1
|
Wu CT, Gonzalez Magaña D, Roshgadol J, Tian L, Ryan KK. Dietary protein restriction diminishes sucrose reward and reduces sucrose-evoked mesolimbic dopamine signaling in mice. Appetite 2024; 203:107673. [PMID: 39260700 DOI: 10.1016/j.appet.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling in mice. We tested this hypothesis using established behavioral tests of palatability and conditioned reward, including the palatability contrast and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during voluntary sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Our results showed that a history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p < 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p < 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p < 0.05], indicating reduced sucrose reward. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test [T-test, p < 0.05]. Together, these findings advance our mechanistic understanding of how dietary protein restriction decreases the consumption of sweets-by inhibiting the incentive salience of a sucrose reward, together with reduced sucrose-evoked dopamine release in NAc.
Collapse
Affiliation(s)
- Chih-Ting Wu
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Diego Gonzalez Magaña
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jacob Roshgadol
- Biomedical Engineering Graduate Group, College of Engineering, University of California, Davis, CA, 95616, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA; Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, 33458, USA
| | - Karen K Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Wu CT, Magaña DG, Roshgadol J, Tian L, Ryan KK. Dietary protein restriction diminishes sucrose reward and reduces sucrose-evoked mesolimbic dopamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600074. [PMID: 38979357 PMCID: PMC11230173 DOI: 10.1101/2024.06.21.600074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective A growing literature suggests manipulating dietary protein status decreases sweet consumption in rodents and in humans. Underlying neurocircuit mechanisms have not yet been determined, but previous work points towards hedonic rather than homeostatic pathways. Here we hypothesized that a history of protein restriction reduces sucrose seeking by altering mesolimbic dopamine signaling. Methods We tested this hypothesis using established behavioral tests of palatability and motivation, including the 'palatability contrast' and conditioned place preference (CPP) tests. We used modern optical sensors for measuring real-time nucleus accumbens (NAc) dopamine dynamics during sucrose consumption, via fiber photometry, in male C57/Bl6J mice maintained on low-protein high-carbohydrate (LPHC) or control (CON) diet for ∼5 weeks. Results A history of protein restriction decreased the consumption of a sucrose 'dessert' in sated mice by ∼50% compared to controls [T-test, p< 0.05]. The dopamine release in NAc during sucrose consumption was reduced, also by ∼50%, in LPHC-fed mice compared to CON [T-test, p< 0.01]. Furthermore, LPHC-feeding blocked the sucrose-conditioned place preference we observed in CON-fed mice [paired T-test, p< 0.05], indicating reduced motivation. This was accompanied by a 33% decrease in neuronal activation of the NAc core, as measured by c-Fos immunolabeling from brains collected directly after the CPP test. Conclusions Despite ongoing efforts to promote healthier dietary habits, adherence to recommendations aimed at reducing the intake of added sugars and processed sweets remains challenging. This study highlights chronic dietary protein restriction as a nutritional intervention that suppresses the motivation for sucrose intake, via blunted sucrose-evoke dopamine release in NAc.
Collapse
|
3
|
Fructuoso M, Fernández-Blanco Á, Gallego-Román A, Sierra C, de Lagrán MM, Lorenzon N, De Toma I, Langohr K, Martín-García E, Maldonado R, Dairou J, Janel N, Dierssen M. Exploring the link between hedonic overeating and prefrontal cortex dysfunction in the Ts65Dn trisomic mouse model. Cell Mol Life Sci 2023; 80:370. [PMID: 37989807 PMCID: PMC11072570 DOI: 10.1007/s00018-023-05009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/23/2023]
Abstract
Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential "hedonic" overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.
Collapse
Affiliation(s)
- Marta Fructuoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ana Gallego-Román
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cèsar Sierra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Nicola Lorenzon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Klaus Langohr
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya/ BARCELONATECH, Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
| | - Julien Dairou
- Departament de Psicobiologia i Metodologia de Les Ciències de la Salut, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologique, UMR 8601, CNRS, Université de Paris, 75013, Paris, France
| | - Nathalie Janel
- BFA, UMR 8251, CNRS, Université de Paris, 75013, Paris, France
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
4
|
Bora A, Fisette A. The obese brain: is it a matter of time? Trends Endocrinol Metab 2023; 34:691-693. [PMID: 37640666 DOI: 10.1016/j.tem.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Understanding how obesity rewires the brain, triggers neuroinflammation and neurodegeneration relies on research using animal models. There is, however, a disconnect between the timeline of human obesity and typical preclinical protocols. We emphasize here the need to adopt models of chronic obesity to study the pathophysiology of human obesity.
Collapse
Affiliation(s)
- Ambica Bora
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Alexandre Fisette
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
| |
Collapse
|
5
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
de Wouters d'Oplinter A, Verce M, Huwart SJP, Lessard-Lord J, Depommier C, Van Hul M, Desjardins Y, Cani PD, Everard A. Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward. MICROBIOME 2023; 11:94. [PMID: 37106463 PMCID: PMC10142783 DOI: 10.1186/s40168-023-01526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.
Collapse
Affiliation(s)
- Alice de Wouters d'Oplinter
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Sabrina J P Huwart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
7
|
Edwin Thanarajah S, DiFeliceantonio AG, Albus K, Kuzmanovic B, Rigoux L, Iglesias S, Hanßen R, Schlamann M, Cornely OA, Brüning JC, Tittgemeyer M, Small DM. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans. Cell Metab 2023; 35:571-584.e6. [PMID: 36958330 DOI: 10.1016/j.cmet.2023.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Abstract
Western diets rich in fat and sugar promote excess calorie intake and weight gain; however, the underlying mechanisms are unclear. Despite a well-documented association between obesity and altered brain dopamine function, it remains elusive whether these alterations are (1) pre-existing, increasing the individual susceptibility to weight gain, (2) secondary to obesity, or (3) directly attributable to repeated exposure to western diet. To close this gap, we performed a randomized, controlled study (NCT05574660) with normal-weight participants exposed to a high-fat/high-sugar snack or a low-fat/low-sugar snack for 8 weeks in addition to their regular diet. The high-fat/high-sugar intervention decreased the preference for low-fat food while increasing brain response to food and associative learning independent of food cues or reward. These alterations were independent of changes in body weight and metabolic parameters, indicating a direct effect of high-fat, high-sugar foods on neurobehavioral adaptations that may increase the risk for overeating and weight gain.
Collapse
Affiliation(s)
- Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at Virginia Tech Carilion & Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Roanoke, VA, USA
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) & Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sandra Iglesias
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ruth Hanßen
- Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marc Schlamann
- Department of Neuroradiology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) & Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA; Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA.
| |
Collapse
|
8
|
Implication of saturated fats in the aetiology of childhood attention deficit/hyperactivity disorder - A narrative review. Clin Nutr ESPEN 2022; 52:78-85. [PMID: 36513489 DOI: 10.1016/j.clnesp.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common mental health disorder in the paediatric population. ADHD is highly comorbid with obesity, and has also been associated with poor dietary patterns such as increased consumption of refined carbohydrates and saturated fats. Although ADHD in children was associated with high consumption of saturated fats, so far there has been no evidence-based attempt to integrate dietary strategies controlling for intake of saturated fats into the etiological framework of the disorder. Evidence from human studies and animal models has shown that diets high in saturated fats are detrimental for the development of dopaminergic neurocircuitries, synthesis of neurofactors (e.g. brain derived neurotrophic factor) and may promote brain inflammatory processes. Notably, animal models provide evidence that early life consumption of a high saturated fats diet may impair the development of central dopamine pathways. In the present paper, we review the impact of high saturated fats diets on neurobiological processes in human studies and animal models, and how these associations may be relevant to the neuropathophysiology of ADHD in children. The validation of this relationship and its underlying mechanisms through future investigative studies could have implications for the prevention or exacerbation of ADHD symptoms, improve the understanding of the pathogenesis of the disorder, and help design future dietary studies in patients with ADHD.
Collapse
|
9
|
Food Reward Alterations during Obesity Are Associated with Inflammation in the Striatum in Mice: Beneficial Effects of Akkermansia muciniphila. Cells 2022; 11:cells11162534. [PMID: 36010611 PMCID: PMC9406832 DOI: 10.3390/cells11162534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The reward system involved in hedonic food intake presents neuronal and behavioral dysregulations during obesity. Moreover, gut microbiota dysbiosis during obesity promotes low-grade inflammation in peripheral organs and in the brain contributing to metabolic alterations. The mechanisms underlying reward dysregulations during obesity remain unclear. We investigated if inflammation affects the striatum during obesity using a cohort of control-fed or diet-induced obese (DIO) male mice. We tested the potential effects of specific gut bacteria on the reward system during obesity by administrating Akkermansia muciniphila daily or a placebo to DIO male mice. We showed that dysregulations of the food reward are associated with inflammation and alterations in the blood–brain barrier in the striatum of obese mice. We identified Akkermansia muciniphila as a novel actor able to improve the dysregulated reward behaviors associated with obesity, potentially through a decreased activation of inflammatory pathways and lipid-sensing ability in the striatum. These results open a new field of research and suggest that gut microbes can be considered as an innovative therapeutic approach to attenuate reward alterations in obesity. This study provides substance for further investigations of Akkermansia muciniphila-mediated behavioral improvements in other inflammatory neuropsychiatric disorders.
Collapse
|
10
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
11
|
Guzmán-Ramos K, Osorio-Gómez D, Bermúdez-Rattoni F. Cognitive impairment in alzheimer’s and metabolic diseases: A catecholaminergic hypothesis. Neuroscience 2022; 497:308-323. [DOI: 10.1016/j.neuroscience.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
|
12
|
Fulton S, Décarie-Spain L, Fioramonti X, Guiard B, Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol Metab 2022; 33:18-35. [PMID: 34750064 DOI: 10.1016/j.tem.2021.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.
Collapse
Affiliation(s)
- Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada.
| | - Léa Décarie-Spain
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Nutrition, Université de Montréal, Montréal, QC H3T1J4, Canada
| |
Collapse
|
13
|
Vaziri A, Dus M. Brain on food: The neuroepigenetics of nutrition. Neurochem Int 2021; 149:105099. [PMID: 34133954 DOI: 10.1016/j.neuint.2021.105099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Humans have known for millennia that nutrition has a profound influence on health and disease, but it is only recently that we have begun mapping the mechanisms via which the dietary environment impacts brain physiology and behavior. Here we review recent evidence on the effects of energy-dense and methionine diets on neural epigenetic marks, gene expression, and behavior in invertebrate and vertebrate model organisms. We also discuss limitations, open questions, and future directions in the emerging field of the neuroepigenetics of nutrition.
Collapse
Affiliation(s)
- Anoumid Vaziri
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA
| | - Monica Dus
- Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, USA; Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA.
| |
Collapse
|
14
|
Naneix F, Peters KZ, Young AMJ, McCutcheon JE. Age-dependent effects of protein restriction on dopamine release. Neuropsychopharmacology 2021; 46:394-403. [PMID: 32737419 PMCID: PMC7852901 DOI: 10.1038/s41386-020-0783-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Despite the essential role of protein intake for health and development, very little is known about the impact of protein restriction on neurobiological functions, especially at different stages of the lifespan. The dopamine system is a central actor in the integration of food-related processes and is influenced by physiological state and food-related signals. Moreover, it is highly sensitive to dietary effects during early life periods such as adolescence due to its late maturation. In the present study, we investigated the impact of protein restriction either during adolescence or adulthood on the function of the mesolimbic (nucleus accumbens) and nigrostriatal (dorsal striatum) dopamine pathways using fast-scan cyclic voltammetry in rat brain slices. In the nucleus accumbens, protein restriction in adults increased dopamine release in response to low and high frequency trains of stimulation (1-20 Hz). By contrast, protein restriction during adolescence decreased nucleus accumbens dopamine release. In the dorsal striatum, protein restriction at adulthood has no impact on dopamine release but the same diet during adolescence induced a frequency-dependent increase in stimulated dopamine release. Taken together, our results highlight the sensitivity of the different dopamine pathways to the effect of protein restriction, as well as their vulnerability to deleterious diet effects at different life stages.
Collapse
Affiliation(s)
- Fabien Naneix
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| | - Kate Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew M J Young
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
16
|
Ducrocq F, Hyde A, Fanet H, Oummadi A, Walle R, De Smedt-Peyrusse V, Layé S, Ferreira G, Trifilieff P, Vancassel S. Decrease in Operant Responding Under Obesogenic Diet Exposure is not Related to Deficits in Incentive or Hedonic Processes. Obesity (Silver Spring) 2019; 27:255-263. [PMID: 30597761 DOI: 10.1002/oby.22358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.
Collapse
Affiliation(s)
- Fabien Ducrocq
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Alexia Hyde
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Hortense Fanet
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Asma Oummadi
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Roman Walle
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
| | - Véronique De Smedt-Peyrusse
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Pierre Trifilieff
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| | - Sylvie Vancassel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, France
- OptiNutriBrain, International Associated Laboratory (NutriNeuro France-INAF Canada), Bordeaux, France
| |
Collapse
|
17
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
18
|
Enhanced amphetamine-induced motor impulsivity and mild attentional impairment in the leptin-deficient rat model of obesity. Physiol Behav 2018; 192:134-144. [DOI: 10.1016/j.physbeh.2018.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
|
19
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
20
|
Hryhorczuk C, Sheng Z, Décarie-Spain L, Giguère N, Ducrot C, Trudeau LÉ, Routh VH, Alquier T, Fulton S. Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone. Neuropsychopharmacology 2018; 43:607-616. [PMID: 28857071 PMCID: PMC5770761 DOI: 10.1038/npp.2017.203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
Long-chain fatty acids (FAs) act centrally to decrease food intake and hepatic glucose production and alter hypothalamic neuronal activity in a manner that depends on FA type and cellular transport proteins. However, it is not known whether FAs are sensed by ventral tegmental area (VTA) dopamine (DA) neurons to control food-motivated behavior and DA neurotransmission. We investigated the impact of the monounsaturated FA oleate in the VTA on feeding, locomotion, food reward, and DA neuronal activity and DA neuron expression of FA-handling proteins and FA uptake. A single intra-VTA injection of oleate, but not of the saturated FA palmitate, decreased food intake and increased locomotor activity. Furthermore, intra-VTA oleate blunted the rewarding effects of high-fat/sugar food in an operant task and inhibited DA neuronal firing. Using sorted DA neuron preparations from TH-eGFP mice we found that DA neurons express FA transporter and binding proteins, and are capable of intracellular transport of long-chain FA. Finally, we demonstrate that a transporter blocker attenuates FA uptake into DA neurons and blocks the effects of intra-VTA oleate to decrease food-seeking and DA neuronal activity. Together, these results suggest that DA neurons detect FA and that oleate has actions in the VTA to suppress DA neuronal activity and food seeking following cellular incorporation. These findings highlight the capacity of DA neurons to act as metabolic sensors by responding not only to hormones but also to FA nutrient signals to modulate food-directed behavior.
Collapse
Affiliation(s)
- Cecile Hryhorczuk
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Physiology, Université de Montréal, Montréal, QC, Canada
| | - Zhenyu Sheng
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Léa Décarie-Spain
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Giguère
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Charles Ducrot
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Vanessa H Routh
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Naneix F, Darlot F, De Smedt-Peyrusse V, Pape JR, Coutureau E, Cador M. Protracted motivational dopamine-related deficits following adolescence sugar overconsumption. Neuropharmacology 2018; 129:16-25. [DOI: 10.1016/j.neuropharm.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
22
|
Meyers AM, Mourra D, Beeler JA. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity. PLoS One 2017; 12:e0190206. [PMID: 29287121 PMCID: PMC5747444 DOI: 10.1371/journal.pone.0190206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.
Collapse
Affiliation(s)
- Allison M. Meyers
- Department of Psychology, Queens College, City University New York, Flushing, New York, United States of America
- Department of Psychology, CUNY Neuroscience Collaborative, City University of New York, New York, New York, United States of America
| | - Devry Mourra
- Department of Psychology, Queens College, City University New York, Flushing, New York, United States of America
- Department of Psychology, CUNY Neuroscience Collaborative, City University of New York, New York, New York, United States of America
| | - Jeff A. Beeler
- Department of Psychology, Queens College, City University New York, Flushing, New York, United States of America
- Department of Psychology, CUNY Neuroscience Collaborative, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Auguste S, Sharma S, Fisette A, Fernandes MF, Daneault C, Des Rosiers C, Fulton S. Perinatal deficiency in dietary omega-3 fatty acids potentiates sucrose reward and diet-induced obesity in mice. Int J Dev Neurosci 2017; 64:8-13. [PMID: 28919371 DOI: 10.1016/j.ijdevneu.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
Insufficient dietary intake of essential omega-3 polyunsaturated fatty acids (N-3), especially during critical stages of development, is well-associated with negative neurological and metabolic consequences. The increased availability and intake of foods rich in saturated fat coincides with reduced N-3 consumption, yet how N-3 dietary deficiency during perinatal development modulates motivation for palatable food and interacts with a high-fat diet to affect body weight and emotional states is not clear. Pregnant C57Bl6 mice and pups were subjected to diets either deficient or adequate (control) in N-3 until postnatal day 21. Adult male N-3 deficient or control offspring were tested in a progressive ratio operant task for sucrose motivated behavior or given prolonged access to a saturated high-fat diet or chow followed by measures of energy balance and anxiety-like behavior in the elevated-plus maze and open field test. Brain fatty acid profiles were measured via gas chromatography mass spectrometry. Perinatal dietary N-3 deficiency lowered brain N-3 levels, augmented the rewarding effects of sucrose, heightened diet-induced weight gain and fat mass accumulation and diminished spontaneous physical activity. Finally, perinatal N-3 deficiency increased anxiety-like behaviour independent of diet in the open field but not in the elevated-plus maze test. Insufficient dietary N-3 during critical periods of developmental can amplify the obesogenic effects of saturated fat intake, enhance motivated behaviour for palatable foods and may elicit negative emotional states that can perpetuate overeating and obesity.
Collapse
Affiliation(s)
- Stéphanie Auguste
- CRCHUM and Montreal Diabetes Research Center, QC, H3T 1J4, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, QC, H3T 1J4, Canada
| | - Sandeep Sharma
- CRCHUM and Montreal Diabetes Research Center, QC, H3T 1J4, Canada
| | - Alexandre Fisette
- CRCHUM and Montreal Diabetes Research Center, QC, H3T 1J4, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, QC, H3T 1J4, Canada
| | | | | | - Christine Des Rosiers
- Department of Nutrition, Faculty of Medicine, Université de Montréal, QC, H3T 1J4, Canada; Montreal Heart Institute, QC, H3T 1J4, Canada
| | - Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, QC, H3T 1J4, Canada; Department of Nutrition, Faculty of Medicine, Université de Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
24
|
Jones KT, Woods C, Zhen J, Antonio T, Carr KD, Reith MEA. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem 2017; 140:728-740. [PMID: 27973691 DOI: 10.1111/jnc.13930] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Abstract
Food restriction (FR) and obesogenic (OB) diets are known to alter brain dopamine transmission and exert opposite modulatory effects on behavioral responsiveness to psychostimulant drugs of abuse. Mechanisms underlying these diet effects are not fully understood. In this study, we examined diet effects on expression and function of the dopamine transporter (DAT) in caudate-putamen (CPu), nucleus accumbens (NAc), and midbrain regions. Dopamine (DA) uptake by CPu, NAc or midbrain synapto(neuro)somes was measured in vitro with rotating disk electrode voltammetry or with [3 H]DA uptake and was found to correlate with DAT surface expression, assessed by maximal [3 H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding and surface biotinylation assays. FR and OB diets were both found to decrease DAT activity in CPu with a corresponding decrease in surface expression but had no effects in the NAc and midbrain. Diet treatments also affected sensitivity to insulin-induced enhancement of DA uptake, with FR producing an increase in CPu and NAc, likely mediated by an observed increase in insulin receptor expression, and OB producing a decrease in NAc. The increased expression of insulin receptor in NAc of FR rats was accompanied by increased DA D2 receptor expression, and the decreased DAT expression and function in CPu of OB rats was accompanied by decreased DA D2 receptor expression. These results are discussed as partial mechanistic underpinnings of diet-induced adaptations that contribute to altered behavioral sensitivity to psychostimulants that target the DAT.
Collapse
Affiliation(s)
- Kymry T Jones
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Catherine Woods
- Center for Neural Science, New York Graduate School of Arts and Sciences, New York, New York, USA
| | - Juan Zhen
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Tamara Antonio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Kenneth D Carr
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|