1
|
Hamed Mashhadzadeh A, Hamed Mashhadzadeh A, Golman B, Spitas C, Faroughi SA, Kostas KV. Recent advancements in mechanical properties of graphene-enhanced polymer nanocomposites: Progress, challenges, and pathways forward. J Mol Graph Model 2025; 135:108908. [PMID: 39579712 DOI: 10.1016/j.jmgm.2024.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The versatile properties of graphene-based polymers have captured substantial interest in recent years, making them a topic of significant research focus. This review paper aims to provide an in-depth analysis of the reported mechanical properties of graphene polymer nanocomposites, a highly promising class of materials for diverse industrial applications. Within this review, we emphasize the role of interactions between graphene and the polymer matrix in achieving uniform dispersion to prevent agglomeration and mitigate adverse effects on mechanical properties. Furthermore, we focus on functionalization as the main method of enhancing graphene physicochemical properties, highlighting its capacity to enhance homogeneous dispersion and significantly improve mechanical properties. These enhancements are contingent on factors such as the type and quantity of functionalization agents and the chosen technique. Additionally, we comprehensively examine recent experimental and theoretical research pertaining to the mechanical properties of graphene/polymer nanocomposites. Our analysis contains two primary polymer categories, namely thermoset and thermoplastic matrices, while also considering graphene loading type and volume fraction, as well as the influence of functionalization agents. This review uniquely addresses the existing gap in a comparative analysis between thermoset and thermoplastic matrices, offering insights into how different loading and functionalization methods influence mechanical properties. Moreover, we emphasize the need for further research in optimizing functionalization techniques and understanding the long-term stability of these composites, an area underexplored in current literature. This work stands out by highlighting future directions for refining synthesis techniques and expanding applications of graphene/polymer nanocomposites across industries such as aerospace, automotive, and electronics. Future endeavors may focus on addressing the challenges, refining synthesis techniques, and exploring novel applications, thereby contributing to the continued growth and evolution of graphene/polymer nanocomposites in the field of materials science.
Collapse
Affiliation(s)
- Amir Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Amin Hamed Mashhadzadeh
- Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, 78666, San Marcos, TX, USA.
| | - Boris Golman
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| | - Christos Spitas
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, China
| | - Salah A Faroughi
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Konstantinos V Kostas
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|
2
|
Li X, Jamali M, Fielding LA. Pyrene-functionalized poly(methacrylic acid) acts as an efficient stabilizer for graphene nanoplatelets and facilitates their use in waterborne latex formulations. J Colloid Interface Sci 2024; 676:396-407. [PMID: 39033674 DOI: 10.1016/j.jcis.2024.07.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
HYPOTHESIS Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mohammed Jamali
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
3
|
Xiao D, He P, Zheng H, Yang S, Yang S, Ding G. A Tape-Wrapping Strategy towards Electrochemical Fabrication of Water-Dispersible Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:805. [PMID: 38727399 PMCID: PMC11085361 DOI: 10.3390/nano14090805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Graphene has achieved mass production via various preparative routes and demonstrated its uniqueness in many application fields for its intrinsically high electron mobility and thermal conductivity. However, graphene faces limitations in assembling macroscopic structures because of its hydrophobic property. Therefore, balancing high crystal quality and good aqueous dispersibility is of great importance in practical applications. Herein, we propose a tape-wrapping strategy to electrochemically fabricate water-dispersible graphene (w-Gr) with both excellent dispersibility (~4.5 mg/mL, stable over 2 months), and well-preserved crystalline structure. A large production rate (4.5 mg/min, six times faster than previous electrochemical methods), high yield (65.4% ≤5 atomic layers) and good processability are demonstrated. A mechanism investigation indicates that the rational design of anode configuration to ensure proper oxidation, deep exfoliation and unobstructed mass transfer is responsible for the high efficiency of this strategy. This simple yet efficient electrochemical method is expected to promote the scalable preparation and applications of graphene.
Collapse
Affiliation(s)
- Deyue Xiao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolong Zheng
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujing Yang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; (D.X.); (H.Z.); (S.Y.); (S.Y.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Cullari LL, Yosefi G, Nativ-Roth E, Furó I, Regev O. Decoupling rheology from particle concentration by charge modulation: Aqueous graphene-clay dispersions. J Colloid Interface Sci 2024; 655:863-875. [PMID: 37979292 DOI: 10.1016/j.jcis.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS Aqueous graphene dispersions are usually obtainable by treating the surface of graphene chemically or physically. In these dispersions, the rheological properties (e.g., viscosity) are governed by a direct coupling to the graphene concentration, which limits their applicability. An alternative approach for dispersing graphene is trapping them in a viscoelastic-network formed by a co-dispersed charged fibrous-clay, Sepiolite. Contrary to surface treatment, the rheological properties of these dispersions are set by the clay particles. The rheology of charged-colloidal dispersions is governed by various parameters, including interparticle interactions. Hence, the rheology of the dispersion could be modulated by changing the clay surface charge without compromising the dispersed graphene concentration. EXPERIMENTAL The surface charge of Sepiolite was modulated either by charge-screening (by NaCl added to the solution) or by surface-charging (by attachment of highly charged ions, e.g., HexaMetaPhosphate, HMP-) and the effect on rheology and graphene concentration was assessed. In particular, loading the dispersion with HMP- yielded low viscosity, storage, and loss moduli (two orders of magnitude lower than the corresponding HMP--free dispersion) while the graphene concentration was maintained. We demonstrate that by this charge-modulation approach, reaching the rheological requirements of different applications without compromising on graphene concentration is plausible.
Collapse
Affiliation(s)
- Lucas Luciano Cullari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Einat Nativ-Roth
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-1044, Sweden.
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
5
|
Gotzias A, Tocci E, Sapalidis A. Solvent-Assisted Graphene Exfoliation from Graphite Using Umbrella Sampling Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18437-18446. [PMID: 38051657 DOI: 10.1021/acs.langmuir.3c02692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We employed molecular dynamics (MD) simulations coupled with umbrella sampling to explore the thermodynamics governing the exfoliation of a single graphene layer from a graphitic substrate in five different solvents such as dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), cyclohexane (CHX), and water. The substrate was modeled as a stack of three identical graphene layers with the graphene sheet undergoing exfoliation positioned on top of this stack. The initial configurations for each umbrella simulation were generated through steered MD simulations carried out along two distinct coordinates: one parallel and the other perpendicular to the graphene layers. Our analyses revealed a uniform wetting behavior for both the nanosheet and the graphitic substrate in all of the tested solvents. Consistent with experimental observations, the steered simulations confirmed that exfoliation is more favorable along the parallel direction than along the perpendicular one. All non-water solvents exhibit comparable effectiveness in the exfoliation of graphene. The calculated free energies of these solvents in parallel exfoliation consistently fell within the range of 90-100 kJ/mol/nm2. In perpendicular exfoliation, however, the corresponding energies converge to lower values. This difference is attributed to the nonequilibrium nature of the perpendicular exfoliation, primarily caused by the great steering velocity of the graphene sheet immediately after detachment from the substrate. This rapid motion of the nanosheet along the perpendicular coordinate results in an elevated system energy and heating.
Collapse
Affiliation(s)
- Anastasios Gotzias
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens 153 10, Greece
| | - Elena Tocci
- Institute on Membrane Technology, National Research Council, University of Calabria, Rende 87030, Italy
| | - Andreas Sapalidis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens 153 10, Greece
| |
Collapse
|
6
|
Laraba SR, Rezzoug A, Avcu E, Luo W, Halimi R, Wei J, Li Y. Enhancing the tribological performance of PLA-based biocomposites reinforced with graphene oxide. J Mech Behav Biomed Mater 2023; 148:106224. [PMID: 37944226 DOI: 10.1016/j.jmbbm.2023.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Poly(lactic acid) (PLA) reinforced with graphene has gained substantial interest as a biomaterial, where the tribological and mechanical behavior of PLA/graphene composites are major concerns. This study aims to develop PLA-based biocomposites reinforced with graphene oxide (GO) that have enhanced tribological capabilities. First, homogenous dispersions of GO and GO treated with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) were retained. Then, poly(L-lactic acid) (PLLA) biopolymer and PLLA/GO, PLLA/GO(AOT), PLA/GO(AOT), and PLLA/polyethylene glycol (PEG)/GO biocomposite samples were produced via hot pressing, and their tribological behavior was examined in detail. The worn surface characteristics were examined using scanning electron microscopy (SEM), 3D confocal microscopy, and atomic force microscopy (AFM). Results showed that GO reinforcement considerably affected the sliding wear behavior of PLA. Contrary to anticipated, surface treatment of GO does not improve the PLLA/GO wear resistance; rather, it increases the wear rate. PEG positively affects the sliding wear performance of PLLA/GO. PLLA/GO and PLLA/PEG/GO biocomposites exhibited the lowest wear rate at normal loads of 5 and 8 N, respectively, which was decreased by about 50% compared to unreinforced PLLA samples. With the addition of GO, the wear mechanisms of the PLA-based biocomposites changed from adhesive wear to abrasive wear. These findings might increase the applicability of PLA-based biocomposites where tribological performance is the main concern, such as biodegradable implants for load-bearing bone fractures or scaffolds, opening up new opportunities for their use.
Collapse
Affiliation(s)
- Selsabil Rokia Laraba
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Amine Rezzoug
- Research Center in Industrial Technologies (CRTI), P.O.Box 64, Cheraga, 16014, Algiers, Algeria
| | - Egemen Avcu
- Department of Mechanical Engineering, Kocaeli University, Kocaeli, 41001, Turkey; Ford Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli, 41650, Turkey
| | - Wei Luo
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rafik Halimi
- Research Center in Industrial Technologies (CRTI), P.O.Box 64, Cheraga, 16014, Algiers, Algeria
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
7
|
Laraba SR, Ullah N, Bouamer A, Ullah A, Aziz T, Luo W, Djerir W, Zahra QUA, Rezzoug A, Wei J, Li Y. Enhancing Structural and Thermal Properties of Poly(lactic acid) Using Graphene Oxide Filler and Anionic Surfactant Treatment. Molecules 2023; 28:6442. [PMID: 37764218 PMCID: PMC10535062 DOI: 10.3390/molecules28186442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) on the properties of the resulting nanocomposites was investigated. To determine the morphological, optical, and structural properties of the obtained materials, physicochemical analyses were performed, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. Additionally, the thermal properties and wettability of neat polymers and nanocomposites were thoroughly investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle analysis. It was observed that GO was well dispersed throughout the PLA and PLLA matrix, leading to stronger interface bonding. The results demonstrate that the untreated and treated GO improved the crystallinity and thermal stability properties of the PLA and PLLA. However, the AOT-treated GO has significantly higher performance compared to the untreated GO in terms of crystallinity, melting temperature (increased by ~15 °C), and wettability (the contact angle decreased by ~30°). These findings reveal the high performance of the developed novel composite, which could be applied in tissue engineering as a scaffold.
Collapse
Affiliation(s)
- Selsabil Rokia Laraba
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (S.R.L.); (W.L.)
| | - Najeeb Ullah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Amirouche Bouamer
- Research Center in Industrial Technologies (CRTI), P.O. Box 64, Cheraga 16014, Algeria (A.R.)
| | - Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Wei Luo
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (S.R.L.); (W.L.)
| | - Wahiba Djerir
- Research Center in Industrial Technologies (CRTI), P.O. Box 64, Cheraga 16014, Algeria (A.R.)
| | - Qurat ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei 230026, China
| | - Amine Rezzoug
- Research Center in Industrial Technologies (CRTI), P.O. Box 64, Cheraga 16014, Algeria (A.R.)
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (S.R.L.); (W.L.)
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; (S.R.L.); (W.L.)
| |
Collapse
|
8
|
Wilczewski S, Skórczewska K, Tomaszewska J, Osial M, Dąbrowska A, Nikiforow K, Jenczyk P, Grzywacz H. Graphene Modification by Curcuminoids as an Effective Method to Improve the Dispersion and Stability of PVC/Graphene Nanocomposites. Molecules 2023; 28:molecules28083383. [PMID: 37110616 PMCID: PMC10143296 DOI: 10.3390/molecules28083383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A large amount of graphene-related research is its use as a filler for polymer composites, including thin nanocomposite films. However, its use is limited by the need for large-scale methods to obtain high-quality filler, as well as its poor dispersion in the polymer matrix. This work presents polymer thin-film composites based on poly(vinyl chloride) (PVC) and graphene, whose surfaces were modified by curcuminoids. TGA, UV-vis, Raman spectroscopy, XPS, TEM, and SEM methods have confirmed the effectiveness of the graphene modification due to π-π interactions. The dispersion of graphene in the PVC solution was investigated by the turbidimetric method. SEM, AFM, and Raman spectroscopy methods evaluated the thin-film composite's structure. The research showed significant improvements in terms of graphene's dispersion (in solutions and PVC composites) following the application of curcuminoids. The best results were obtained for materials modified with compounds obtained from the extraction of the rhizome of Curcuma longa L. Modification of the graphene's surface with these compounds also increased the thermal and chemical stability of PVC/graphene nanocomposites.
Collapse
Affiliation(s)
- Sławomir Wilczewski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Jolanta Tomaszewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 Street, 85-326 Bydgoszcz, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| | - Agnieszka Dąbrowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Jenczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| | - Hubert Grzywacz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Gianvittorio S, Gualandi I, Tonelli D. ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules 2023; 28:molecules28041532. [PMID: 36838520 PMCID: PMC9959578 DOI: 10.3390/molecules28041532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to the growing presence of pesticides in the environment and in food, the concern of their impact on human health is increasing. Therefore, the development of fast and reliable detection methods is needed. Enzymatic inhibition-based biosensors represent a good alternative for replacing the more complicated and time-consuming traditional methods (chromatography, spectrophotometry, etc.). This paper describes the development of an electrochemical biosensor exploiting alkaline phosphatase as the biological recognition element and a chemically modified glassy carbon electrode as the transducer. The biosensor was prepared modifying the GCE surface by a mixture of Multi-Walled-Carbon-Nanotubes (MWCNTs) and Electrochemically-Reduced-Graphene-Oxide (ERGO) followed by the immobilization of the enzyme by cross-linking with bovine serum albumin and glutaraldehyde. The inhibition of the biosensor response caused by pesticides was established using 2-phospho-L-ascorbic acid as the enzymatic substrate, whose dephosphorylation reaction produces ascorbic acid (AA). The MWCNTs/ERGO mixture shows a synergic effect in terms of increased sensitivity and decreased overpotential for AA oxidation. The response of the biosensor to the herbicide 2,4-dichloro-phenoxy-acetic-acid was evaluated and resulted in the concentration range 0.04-24 nM, with a limit of the detection of 16 pM. The determination of other pesticides was also achieved. The re-usability of the electrode was demonstrated by performing a washing procedure.
Collapse
|
10
|
Gabryś T, Fryczkowska B, Jančič U, Trček J, Gorgieva S. GO-Enabled Bacterial Cellulose Membranes by Multistep, In Situ Loading: Effect of Bacterial Strain and Loading Pattern on Nanocomposite Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1296. [PMID: 36770302 PMCID: PMC9921428 DOI: 10.3390/ma16031296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
This paper presents the results of research on the preparation and properties of GO/BC nanocomposite from bacterial cellulose (BC) modified with graphene oxide (GO) using the in situ method. Two bacterial strains were used for the biosynthesis of the BC: Komagataeibacter intermedius LMG 18909 and Komagataeibacter sucrofermentans LMG 18788. A simple biosynthesis method was developed, where GO water dispersion was added to reinforced acetic acid-ethanol (RAE) medium at concentrations of 10 ppm, 25 ppm, and 50 ppm at 24 h and 48 h intervals. As a result, a GO/BC nanocomposite membrane was obtained, characterized by tensile strength greater by 150% as compared with the pure BC (̴ 50 MPa) and lower volume resistivity of ~4 ∙ 109 Ω × cm. Moreover, GO addition increases membrane thickness up to ~10% and affects higher mass production, especially with low GO concentration. All of this may indicate the possibility of using GO/BC membranes in fuel cell applications.
Collapse
Affiliation(s)
- Tobiasz Gabryś
- Department of Material Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Beata Fryczkowska
- Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| |
Collapse
|
11
|
Zhao F, Quan H, Zhang S, Xu Y, Zhou Z, Chen G, Li Q. Watered-Based Graphene Dispersion Stabilized by a Graft Co-Polymer for Electrically Conductive Screen Printing. Polymers (Basel) 2023; 15:polym15020356. [PMID: 36679238 PMCID: PMC9860939 DOI: 10.3390/polym15020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Graphene conductive inks have attracted significant attention in recent years due to their high conductivity, corrosion resistance, and environmentally friendly nature. However, the dispersion of graphene in aqueous solution is still challenging. In this work, we synthesized an amphiphilic graft copolymer, polyvinyl alcohol-g-polyaniline (PVA-g-PANI), and studied the graphene dispersion prepared with the graft copolymer by high-speed shear dispersion. The amphiphilic graft copolymer can be used as a stabilizer and adhesive agent in graphene dispersion. Given the steric hindrance of the graft copolymer, the stability of graphene dispersion is improved by decreasing the probability of π-π stacking. PVA-g-PANI has a better stability on graphene dispersion than carboxymethylcellulose sodium (CMC-Na) and a mixture of PVA and PANI. The graft copolymer has only a slight effect on the conductivity of graphene dispersion due to the existence of conductive PANI, which is beneficial for preparing the graphene dispersion with good conductivity and adhesion. Graphene dispersion is well-adapted to screen printing and is very stable with regard to the sheet resistance bending cycle.
Collapse
Affiliation(s)
- Fengfeng Zhao
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Quan
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Shijun Zhang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yihui Xu
- Sinopec Group, Beijing 100728, China
| | - Zheng Zhou
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangxin Chen
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (G.C.); (Q.L.)
| | - Qifang Li
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (G.C.); (Q.L.)
| |
Collapse
|
12
|
Jiang T, Maddalena L, Gomez J, Carosio F, Fina A. Polyelectrolytes Enabled Reduced Graphite Oxide Water Dispersions: Effects of the Structure, Molecular Weight, and Charge Density. Polymers (Basel) 2022; 14:polym14194165. [PMID: 36236113 PMCID: PMC9573485 DOI: 10.3390/polym14194165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
The polyelectrolyte (PE)-based water dispersion of graphene-related materials (GRMs) represents an interesting intermediate for the development of advanced materials by sustainable processes. Although the proof of concept has been demonstrated, there is a lack of knowledge for what concerns the effects of parameters typical of PEs such as functionalization, molecular weight, and charge density. In this work, we evaluate the effects of such parameters on the quality and long-term stability of reduced graphite oxide (rGO) dispersion in aqueous media prepared by ultrasound sonication in the presence of different PEs. Four PEs were evaluated: polyacrylic acid (PAA), branched poly(ethylenimine) (BPEI), sodium carboxymethyl cellulose (CMC), and poly(sodium 4-styrenesulfonic acid) (PSS). The prepared dispersions were thoroughly characterized by means of UV-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, and Raman spectroscopy. The highest concentrations of rGO were achieved by BPEI with a molecular weight of 25,000 and 270,000 Da (33 and 26 µg/mL, respectively). For other PEs, the rGO concentration was found to be independent of the molecular weight. The PAA-based dispersions displayed the best through-time stability while yielding homogeneous dispersion with a smaller average size and narrower size distribution.
Collapse
Affiliation(s)
- Tianhui Jiang
- Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus, V.le Teresa Michel 5, 15121 Alessandria, Italy
| | - Lorenza Maddalena
- Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus, V.le Teresa Michel 5, 15121 Alessandria, Italy
| | - Julio Gomez
- AVANZARE Innovacion Tecnologica S.L., 26370 Navarrete, La Rioja, Spain
| | - Federico Carosio
- Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus, V.le Teresa Michel 5, 15121 Alessandria, Italy
- Correspondence:
| | - Alberto Fina
- Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus, V.le Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
13
|
A guide to designing graphene-philic surfactants. J Colloid Interface Sci 2022; 620:346-355. [DOI: 10.1016/j.jcis.2022.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
|
14
|
Xiang Q, Zhong B, Tan H, Navik R, Liu Z, Zhao Y. Improved Dispersibility of Graphene in an Aqueous Solution by Reduced Graphene Oxide Surfactant: Experimental Verification and Density Functional Theory Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8222-8231. [PMID: 35763677 DOI: 10.1021/acs.langmuir.2c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is difficult to disperse graphene flakes well in an aqueous solution while maintaining conductivity due to its high hydrophobicity. Herein, we demonstrated that a well-dispersed state of graphene in an aqueous solution was realized by using reduced graphene oxide (rGO) with a suitable content of oxygen-functional groups. A rGO-dispersed graphene (rGO/G) film was fabricated from the graphene dispersion with good conductivity by using rGO with a C/O ratio of 2.48 as the surfactant. Also, the prepared rGO/G aerogel has a broad prospect. Density functional theory calculation revealed that the strong electrostatic repulsion, which was more potent than the van der Waals force and the π-π interaction, was the primary driving force promoting the dispersibility of graphene in an aqueous solution. Furthermore, the repulsion of the rGO/G dispersion decreased with the reduction of the oxygen-functional groups of rGO. Therefore, applying rGO with an appropriate content of oxygen-functional groups is an alternative option to improve the dispersibility of graphene in an aqueous medium while maintaining its original properties, from which many potential applications could be expected.
Collapse
Affiliation(s)
- Qixuan Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Boan Zhong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Zhiyuan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| |
Collapse
|
15
|
Chen S, Li Q, He D, Liu Y, Wang L, Wang M. Aggregation behavior of partially contacted graphene sheets in six-carbon alkanes: all-atom molecular dynamics simulation. J Mol Model 2022; 28:169. [PMID: 35614269 DOI: 10.1007/s00894-022-05164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Molecular dynamics simulations are used to investigate the aggregation of the cross-contacted and non-cross-contacted graphene sheets in n-hexane, 2,3-dimethylbutane, and cyclohexane solvents. The results show that the main driving force of the graphene aggregation is the interaction between the graphene sheets, and the interaction between solvent molecules also contributes to the aggregation slightly. The initial graphene configurations and the solvent molecule structures both have effects on the graphene aggregation speed. Specifically, the cross-contacted graphene sheets aggregate faster than the non-cross-contacted configuration, since the interaction between the graphene sheets is larger and the direction of this interaction is conducive to pushing away the solvent molecules adsorbed on the graphene surface. The graphene aggregation speed is larger in n-hexane mainly since the mobility of the solvent molecules is higher than the other two solvents, while the interaction between graphenes/solvents has little influence for the systems used in this work. This work provides useful insights into the graphene aggregation in the solvents with different initial graphene configurations and solvent molecule structures.
Collapse
Affiliation(s)
- Shenghui Chen
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - Quanjiang Li
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Di He
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - Yanli Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - Li Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China. .,School of Integrated Circuits, Ludong University, Yantai, 264025, China.
| |
Collapse
|
16
|
Cullari LL, Ligati Schleifer S, Kogan D, Ziskind G, Regev O. Down the Dimensionality Lane: Thermal Conductivity Enhancement in Carbon-Based Liquid Dispersions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9844-9854. [PMID: 35138787 DOI: 10.1021/acsami.1c23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon allotropes of different dimensionality, i.e., 1D-carbon nanotubes, 2D-graphene nanoplatelets, and 3D-graphite, possess high thermal conductivity (TC > 2000 W/m K). They are, therefore, excellent candidates for filler material aiming at increasing the TC of composites used for thermal management. However, preparing aqueous dispersions of these materials is challenging due to their strong van der Waals attraction, leading to aggregation and subsequent precipitation. Reported dispersion methodologies have failed to disperse large microscale fillers, which are essential for efficient thermal management. In this work, we suggest to "kinetically arrest" the dispersion by using sepiolite, a fiberlike clay, that effectively disperses all three carbon dimensionalities. We explore the effect of filler dimensionality and properties (lateral size, thickness, defect density) on the dispersion TC enhancement. Modeling the TC by the effective medium approach allows lumping all the intrinsic properties of the filler into a single parameter termed "effective TC", providing an accurate prediction of the experimentally measured TC. We show that, by judicious choice of filler, the TC of both water and a water-ethylene glycol mixture can be enhanced by 31% using graphene nanoplatelets of 15 μm in lateral size. We believe that the guidelines obtained in this work provide a useful tool for designing future liquid composites with enhanced thermal properties.
Collapse
Affiliation(s)
- Lucas Luciano Cullari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shani Ligati Schleifer
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - David Kogan
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gennady Ziskind
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
17
|
Bortolozzo LS, Côa F, Khan LU, Medeiros AMZ, Da Silva GH, Delite FS, Strauss M, Martinez DST. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. CHEMOSPHERE 2021; 278:130421. [PMID: 33839394 DOI: 10.1016/j.chemosphere.2021.130421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.
Collapse
Affiliation(s)
- Leandro S Bortolozzo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Aline M Z Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Fabricio S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications-A Review. NANOMATERIALS 2021; 11:nano11061628. [PMID: 34205801 PMCID: PMC8235799 DOI: 10.3390/nano11061628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Nanofluids have opened the doors towards the enhancement of many of today's existing thermal applications performance. This is because these advanced working fluids exhibit exceptional thermophysical properties, and thus making them excellent candidates for replacing conventional working fluids. On the other hand, nanomaterials of carbon-base were proven throughout the literature to have the highest thermal conductivity among all other types of nanoscaled materials. Therefore, when these materials are homogeneously dispersed in a base fluid, the resulting suspension will theoretically attain orders of magnitude higher effective thermal conductivity than its counterpart. Despite this fact, there are still some challenges that are associated with these types of fluids. The main obstacle is the dispersion stability of the nanomaterials, which can lead the attractive properties of the nanofluid to degrade with time, up to the point where they lose their effectiveness. For such reason, this work has been devoted towards providing a systematic review on nanofluids of carbon-base, precisely; carbon nanotubes, graphene, and nanodiamonds, and their employment in thermal systems commonly used in the energy sectors. Firstly, this work reviews the synthesis approaches of the carbon-based feedstock. Then, it explains the different nanofluids fabrication methods. The dispersion stability is also discussed in terms of measuring techniques, enhancement methods, and its effect on the suspension thermophysical properties. The study summarizes the development in the correlations used to predict the thermophysical properties of the dispersion. Furthermore, it assesses the influence of these advanced working fluids on parabolic trough solar collectors, nuclear reactor systems, and air conditioning and refrigeration systems. Lastly, the current gap in scientific knowledge is provided to set up future research directions.
Collapse
Affiliation(s)
- Naser Ali
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Ammar M. Bahman
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
| | - Nawaf F. Aljuwayhel
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
- Correspondence:
| | - Shikha A. Ebrahim
- Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; (A.M.B.); (S.A.E.)
| | - Sayantan Mukherjee
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India;
| | - Ali Alsayegh
- School of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Cranfield MK43 0AL, UK;
| |
Collapse
|
19
|
Hu Y, Fan X, Li N, Niu J, Huang Y, Chen D. Anticorrosion performance of waterborne polyacrylate coatings with 2-methylimidazole modified rGO. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yue Hu
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
- Department of Chemical Engineering and Material Science, College of Chemistry, Soochow University, Suzhou, P. R. China
| | - Xinchuan Fan
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
| | - Ningyan Li
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
| | - Jun Niu
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
| | - Yangdi Huang
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
| | - Dianyu Chen
- Department of Material Engineering, Jiangsu Key Laboratory of Functional Materials, Changshu Institute of Technology, Changshu, P. R. China
| |
Collapse
|
20
|
Gabryś T, Fryczkowska B, Biniaś D, Ślusarczyk C, Fabia J. Preparation and properties of composite cellulose fibres with the addition of graphene oxide. Carbohydr Polym 2021; 254:117436. [PMID: 33357909 DOI: 10.1016/j.carbpol.2020.117436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/18/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
The paper presents the results of a study on the preparation of cellulose-based composite fibres (CEL) with graphene oxide addition (GO). Composite fibres (GO/CEL) were prepared via the wet spinning method from CEL solutions in 1-ethyl-3-methylimidazolium acetate (EMIMAc) that contained a nano-addition of GO dispersion in N,N-dimethylformamide (DMF). The GO contents of the composite fibres were 0, 0.21, 0.50, 0.98, and 1.97 % w w. The fibres were coagulated in two solvents: distilled water and methanol. The results demonstrated that the amount of GO additive and the type of coagulant significantly impact the physicochemical, mechanical and structural properties of the CEL and GO/CEL fibres. The use of distilled water in a coagulation bath causes a degree of crystallinity of 31.0-40.8 % (WAXS) and a shift in the thermal decomposition temperature (by approximately 19 °C) towards higher temperatures (TGA). The results demonstrate improvements in the mechanical properties of the GO/CEL fibres, which were at the level of 9.43-14.18 cN/tex. In addition, the GO/CEL fibres exhibit satisfactory GO dispersion throughout their volume.
Collapse
Affiliation(s)
- Tobiasz Gabryś
- Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Beata Fryczkowska
- Faculty of Materials, Civil and Environmental Engineering, Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Dorota Biniaś
- Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Czesław Ślusarczyk
- Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Janusz Fabia
- Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| |
Collapse
|
21
|
Gabryś TM, Fryczkowska B, Machnicka A, Graczyk T. Nanocomposite Cellulose Fibres Doped with Graphene Oxide and Their Biocidal Properties. Polymers (Basel) 2021; 13:polym13020204. [PMID: 33430074 PMCID: PMC7827094 DOI: 10.3390/polym13020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
The paper presents a method of obtaining composite cellulose fibres (CEL) doped with graphene oxide (GO) and the influence of GO nanoparticles on the structure and properties of the obtained fibres. Composite fibres (GO/CEL) were prepared using wet method from 5% CEL solutions in 1-ethyl-3-methylimidazolium acetate (EMIMAc) containing GO (0; 0.21; 0.50; 0.98; 1.97% w/w) dispersion in N,N-dimethylformamide (DMF). The fibres were coagulated in distilled water and methanol. Optical microscopy allowed us to demonstrate a good degree of GO additive dispersion in the CEL matrix. Surface morphology was examined by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), which indicated interactions between the matrix and the additive. Strength tests have shown that GO/CEL fibres are characterised by high values of elongation at break (7.7–19.5%) and tenacity (~133–287 [MPa]). The obtained composite fibres are characterized by good biocidal properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphilococcus aureus), and fungi Candida albicans, and the resistance to microorganisms depends on the surface zeta potential value and the isoelectric point (IEP) of GO/CEL fibres.
Collapse
Affiliation(s)
- Tobiasz Maksymilian Gabryś
- Department of Material Science, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
- Correspondence:
| | - Beata Fryczkowska
- Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (B.F.); (A.M.)
| | - Alicja Machnicka
- Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (B.F.); (A.M.)
| | - Tadeusz Graczyk
- Department of Material Science, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| |
Collapse
|
22
|
Liu K, Peng Q, Li Z, Cheng J, Lao L, Li X, Zhang Z, Lu S, Li Y. Electrospinning preparation of perylene-bisimide-functionalized graphene/polylactic acid shape-memory films with excellent mechanical and thermal properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj04737f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrospinning preparation of perylene-bisimide-functionalized graphene/polylactic acid composite films with shape-memory properties.
Collapse
Affiliation(s)
- Kuo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Qingyuan Peng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Jingzhen Cheng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Li Lao
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Xing Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Zuocai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials
- Ministry of Education
- School of Material Science and Engineering
- Guilin University of Technology
- Guilin
| |
Collapse
|
23
|
Significant Improvement of Anticorrosion Properties of Zinc-Containing Coating Using Sodium Polystyrene Sulfonate Noncovalent Modified Graphene Dispersions. COATINGS 2020. [DOI: 10.3390/coatings10121150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-quality graphene zinc-containing anticorrosive coatings are highly and urgently desirable for effective, economical anticorrosion of metals and alloys in industrial products. The realization of such coatings is, however, hindered by the dispersibility and compatibility of the graphene in them. This work reports a novel direct modification of graphene using sodium polystyrene sulfonate (PSS) without reduction of graphene oxide, leading to homogeneous dispersion of graphene in water. The agglomeration of graphene is prevented thanks to the formation of π−π interaction between PSS and graphene sheets. Such graphene dispersion can effectively improve the anticorrosion performance of the zinc-containing epoxy coatings. With the addition of graphene modified by PSS into the 20% zinc-containing epoxy coating (graphene is 0.05% by weight of the coating), its anticorrosion properties revealed by both electrochemical characterization and the neutral salt spray tolerance analysis are rather close to those of 60% zinc-containing epoxy coating. These results demonstrate that direct PSS modification is an effective method for graphene dispersion and thus open a pathway to achieve graphene zinc-containing anticorrosive coatings with high performance.
Collapse
|
24
|
Kumru B, Antonietti M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv Colloid Interface Sci 2020; 283:102229. [PMID: 32795670 DOI: 10.1016/j.cis.2020.102229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
The metal-free, polymeric semiconductor graphitic carbon nitride (g-CN) family is an emerging class of materials and has striking advantages compared to other semiconductors, i.e. ease of tunability, low cost and synthesis from abundant precursors in a chemical environment. Efforts have been done to improve the properties of g-CN, such as photocatalytic efficiency, designing novel composites, processability and scalability towards discovering novel applications as a remedy for the problems that we are facing today. Despite the fact that the main efforts to improve g-CN come from a catalysis perspective, many fundamental possibilities arise from the special colloidal properties of carbon nitride particles, from synthesis to applications. This review will display how typical colloid chemistry tools can be employed to make 'better g-CNs' and how up to now overseen properties can be levered by integrating a colloid and interface perspective into materials chemistry. Establishing a knowledge on the origins of colloidal behavior of g-CN will be the core of the review.
Collapse
Affiliation(s)
- Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
25
|
Chernysheva M, Rychagov A, Kornilov D, Tkachev S, Gubin S. Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Hu Y, Fan X, Chen X, Niu J, Li N, Wang X, Chen D. Reduced graphene oxide suspension with a comb copolymer and its effects on the corrosion resistance of hydroxyl polyacrylate coatings. J Appl Polym Sci 2020. [DOI: 10.1002/app.48898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yue Hu
- Chemical Engineering and material Science, College of ChemistrySoochow University Suzhou 215123 People's Republic of China
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Xinchuan Fan
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Xiaofeng Chen
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Jun Niu
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Ningyan Li
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Xinqiang Wang
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| | - Dianyu Chen
- Department of Chemistry and Material Engineering, Jiangsu Key Laboratory of Functional MaterialsChangshu Institute of Technology Changshu 215500 People's Republic of China
| |
Collapse
|
27
|
Dispersing graphene in aqueous media: Investigating the effect of different surfactants. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Lotfi N, Shahrabi T, Yaghoubinezhad Y, Barati Darband G. Electrodeposition of cedar leaf-like graphene Oxide@Ni–Cu@Ni foam electrode as a highly efficient and ultra-stable catalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134949] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, Khairul Ahmad M, Abdul Khalil HPS, King SM, Rogers SE, Eastoe J. Electrochemical exfoliation of graphite in nanofibrillated kenaf cellulose (NFC)/surfactant mixture for the development of conductive paper. Carbohydr Polym 2019; 228:115376. [PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
Collapse
Affiliation(s)
- Tretya Ardyani
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Azmi Mohamed
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia; Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori, 036-8561, Japan
| | - Yasushi Umetsu
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori, 036-8561, Japan
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universitas Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - H P S Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, 11700, Gelugor, Penang, Malaysia
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QT, United Kingdom
| | - Sarah E Rogers
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QT, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
30
|
Sun Z, Fan Q, Zhang M, Liu S, Tao H, Texter J. Supercritical Fluid-Facilitated Exfoliation and Processing of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901084. [PMID: 31572648 PMCID: PMC6760473 DOI: 10.1002/advs.201901084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Since the first intercalation of layered silicates by using supercritical CO2 as a processing medium, considerable efforts have been dedicated to intercalating and exfoliating layered two-dimensional (2D) materials in various supercritical fluids (SCFs) to yield single- and few-layer nanosheets. Here, recent work in this area is highlighted. Motivating factors for enhancing exfoliation efficiency and product quality in SCFs, mechanisms for exfoliation and dispersion in SCFs, as well as general metrics applied to assess quality and processability of exfoliated 2D materials are critically discussed. Further, advances in formation and application of 2D material-based composites with assistance from SCFs are presented. These discussions address chemical transformations accompanying SCF processing such as doping, covalent surface modification, and heterostructure formation. Promising features, challenges, and routes to expanding SCF processing techniques are described.
Collapse
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qun Fan
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Mingli Zhang
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shizhen Liu
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hengcong Tao
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - John Texter
- School of Engineering TechnologyEastern Michigan UniversityYpsilantiMI48197USA
| |
Collapse
|
31
|
Zhang Y, Yuan GH, Huang YY, Zhao X. Water–Oil Interface Directed Self-Assembly of Graphene- g-PGMA/CdTe Nanocomposites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- BTR New Energy Materials Inc., Shenzhen 518106, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guo-Hui Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | | | - Xin Zhao
- Shenzhen Institute of Advanced Graphene Application and Technology, Shenzhen 518106, China
| |
Collapse
|
32
|
Ślusarczyk C, Fryczkowska B. Structure-Property Relationships of Pure Cellulose and GO/CEL Membranes Regenerated from Ionic Liquid Solutions. Polymers (Basel) 2019; 11:polym11071178. [PMID: 31336984 PMCID: PMC6680505 DOI: 10.3390/polym11071178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 11/28/2022] Open
Abstract
Two types of cellulose membranes were produced by a classical wet phase inversion method from a solution of the polymer in 1-ethyl-3-methylimidazolium acetate (EMIMAc) by coagulation in water and selected primary alcohols. The first type were membranes made from pure cellulose (CEL). The second type were membranes obtained by adding nanosized graphene oxide (GO) to the cellulose solution. The process of precipitation and selection of the coagulant affected the structure of the membranes, which in turn affected their usability and applicability. The results of the presented studies show that the physicochemical properties of the coagulant used (e.g., molecular mass and dipole moment) play important roles in this process. It was found that both the content and dimensions of the pores depended on the molecular mass of the coagulant used. It was also found that the dipole moment of coagulant molecules had a large influence on the volume content of the pores (e.g., the 1-octanol (Oc) membrane had a dipole moment of 1.71 D; Φ = 1.82%). We investigated the effect of the type of coagulant on the porous structure of CEL membranes and how this affected the transport properties of the membranes (e.g., for the distilled water (W) membrane, Jv = 5.24 ± 0.39 L/m2 h; for the Oc membrane, Jv = 92.19 ± 1.51 L/m2 h). The paper presents the results of adding GO nanoparticles in terms of the structure, morphology, and transport properties of GO/CEL membranes (e.g., for composite membrane F (containing 20% GO), Jv = 40.20 ± 2.33 L/m2 h). In particular, it describes their extremely high ability to remove heavy metal ions.
Collapse
Affiliation(s)
- Czesław Ślusarczyk
- Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
| | - Beata Fryczkowska
- Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| |
Collapse
|
33
|
Mohamed MAA, Elessawy NA, Carrasco-Marín F, Hamad HAF. A novel one-pot facile economic approach for the mass synthesis of exfoliated multilayered nitrogen-doped graphene-like nanosheets: new insights into the mechanistic study. Phys Chem Chem Phys 2019; 21:13611-13622. [PMID: 31187824 DOI: 10.1039/c9cp01418g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present research focuses on providing a novel facile, cost-effective and eco-friendly method for the mass production of N-doped graphene-like nanosheets (NGLs), in order to industrially benefit the exploitation of N-doped graphene in electronics, which will lead to the remarkable prosperity of graphene-based nanoelectronics. NGLs have been synthesized through a one-pot single-step process involving hydrolysis/hydrothermal treatment of glucose under mild conditions, using cetyltrimethylammonium bromide (CTAB) and ammonia solution (NH4OH) as the structure-directing agents. NGLs of high yield (65 wt%) and fascinating structural features, including low oxidation level, good crystalline structural order, and large laterally sized and well-exfoliated nanosheets, have been produced. The growth mechanism has been deeply investigated. The impressive chemical nature of CTAB has a synergistic effect in controlling the NGL structure. The cationic head of CTAB and anionic OH- ions resulting from NH4OH ionization have formed a passivating layer that played a profound role in hindering the NGL agglomeration and allowing the NGLs to grow into large lateral dimensions. Meanwhile, the polar (mainly H-bonding) and apolar (hydrophobic) interfacial interactions between the passivating layer and the graphitic network can be mainly considered responsible for the mild disturbed structural order inside the sp2 crystals. On the other hand, the excessive decomposition of CTAB that is also accompanied by fair ammonia decomposition during the hydrothermal treatment resulted in plenty of hydrogen and nitrogen gases in the atmosphere. The nitrogen gas N-doped the graphitic structure and the hydrogen gas effectively deoxygenated it. Furthermore, the high evolution rate of gases throughout the synthesis system contributed to the obstruction of NGL agglomeration. These results emphasize the high yield and good quality of the synthesized NGLs, which makes such a strategy promising in trust acquisition for investors in industrial production of N-doped graphene.
Collapse
Affiliation(s)
- Marwa A A Mohamed
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt.
| | - Noha A Elessawy
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt
| | - Francisco Carrasco-Marín
- Carbon Materials Research Group, Adsorption and Catalysis Lab., Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - Hesham A F Hamad
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt. and Carbon Materials Research Group, Adsorption and Catalysis Lab., Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
34
|
Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Texter J, Crombez R, Maniglia R, Ma X, Arjunan Vasantha V, Manuelian M, Campbell R, Slater L, Mourey T. Imidazolium‐Based Stabilization of Aqueous Multiwall Carbon Nanotube Dispersions. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John Texter
- Coatings Research Institute, School of Engineering TechnologyEastern Michigan University Ypsilanti Michigan 48197 USA
| | - Rene Crombez
- Coatings Research Institute, School of Engineering TechnologyEastern Michigan University Ypsilanti Michigan 48197 USA
| | - Rafael Maniglia
- Coatings Research Institute, School of Engineering TechnologyEastern Michigan University Ypsilanti Michigan 48197 USA
| | - Xiumin Ma
- Coatings Research Institute, School of Engineering TechnologyEastern Michigan University Ypsilanti Michigan 48197 USA
| | - Vivek Arjunan Vasantha
- Coatings Research Institute, School of Engineering TechnologyEastern Michigan University Ypsilanti Michigan 48197 USA
| | - Michael Manuelian
- Netzsch Instruments North America 37 North Avenue, Burlington Massachusetts 01803 USA
| | - Robert Campbell
- Netzsch Instruments North America 37 North Avenue, Burlington Massachusetts 01803 USA
| | - Lisa Slater
- Kodak Technology CenterEastman Kodak Company Rochester, New York, 14650‐2136 USA
| | - Thomas Mourey
- Kodak Technology CenterEastman Kodak Company Rochester, New York, 14650‐2136 USA
| |
Collapse
|
36
|
Ren L, Wang M, Lu S, Pan L, Xiong Z, Zhang Z, Peng Q, Li Y, Yu J. Tailoring Thermal Transport Properties of Graphene Paper by Structural Engineering. Sci Rep 2019; 9:4549. [PMID: 30872590 PMCID: PMC6418276 DOI: 10.1038/s41598-018-38106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
As a two-dimensional material, graphene has attracted increasing attention as heat dissipation material owing to its excellent thermal transport property. In this work, we fabricated sisal nanocrystalline cellulose/functionalized graphene papers (NPGs) with high thermal conductivity by vacuum-assisted self-assembly method. The papers exhibit in-plane thermal conductivity as high as 21.05 W m−1 K−1 with a thermal conductivity enhancement of 403% from the pure cellulose paper. The good thermal transport properties of NPGs are attributed to the strong hydrogen-bonding interaction between nanocrystalline cellulose and functionalized graphene and the well alignment structure of NPGs.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Mengjie Wang
- Key Laboratory of Marine Materials and Relater Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zhongqiang Xiong
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zuocai Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qingyuan Peng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Relater Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
37
|
Abstract
Liquid-phase exfoliation (LPE) is the best-known method for the synthesis of two-dimensional (2D) nanosheets. Compared to enthalpy, entropy is hardly considered to be a factor in choosing energy-efficient solvents and has not even been verified to be negligible. In this Letter, we explore the entropy contribution in LPE by performing molecular dynamics (MD) simulation of the structural flexibility effect in graphene, hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2). Our results show that surface vibration favors the exfoliation of graphene and hBN and destabilizes the reaggregation of nanosheets in water at 300 K, whereas the opposite is found for MoS2. The entropy change is found to be 41%, 48%, and 4% of the enthalpy gain for graphene, hBN, and MoS2 in LPE, respectively, and 64%, 32%, and 56% in reaggregation, which amounts to a step advancement for solvent screening in LPE of 2D materials.
Collapse
|
38
|
Hashima Y, Ishikawa Y, Raifuku I, Inoue I, Okamoto N, Yamashita I, Minami T, Uraoka Y. Easy and green preparation of a graphene-TiO 2 nanohybrid using a supramolecular biomaterial consisting of artificially bifunctionalized proteins and its application for a perovskite solar cell. NANOSCALE 2018; 10:19249-19253. [PMID: 30141815 DOI: 10.1039/c8nr04441d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a novel preparation method for a graphene/TiO2 nanohybrid using a supramolecular biomaterial (CDT1). CDT1 can offer an increase in the dispersibility of graphene in water and subsequent complexation of graphene and TiO2. This nanohybrid was applied to a perovskite solar cell and success was achieved in improving its photoelectric conversion efficiency.
Collapse
Affiliation(s)
- Yuki Hashima
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kharissova OV, Oliva González CM, Kharisov BI. Solubilization and Dispersion of Carbon Allotropes in Water and Non-aqueous Solvents. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oxana V. Kharissova
- Universidad Autónoma de Nuevo León, Ave. Universidad, 66455 San Nicolás de los Garza, NL, Mexico
| | | | - Boris I. Kharisov
- Universidad Autónoma de Nuevo León, Ave. Universidad, 66455 San Nicolás de los Garza, NL, Mexico
| |
Collapse
|
40
|
Jang I, Sung BJ. Bernal stacking-assisted shear exfoliation of nanoplate bilayers. J Chem Phys 2018; 148:214905. [DOI: 10.1063/1.5029501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Inhyuk Jang
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
41
|
Mateos R, García-Zafra A, Vera-López S, San Andrés MP, Díez-Pascual AM. Effect of Graphene Flakes Modified by Dispersion in Surfactant Solutions on the Fluorescence Behaviour of Pyridoxine. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E888. [PMID: 29799471 PMCID: PMC6025388 DOI: 10.3390/ma11060888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022]
Abstract
The influence of graphene (G) dispersions in different types of surfactants (anionic, non-ionic, and cationic) on the fluorescence of vitamin B₆ (pyridoxine) was studied. Scanning electron microscopy (SEM) was used to evaluate the quality of the G dispersions via measuring their flake thickness. The effect of surfactant type and concentration on the fluorescence intensity was analyzed, and fluorescence quenching effects were found for all of the systems. These turn out to be more intense with increasing both surfactant and G concentrations, albeit they do not depend on the G/surfactant weight ratio. For the same G concentration, the magnitude of the quenching follows the order: cationic > non-ionic ≥ anionic. The cationic surfactants, which strongly adsorb onto G via electrostatic attraction, are the most effective dispersing agents and they enable a stronger interaction with the zwitterionic form of the vitamin; the dispersing power improves with increasing the surfactant chain length. The fit of the experimental data to the Stern-Volmer equation suggests either a static or dynamic quenching mechanism for the dispersions in non-ionic surfactants, while those in ionic surfactants show a combined mechanism. The results that were obtained herein have been compared to those that were reported earlier for the quenching of another vitamin, riboflavin, to elucidate how the change in the vitamin structure influences the interactions with G in the surfactant dispersions.
Collapse
Affiliation(s)
- Rocío Mateos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Alba García-Zafra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Soledad Vera-López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - María Paz San Andrés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Alcalá University, 28871 Alcalá de Henares, Madrid, Spain.
- Institute of Chemistry Research, "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
42
|
Liu C, Qiu S, Du P, Zhao H, Wang L. An ionic liquid-graphene oxide hybrid nanomaterial: synthesis and anticorrosive applications. NANOSCALE 2018; 10:8115-8124. [PMID: 29671452 DOI: 10.1039/c8nr01890a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, an ionic liquid-graphene oxide hybrid nanomaterial was prepared via a facile grafting reaction between an imidazole ionic liquid and graphene oxide. FTIR, Raman, and XPS spectra demonstrated that imidazole ionic liquids were successfully covalently attached to the surface of graphene oxide nanosheets. The resulting hybrid nanomaterial, with a thickess of ca. 3 nm, can be stably dispersed in water. Results obtained from electrochemical impedance spectroscopy revealed that ionic liquid-graphene oxide hybrids effectively improved the anticorrosion performance of epoxy-based waterborne coatings. Moreover, ionic liquids performed two functions: (a) they facilitated the dispersion of graphene in a polymer matrix and then utilized the impermeable barrier capability of graphene and (b) they endowed the graphene sheets with a corrosion inhibition effect. The scanning vibrating electrode technique combined with electrochemical tests proved that the enhanced protective performance of the as-prepared composite coatings was attributed to the synergistic effect of the impermeable property of graphene nanosheets and the inhibitory function of the imidazole-based ionic liquid.
Collapse
Affiliation(s)
- Chengbao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | | | | | | | | |
Collapse
|
43
|
Chen S, Sun S, Li C, Pittman CU, Lacy TE, Hu S, Gwaltney SR. Molecular dynamics simulations of the aggregation behaviour of overlapped graphene sheets in linear aliphatic hydrocarbons. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1465569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shenghui Chen
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, PR China
| | - Shuangqing Sun
- College of Science, China University of Petroleum, Qingdao, PR China
| | - Chunling Li
- College of Science, China University of Petroleum, Qingdao, PR China
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
| | - Thomas E. Lacy
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Songqing Hu
- College of Science, China University of Petroleum, Qingdao, PR China
| | - Steven R. Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
44
|
Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. J Colloid Interface Sci 2018; 516:34-47. [DOI: 10.1016/j.jcis.2018.01.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
|
45
|
Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev 2018; 46:4400-4416. [PMID: 28722038 DOI: 10.1039/c7cs00363c] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The graphene family has captured the interest and the imagination of an increasing number of scientists working in different fields, ranging from composites to flexible electronics. In the area of biomedical applications, graphene is especially involved in drug delivery, biosensing and tissue engineering, with strong contributions to the whole nanomedicine area. Besides the interesting results obtained so far and the evident success, there are still many problems to solve, on the way to the manufacturing of biomedical devices, including the lack of standardization in the production of the graphene family members. Control of lateral size, aggregation state (single vs. few layers) and oxidation state (unmodified graphene vs. oxidized graphenes) is essential for the translation of this material into clinical assays. In this Tutorial Review we critically describe the latest developments of the graphene family materials into the biomedical field. We analyze graphene-based devices starting from graphene synthetic strategies, functionalization and processibility protocols up to the final in vitro and in vivo applications. We also address the toxicological impact and the limitations in translating graphene materials into advanced clinical tools. Finally, new trends and guidelines for future developments are presented.
Collapse
Affiliation(s)
- Giacomo Reina
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France.
| | - José Miguel González-Domínguez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Alejandro Criado
- Carbon Nanobiotechnology Laboratory, CIC BiomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastian, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France.
| | - Maurizio Prato
- Carbon Nanobiotechnology Laboratory, CIC BiomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastian, Spain and Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain and Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste 34127, Italy.
| |
Collapse
|
46
|
Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 2018; 46:1124-1159. [PMID: 28180218 DOI: 10.1039/c6cs00620e] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Collapse
Affiliation(s)
- Wenjing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
47
|
Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J. Scalable exfoliation and dispersion of two-dimensional materials - an update. Phys Chem Chem Phys 2018; 19:921-960. [PMID: 27976772 DOI: 10.1039/c6cp06813h] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation of dispersions of single- and few-sheet 2D materials in various solvents, as well as the characterization methods applied to such dispersions, is critically reviewed. Motivating factors for producing single- and few-sheet dispersions of 2D materials in liquids are briefly discussed. Many practical applications are expected for such materials that do not require high purity formulations and tight control of donor and acceptor concentrations, as required in conventional Fab processing of semiconductor chips. Approaches and challenges encountered in exfoliating 2D materials in liquids are reviewed. Ultrasonication, mechanical shearing, and electrochemical processing approaches are discussed, and their respective limitations and promising features are critiqued. Supercritical and more conventional liquid and solvent processing are then discussed in detail. The effects of various types of stabilizers, including surfactants and other amphiphiles, as well as polymers, including homopolymeric electrolytes, nonionic polymers, and nanolatexes, are discussed. Consideration of apparent successes of stabilizer-free dispersions indicates that extensive exfoliation in the absence of dispersing aids results from processing-induced surface modifications that promote stabilization of 2D material/solvent interactions. Also apparent paradoxes in "pristineness" and optical extinctions in dispersions suggest that there is much we do not yet quantitatively understand about the surface chemistry of these materials. Another paradox, emanating from modeling dilute solvent-only exfoliation by sonication using polar components of solubility parameters and surface tension for pristine graphene with no polar structural component, is addressed. This apparent paradox appears to be resolved by realizing that the reactivity of graphene to addition reactions of solvent radicals produced by sonolysis is accompanied by unintended polar surface modifications that promote attractive interactions with solvent. This hypothesis serves to define important theoretical and experimental studies that are needed. We conclude that the greatest promise for high volume and high concentration processing lies in applying methods that have not yet been extensively reported, particularly wet comminution processing using small grinding media of various types.
Collapse
Affiliation(s)
- Hengcong Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuqin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yunnan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Yan
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| |
Collapse
|
48
|
Rodríguez AM, Muñoz-García AB, Crescenzi O, Vázquez E, Pavone M. Stability of melamine-exfoliated graphene in aqueous media: quantum-mechanical insights at the nanoscale. Phys Chem Chem Phys 2018; 18:22203-9. [PMID: 27452832 DOI: 10.1039/c6cp04213a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent experiments, melamine (1,3,5-triazine-2,4,6-triamine) has been proposed as an effective exfoliating agent to obtain high quality graphene from graphite. After washing out the melamine in excess, small amounts (ppm) are still needed to stabilize the dispersion of graphene flakes in aqueous media. To understand the origin of this behaviour, we investigated the melamine-graphene-water system and the fundamental interactions that determine its structure and energetics. To disentangle the subtle interplay of hydrogen-bonding and dispersive forces we used state-of-the-art ab initio calculations based on density functional theory. First, we focused on the case of water molecules interacting with melamine-graphene assemblies at different melamine coverages. We found that water-melamine interactions provide the driving force for washing off the melamine from graphene. Then, we addressed the interaction of single and double layers of water molecules with the graphene surface in the presence of an adsorbed melamine molecule. We found that this melamine acts as a non-covalent anchor for keeping a number of water molecules conveniently close to the graphene surface, thus helping its stabilization in aqueous media. Our analysis helps understanding how competing weak forces can lead to a stable graphene water suspension thanks to small amounts of adsorbed melamine. From our results, we derive simple indications on how the water-graphene interfacial properties can be tuned via non-covalent adsorption of small functional molecules with H-bond donor/acceptor groups. These new hints can be helpful to prepare stable graphene dispersions in water and so to unlock graphene potential in aqueous environments.
Collapse
Affiliation(s)
- Antonio M Rodríguez
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Ana B Muñoz-García
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Michele Pavone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| |
Collapse
|
49
|
Vera-López S, Martínez P, San Andrés MP, Díez-Pascual AM, Valiente M. Study of graphene dispersions in sodium dodecylsulfate by steady-state fluorescence of pyrene. J Colloid Interface Sci 2017; 514:415-424. [PMID: 29278797 DOI: 10.1016/j.jcis.2017.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Aqueous solutions of ionic surfactants allow the exfoliation of graphene, that can be explained considering the adsorption model of ionic surfactants to hydrophobic surfaces. For many years, pyrene has been used as a fluorescent probe because its sensitivity to the micro-environment. The study of pyrene fluorescence in the presence of different graphene dispersions in an ionic surfactant, would improve the knowledge of the graphene-surfactant interactions. EXPERIMENTS Different dispersions of graphene in sodium dodecylsulfate were prepared at different weight ratios 0.5, 1 and 2%. The dispersions have been studied by Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of the dispersions on the pyrene fluorescence has been investigated. FINDINGS The graphene sheets modified by the surfactant quench the fluorescence of pyrene, which depends on the amount of graphene, the concentration of surfactant and the weight ratio. For surfactant concentrations below the critical micelle concentration, the quenching effect is higher as the weight ratio increases. Once this concentration is reached, the fluorescence increases slightly and then levels off. This behavior has been explained by the adsorption model. For a constant surfactant concentration, two straight lines can be observed in the Stern-Volmer plots whose cut-off point is approximately 20 mg L-1 of graphene.
Collapse
Affiliation(s)
- S Vera-López
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, 28871 Madrid, Spain.
| | - P Martínez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, 28871 Madrid, Spain
| | - M P San Andrés
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, 28871 Madrid, Spain
| | - A M Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, 28871 Madrid, Spain
| | - M Valiente
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcalá, 28871 Madrid, Spain
| |
Collapse
|
50
|
Soltani T, Lee BK. Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide. ULTRASONICS SONOCHEMISTRY 2017; 38:693-703. [PMID: 27622703 DOI: 10.1016/j.ultsonch.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
High quality graphene oxide (GO) with low layer number (less than five layers) and large inter-layer space was produced via a new and efficient method using environmentally friendly, fast and economic ultrasonic radiation. The ultrasonic method neither generated any toxic gas nor required any NaNO3, which have been the main drawbacks of the Hummers methods. The major obstacles of the recently reported improved Hummers method for GO synthesis, such as high reaction temperature (50°C) and long reaction time (12h), were successfully solved using a low intensity-ultrasonic bath for 45min at 30°C, which significantly reduced the reaction time and energy consumption for GO synthesis. Furthermore, ultrasonic GO exhibited higher surface area, higher crystallinity and higher oxidation efficiency with many hydrophilic groups, fewer sheets with higher spaces between them, a higher sp3/sp2 ratio, and more uniform size distribution than classically prepared GO. Therefore, the new ultrasonic method could be applicable for the sustainable and large-scale production of GO. The production yield of the ultrasonic-assisted GO was 1.25-fold greater than the GO synthesized with the improved Hummers method. Furthermore, the required production cost based on total energy consumption for ultrasonic GO was only 6.5% of that for classical GO.
Collapse
Affiliation(s)
- Tayyebeh Soltani
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan 680-749, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan 680-749, Republic of Korea.
| |
Collapse
|