1
|
Wang Y, Xie Z, Li H, Zhang G, Liu R, Han J, Zhang L. Improvement in probiotic intestinal survival by electrospun milk fat globule membrane-pullulan nanofibers: Fabrication and structural characterization. Food Chem X 2024; 23:101756. [PMID: 39295963 PMCID: PMC11408380 DOI: 10.1016/j.fochx.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Studies have demonstrated the protective effect of milk fat globule membrane (MFGM) on probiotics in harsh environments. However, currently, there are no reports on the encapsulation of probiotics using MFGM. In this study, MFGM and pullulan (PUL) polysaccharide fibers were prepared by electrostatic spinning and used to encapsulate probiotics, with whey protein isolates (WPI)/PUL as the control. The morphology, physical properties, mechanical properties, survival, and stability of the encapsulated Lacticaseibacillus rhamnosus GG (LGG) were studied. The results showed that the MFGM/PUL solution had significant effects on pH, viscosity, conductivity, and stability. Electrostatic spinning improved the mechanical properties and encapsulation ability of the polymer formed by MFGM/PUL. LGG encapsulated in MFGM/PUL nanofibers survived rate was higher than WPI/PUL nanofibers in mimic intestinal juice, which could be attributed to the phospholipid content contained in MFGM. These results demonstrate that MFGM is a promising material for probiotic encapsulation, providing an important basis for the potential use of MFGM/PUL nanofibers as a robust encapsulation matrix.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haitian Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Gongsheng Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
3
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
4
|
Connolly C, Timlin M, Hogan SA, Murphy EG, O'Callaghan TF, Brodkorb A, Hennessy D, Fitzpartick E, O'Donavan M, McCarthy K, Murphy JP, Yin X, Brennan L. Impact of dietary regime on the metabolomic profile of bovine buttermilk and whole milk powder. Metabolomics 2024; 20:93. [PMID: 39096405 PMCID: PMC11297810 DOI: 10.1007/s11306-024-02157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Bovine milk contains a rich matrix of nutrients such as carbohydrates, fat, protein and various vitamins and minerals, the composition of which is altered by factors including dietary regime. OBJECTIVES The objective of this research was to investigate the impact of dietary regime on the metabolite composition of bovine whole milk powder and buttermilk. METHODS Bovine whole milk powder and buttermilk samples were obtained from spring-calving cows, consuming one of three diets. Group 1 grazed outdoors on perennial ryegrass which was supplemented with 5% concentrates; group 2 were maintained indoors and consumed a total mixed ration diet; and group 3 consumed a partial mixed ration diet consisting of perennial ryegrass during the day and total mixed ration maintained indoors at night. RESULTS Metabolomic analysis of the whole milk powder (N = 27) and buttermilk (N = 29) samples was preformed using liquid chromatography-tandem mass spectrometry, with 504 and 134 metabolites identified in the samples respectively. In whole milk powder samples, a total of 174 metabolites from various compound classes were significantly different across dietary regimes (FDR adjusted p-value ≤ 0.05), including triglycerides, of which 66% had their highest levels in pasture-fed samples. Triglycerides with highest levels in pasture-fed samples were predominantly polyunsaturated with high total carbon number. Regarding buttermilk samples, metabolites significantly different across dietary regimes included phospholipids, sphingomyelins and an acylcarnitine. CONCLUSION In conclusion the results reveal a significant impact of a pasture-fed dietary regime on the metabolite composition of bovine dairy products, with a particular impact on lipid compound classes.
Collapse
Affiliation(s)
- Claire Connolly
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Food for Health Ireland, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Mark Timlin
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- Food for Health Ireland, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
| | - Sean A Hogan
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
| | - Eoin G Murphy
- Food for Health Ireland, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food for Health Ireland, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, T12 Y337, Co. Cork, Ireland
| | - André Brodkorb
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- Teagasc, Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302, Co. Cork, Ireland
| | - Deirdre Hennessy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302, Co. Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Co. Cork, Ireland
| | - Ellen Fitzpartick
- Teagasc, Environmental Research Centre, Johnstown Castle, Y35 Y521, Co. Wexford, Ireland
| | - Michael O'Donavan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302, Co. Cork, Ireland
| | - Kieran McCarthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302, Co. Cork, Ireland
| | - John P Murphy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 P302, Co. Cork, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, D04 V1W8, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Belfield, Dublin 4, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
- Food for Health Ireland, UCD, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Taormina VM, Unger AL, Kraft J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front Nutr 2024; 11:1386257. [PMID: 39135556 PMCID: PMC11317386 DOI: 10.3389/fnut.2024.1386257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Reducing dairy fat intake is a common dietary guideline to limit energy and saturated fatty acid intake for the promotion of cardiometabolic health. However, research utilizing a holistic, food-based approach to assess the consumption of the fat found in dairy, a broad and diverse food group, may provide new insight into these guidelines. Dairy fat is comprised of a diverse assembly of fatty acids, triacylglycerols, sterols, and phospholipids, all uniquely packaged in a milk fat globule. The physical structure of this milk fat globule and its membrane is modified through different processing methods, resulting in distinctive dairy-fat matrices across each dairy product. The objectives of this narrative review were to first define and compare the dairy-fat matrix in terms of its unique composition, physical structure, and fat content across common dairy products (cow's milk, yogurt, cheese, and butter). With this information, we examined observational studies and randomized controlled trials published within the last 10 years (2013-2023) to assess the individual effects of the dairy-fat matrix in milk, yogurt, cheese, and butter on cardiometabolic health and evaluate the implications for nutrition guidance. Searches conducted on Ovid MEDLINE and PubMed® utilizing search terms for cardiometabolic health, both broadly and regarding specific disease outcomes and risk factors, yielded 59 studies that were analyzed and included in this review. Importantly, this review stratifies by both dairy product and fat content. Though the results were heterogeneous, most studies reported no association between intake of these individual regular-fat dairy products and cardiometabolic outcome measures, thus, the current body of evidence suggests that regular-fat dairy product consumption may be incorporated within overall healthy eating patterns. Research suggests that there may be a beneficial effect of regular-fat milk and yogurt intake on outcome measures related to body weight and composition, and an effect of regular-fat cheese intake on outcome measures related to blood lipids, but more research is necessary to define the directionality of this relationship. Lastly, we identify methodological research gaps and propose future research directions to bolster the current evidence base available for ascertaining the role of dairy fat in a healthy diet.
Collapse
Affiliation(s)
- Victoria M. Taormina
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
| | - Allison L. Unger
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, United States
- National Dairy Council, Rosemont, IL, United States
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, The University of Vermont, Colchester, VT, United States
- Department of Nutrition and Food Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
6
|
Huppertz T, Shkembi B, Brader L, Geurts J. Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm. Nutrients 2024; 16:943. [PMID: 38612977 PMCID: PMC11013626 DOI: 10.3390/nu16070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
When food products are often considered only as a source of individual nutrients or a collection of nutrients, this overlooks the importance of interactions between nutrients, but also interactions between nutrients and other constituents of food, i.e., the product matrix. This product matrix, which can be defined as 'The components of the product, their interactions, their structural organization within the product and the resultant physicochemical properties of the product', plays a critical role in determining important product properties, such as product stability, sensory properties and nutritional and health outcomes. Such matrix effects can be defined as 'the functional outcome of specific component(s) as part of a specific product matrix'. In this article, dairy matrix effects are reviewed, with particular emphasis on the nutrition and health impact of dairy products. Such matrix effects are critical in explaining many effects of milk and dairy products on human nutrition and health that cannot be explained solely based on nutrient composition. Examples hereof include the low glycemic responses of milk and dairy products, the positive impact on dental health, the controlled amino acid absorption and the absence of CVD risk despite the presence of saturated fatty acids. Particularly, the changes occurring in the stomach, including, e.g., coagulation of casein micelles and creaming of aggregated fat globules, play a critical role in determining the kinetics of nutrient release and absorption.
Collapse
Affiliation(s)
- Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6808 WG Wageningen, The Netherlands
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands;
| | - Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6808 WG Wageningen, The Netherlands
| | - Lea Brader
- Arla Innovation Center, 8200 Aarhus, Denmark
| | - Jan Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands;
| |
Collapse
|
7
|
Yang MT, Lan QY, Tian F, Xiong XY, Li X, Wu T, Huang SY, Chen XY, Mao YY, Zhu HL. Trajectories of Human Milk Gangliosides during the First Four Hundred Days and Maternal-to-Offspring Transfer of Gangliosides: Results from a Chinese Cohort Study. J Nutr 2024; 154:940-948. [PMID: 38215939 DOI: 10.1016/j.tjnut.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Gangliosides are crucial for early-life cognition and immunity development. However, limited data exist on gangliosides within the Chinese population, and maternal-to-fetal/infant ganglioside transport remains unclear. OBJECTIVES This study aimed to investigate gangliosides concentrations and trajectories in Chinese human milk during the first 400 d of lactation, and seek to understand gangliosides transmission between mother and offspring. METHODS This study involved 921 cross-sectional participants providing human milk samples across 0-400 d of lactation and 136 longitudinal participants offering maternal plasma, cord plasma, and human milk samples within the first 45 d postpartum. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used for the quantification of gangliosides. RESULTS Human milk GM3 (Neu5Acα2-3Galβ1-4GlcβCer) concentration increased from 2.29 ± 1.87 to 13.93 ± 4.82 μg/mL, whereas GD3 (Neu5Acα2-8Neu5Acα2-3Galβ1-4GlcβCer) decreased from 17.94 ± 6.41 to 0.30 ± 0.50 μg/mL during the first 400 d postpartum (all P < 0.05). Consistent results were observed in cross-sectional and longitudinal participants. GD3 concentration gradually increased from maternal plasma (1.58 μg/mL) through cord plasma (2.05 μg/mL) to colostrum (21.35 μg/mL). Significant positive correlations were observed between maternal and cord plasma for both GM3 (r = 0.30, P < 0.001) and GD3 (r = 0.35, P < 0.001), and maternal plasma GD3 also correlated positively with colostrum concentrations (r = 0.21, P = 0.015). Additionally, in maternal and cord plasma, gangliosides were mainly linked with 16- and 18-carbon fatty acids. However, human milk GM3 showed a broad spectrum of fatty acid chain lengths, whereas GD3 was primarily tied to very long-chain fatty acids (≥20 carbon). CONCLUSIONS We identified an increase in GM3 and a decrease in GD3 concentration in human milk, with GD3 notably more concentrated in cord plasma and colostrum. Importantly, ganglioside concentrations in maternal plasma positively correlated with those in cord plasma and colostrum. Our findings contribute to the existing Chinese data on gangliosides and enhance understanding of their transmission patterns from mother to offspring. This trial was registered at chictr.org.cn as ChiCTR1800015387.
Collapse
Affiliation(s)
- Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qiu-Ye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fang Tian
- Abbott Nutrition R and D Centre, Shanghai, China
| | | | - Xiang Li
- Abbott Nutrition R and D Centre, Shanghai, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Yi Mao
- Abbott Nutrition R and D Centre, Shanghai, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Chen B, Jia Q, Chen Z, You Y, Liu Y, Zhao J, Chen L, Ma D, Xing Y. Comparative evaluation of enriched formula milk powder with OPO and MFGM vs. breastfeeding and regular formula milk powder in full-term infants: a comprehensive study on gut microbiota, neurodevelopment, and growth. Food Funct 2024; 15:1417-1430. [PMID: 38224157 DOI: 10.1039/d3fo03392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.
Collapse
Affiliation(s)
- Botian Chen
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Zekun Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Defu Ma
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| |
Collapse
|
9
|
Maheshwari A, Mantry H, Bagga N, Frydrysiak-Brzozowska A, Badarch J, Rahman MM. Milk Fat Globules: 2024 Updates. NEWBORN (CLARKSVILLE, MD.) 2024; 3:19-37. [PMID: 39474586 PMCID: PMC11521418 DOI: 10.5005/jp-journals-11002-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
- Global Newborn Society, Clarksville Maryland, United States of America
| | - Harshvardhan Mantry
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Nitasha Bagga
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Rainbow Children’s Hospital and Birthright, Hyderabad, Telangana, India
| | - Adrianna Frydrysiak-Brzozowska
- Global Newborn Society, Clarksville Maryland, United States of America
- The Mazovian University in Płock, Collegium Medicum, Faculty of Health Sciences, Płock, Poland
| | - Jargalsaikhan Badarch
- Global Newborn Society, Clarksville Maryland, United States of America
- Department of Obstetrics, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Md Mozibur Rahman
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| |
Collapse
|
10
|
Martínez-Sánchez V, Visitación Calvo M, Viera I, Girón-Calle J, Fontecha J, Pérez-Gálvez A. Mechanisms for the interaction of the milk fat globule membrane with the plasma membrane of gut epithelial cells. Food Res Int 2023; 173:113330. [PMID: 37803640 DOI: 10.1016/j.foodres.2023.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The milk fat globule membrane (MFGM) provides infants and adults with several health benefits. These are not derived solely from its unique composition, but also from arrangement of lipids in the MFGM that, in the case of newborns, could reach the intestine partially intact. Fluorochromes associated with lipid derivatives were used to prove a fusion process between the MFGM and the cellular membrane of differentiated Caco-2 cells. To explore the mechanism of this interaction, incubations of MFGM with Caco-2 cells were carried out in the presence of fusogenic agents or compounds that block other MFGM interaction pathways with cells. Confocal fluorescence microscopy provided visual evidence of the fusion process. Lastly, determination on the lipid profile of cells after their interaction with MFGM indicated a metabolic rearrangement of lipids leading to accumulation of triacylglycerols.
Collapse
Affiliation(s)
- Victoria Martínez-Sánchez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - M Visitación Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - I Viera
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Girón-Calle
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
11
|
Rathnakumar K, Ortega-Anaya J, Jimenez-Flores R, Martínez-Monteagudo SI. Partition of milk phospholipids during ice cream manufacturing. J Dairy Sci 2023; 106:7501-7514. [PMID: 37641266 DOI: 10.3168/jds.2022-23145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The distribution of phospholipids (PL) within the fat and serum phase of ice cream manufacturing was evaluated through partition coefficients (KPL) after mixing, pasteurization, freezing, and hardening. Ice creams containing about 40.41 ± 3.45 (± standard deviation; control formulation) and 112.29 ± 9.06 (enriched PL formulation) mg of PL per g of fat were formulated with nonfat dry milk and β-serum, respectively. Overall, the KPL were lower than 1, indicating that the PL were predominantly found in the fat phase, and only a small amount was left in the serum and sediment. Confocal micrographs visually confirmed this generalization. The addition of PL significantly increased the viscosity of the mixes between 4- and 9-fold, depending on the shear rate. Additionally, mixes containing high PL exhibited higher yield stress than those formulated with low PL (0.15 ± 0.09 and 0.016 ± 0.08 Pa, respectively). Ice creams with high PL delayed the onset of meltdown and exhibited a slower rate of a meltdown than low-PL ice creams (18.53 ± 0.57 and 14.83 ± 0.85 min, and 1.01 ± 0.05 and 0.71 ± 0.04% min-1, respectively). This study provides useful guidelines for manufacturing ice cream enriched in milk PL. Additionally, the use of β-serum, a byproduct stream, as a source of PL is illustrated. The development will require studying the sensorial description of the product as well as consumer acceptance.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Sergio I Martínez-Monteagudo
- Family and Consumer Sciences, New Mexico State University, Las Cruces, NM 88003; Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003; Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003.
| |
Collapse
|
12
|
Wooding FBP, Kinoshita M. Milk fat globule membrane: formation and transformation. J DAIRY RES 2023; 90:367-375. [PMID: 38226400 DOI: 10.1017/s0022029923000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The milk fat globule membrane (MFGM) is formed by complex cell biological processes in the lactating mammary epithelial cell which result in the release of the milk fat globule (MFG) into the secretory alveolus. The MFG is bounded by a continuous unit membrane (UM), separated from the MFG lipid by a thin layer of cytoplasm. This unique apocrine secretion process has been shown in all of the mammary species so far investigated. Once the MFG is released into the alveolus there is a considerable transformation of the UM with its attached cytoplasm. This is the MFGM. The transformation is stable and expressed milk shows the same transformed MFGM structure. Again, this transformation of structure is common to all mammalian species so far investigated. However, the explanation of the transformation very much depends on the method of investigation. Transmission electron microscope (TEM) studies suggest a literal breakdown to a discontinuous UM plus cytoplasm in patches and strands, whereas more recent confocal laser scanning light microscopy (CLSM) studies indicate a separation, in a continuous UM, of two phases, one liquid ordered and the other liquid disordered. This review is designed to show that the TEM and CLSM results show different views of the same structures once certain deficiencies in techniques are factored in.
Collapse
Affiliation(s)
- F B Peter Wooding
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Pan J, Chen M, Li N, Han R, Yang Y, Zheng N, Zhao S, Zhang Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023; 12:3755. [PMID: 37893646 PMCID: PMC10606317 DOI: 10.3390/foods12203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive review and outline the characterization methods used to employ them. In this comprehensive review, we sequentially describe the types of major lipids found in the MFGM and outline the characterization methods employed to study them. Additionally, we compare the structural disparities among glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a large number of participants. The summarized bioactive functions of MFGM lipids encompass the regulation of human growth and development, influence on intestinal health, inhibition of cholesterol absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive overview, the aim of this review is to provide valuable insights into the diverse biologically active functions exhibited by lipids in the MFGM.
Collapse
Affiliation(s)
- Junyu Pan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Ning Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| |
Collapse
|
14
|
Vélez MA, Wolf VI, Espariz M, Acciarri G, Magni C, Hynes E, Perotti MC. Study of volatile compounds profiles in milk matrices using Enterococcus faecalis EstA and Rhizomucor miehei lipase. Food Res Int 2023; 169:112861. [PMID: 37254435 DOI: 10.1016/j.foodres.2023.112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
The use of esterase/lipase enzymes of different origins in food industry is a widely employed strategy to enhance the formation of characteristic aromatic compounds derived from fat and diversify flavour. In the present work, we studied EstA enzyme of Enterococcus faecalis and a high purity Rhizomucor miehei lipase (Palatase). EstA was obtained recombinantly in Escherichia coli BL21 (DE3), and optimum esterase activity was detected at pH 6.75 and 40 °C. We evaluated the effect of the enzymes on milk mixtures prepared with different fat contents (2.8 and 6%) and structure (native or homogenized) on volatile compounds profiles. The milk fat structure before and after the application of low homogenization was characterized by dynamic light dispersion and microscopy. Native milk fat mixtures presented particles of 4.6 μm and 184 nm and homogenized mixtures had particles of 1.4 μm and 258 nm; microscopy images were in concordance with these results. Fifteen volatile compounds were identified, including ketones, esters, alcohols, and acids. We showed the key role of milk fat levels and microstructure in the nature of the volatile compounds produced by the R. miehei enzyme. Both in native or homogenized states, the highest content of fat favored a higher production of acids whereas the lowest fat level favored a higher esters production along with a more balanced volatile profile. For EstA enzyme, results showed a limited action on fat, as biosynthesis of esters only increased with the highest fat level homogenized.
Collapse
Affiliation(s)
- María A Vélez
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
| | - Verónica I Wolf
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Giuliana Acciarri
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Erica Hynes
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - María C Perotti
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| |
Collapse
|
15
|
Massouras T, Charmanta AA, Koutsouli P, Masoura M, Politis I, Hettinga K. The Effect of Milking Frequency, Breed, and Stage of Lactation on the Milk Fat Globule Size and Fatty Acid Composition in Sheep's Milk. Foods 2023; 12:2446. [PMID: 37444184 DOI: 10.3390/foods12132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study examined the effects of milking frequency, breed, and stage of lactation on the milk fat globules (MFG) size and fatty acids (FA) composition of sheep milk. Milk from Karagouniko (n = 13) and Chios (n = 13) ewes was sampled postpartum on the 93rd, 101st, 108th, 121st, 156th, and 188th days of lactation. On the 108th day, the ewes were divided randomly into two milking groups: Once daily at 06:00 a.m. or twice daily at 06:00 a.m. and 16:00 p.m. Morphometric characteristics of MFG and FA composition were determined for each sample. Once versus twice daily milking had no effect on MFG dimensions, which tended to vary according to breed (smaller MFG were secreted from Chios with p = 0.065), while the stage of lactation had a significant effect (p < 0.001). FA composition differed significantly according to the stage of lactation and breed. The FA profile of the Karagouniko breed showed higher concentrations of short-chain FA. The milk samples from late lactation were characterized by higher concentrations of mono-unsaturated FA (MUFA) compared to early and mid-lactation. Moreover, correlations were found between the average diameter of MFG and FA concentrations, where the size of MFG was positively correlated with saturated FA (SFA) and negatively correlated with MUFA.
Collapse
Affiliation(s)
- Theofilos Massouras
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Aggeliki-Alexandra Charmanta
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Panagiota Koutsouli
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Masoura
- School of Chemical Engineering, University of Birmingham, Birmingham B12 2TT, UK
| | - Ioannis Politis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kasper Hettinga
- Dairy Science and Technology Group, Food Quality and Design, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
16
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
17
|
Wei T, Huang Y, Weng C, Chen F, Tan C, Liu W, Deng Z, Li J. Lipid rafts may affect the coalescence of milk fat globules through phase transition after thermal treatment. Food Chem 2023; 399:133867. [DOI: 10.1016/j.foodchem.2022.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
|
18
|
Magouz O, Mehanna N, Khalifa M, Sakr H, Gensberger-Reigl S, Dalabasmaz S, Pischetsrieder M. Profiles, antioxidative and ACE inhibitory activity of peptides released from fermented buttermilk before and after simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Oliveira M, Koshibu K, Rytz A, Giuffrida F, Sultan S, Patin A, Gaudin M, Tomezyk A, Steiner P, Schneider N. Early Life to Adult Brain Lipidome Dynamic: A Temporospatial Study Investigating Dietary Polar Lipid Supplementation Efficacy. Front Nutr 2022; 9:898655. [PMID: 35967787 PMCID: PMC9364220 DOI: 10.3389/fnut.2022.898655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid composition of the brain is well regulated during development, and the specific temporospatial distribution of various lipid species is essential for the development of optimal neural functions. Dietary lipids are the main source of brain lipids and thus contribute to the brain lipidome. Human milk is the only source of a dietary lipids for exclusively breastfed infant. Notably, it contains milk fat globule membrane (MFGM) enriched in polar lipids (PL). While early life is a key for early brain development, the interplay between dietary intake of polar lipids and spatial dynamics of lipid distribution during brain development is poorly understood. Here, we carried out an exploratory study to assess the early postnatal temporal profiling of brain lipidome between postnatal day (PND) 7 and PND 50 using matrix-assisted laser desorption ionization as a mass spectrometry imaging (MALDI-MSI) in an in vivo preclinical model. We also assessed the effect of chronic supplementation with PL extracted from alpha-lactalbumin-enriched whey protein concentrate (WPC) containing 10% lipids, including major lipid classes found in the brain (37% phospholipids and 15% sphingomyelin). MALDI-MSI of the spatial and temporal accretion of lipid species during brain development showed that the brain lipidome is changing heterogeneously along time during brain development. In addition, increases in 400+ PL supplement-dependent lipids were observed. PL supplementation had significant spatial and temporal effect on specific fatty esters, glycerophosphocholines, glycerophosphoethanolamines, and phosphosphingolipids. Interestingly, the average levels of these lipids per brain area tended to be constant in various brain structures across the age groups, paralleling the general brain growth. In contrast, other lipids, such as cytidine diphosphate diacylglycerol, diacylglycerophosphates, phosphocholines, specific ether-phosphoethanolamines, phosphosphingolipids, glycerophosphoinositols, and glycerophosphoserines showed clear age-dependent changes uncoupled from the general brain growth. These results suggest that the dietary PL supplementation may preferentially provide the building blocks for the general brain growth during development. Our findings add to the understanding of brain-nutrient relations, their temporospatial dynamics, and potential impact on neurodevelopment.
Collapse
Affiliation(s)
- Manuel Oliveira
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Rytz
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Francesca Giuffrida
- Analytical Science Department, Nestlé Institute of Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sebastien Sultan
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Amaury Patin
- Analytical Science Department, Nestlé Institute of Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | | | - Pascal Steiner
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
20
|
Effect of buttermilk and skimmed milk powder on the properties of low-fat yoghurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2160-2167. [PMID: 35602422 PMCID: PMC9114218 DOI: 10.1007/s13197-021-05227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/06/2022]
Abstract
Abstract The aim of the study was to determine the potential of using buttermilk and skimmed milk powders as additives to standardize the dry matter content of milk in the production of low-fat yoghurt. A batch of yoghurt was produced using a starter culture of Lactobacillus delbruecki ssp. bulgaricus and Streptococcus thermophilus. The rates of milk acidification and pH levels were similar for both variants of yoghurt. After chilled storage (21 days), the yoghurt produced from milk supplemented with buttermilk powder was found to contain higher (P ≤ 0.05) levels of lactic acid (1.179%) than that supplemented with skimmed milk (1.154%). The use of buttermilk powder allowed reducing (not significantly, P > 0.05) syneresis in the stored yoghurt. The milk fat in the buttermilk–supplemented yoghurt showed lower (P ≤ 0.05) phospholipids content and exhibited slightly higher phospholipids loss during storage than the yoghurt produced from milk with addition of milk powder. No differences were found between the profile of fatty acids between the yoghurts enriched with skimmed milk powder and those enriched with buttermilk powder. Buttermilk can be used as an additive to produce a novel yoghurt type with modified functional features. Research Highlights The use of buttermilk powder did not affect fermentation process, however increased lactic acid content and water-holding capacity of yoghurt. The yoghurts with added buttermilk contained less phospholipids when compared with yoghurts supplemented with milk powder. Buttermilk powder can be incorporated as an ingredient in production of novel yoghurt type with improved functional features.
Collapse
|
21
|
Yang MT, Lan QY, Liang X, Mao YY, Cai XK, Tian F, Liu ZY, Li X, Zhao YR, Zhu HL. Lactational Changes of Phospholipids Content and Composition in Chinese Breast Milk. Nutrients 2022; 14:nu14081539. [PMID: 35458100 PMCID: PMC9030290 DOI: 10.3390/nu14081539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Phospholipids are pivotal polar lipids in human milk and essential for infants’ growth and development, especially in the brain and cognitive development. Its content and composition are affected by multiple factors and there exist discrepancies in different studies. In this study, we determined five major phospholipids classes (phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin) in 2270 human milk samples collected from 0 to 400 days postpartum in six regions of China. The high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD) was performed to quantify the phospholipids. Total phospholipid median (IQR) content was in a range between 170.38 ± 96.52 mg/L to 195.69 ± 81.80 mg/L during lactation and was higher concentrated in colostrum milk and later stage of lactation (after 200 days postpartum) compared with that in the samples collected between 10 to 45 days postpartum. Variations in five major sub-class phospholipids content were also observed across lactation stages (phosphatidylethanolamine: 52.61 ± 29.05 to 59.95 ± 41.74 mg/L; phosphatidylinositol: 17.65 ± 10.68 to 20.38 ± 8.55 mg/L; phosphatidylserine: 15.98 ± 9.02 to 22.77 ± 11.17 mg/L; phosphatidylcholine: 34.13 ± 25.33 to 48.64 ± 19.73 mg/L; sphingomyelin: 41.35 ± 20.31 to 54.79 ± 35.26 mg/L). Phosphatidylethanolamine (29.18–32.52%), phosphatidylcholine (19.90–25.04%) and sphingomyelin (22.39–29.17%) were the dominant sub-class phospholipids in Chinese breast milk during the whole lactation period. These results updated phospholipids data in Chinese human milk and could provide evidence for better development of secure and effective human milk surrogates for infants without access to breast milk.
Collapse
Affiliation(s)
- Meng-Tao Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Qiu-Ye Lan
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Xue Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Ying-Yi Mao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Xiao-Kun Cai
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Zhao-Yan Liu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
| | - Yan-Rong Zhao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.-Y.M.); (X.-K.C.); (F.T.); (X.L.)
- Correspondence: (Y.-R.Z.); (H.-L.Z.); Tel.: +86-21-2082-2472 (Y.-R.Z.); +86-20-8733-1811 (H.-L.Z.)
| | - Hui-Lian Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (M.-T.Y.); (Q.-Y.L.); (Z.-Y.L.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Correspondence: (Y.-R.Z.); (H.-L.Z.); Tel.: +86-21-2082-2472 (Y.-R.Z.); +86-20-8733-1811 (H.-L.Z.)
| |
Collapse
|
22
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
23
|
Effect of Process and Formulation Variables on the Structural and Physical Properties in Cream Cheese using GDL Acidulant. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09719-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractWe report on the properties of analogue cream cheeses prepared using glucono delta-lactone (GDL) acidulant, notably the impact of particular processing and formulation variables, (homogenisation pressure, coagulation pH and temperature, and stabiliser level) on cream cheese physical, material and microstructural properties. Protein–protein and protein-fat interactions were seen to be the primary structural contributors to the physical properties of cream cheese. Cream cheese microstructure and its properties demonstrated well-defined correlations to specific and controllable processing elements within the manufacturing process, showing significance in interactions between parameters in multivariable linear regression analysis (P < 0.05). Summarising the effect of processing variables on key cheese properties, we observed that a progressive reduction in fat particle size of cheese milk arising from increasing homogenisation pressures was seen to increase the total surface area of fat that could be incorporated into the curd during coagulation. The greater extent of fat-fat and fat-proteins interactions during coagulation provided a reinforcing effect on the microstructure of the final cream cheese, with a corresponding increase in compressive fracture stress, shear storage modulus (G′) and shear loss modulus (G″). In terms of other processing variables, cream cheese firmness was also observed to progressively increase through lowering of coagulation pH from 5.13 to 4.33. Increasing coagulation temperature from 58 °C to 78 °C similarly caused an increase in cheese firmness. Finally, increasing the levels of added stabiliser were shown to correlate with increasing cheese firmness. Similar correlations could be observed in relation to physical properties, notably forced expressible serum separation. This model cream cheese preparation method has provided a useful model system for relating food structure to material and functional properties. In addition, it has the advantage of being able to rapidly screen many formulation and process variables because it is faster than the traditional cheesemaking. This study showed that the adjustment of process and formulation variables, either in isolation or in combination, in the manufacture of cream cheese can significantly influence the final material and textural properties of the product, thereby enabling controllable functional attributes capable of meeting different customer needs.
Collapse
|
24
|
Sakkas L, Evageliou V, Igoumenidis PE, Moatsou G. Properties of Sweet Buttermilk Released from the Churning of Cream Separated from Sheep or Cow Milk or Sheep Cheese Whey: Effect of Heat Treatment and Storage of Cream. Foods 2022; 11:465. [PMID: 35159618 PMCID: PMC8833928 DOI: 10.3390/foods11030465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to compare the buttermilk released from the churning of sweet cream separated from sheep milk (BSM) or whey (BSW) with the buttermilk from sweet cow milk cream (BCM). Additional experimental factors were the heat treatment (68 °C for 10 or 30 min) and storage of cream (refrigeration or freezing). The composition of BSM was the most advantageous in terms of non-fat solids, protein-which was the most abundant solid component-casein, calcium and phosphorus contents. No significant differences were observed in the phospholipids (PL) content of BSM, BCM and BSW. Antioxidant potential and emulsion stability (ES) of BSM were the highest. The radical scavenging activity (RSA) of BSW was high opposite to chelating activity (CA). Some functional properties of BSW were similar to those of BSM and BCM. The freezing of cream affected the churning, the fat content, the soluble nitrogenous fraction at pH 4.6 (WSN) and some functional properties of buttermilk, but not in a consistent manner. The properties of BSM were marginally affected or unaffected by the use of frozen cream. The freezing of whey cream caused significant changes (p < 0.05) in the protein profile and the functional behaviour of BSW. Cream heat treatment affected the WSN of BSW opposite to its sweet cream counterparts.
Collapse
Affiliation(s)
- Lambros Sakkas
- Department Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.S.); (V.E.)
| | - Vasiliki Evageliou
- Department Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.S.); (V.E.)
| | - Panagiotis E. Igoumenidis
- Department of Food Science and Technology, University of West Attica, 28 Agiou Spiridonos, 12243 Egaleo, Greece;
| | - Golfo Moatsou
- Department Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.S.); (V.E.)
| |
Collapse
|
25
|
Guerra AS, Hoyos CG, Velásquez-Cock J, Vélez L, Gañán P, Zuluaga R. The Effects of Adding a Gel-Alike Curcuma longa L. Suspension as Color Agent on Some Quality and Sensory Properties of Yogurt. Molecules 2022; 27:molecules27030946. [PMID: 35164210 PMCID: PMC8840000 DOI: 10.3390/molecules27030946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Color is an important characteristic of food products. This characteristic is related to consumer acceptability. To use the entire rhizome of Curcuma longa (CL) as a food colorant, a novel gel alike stable suspension (CLS) was previously developed using cellulose nanofibers (CNFs). Therefore, the present study was conducted to evaluate the CLS as a color additive on a stirred yogurt. Three concentrations of CLS were studied (0.1, 0.125, and 0.15 wt. %) and compared to yogurt without CLS. The obtained yogurts were characterized through the determination of pH, titratable acidity, syneresis, color and curcumin content after 1, 7, 14, and 21 days of storage. Additionally, rheological and sensory measurements were performed on the samples after one day of storage. Results show that the addition of CLS does not affect the pH and titratable acidity of the samples, but all the yogurts showed an increase in their syneresis during the storage time, showing a breakdown of the gel structure. Furthermore, the CLS suspension has the ability to impart a yellow color to yogurts, a characteristic that was stable during storage. Finally, the addition of 1 wt. % or 1.25 wt. % of CLS allows the development of a yogurt with adequate sensory perception.
Collapse
Affiliation(s)
- Angélica Serpa Guerra
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellin 05004, Colombia; (A.S.G.); (L.V.)
| | - Catalina Gómez Hoyos
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Medellin 05004, Colombia; (C.G.H.); (J.V.-C.)
| | - Jorge Velásquez-Cock
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Medellin 05004, Colombia; (C.G.H.); (J.V.-C.)
| | - Lina Vélez
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellin 05004, Colombia; (A.S.G.); (L.V.)
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Medellin 05004, Colombia;
| | - Robin Zuluaga
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Medellin 05004, Colombia; (A.S.G.); (L.V.)
- Correspondence:
| |
Collapse
|
26
|
Wang C, Qiao X, Gao Z, Jiang L, Mu Z. Advancement on Milk Fat Globule Membrane: Separation, Identification, and Functional Properties. Front Nutr 2022; 8:807284. [PMID: 35155526 PMCID: PMC8832003 DOI: 10.3389/fnut.2021.807284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy products have become more common in people's daily diets in recent years, and numerous useful components derived from milk are widely employed in the food industry. Milk fat globule membrane (MFGM) is a kind of film that encases milk fat globules, and has been shown to have a high nutritional value. In this work, the protein, lipid, carbohydrate, and other components of MFGM are discussed, and also common separation, preparation, and analysis technologies, physicochemical properties, and functional features of MFGM are reviewed, to provide some guidance for the development and utilization of MFGM.
Collapse
Affiliation(s)
- Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyu Qiao
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zengli Gao
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhishen Mu
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
| |
Collapse
|
27
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
28
|
Chen C, Li D, Li J, Chen X, Wei W, Wang X. Microstructure and biomolecules mobility of human milk fat globules by fluorescence recovery after photobleaching with confocal scanning laser microscope. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Zhao L, Wang J, Mao X. Composition and interfacial properties play key roles in different lipid digestion between goat and cow milk fat globules in vitro. Food Chem 2021; 374:131538. [PMID: 34839970 DOI: 10.1016/j.foodchem.2021.131538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
The different TAG, interfacial properties and digestion rate between goat and cow milk fat globules were investigated. The mechanism of their different lipid digestion was also elucidated. Raw goat milk fat globules had smaller size, less large molecular weight and unsaturated TAG, larger liquid-ordered region and fewer glycoproteins, which contributed to the higher digestion rate than cow milk. After homogenization, the goat lipids also had higher digestion rate that was attributed to the special structure of easy-to-digest TAG and less glycosylated molecules not globule size. More integrated phospholipid layers and glycosylated molecules of HTST milk fat globules resulted in a lower lipid digestion rate than other processed milks. No difference in digestion rate between pasteurized goat and cow milk fat globules might be explained by the more denatured proteins and glycosylated molecules, respectively. Therefore, the TAG and interfacial properties contributed to different digestion between goat and cow milk fat globules.
Collapse
Affiliation(s)
- Lili Zhao
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jun Wang
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
30
|
Zhang J, Hassane Hamadou A, Chen C, Xu B. Encapsulation of phenolic compounds within food-grade carriers and delivery systems by pH-driven method: a systematic review. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34730038 DOI: 10.1080/10408398.2021.1998761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In comparison to conventional encapsulation methods of phenolic compounds (PCs), pH-driven method is green, simple and requires low energy consumption. It has a huge potential for industrial applications, and can overcome more effectively the aqueous solubility, stability and bioavailability issues related to PCs by changing pH to induce the encapsulation of PCs. This review aims to shed light on the use of pH-driven method for encapsulating PCs. The preparation steps and principles governing pH-driven method using various carriers and delivery systems are provided. A comparison of pH-driven with other methods is also presented. To circumvent the drawbacks of pH-driven method, improvement strategies are proposed. The essence of pH-driven method relies simultaneously on alkalization and acidification to bind PCs and carriers. It is used for the development of nanoemulsions, liposomes, edible films, nanoparticles, nanogels and functional foods. As a result of pH-driven method, PCs-loaded carriers may have smaller size, high encapsulation efficiency, more sustained-release and good bioavailability, due mainly to effects of pH change on the structure and properties of PCs as well as carriers. Finally, modification of wall materials and type of acidifier are considered as efficient approaches to improve the pH-driven method.
Collapse
Affiliation(s)
- Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Phospholipid composition and fat globule structure change during low temperature storage of human milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021; 10:foods10092158. [PMID: 34574268 PMCID: PMC8472115 DOI: 10.3390/foods10092158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, camel milk (CM) has been considered as a health-promoting icon due to its medicinal and nutritional benefits. CM fat globule membrane has numerous health-promoting properties, such as anti-adhesion and anti-bacterial properties, which are suitable for people who are allergic to cow's milk. CM contains milk fat globules with a small size, which accounts for their rapid digestion. Moreover, it also comprises lower amounts of cholesterol and saturated fatty acids concurrent with higher levels of essential fatty acids than cow milk, with an improved lipid profile manifested by reducing cholesterol levels in the blood. In addition, it is rich in phospholipids, especially plasmalogens and sphingomyelin, suggesting that CM fat may meet the daily nutritional requirements of adults and infants. Thus, CM and its dairy products have become more attractive for consumers. In view of this, we performed a comprehensive review of CM fat's composition and nutritional properties. The overall goal is to increase knowledge related to CM fat characteristics and modify its unfavorable perception. Future studies are expected to be directed toward a better understanding of CM fat, which appears to be promising in the design and formulation of new products with significant health-promoting benefits.
Collapse
|
33
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
34
|
|
35
|
de Wolf JR, Lenferink A, Lenferink A, Otto C, Bosschaart N. Evaluation of the changes in human milk lipid composition and conformational state with Raman spectroscopy during a breastfeed. BIOMEDICAL OPTICS EXPRESS 2021; 12:3934-3947. [PMID: 34457390 PMCID: PMC8367237 DOI: 10.1364/boe.427646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Human milk fat forms the main energy source for breastfed infants, and is highly variable in terms of concentration and composition. Understanding the changes in human milk lipid composition and conformational state during a breastfeed can provide insight into lipid synthesis and secretion in the mammary gland. Therefore, the aim of this study was to evaluate human milk fatty acid length, degree of unsaturation (lipid composition) and lipid phase (lipid conformational state) at different stages during a single breastfeed (fore-, bulk- and hindmilk). A total of 48 samples from 16 lactating subjects were investigated with confocal Raman spectroscopy. We did not observe any significant changes in lipid composition between fore-, bulk and hindmilk. A new finding from this study is that lipid conformational state at room temperature changed significantly during a breastfeed, from almost crystalline to almost liquid. This observation suggests that lipid synthesis in the mammary gland changes during a single breastfeed.
Collapse
Affiliation(s)
- Johanna R. de Wolf
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Anki Lenferink
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Aufried Lenferink
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Cees Otto
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
36
|
Lu N, Wang J, Chen Z, Zhang X, Chen C, Wang S. The effect of adding phospholipids before homogenization on the properties of milk fat globules. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Liu L, Zhang X, Liu Y, Wang L, Li X. Simulated In Vitro Infant Gastrointestinal Digestion of Infant Formulas Containing Different Fat Sources and Human Milk: Differences in Lipid Profiling and Free Fatty Acid Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6799-6809. [PMID: 34126744 DOI: 10.1021/acs.jafc.1c01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simulated in vitro infant gastrointestinal digestion of human milk and four infant formulas containing different fat sources was analyzed and compared in this study. Although there are disadvantages brought about by its larger droplet size than infant formulas, human milk exhibited a higher lipolysis level due to the presence of MFGM interfacial layers. Higher hydrolysis efficiency of infant formulas (IFB, IFC, and IFM) was due to the presence of MFGM/phospholipid-enriched materials. Human milk released higher free fatty acid levels, especially long-chain fatty acid, and less undigested TAG molecules at the end of digestion than infant formulas. Human milk had a higher proportion of MAG and DAG linked to long-chain fatty acid. Furthermore, several lipids were identified as potential biomarkers that could be used to further analyze differences in the biological properties of human, bovine, and caprine milk. This comprehensive analysis might be fruitful to formulate an infant formula closest to human milk.
Collapse
Affiliation(s)
- Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lina Wang
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
39
|
Míšková Z, Salek RN, Křenková B, Kůrová V, Němečková I, Pachlová V, Buňka F. The effect of κ- and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Kiełczewska K, Ambroziak K, Krzykowska D, Aljewicz M. The effect of high-pressure homogenisation on the size of milk fat globules and MFGM composition in sweet buttermilk and milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Li S, Chen Y, Han B, Xu T, Liu T, Yi H, Zhou X, Zhang L, Liu P, Ma C, Li Y, Pan J, Jiang S. Composition and variability of phospholipids in Chinese human milk samples. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Acevedo-Fani A, Dave A, Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front Chem 2020; 8:564021. [PMID: 33102443 PMCID: PMC7546791 DOI: 10.3389/fchem.2020.564021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North, New Zealand
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
43
|
Manoni M, Di Lorenzo C, Ottoboni M, Tretola M, Pinotti L. Comparative Proteomics of Milk Fat Globule Membrane (MFGM) Proteome across Species and Lactation Stages and the Potentials of MFGM Fractions in Infant Formula Preparation. Foods 2020; 9:E1251. [PMID: 32906730 PMCID: PMC7555516 DOI: 10.3390/foods9091251] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Milk is a lipid-in-water emulsion with a primary role in the nutrition of newborns. Milk fat globules (MFGs) are a mixture of proteins and lipids with nutraceutical properties related to the milk fat globule membrane (MFGM), which protects them, thus preventing their coalescence. Human and bovine MFGM proteomes have been extensively characterized in terms of their formation, maturation, and composition. Here, we review the most recent comparative proteomic analyses of MFGM proteome, above all from humans and bovines, but also from other species. The major MFGM proteins are found in all the MFGM proteomes of the different species, although there are variations in protein expression levels and molecular functions across species and lactation stages. Given the similarities between the human and bovine MFGM and the bioactive properties of MFGM components, several attempts have been made to supplement infant formulas (IFs), mainly with polar lipid fractions of bovine MFGM and to a lesser extent with protein fractions. The aim is thus to narrow the gap between human breast milk and cow-based IFs. Despite the few attempts made to date, supplementation with MFGM proteins seems promising as MFGM lipid supplementation. A deeper understanding of MFGM proteomes should lead to better results.
Collapse
Affiliation(s)
- Michele Manoni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Marco Tretola
- Agroscope, Institute for Livestock Sciences, 1725 Posieux, Switzerland;
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
44
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Shifts in the Holstein dairy cow milk fat globule membrane proteome that occur during the first week of lactation are affected by parity. J Anim Sci Biotechnol 2020; 11:81. [PMID: 32695335 PMCID: PMC7367219 DOI: 10.1186/s40104-020-00478-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) proteomes of colostrum and transition milk are rich sources of proteins that are likely important for neonatal calf health. In addition, characterization of these proteomes could also yield valuable information regarding mammary gland physiology of the early postpartum lactating cow. The objectives of this research were to characterize the MFGM proteomes of colostrum and transition milk through sample collections at four timepoints postpartum, including the first milking (M1, colostrum), second milking (M2, transition milk), fourth milking (M4, transition milk), and fourteenth milking (M14, mature milk), and compare these proteomes between multiparous (MP; n = 10) and primiparous (PP; n = 10) Holstein dairy cows. Isolated MFGM proteins were labeled using Tandem Mass tagging and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein identification was completed using MASCOT and Sequest in Proteome Discoverer 2.2. The scaled abundance values were analyzed using PROC MIXED in SAS to determine the effects of milking (MIL), parity (PAR), and MIL × PAR. The adaptive false-discovery rate (FDR)-adjusted P values were determined using PROC MULTTEST. Protein characterization and bioinformatic analysis were completed using a combination of PANTHER, Blast, and Uniprot. Results A total of 104 common proteins were identified in each of the MFGM samples. Statistical analysis revealed that 70.2% of identified proteins were affected by MIL. Of these, 78.1% were lower in M14 compared with M1, including immune-related proteins lactotransferrin, lactadherin and hemopexin. Parity affected 44.2% of proteins. Of the proteins affected by PAR, 84.8% were higher in MP cows compared with PP cows, including apolipoprotein E and histones 2A, 2B, 3, and 4 b. Butyrophilin subfamily 1 member 1A and annexin 5 were higher in samples from PP cows. Milking × parity affected 32.7% of identified proteins, including lactotransferrin, gelsolin, vitamin D binding protein, and S100 proteins. Conclusions This research supports previous findings that the Holstein MFGM proteome changes rapidly during the first week of lactation. In addition, this research identifies the impact of parity on the colostrum and transition milk MFGM proteomes, which may be important for milk-fed calf health or for the identification of protein biomarkers for mammary functionality.
Collapse
|
46
|
Pérez-Gálvez A, Calvo MV, Megino-Tello J, Aguayo-Maldonado J, Jiménez-Flores R, Fontecha J. Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. J Dairy Sci 2020; 103:7742-7751. [PMID: 32622597 DOI: 10.3168/jds.2020-18428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Human colostrum is the first milk secreted by the mother after birth and constitutes the ideal food for the newborn, because its chemical composition, rich in immunoglobulins, antimicrobial peptides, growth factors, bioactive lipids, and other important molecules, is perfectly adapted to the metabolic, digestive, and immunological immaturity of the newborn. An incomplete gestational period can affect the maturity of the mammary gland and its ability to secrete milk with the proper composition for the newborn's condition. Previous studies indicate that the mammary gland modulates the profiles of bioactive lipids present in the different phases of lactation from colostrum to mature milk. Given the key role played by the polar lipids (PL) (phospho- and sphingolipids) of the milk fat globule membrane (MFGM) in the immune system and cognitive development of the newborn, it is crucial to analyze whether the content and distribution of the PL are affected by gestation period. Therefore, this study aimed to determine the milk fat globule (MFG) and MFGM lipid compositions of human colostrum samples from 20 healthy preterm and full-term mothers. Lipid characterization using chromatographic techniques (gas chromatograph mass spectrometry and HPLC-evaporative light-scattering detection) revealed differences related to length of gestation in the profiles of lipid classes and fatty acid and triacylglyceride contents of colostrum. This comparative analysis leads to noteworthy outcomes about the changing roles of the PL, considering the preterm or full-term condition. We found a lack of correlation of some PL (such as phosphatidylcholine, phosphatidylinositol, and phosphatidylserine) with the delivery term; these could be denoted as structural category lipids. However, sphingomyelin and phosphatidyl-ethanolamine exhibited trends to decrease in full-term colostrum, indicating that in the final stage of pregnancy specific accretion of some PL occurs, which should be denoted as a nutritional redistribution.
Collapse
Affiliation(s)
- Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013, Sevilla, Spain
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | - Javier Megino-Tello
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
47
|
Whitfield KC, Shahab-Ferdows S, Kroeun H, Sophonneary P, Green TJ, Allen LH, Hampel D. Macro- and Micronutrients in Milk from Healthy Cambodian Mothers: Status and Interrelations. J Nutr 2020; 150:1461-1469. [PMID: 32211800 PMCID: PMC7269724 DOI: 10.1093/jn/nxaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Except for low thiamin content, little is known about vitamins or macronutrients in milk from Cambodian mothers, and associations among milk nutrients. OBJECTIVES We measured fat-soluble vitamins (FSVs) and water-soluble vitamins (WSVs), and macronutrients, and explored internutrient associations in milk from Cambodian mothers. METHODS Milk from women (aged 18-45 y, 3-27 wk postpartum, n = 68) who participated in a thiamin-fortification trial were analyzed for vitamins B-2 (riboflavin, FAD), B-3 (nicotinamide), B-5, B-6 (pyridoxal, pyridoxine), B-7, B-12, A, E [α-tocopherol and γ-tocopherol (γ-TPH)], carotenoids, carbohydrate (CHO), fat, and protein. Milk vitamin B-1 [thiamin, thiamin monophosphate (TMP), thiamin pyrophosphate (TPP)] was previously assessed for fortification effects. Milk nutrient concentrations were compared with the Adequate Intake (AI) values for infants aged 0-6 mo. Pearson correlation was used to examine internutrient associations after excluding nutrients affected by fortification. RESULTS Fortification increased thiamin and B-1 and decreased γ-TPH. Less than 40% of milk samples met the AIs for all vitamins, and 10 samples did not reach any AI values for the analyzed nutrients. CHO, fat, and energy values were met in 1.5-11.8%, and protein in 48.5%, of the samples. Whereas fat, protein, and energy were related (all r < 0.5; P < 0.001) and associated with FSVs and WSVs, CHO correlated only with some WSVs. TPP was not correlated with B-1 vitamers, but with other WSVs (r = 0.28-0.58; P < 0.019). All FSVs, except α-carotene, were correlated with each other (r = 0.42-0.98; P < 0.002). TPP, FAD, B-2, and B-3 were associated with almost all FSVs (r = 0.24-0.63; P < 0.044). CONCLUSIONS Cambodian women might not provide sufficient nutrients to their exclusively breastfeeding infants. Besides thiamin, all other vitamins measured were much lower than the AI. There were many strong correlations among macronutrients and vitamins; the extent to which these are explained by maternal diet, milk volume, maternal physiology, or genetics requires additional exploration.
Collapse
Affiliation(s)
- Kyly C Whitfield
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Setareh Shahab-Ferdows
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
| | - Hou Kroeun
- Helen Keller International Cambodia, Phnom Penh, Cambodia
| | - Prak Sophonneary
- National Nutrition Programme, Maternal and Child Health Centre, Ministry of Health, Phnom Penh, Cambodia
| | - Timothy J Green
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
- Women and Kids Theme, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Lindsay H Allen
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Daniela Hampel
- USDA/ARS Western Human Nutrition Research Center, University of California, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| |
Collapse
|
48
|
Li T, Du M, Wang H, Mao X. Milk fat globule membrane and its component phosphatidylcholine induce adipose browning both in vivo and in vitro. J Nutr Biochem 2020; 81:108372. [PMID: 32416448 DOI: 10.1016/j.jnutbio.2020.108372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The functional induction of brown-like adipocytes in white adipose tissue (WAT) provides a defense against obesity. The aim of this study was to analyze the effects of milk fat globule membrane (MFGM) and its component phosphatidylcholine (PC) on the brown remodeling of WAT. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks and then fed HFD for another 8 weeks with MFGM. In vitro studies were performed in C3H10T1/2 pluripotent stem cells, 3T3-L1 pre-adipocytes and differentiated inguinal WAT stromal vascular cells (SVCs) to determine the role of MFGM and PC on the formation of brown-like adipocytes. MFGM decreased fasting glucose and serum insulin levels in HFD-fed mice. MFGM improved glucose tolerance and insulin sensitivity, and induced browning of inguinal WAT. MFGM and its component PC stimulated transformation of brown-like adipocytes in C3H10T1/2 pluripotent stem cells, 3T3-L1 adipocytes and SVCs by increasing the protein expression of UCP1, PGC-1α, PRDM16 as well as the mRNA expression of other thermogenic genes and beige cell markers. MFGM and PC also increased mitochondrial DNA (mtDNA) copy number, mitochondrial density and oxygen consumption rate and up-regulated the mRNA expression of mitochondria-biogenesis-related genes in vitro. PPARα inhibitor GW6471 treatment or knockdown of PPARα using lentivirus-expressing shRNA inhibited the PC-induced increase in the protein expression of UCP1, PGC-1α and PRDM16 in C3H10T1/2 pluripotent stem cells and 3T3-L1 adipocytes, indicating the potential role of PPARα in PC-mediated brown-like adipocyte formation. In conclusion, MFGM and milk PC induced adipose browning, which has major protective effects against obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
49
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
50
|
Teng F, Reis MG, Yang L, Ma Y, Day L. Structural characteristics of triacylglycerols contribute to the distinct in vitro gastric digestibility of sheep and cow milk fat prior to and after homogenisation. Food Res Int 2020; 130:108911. [DOI: 10.1016/j.foodres.2019.108911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
|