratory Panel (RP). SARS-CoV-2 positivity was subsequently retested by the cobas Liat system. There were 804 patients for whom the FilmArrayTM RP was tested, and 225 (27.9%) of them had positive results for respiratory viruses. Rhinovirus/enterovirus was the most commonly detected pathogen, with 170 (61.8%) cases, followed by adenovirus with 38 (13.8%), SARS-CoV-2 with 16 (5.8%) cases, and coronavirus 229E, with 16 (5.8%) cases. SARS-CoV-2 PCR results were positive in 16 (5.8%) cases, and there were two coinfections of SARS-CoV-2 with adenovirus and rhinovirus/enterovirus. A total of 43 (5.3%) patients were coinfected; the most coinfection was adenovirus plus rhinovirus/enterovirus, which was detectable in 18 (41.9%) cases. No atypical pathogens were found in this study. Intriguingly, our results showed that there was prefect agreement between the detection of SARS-CoV-2 conducted with the cobas Liat SARS-CoV-2 and influenza A/B nucleic acid test and the FilmArrayTM RP. Therefore, the FilmArrayTM RP assay is a reliable and feasible method for the detection of SARS-CoV-2. In summary, FilmArrayTM RP significantly broadens our capability to detect multiple respiratory infections due to viruses and atypical bacteria. It provides a prompt evaluation of pathogens to enhance patient care and clinical selection strategies in emergency departments during the COVID-19 pandemic.
Collapse
|
29
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
30
|
Ouafi M, Dubos F, Engelmann I, Lazrek M, Guigon A, Bocket L, Hober D, Alidjinou EK. Rapid syndromic testing for respiratory viral infections in children attending the emergency department during COVID-19 pandemic in Lille, France, 2021-2022. J Clin Virol 2022; 153:105221. [PMID: 35777223 PMCID: PMC9233550 DOI: 10.1016/j.jcv.2022.105221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Viral respiratory infections are common in children, and usually associated with non-specific symptoms. Respiratory panel-based testing was implemented during the COVID-19 pandemic, for the rapid differentiation between SARS-CoV-2 and other viral infections, in children attending the emergency department (ED) of the teaching hospital of Lille, northern France, between February 2021 and January 2022. METHODS Samples were collected using nasopharyngeal swabs. Syndromic respiratory testing was performed with two rapid multiplex molecular assays: the BioFire® Respiratory Panel 2.1 - plus (RP2.1 plus) or the QIAstat-Dx Respiratory SARS-CoV-2 Panel. SARS-CoV-2 variant was screened using mutation-specific PCR-based assays and genome sequencing. RESULTS A total of 3517 children were included in the study. SARS-CoV-2 was detected in samples from 265 children (7.5%). SARS-CoV-2 infected patients were younger than those without SARS-CoV-2 infection (median age: 6 versus 12 months, p < 0.0001). The majority of infections (61.5%) were associated with the Omicron variant. The median weekly SARS-CoV-2 positivity rate ranged from 1.76% during the Alpha variant wave to 24.5% with the emergence of the Omicron variant. Most children (70.2%) were treated as outpatients, and seventeen patients were admitted to the intensive care unit. Other respiratory viruses were more frequently detected in SARS-CoV-2 negative children than in positive ones (82.1% versus 37.4%, p < 0.0001). Human rhinovirus/enterovirus and respiratory syncytial virus were the most prevalent in both groups. CONCLUSIONS We observed a low prevalence of SARS-CoV-2 infection in children attending pediatric ED, despite the significant increase due to Delta and Omicron variants, and an important circulation of other respiratory viruses. Severe disease was overall rare in children.
Collapse
Affiliation(s)
- Mahdi Ouafi
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | - François Dubos
- CHU Lille, Pediatric Emergency Unit and Infectious Diseases, Lille, F-59000 France
| | - Ilka Engelmann
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | - Mouna Lazrek
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | - Aurélie Guigon
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | - Laurence Bocket
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | - Didier Hober
- Univ Lille, CHU Lille, Laboratoire de Virologie ULR3610, Lille, F-59000 France
| | | |
Collapse
|
31
|
Bimouhen A, Regragui Z, El Falaki F, Ihazmade H, Benkerroum S, Cherkaoui I, Rguig A, Ezzine H, Benamar T, Triki S, Bakri Y, Oumzil H. Viral aetiology of influenza-like illnesses and severe acute respiratory illnesses in Morocco, September 2014 to December 2016. J Glob Health 2022; 12:04062. [PMID: 35866188 PMCID: PMC9304922 DOI: 10.7189/jogh.12.04062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background There is a scarcity of information on the viral aetiology of influenza-like illness (ILI) and severe acute respiratory infection (SARI) among patients in Morocco. Methods From September 2014 to December 2016, we prospectively enrolled inpatients and outpatients from all age groups meeting the World Health Organization (WHO) case definition for ILI and SARI from 59 sentinel sites. The specimens were tested using real-time monoplex reverse-transcription polymerase chain reaction method for detecting 16 relevant respiratory viruses. Results At least one respiratory virus was detected in 1423 (70.8%) of 2009 specimens. Influenza viruses were the most common, detected in 612 (30.4%) of processed samples, followed by respiratory syncytial virus (RSV) in 359 (17.9%), human rhinovirus (HRV) in 263 (13.1%), adenovirus (HAdV) in 124 (6.2%), parainfluenza viruses (HPIV) in 107 (5.3%), coronaviruses (HCoV) in 94 (4.7%), human bocavirus (HBoV) in 92 (4.6%), and human metapneumovirus (HMPV) in 74 (3.7%). From 770 samples from children under 5 years old, RSV (288, 36.6%), influenza viruses (106, 13.8%), HRV (96, 12.5%) and HAdV (91, 11.8%) were most prevalent. Among 955 samples from adults, Influenza viruses (506, 53.0%), and HRV (167, 17.5%) were most often detected. Co-infections were found in 268 (18.8%) of 1423 positive specimens, and most (60.4%) were in children under 5 years of age. While influenza viruses, RSV, and HMPV had a defined period of circulation, the other viruses did not display clear seasonal patterns. Conclusions We found that RSV was predominant among SARI cases in Morocco, particularly in children under 5 years of age. Our results are in line with reported data from other parts of the world, stating that RSV is the leading cause of lower respiratory tract infections in infants and young children.
Collapse
Affiliation(s)
- Abderrahman Bimouhen
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco
| | - Zakia Regragui
- National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco
| | - Fatima El Falaki
- National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco
| | - Hassan Ihazmade
- National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco
| | - Samira Benkerroum
- National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco
| | - Imad Cherkaoui
- Directorate of Epidemiology and Disease Control, Ministry of Health, Morocco
| | - Ahmed Rguig
- Directorate of Epidemiology and Disease Control, Ministry of Health, Morocco
| | - Hind Ezzine
- Directorate of Epidemiology and Disease Control, Ministry of Health, Morocco
| | - Touria Benamar
- Directorate of Epidemiology and Disease Control, Ministry of Health, Morocco
| | | | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hicham Oumzil
- National Influenza Center, Virology department, National Institute of Hygiene, Ministry of Health, Morocco.,Pedagogy and Research Unit of Microbiology, School of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
32
|
Bronchial epithelia from adults and children: SARS-CoV-2 spread via syncytia formation and type III interferon infectivity restriction. Proc Natl Acad Sci U S A 2022; 119:e2202370119. [PMID: 35749382 DOI: 10.1073/pnas.2202370119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.
Collapse
|
33
|
Hwang JK, Na JY, Kim J, Oh JW, Kim YJ, Choi YJ. Age-Specific Characteristics of Adult and Pediatric Respiratory Viral Infections: A Retrospective Single-Center Study. J Clin Med 2022; 11:jcm11113197. [PMID: 35683584 PMCID: PMC9181129 DOI: 10.3390/jcm11113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to identify age-specific characteristics of respiratory viral infections. Hospitalized patients with confirmed viral respiratory infections were included in the sample. The patients were divided into the pediatric group (<19 years old) and the adult group (≥19 years old). The groups were then subdivided based on age: 0−6, 7−12, 13−18, 19−49, 50−64, and ≥65 years old. These groups were compared to evaluate the differences in the pattern of respiratory viral infections. Among a total of 4058 pediatric patients (mean age 3.0 ± 2.9 years, n = 1793 females), 2829 (48.9%) had mono-infections, while 1229 (51.1%) had co-infections. Co-infections were the most common in the 0−6-year-old group (31.6%). Among 1550 adult patients (mean age 70.2 ± 15.3 years, n = 710 females), 1307 (85.6%) had mono-infections and 243 (14.4%) had co-infections. Co-infections were most common in the ≥65-year-old group (16.8%). Viral infection and co-infection rates decreased with age in pediatric patients but increased with increasing age in adults. In pediatric patients, the rates of viral infections and co-infections were high; the rate of co-infections was higher in younger patients. In adult patients, the rates of viral infections and co-infections were lower than those in pediatric patients; the rate of co-infections was higher in older patients.
Collapse
Affiliation(s)
- Jae Kyoon Hwang
- Department of Pediatrics, Hanyang University Guri Hospital, Guri 11923, Korea; (J.K.H.); (J.-W.O.)
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Seoul Hospital, Seoul 04763, Korea; (J.Y.N.); (J.K.); (Y.J.K.)
| | - Jihye Kim
- Department of Pediatrics, Hanyang University Seoul Hospital, Seoul 04763, Korea; (J.Y.N.); (J.K.); (Y.J.K.)
| | - Jae-Won Oh
- Department of Pediatrics, Hanyang University Guri Hospital, Guri 11923, Korea; (J.K.H.); (J.-W.O.)
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Yong Joo Kim
- Department of Pediatrics, Hanyang University Seoul Hospital, Seoul 04763, Korea; (J.Y.N.); (J.K.); (Y.J.K.)
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Young-Jin Choi
- Department of Pediatrics, Hanyang University Guri Hospital, Guri 11923, Korea; (J.K.H.); (J.-W.O.)
- Correspondence:
| |
Collapse
|
34
|
Lee BR, Harrison CJ, Myers AL, Jackson MA, Selvarangan R. Differences in pediatric SARS-CoV-2 symptomology and Co-infection rates among COVID-19 Pandemic waves. J Clin Virol 2022; 154:105220. [PMID: 35810686 PMCID: PMC9222346 DOI: 10.1016/j.jcv.2022.105220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
An estimated 12.8 million pediatric SARS-CoV-2 infections have occurred within the United States as of March 1 2022, with multiple epidemic waves due to emergence of several SARS-CoV-2 variants. The aim of this study was to compare demographics, clinical presentation, and detected respiratory co-infections during COVID-19 waves to better understand changes in pediatric SARS-CoV-2 epidemiology over time.
Collapse
|
35
|
Obermeier PE, Seeber LD, Alchikh M, Schweiger B, Rath BA. Incidence, Disease Severity, and Follow-Up of Influenza A/A, A/B, and B/B Virus Dual Infections in Children: A Hospital-Based Digital Surveillance Program. Viruses 2022; 14:v14030603. [PMID: 35337010 PMCID: PMC8955128 DOI: 10.3390/v14030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza virus (IV) coinfection, i.e., simultaneous infection with IV and other viruses, is a common occurrence in humans. However, little is known about the incidence and clinical impact of coinfection with two different IV subtypes or lineages (“dual infections”). We report the incidence, standardized disease severity, and follow-up of IV dual infections from a hospital-based digital surveillance cohort, comprising 6073 pediatric patients fulfilling pre-defined criteria of influenza-like illness in Berlin, Germany. All patients were tested for IV A/B by PCR, including subtypes/lineages. We assessed all patients at the bedside using the mobile ViVI ScoreApp, providing a validated disease severity score in real-time. IV-positive patients underwent follow-up assessments until resolution of symptoms. Overall, IV dual infections were rare (4/6073 cases; 0.07%, incidence 12/100,000 per year) but showed unusual and/or prolonged clinical presentations with slightly above-average disease severity. We observed viral rebound, serial infection, and B/Yamagata-B/Victoria dual infection. Digital tools, used for instant clinical assessments at the bedside, combined with baseline/follow-up virologic investigation, help identify coinfections in cases of prolonged and/or complicated course of illness. Infection with one IV does not necessarily prevent consecutive or simultaneous (co-/dual) infection, highlighting the importance of multivalent influenza vaccination and enhanced digital clinical and virological surveillance.
Collapse
Affiliation(s)
- Patrick E. Obermeier
- Vienna Vaccine Safety Initiative, Infectious Diseases & Vaccines, D-10437 Berlin, Germany; (P.E.O.); (L.D.S.); (M.A.)
- Laboratoire Chrono-Environnement LCE, UMR CNRS 6249, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Lea D. Seeber
- Vienna Vaccine Safety Initiative, Infectious Diseases & Vaccines, D-10437 Berlin, Germany; (P.E.O.); (L.D.S.); (M.A.)
- Laboratoire Chrono-Environnement LCE, UMR CNRS 6249, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Maren Alchikh
- Vienna Vaccine Safety Initiative, Infectious Diseases & Vaccines, D-10437 Berlin, Germany; (P.E.O.); (L.D.S.); (M.A.)
- Laboratoire Chrono-Environnement LCE, UMR CNRS 6249, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Brunhilde Schweiger
- National Reference Center for Influenza, Robert Koch-Institute, D-13353 Berlin, Germany;
| | - Barbara A. Rath
- Vienna Vaccine Safety Initiative, Infectious Diseases & Vaccines, D-10437 Berlin, Germany; (P.E.O.); (L.D.S.); (M.A.)
- Laboratoire Chrono-Environnement LCE, UMR CNRS 6249, Université Bourgogne Franche-Comté, F-25000 Besançon, France
- Correspondence:
| |
Collapse
|
36
|
Dotan M, Zion E, Bilavsky E, Nahum E, Ben‐Zvi H, Zalcman J, Yarden‐Bilavsky H, Kadmon G. Adenovirus can be a serious, life-threatening disease, even in previously healthy children. Acta Paediatr 2022; 111:614-619. [PMID: 34862832 DOI: 10.1111/apa.16207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022]
Abstract
AIM Adenovirus infections are exceedingly common in childhood. However, little is known of the clinical characteristics of children admitted with severe infection to the paediatric intensive care unit (PICU). METHODS Clinical data on children hospitalised with adenovirus infection between January 2005 and March 2020 were collected. We compared data between children hospitalised in the PICU and those who were not in a 1:2 ratio. RESULTS During the study period, 69 children with adenovirus infection were admitted to the PICU, representing 5% of all hospitalised children with adenovirus. Thirty-four (49%) were previously healthy children. Mortality occurred in 5 patients, and all had an underlying illness. Cidofovir was used in 21 children, including 11 who were previously healthy. No side effects were attributed to the treatment. During 2005-2014, viral co-infection rates were 42% in the PICU group and 11% in the control group (p = 0.002). However, during 2015-2020, when the viral panel became widespread in our institution, the rates of co-infection were similar in the two groups (32% and 34%, p = 1.0). CONCLUSION Our findings suggest that adenovirus may present as a serious, life-threatening disease even in previously healthy children.
Collapse
Affiliation(s)
- Miri Dotan
- Department of Paediatrics C Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Elena Zion
- Department of Paediatrics A Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Efraim Bilavsky
- Department of Paediatrics C Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Elhanan Nahum
- Paediatric Intensive Care Unit Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Haim Ben‐Zvi
- Department of Clinical Microbiology Rabin Medical Center Petah Tikva Israel
| | - Jonatan Zalcman
- Department of Paediatrics A Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Havatzelet Yarden‐Bilavsky
- Department of Paediatrics A Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gili Kadmon
- Paediatric Intensive Care Unit Schneider Children’s Medical Center Petah Tikva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
37
|
Du X, Wu G, Zhu Y, Zhang S. Exploring the epidemiological changes of common respiratory viruses since the COVID-19 pandemic: a hospital study in Hangzhou, China. Arch Virol 2021; 166:3085-3092. [PMID: 34480636 PMCID: PMC8417671 DOI: 10.1007/s00705-021-05214-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Adenovirus, respiratory syncytial virus, and influenza virus are common causes of respiratory infections. The COVID-19 pandemic had a significant impact on their prevalence. The aim of this study was to analyze the epidemic changes of common respiratory viruses in the Affiliated Hospital of Hangzhou Normal University in Hangzhou, China, from October of 2017 to February of 2021. We collected statistics from 121,529 patients in the outpatient and inpatient departments of the hospital who had throat or nose swabs collected for testing for four virus antigens by the colloidal gold method. Of these, 13,200 (10.86%) were positive for influenza A virus, 8,402 (6.91%) were positive for influenza B virus, 6,056 (4.98%) were positive for adenovirus, and 4,739 (3.90%) were positive for respiratory syncytial virus. The positivity rates of the influenza A virus (0-14 years old, P = 0.376; over 14 years old, P = 0.197) and respiratory syncytial virus (0-14 years old, P = 0.763; over 14 years old, P = 0.465) did not differ significantly by gender. After January of 2020, influenza virus infection decreased significantly. The positivity rate of respiratory syncytial virus remained high, and its epidemic season was similar to before. Strict respiratory protection and regulation of crowd activities have a great impact on the epidemic characteristics of viruses. After major changes in the public health environment, virus epidemics and their mutations should be monitored closely, extensively, and continuously.
Collapse
Affiliation(s)
- Xinke Du
- Department of Pediatrics, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Gongchenqiao Street, Gongshu District, Hangzhou, China
| | - Guangsheng Wu
- Department of Pediatrics, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Gongchenqiao Street, Gongshu District, Hangzhou, China.
| | - Yafei Zhu
- Department of Pediatrics, The Affiliated Hospital of Hangzhou Normal University, No. 126 Wenzhou Road, Gongchenqiao Street, Gongshu District, Hangzhou, China
| | - Siqi Zhang
- Clinical Medicine College of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
38
|
Sert SE, Karagol C, Gungor A, Gulhan B. Comparison of Clinical, Demographic Features and Costs in Respiratory Syncytial Virus, Rhinovirus and Viral Co-infections in Hospitalized Children with Lower Respiratory Tract Infections. Jpn J Infect Dis 2021; 75:164-168. [PMID: 34470965 DOI: 10.7883/yoken.jjid.2021.328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Viruses are the most common cause of lower respiratory tract infections (LRTIs) in children. Our study aims to shed light on co-infections by comparing with the most common single agents, Respiratory syncytial virus (RSV) and Rhinovirus (RV), in terms of epidemiological, clinical, laboratory and cost. This retrospective study included infants under the age of five, hospitalized with a diagnosis of LRTI with RSV, RV or co-infection were analyzed. The study group consisted of 199 children, RSV was detected in 116 patients (58,3%), RV in 46 (23,1%) and co-infections in 37 (18,6%). The average age of RV was higher (P = 0.006) and the lenght of hospital stay of RSV-infected patients was longer (P = 0.03) than other agents. There was no significant difference between the groups in terms of oxygen need, intensive care unit admission, intubation, and development of complications. The cost was found to be significantly higher in the RSV group (P=0.02). Viral co-infections, RSV and RV constitute an important part of the etiology in patients under five years of age and co-infections do not cause more severe clinical findings compared to single viral agents. Moreover cost was found to be significantly higher in patients with RSV.
Collapse
Affiliation(s)
- Sema Ekinci Sert
- Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Turkey
| | - Cuneyt Karagol
- Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Turkey
| | - Ali Gungor
- Department of Pediatrics, University of Health Sciences, Ankara City Hospital, Turkey
| | - Belgin Gulhan
- DepartmentOf Pediatrics, Division of Pediatric Infectious Disease, University of Health Sciences, Ankara City Hospital, Turkey
| |
Collapse
|
39
|
Ljubin-Sternak S, Meštrović T, Lukšić I, Mijač M, Vraneš J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. Front Public Health 2021; 9:691163. [PMID: 34291031 PMCID: PMC8287126 DOI: 10.3389/fpubh.2021.691163] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 02/02/2023] Open
Abstract
Respiratory viral infections are the leading cause of morbidity and mortality in the world; however, there are several groups of viruses that are insufficiently routinely sought for, and can thus be considered neglected from a diagnostic and clinical standpoint. Timely detection of seasonality of certain respiratory viruses (e.g., enveloped viruses such as seasonal coronaviruses) in the local context can aid substantially in targeted and cost-effective utilization of viral diagnostic approaches. For the other, non-enveloped and year-round viruses (i.e., rhinovirus, adenovirus, and bocavirus), a continuous virological diagnosis needs to be implemented in clinical laboratories to more effectively address the aetiology of respiratory infections, and assess the overall impact of these viruses on disease burden. While the coronavirus disease 2019 (COVID-19) pandemic is still actively unfolding, we aimed to emphasize the persistent role of seasonal coronaviruses, rhinoviruses, adenoviruses and bocaviruses in the aetiology of respiratory infections. Consequently, this paper concentrates on the burden and epidemiological trends of aforementioned viral groups on a global level, but also provides a snapshot of their prevalence patterns in Croatia in order to underscore the potential implications of viral seasonality. An overall global prevalence in respiratory tract infections was found to be between 0.5 and 18.4% for seasonal coronaviruses, between 13 and 59% for rhinoviruses, between 1 and 36% for human adenoviruses, and between 1 and 56.8% for human bocaviruses. A Croatian dataset on patients with respiratory tract infection and younger than 18 years of age has revealed a fairly high prevalence of rhinoviruses (33.4%), with much lower prevalence of adenoviruses (15.6%), seasonal coronaviruses (7.1%), and bocaviruses (5.3%). These insights represent a relevant discussion point in the context of the COVID-19 pandemic where the testing of non-SARS-CoV-2 viruses has been limited in many settings, making the monitoring of disease burden associated with other respiratory viruses rather difficult.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Zora Profozić Polyclinic, Zagreb, Croatia.,University Centre Varaždin, University North, Varaždin, Croatia
| | - Ivana Lukšić
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Maja Mijač
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasmina Vraneš
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
40
|
Le Hingrat Q, Bouzid D, Choquet C, Laurent O, Lescure FX, Timsit JF, Houhou-Fidouh N, Casalino E, Lucet JC, Descamps D, Visseaux B. Viral epidemiology and SARS-CoV-2 co-infections with other respiratory viruses during the first COVID-19 wave in Paris, France. Influenza Other Respir Viruses 2021; 15:425-428. [PMID: 33817971 PMCID: PMC8189235 DOI: 10.1111/irv.12853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives Our work assessed the prevalence of co‐infections in patients with SARS‐CoV‐2. Methods All patients hospitalized in a Parisian hospital during the first wave of COVID‐19 were tested by multiplex PCR if they presented ILI symptoms. Results A total of 806 patients (21%) were positive for SARS‐CoV‐2, 755 (20%) were positive for other respiratory viruses. Among the SARS‐CoV‐2‐positive patients, 49 (6%) had viral co‐infections. They presented similar age, symptoms, except for fever (P = .013) and headaches (P = .048), than single SARS‐CoV‐2 infections. Conclusions SARS‐CoV‐2‐infected patients presenting viral co‐infections had similar clinical characteristics and prognosis than patients solely infected with SARS‐CoV‐2.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Virology Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Donia Bouzid
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Emergency Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Christophe Choquet
- AP-HP Nord, Emergency Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Odile Laurent
- AP-HP Nord, Emergency Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - François-Xavier Lescure
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Infectious Diseases Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Jean-François Timsit
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Medical and Infectious Diseases Intensive Care Unit, Bichat-Claude Bernard University Hospital, Paris, France
| | - Nadhira Houhou-Fidouh
- AP-HP Nord, Virology Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Enrique Casalino
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Emergency Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Jean-Christophe Lucet
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Infection Control Unit, Bichat-Claude Bernard University Hospital, Paris, France
| | - Diane Descamps
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Virology Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Benoit Visseaux
- INSERM, IAME, Université de Paris, Paris, France.,AP-HP Nord, Virology Department, Bichat-Claude Bernard University Hospital, Paris, France
| |
Collapse
|
41
|
Chen L, Han X, Li Y, Zhang C, Xing X. The Clinical Characteristics and Outcomes of Adult Patients With Pneumonia Related to Three Paramyxoviruses. Front Med (Lausanne) 2021; 7:574128. [PMID: 33537323 PMCID: PMC7848145 DOI: 10.3389/fmed.2020.574128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus (hPIV) are paramyxoviruses (PMVs) that are important etiologies of community-acquired pneumonia. However, current knowledge about the clinical features and outcomes of PMV-related pneumonia (PMV-p) is limited. We aimed to investigate the clinical characteristics and disease severity in immunocompetent adults hospitalized with hMPV-related pneumonia (hMPV-p), hPIV-related pneumonia (hPIV-p), or RSV-related pneumonia (RSV-p). Methods: We retrospectively recruited 488 patients with PMV-p (153 with RSV-p, 137 with hMPV-p, and 198 with hPIV-p) from five teaching hospitals in China during 2011–2019. Univariate and multivariate analyses were performed to identify predictors to distinguish hMPV-p/hPIV-p from RSV-p and evaluate the effects of virus types on the clinical outcomes. Results: Compared with RSV-p, sputum production [odds ratio (OR) 5.029, 95% confidence interval (CI) 2.452–10.312, P < 0.001] was positively associated with hMPV-p, while solid malignant tumor (OR 0.346, 95% CI 0.126–0.945, P = 0.038), nasal congestion (OR 0.102, 95% CI 0.041–0.251, P < 0.001), and respiratory rate ≥ 30 breaths/min (OR 0.296, 95% CI 0.136–0.640, P = 0.002) were negatively related to hMPV-p. Sputum production (OR 13.418, 95% CI 6.769–26.598, P < 0.001) was positively associated with hPIV-p, while nasal congestion (OR 0.194, 95% CI 0.098–0.387, P < 0.001), dyspnea (OR 0.469, 95% CI 0.272–0.809, P < 0.001), and respiratory rate ≥30 breaths/min (OR 0.090, 95% CI 0.032–0.257, P < 0.001) on admission were negatively related to hPIV-p. After adjustment for confounders, multivariate logistic regression analysis suggested that hMPV-p (OR 0.355, 95% CI 0.135–0.932, P = 0.035) and hPIV-p (OR 0.311, 95% CI 0.121–0.784, P = 0.013) were associated with decreased 30-day mortality compared with RSV-p. RSV infection (OR 4.183, 95% CI 1.709–10.236, P = 0.002) was identified as an independent predictor of 30-day mortality in patients with PMV-p. Conclusion: RSV-p caused more severe disease than hMPV-p and hPIV-p. Although some clinical features are helpful for distinguishing the diseases, etiologic diagnosis is critical in the management of the PMV-p.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing, China
| | - Xiudi Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - YanLi Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Huimin Hospital, Beijing, China
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, The 2nd People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
42
|
Pigny F, Wagner N, Rohr M, Mamin A, Cherpillod P, Posfay-Barbe KM, Kaiser L, Eckerle I, L’Huillier AG. Viral co-infections among SARS-CoV-2-infected children and infected adult household contacts. Eur J Pediatr 2021; 180:1991-1995. [PMID: 33502627 PMCID: PMC7838463 DOI: 10.1007/s00431-021-03947-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 11/24/2022]
Abstract
We evaluated the rates of viral respiratory co-infections among SARS-CoV-2-infected children. Twelve percent of SARS-CoV-2-infected children had viral co-infection with one or more common respiratory viruses. This was significantly more frequent than among their SARS-CoV-2-infected adult household contacts (0%; p=0.028). Compared to the same period the previous year, common respiratory viruses were less frequently detected (12% vs 73%, p<0.001).Conclusion: Despite partial lockdown with school and daycare closure, and consequently similar exposure to common viruses between children and adults, SARS-CoV-2-infected children had more frequent viral respiratory co-infections than their SARS-CoV-2-infected adult household contacts. Circulation of common respiratory viruses was less frequent during the SARS-CoV-2 outbreak when compared to the same period last year, showing the impact of partial lockdown on the circulation of common viruses. What is Known: • Viral respiratory co-infections are frequent in children. • SARS-CoV-2 can be identified alongside other respiratory viruses, but data comparing children and adults are lacking. What is New: • Children infected with SARS-CoV-2 are more likely to have viral respiratory co-infections than their SARS-CoV-2-infected adult household contacts, which is surprising in the context of partial lockdown with schools and daycare closed. • When compared to data collected during the same period last year, our study also showed that partial lockdown reduced circulation of common respiratory viruses.
Collapse
Affiliation(s)
- Fiona Pigny
- Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Noémie Wagner
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Marie Rohr
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Aline Mamin
- Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Pascal Cherpillod
- Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Klara M. Posfay-Barbe
- Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Centre for Emerging Viral Diseases & Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Isabella Eckerle
- Laboratory of Virology & Centre for Emerging Viral Diseases, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | - Arnaud G. L’Huillier
- Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland ,Pediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva, Switzerland
| | | |
Collapse
|