1
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
2
|
Jindra M, Tumova S, Bittova L, Tuma R, Sedlak D. Agonist-dependent action of the juvenile hormone receptor. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101234. [PMID: 39025365 DOI: 10.1016/j.cois.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.
Collapse
Affiliation(s)
- Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic.
| | - Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - David Sedlak
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
3
|
Huang C, Zhao Y, Hu J. Endocrine-Disruptive Effects of Adenylate Cyclase Activator Forskolin: In Vitro and In Vivo Evidence. TOXICS 2024; 12:701. [PMID: 39453121 PMCID: PMC11510926 DOI: 10.3390/toxics12100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Forskolin (FSK) is a potent adenylate cyclase activator and may display endocrine-disruptive effects via the disruption of steroidogenesis. Here, we tested this hypothesis by use of the in vitro H295R steroidogenesis assay and the in vivo long-term medaka (Oryzias latipes) exposure assay. The results from the H295R assay demonstrated that the transcriptional levels of a series of genes involved in steroidogenesis, including HSD3B2, CYP11A, CYP11B2, CYP17, CYP19, and CYP21, were remarkably up-regulated. Meanwhile, the productions of estrogens (17β-estradiol (17β-E2) and estrone (E1)) and progestins (progesterone (PGT) and 17-hydroxyprogesterone (17-HPT)) were significantly increased, and those of androgens (androstenedione (ADD) and testosterone (TTR)) were significantly inhibited. After waterborne exposure of medaka to FSK for 100 days, the gene expressions of HMGR, HSD17B1, CYP17B, CYP19A, and CYP21A were significantly enhanced in the gonads of male medaka. 17β-E2 was remarkably induced, although without statistical significance. In addition, the biomarker genes for estrogenicity, including VTG-I, VTG-II, CHG-H, and CHG-L, were significantly induced in male medaka livers. Pathological damage to their gonads was further identified. Therefore, the results demonstrated that FSK modulates the transcriptions of steroidogenesis genes and alters hormone levels in vitro and in vivo, which is a mark of endocrine disruption in organisms.
Collapse
Affiliation(s)
- Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
| | - Yanbin Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (C.H.); (J.H.)
| |
Collapse
|
4
|
Sharma S, Rousselle D, Parker E, Ekpruke CD, Alford R, Babayev M, Commodore S, Silveyra P. Sensitivity of Mouse Lung Nuclear Receptors to Electronic Cigarette Aerosols and Influence of Sex Differences: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:810. [PMID: 38929056 PMCID: PMC11203813 DOI: 10.3390/ijerph21060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The emerging concern about chemicals in electronic cigarettes, even those without nicotine, demands the development of advanced criteria for their exposure and risk assessment. This study aims to highlight the sensitivity of lung nuclear receptors (NRs) to electronic cigarette e-liquids, independent of nicotine presence, and the influence of the sex variable on these effects. Adult male and female C57BL/6J mice were exposed to electronic cigarettes with 0%, 3%, and 6% nicotine daily (70 mL, 3.3 s, 1 puff per min/30 min) for 14 days, using the inExpose full body chamber (SCIREQ). Following exposure, lung tissues were harvested, and RNA extracted. The expression of 84 NRs was determined using the RT2 profiler mRNA array (Qiagen). Results exhibit a high sensitivity to e-liquid exposure irrespective of the presence of nicotine, with differential expression of NRs, including one (females) and twenty-four (males) in 0% nicotine groups compared to non-exposed control mice. However, nicotine-dependent results were also significant with seven NRs (females), fifty-three NRs (males) in 3% and twenty-three NRs (female) twenty-nine NRs (male) in 6% nicotine groups, compared to 0% nicotine mice. Sex-specific changes were significant, but sex-related differences were not observed. The study provides a strong rationale for further investigation.
Collapse
Affiliation(s)
- Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Erik Parker
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Sarah Commodore
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (S.S.); (D.R.); (R.A.); (M.B.); (S.C.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Piir G, Sild S, Maran U. Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders. CHEMOSPHERE 2024; 347:140671. [PMID: 37951393 DOI: 10.1016/j.chemosphere.2023.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
An abnormal hormonal activity or exposure to endocrine-disrupting chemicals (EDCs) can cause endocrine system malfunction. Among the many interactions EDCs can affect is the disruption of estrogen signalling, which can lead to adverse health effects such as cancer, osteoporosis, neurodegenerative diseases, cardiovascular disease, insulin resistance, and obesity. Knowing which chemical can act as an EDC is a significant advantage and a practical necessity. New Approach Methodologies (NAM) computational models offer a quick and cost-effective solution for preliminary hazard assessment of chemicals without animal testing. Therefore, a machine learning approach was used to investigate the relationships between estrogen receptor (ER) activity and chemical structure to identify chemicals that can interact with ER. For this purpose, the consolidated in vitro assay data from ToxCast/Tox21 projects was used for developing Random Forest classification models for ER binding, agonists, and antagonists. The overall classification prediction accuracy reaches up to 82%, depending on whether the model predicted agonists, antagonists, or compounds that bind to the active site. Given the imbalance in endocrine disruption data, the derived models are good candidates for deprioritising chemicals and reducing animal testing. The interpretation of theoretical molecular descriptors of the models was consistent with the molecular interactions known in the ligand binding pocket. The estimated class probabilities enabled the analysis of the applicability domain of the developed models and the assessment of the predictions' reliability, followed by the guidelines for interpreting prediction results. The models are openly accessible and useable at QsarDB.org (http://dx.doi.org/10.15152/QDB.259) according to the FAIR (Findable, Accessible, Interoperable, Reusable) principles.
Collapse
Affiliation(s)
- Geven Piir
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia
| | - Sulev Sild
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila 14A, Tartu, 50411, Estonia.
| |
Collapse
|
6
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
7
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ahn C, Jeung EB. Endocrine-Disrupting Chemicals and Disease Endpoints. Int J Mol Sci 2023; 24:ijms24065342. [PMID: 36982431 PMCID: PMC10049097 DOI: 10.3390/ijms24065342] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have significant impacts on biological systems, and have been shown to interfere with physiological systems, especially by disrupting the hormone balance. During the last few decades, EDCs have been shown to affect reproductive, neurological, and metabolic development and function and even stimulate tumor growth. EDC exposure during development can disrupt normal development patterns and alter susceptibility to disease. Many chemicals have endocrine-disrupting properties, including bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols, and phthalates. These compounds have gradually been elucidated as risk factors for many diseases, such as reproductive, neural, and metabolic diseases and cancers. Endocrine disruption has been spread to wildlife and species that are connected to the food chains. Dietary uptake represents an important source of EDC exposure. Although EDCs represent a significant public health concern, the relationship and specific mechanism between EDCs and diseases remain unclear. This review focuses on the disease-EDC relationship and the disease endpoints associated with endocrine disruption for a better understanding of the relationship between EDCs-disease and elucidates the development of new prevention/treatment opportunities and screening methods.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-043-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
9
|
Casas-Rodriguez A, Cameán AM, Jos A. Potential Endocrine Disruption of Cyanobacterial Toxins, Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2022; 14:toxins14120882. [PMID: 36548779 PMCID: PMC9785827 DOI: 10.3390/toxins14120882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN), although classified as hepatotoxins and cytotoxins, respectively, have been shown to also induce toxic effects in many other systems and organs. Among them, their potential endocrine disruption (ED) activity has been scarcely investigated. Considering the increasing relevance of ED on humans, mammals, and aquatic organisms, this work aimed to review the state-of-the-art regarding the toxic effects of MCs and CYN at this level. It has been evidenced that MCs have been more extensively investigated than CYN. Reported results are contradictory, with the presence or absence of effects, but experimental conditions also vary to a great extent. In general, both toxins have shown ED activity mediated by very different mechanisms, such as estrogenic responses via a binding estrogen receptor (ER), pathological changes in several organs and cells (testis, ovarian cells), and a decreased gonad-somatic index. Moreover, toxic effects mediated by reactive oxygen species (ROS), changes in transcriptional responses on several endocrine axes and steroidogenesis-related genes, and changes in hormone levels have also been reported. Further research is required in a risk assessment frame because official protocols for assessment of endocrine disrupters have not been used. Moreover, the use of advanced techniques would aid in deciphering cyanotoxins dose-response relationships in relation to their ED potential.
Collapse
|
10
|
Mróz M, Gajęcka M, Brzuzan P, Lisieska-Żołnierczyk S, Leski D, Zielonka Ł, Gajęcki MT. Carry-Over of Zearalenone and Its Metabolites to Intestinal Tissues and the Expression of CYP1A1 and GSTπ1 in the Colon of Gilts before Puberty. Toxins (Basel) 2022; 14:354. [PMID: 35622600 PMCID: PMC9145504 DOI: 10.3390/toxins14050354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to evaluate whether low doses of zearalenone (ZEN) affect the carry-over of ZEN and its metabolites to intestinal tissues and the expression of CYP1A1 and GSTπ1 in the large intestine. Prepubertal gilts (with a BW of up to 14.5 kg) were exposed in group ZEN to daily ZEN5 doses of 5 μg/kg BW (n = 15); in group ZEN10, 10 μg/kg BW (n = 15); in group ZEN15, 15 μg/kg BW (n = 15); or were administered a placebo (group C, n = 15) throughout the experiment. After euthanasia, tissues were sampled on exposure days 7, 21, and 42 (D1, D2, and D3, respectively). The results confirmed that the administered ZEN doses (LOAEL, NOAEL, and MABEL) were appropriate to reliably assess the carry-over of ZEN. Based on the observations made during 42 days of exposure to pure ZEN, it can be hypothesized that all mycotoxins (ZEN, α-zearalenol, and β-zearalenol) contribute to a balance between intestinal cells and the expression of selected genes encoding enzymes that participate in biotransformation processes in the large intestine; modulate feminization processes in prepubertal gilts; and elicit flexible, adaptive responses of the macroorganism to mycotoxin exposure at the analyzed doses.
Collapse
Affiliation(s)
- Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719 Olsztyn, Poland;
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Dawid Leski
- Research and Development Department, Wipasz S.A., Wadąg 9, 10-373 Wadąg, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| |
Collapse
|
11
|
Doan TQ, Pham AD, Brouhon JM, Lundqvist J, Scippo ML. Profile occurrences and in vitro effects of toxic organic pollutants in metal shredding facilities in Wallonia (Belgium). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127009. [PMID: 34481394 DOI: 10.1016/j.jhazmat.2021.127009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
End-of-life vehicles and e-waste contain several hazardous substances that can contaminate the environment during treatment processes. Occurrences and adverse effects of toxic organic pollutants emitted from 3 shredder plants located in Wallonia, Belgium, were investigated by chemical and biological analyses of fluff, dust, and scrubbing sludge sampled in 2019. Site 1 showed the highest concentrations of chlorinated compounds in sludge with 7.5 ng/g polychlorinated dibenzo-dioxins/furans and 84.5 µg/g estimated total polychlorinated biphenyls, while site 3 led the brominated flame retardant levels in dust (53.4 µg/g). The level of polycyclic aromatic hydrocarbons was highest in the sludge samples, 78 and 71 µg/g for sites 2 and 3, respectively. The samples induced significant dioxin-like activities in murine and human cells at concentrations of around 0.01-0.1 and 0.5-1 ng (sample) per ml (medium), respectively, with the efficacy similar to 2,3,7,8-tetrachlorodibenzodioxin and EC50 values of around 1 and 10 ng/ml. The samples also displayed high estrogenic activities, already at 1 ng/ml, and several induced a response as efficient as 17β-estradiol, albeit a low androgenic activity. Shredder workers were estimated to be highly exposed to dioxin-like compounds through dust ingestion and dermal absorption, which is of concern.
Collapse
Affiliation(s)
- Thi Que Doan
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden; Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Anh Duc Pham
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jean-Marc Brouhon
- Walloon Agency for Air and Climate, Public Service of Wallonia, Jambes, Belgium
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège 4000, Belgium
| |
Collapse
|
12
|
Sellami A, Réau M, Montes M, Lagarde N. Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Front Endocrinol (Lausanne) 2022; 13:986016. [PMID: 36176461 PMCID: PMC9513233 DOI: 10.3389/fendo.2022.986016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Being in the center of both therapeutic and toxicological concerns, NRs are widely studied for drug discovery application but also to unravel the potential toxicity of environmental compounds such as pesticides, cosmetics or additives. High throughput screening campaigns (HTS) are largely used to detect compounds able to interact with this protein family for both therapeutic and toxicological purposes. These methods lead to a large amount of data requiring the use of computational approaches for a robust and correct analysis and interpretation. The output data can be used to build predictive models to forecast the behavior of new chemicals based on their in vitro activities. This atrticle is a review of the studies published in the last decade and dedicated to NR ligands in silico prediction for both therapeutic and toxicological purposes. Over 100 articles concerning 14 NR subfamilies were carefully read and analyzed in order to retrieve the most commonly used computational methods to develop predictive models, to retrieve the databases deployed in the model building process and to pinpoint some of the limitations they faced.
Collapse
|
13
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
14
|
Wang F, Cai W, Shi W, Wu H, Shen Q, He Y, Cui S, An L. Single molecule real-time sequencing revealing novel insights on the response to estrogen and androgen exposure in freshwater snails. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105953. [PMID: 34521059 DOI: 10.1016/j.aquatox.2021.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The molecular mode of action underpinning the response of mollusks exposure to endocrine disrupting chemicals (EDCs) remains unclear due to a lack of available information regarding their genome. Single molecule real-time (SMRT) sequencing makes it possible to reveal molecular mechanisms by direct sequencing of full-length transcripts. In the present study, the transcriptome profile of the freshwater snail Parafossarulus striatulus after exposure to 17β-estradiol (E2) or 17α-methyltestosterone (MT) was evaluated using SMRT sequencing strategy. In total, 216,598 non-redundant and full-length gene isoforms were generated and 106,266 isoforms were predicted with a complete open reading frame (ORF). Moreover, 60.36% of the isoforms were matched to known proteins in at least one of six databases. Differential gene expression analyses showed significantly different patterns in paired samples with different treatments. The expression levels of several membrane receptor isoforms of P. striatulus including dopamine receptor (DR), FMRFamide receptor (FMRFaR), neuropeptide Y receptor (NYR) and neuropeptide FF receptor (NFFR), but not estrogen receptor (ER) or estrogen-related receptor (ERR), were significantly affected by E2 and MT. These findings suggest that activation of membrane receptors, as well as other signaling pathways, might be critical for mediating the effects of endocrine disruption in mollusks. The transcriptome information obtained from the SMRT sequencing provides a significant contribution to the investigation of the molecular mode of action of endocrine disrupting chemicals on P. striatulus.
Collapse
Affiliation(s)
- Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenqian Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenzhuo Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanan He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 2021; 35:101579. [PMID: 34563408 DOI: 10.1016/j.beem.2021.101579] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.
Collapse
Affiliation(s)
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium
| | - Sabine Heger
- Children's Hospital Bult, Janusz-Korczak-Allee 12, 30173, Hannover, Germany
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| |
Collapse
|
16
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. A computational insight into endocrine disruption by polychlorinated biphenyls via non-covalent interactions with human nuclear receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112086. [PMID: 33640727 DOI: 10.1016/j.ecoenv.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Production of polychlorinated biphenyls (PCBs) was banned a long time ago because of their harmful health effects but humans continue to be exposed to residual PCBs in the environment. In this study, the susceptibility of human nuclear receptors to binding by PCBs was investigated using molecular docking simulation. Findings revealed that PCBs belonging to ortho-substituted, mono-ortho-substituted and non-ortho-substituted congeners could bind to agonistic conformations of androgen (AR), estrogen (ER α and ER β), glucocorticoid (GR) and thyroid hormone (TR α and TR β) receptors as well as antagonistic conformation of androgen receptor (AR an) but only ortho-substituted and mono-ortho-substituted PCBs could bind to estrogen receptors in their antagonistic conformations (ER α an and ER β an). Further molecular docking analyses showed that PCBs mimic the modes of interaction observed for the co-crystallized ligands in the crystal structures of the affected receptors, utilizing 81%, 83%, 78%, 60%, 75%, 60%, 86%, 100% and 75% of the amino acid residues utilized by the co-crystallized ligands for binding in AR, AR an, ER α, ER α an, ER β, ER β an, GR, TR α and TR β respectively. This computational study suggests that PCBs may cause endocrine disruption via formation of non-covalent interactions with androgen, estrogen, glucocorticoid and thyroid hormone receptors.
Collapse
Affiliation(s)
- Lukman K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Chemistry, Bauchi State University, Gadau, Nigeria.
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Stephen E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
17
|
Predicting Potential Endocrine Disrupting Chemicals Binding to Estrogen Receptor α (ERα) Using a Pipeline Combining Structure-Based and Ligand-Based in Silico Methods. Int J Mol Sci 2021; 22:ijms22062846. [PMID: 33799614 PMCID: PMC7999354 DOI: 10.3390/ijms22062846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen receptors α (ERα) are transcription factors involved in several physiological processes belonging to the nuclear receptors (NRs) protein family. Besides the endogenous ligands, several other chemicals are able to bind to those receptors. Among them are endocrine disrupting chemicals (EDCs) that can trigger toxicological pathways. Many studies have focused on predicting EDCs based on their ability to bind NRs; mainly, estrogen receptors (ER), thyroid hormones receptors (TR), androgen receptors (AR), glucocorticoid receptors (GR), and peroxisome proliferator-activated receptors gamma (PPARγ). In this work, we suggest a pipeline designed for the prediction of ERα binding activity. The flagged compounds can be further explored using experimental techniques to assess their potential to be EDCs. The pipeline is a combination of structure based (docking and pharmacophore models) and ligand based (pharmacophore models) methods. The models have been constructed using the Environmental Protection Agency (EPA) data encompassing a large number of structurally diverse compounds. A validation step was then achieved using two external databases: the NR-DBIND (Nuclear Receptors DataBase Including Negative Data) and the EADB (Estrogenic Activity DataBase). Different combination protocols were explored. Results showed that the combination of models performed better than each model taken individually. The consensus protocol that reached values of 0.81 and 0.54 for sensitivity and specificity, respectively, was the best suited for our toxicological study. Insights and recommendations were drawn to alleviate the screening quality of other projects focusing on ERα binding predictions.
Collapse
|
18
|
Westrup JL, Bertoldi C, Cercena R, Dal-Bó AG, Soares RMD, Fernandes AN. Adsorption of endocrine disrupting compounds from aqueous solution in poly(butyleneadipate-co-terephthalate) electrospun microfibers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
20
|
Piir G, Sild S, Maran U. Binary and multi-class classification for androgen receptor agonists, antagonists and binders. CHEMOSPHERE 2021; 262:128313. [PMID: 33182081 DOI: 10.1016/j.chemosphere.2020.128313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Androgens and androgen receptor regulate a variety of biological effects in the human body. The impaired functioning of androgen receptor may have different adverse health effects from cancer to infertility. Therefore, it is important to determine whether new chemicals have any binding activity and act as androgen agonists or antagonists before commercial use. Due to the large number of chemicals that require experimental testing, the computational methods are a viable alternative. Therefore, the aim of the present study was to develop predictive QSAR models for classifying compounds according to their activity at the androgen receptor. A large data set of chemicals from the CoMPARA project was used for this purpose and random forest classification models have been developed for androgen binding, agonistic, and antagonistic activity. In addition, a unique effort has been made for multi-class approach that discriminates between inactive compounds, agonists and antagonists simultaneously. For the evaluation set, the classification models predicted agonists with 80% of accuracy and for the antagonists' and binders' the respective metrics were 72% and 78%. Combining agonists, antagonists and inactive compounds into a multi-class approach added complexity to the modelling task and resulted to 64% prediction accuracy for the evaluation set. Considering the size of the training data sets and their imbalance, the achieved evaluation accuracy is very good. The final classification models are available for exploring and predicting at QsarDB repository (https://doi.org/10.15152/QDB.236).
Collapse
Affiliation(s)
- Geven Piir
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia
| | - Sulev Sild
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia
| | - Uko Maran
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia.
| |
Collapse
|
21
|
Tq D, L C, A I, K N, M M, Ml S. In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. CHEMOSPHERE 2020; 258:127332. [PMID: 32554009 DOI: 10.1016/j.chemosphere.2020.127332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Prioritizing chemicals posing threats to drinking water resources is crucial for legislation considering the cost of water treatment, remediation, and monitoring. We profiled in vitro potential endocrine disrupting activities (both agonistic and antagonistic) of 18 contaminants most prevalent in Walloon raw water resources intended for drinking water production, including several compound groups: pesticides, perfluorinated compounds, polycyclic aromatic hydrocarbons, a corrosion inhibitor, and bisphenol A. Mixtures thereof relevant for human realistic exposure were also investigated. Seven luciferase reporter gene cell lines were used i.e. three (human and rat) responsive to dioxins through the aryl hydrocarbon receptor (AhR) and four (human) responsive to steroids through the estrogen (ER), androgen (AR), progesterone (PR), and glucocorticoid (GR) receptors. Among the 18 compounds, ten caused at least one response in at least one receptor. Specifically, chlorpyrifos, bisphenol A, fluoranthene, phenanthrene, and benzo [a]pyrene displayed significant activities on several receptors. Bisphenol A agonized ER, but abolished the cells' response to androgen and progesterone. While fluoranthene and phenanthrene strongly reduced human AhR and AR transactivation, benzo [a]pyrene strongly activated AhR and ER, but inhibited GR and AR. In human breast cancer cells, benzo [a]pyrene dramatically activated AhR, inducing a 10-fold higher response than 2,3,7,8-tetrachlorodibenzodioxin (TCDD) at concentrations possibly found realistically in human blood. The mixture of the 18 compounds exerted both ER and rat AhR agonism, with the main contribution being from benzo [a]pyrene or its combination with bisphenol A. Moreover, the mixture significantly inhibited TCDD-induced CYP1A activity (detected only by EROD assays) in human hepatoma cells.
Collapse
Affiliation(s)
- Doan Tq
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Connolly L
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - Igout A
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - Nott K
- La Société Wallonne des Eaux (SWDE), Verviers, 4800, Belgium
| | - Muller M
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - Scippo Ml
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
22
|
Neale PA, Grimaldi M, Boulahtouf A, Leusch FDL, Balaguer P. Assessing species-specific differences for nuclear receptor activation for environmental water extracts. WATER RESEARCH 2020; 185:116247. [PMID: 32758789 DOI: 10.1016/j.watres.2020.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
23
|
Novák J, Vaculovič A, Klánová J, Giesy JP, Hilscherová K. Seasonal variation of endocrine disrupting potentials of pollutant mixtures associated with various size-fractions of inhalable air particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114654. [PMID: 32375093 DOI: 10.1016/j.envpol.2020.114654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution, namely exposure to air particulate matter (PM), has been shown to be connected with a number of adverse health effects. At least part of the effects can be caused by organic pollutant mixtures associated with PM, which can elicit a wide range of specific toxic potentials. These potentials could be affected by seasonal variation of pollutant mixtures and PM size fraction. To examine this, six size subfractions of PM10 were collected at rural and urban site in the Czech Republic in a year-long sampling campaign. The samples were assessed for aryl hydrocarbon (AhR)-mediated activity, estrogenicity and anti-androgenicity using mammalian cell models. The concentrations of detected toxic potentials differed among seasons. The greatest levels were observed in samples collected during winter when AhR-mediated effects and estrogenicity were at least 10-times greater than in summer. While the observed potentials were mostly less pronounced in samples from rural area, during winter, their AhR-mediated activity was twice as great as at the urban site. This was probably caused by the low-quality of fuel used for heating at the rural site. Assessed toxic potentials were associated mainly with PM size fractions with lesser aerodynamic diameters (<1 μm). Toxic potentials were compared with data from chemical analyses covering 102 chemicals from different pollutant groups to model their contribution to the observed effects. For AhR-mediated activity, chemical analyses explained on average 44% of the effect and the main identified effect-drivers were polycyclic aromatic hydrocarbons. For estrogenicity and anti-androgenicity, detected chemicals were able to explain on average less than 1.6% and 11% of the potentials, with their highest explicability reaching 13% and 57%, respectively. This was affected by the lack of data on specific toxic potency of some detected air pollutants, but also indicates a possible role of further not analyzed chemicals in these effects.
Collapse
Affiliation(s)
- Jiří Novák
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anita Vaculovič
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - John P Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Klára Hilscherová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Zhang H, Jia Y, Tang Z, Wang L, Hu W, Gao J, Hu J, Yang M. Screening of chemicals with binding activities of liver X receptors from reclaimed waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136570. [PMID: 31954245 DOI: 10.1016/j.scitotenv.2020.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Wastewater reclamation and reuse is considered an attractive and practical method for coping with water scarcity. However, the presence of micropollutants in reclaimed water, including endocrine disrupting chemicals (EDCs), is a major public health concern. This study attempted to identify unknown EDCs with liver X receptor (LXRα) agonist/antagonist activities in reclaimed wastewater, using nuclear receptors binding extraction coupled with high-resolution mass spectrometry (NRBE-HRMS). In total, 105 compounds in the reclaimed wastewater exhibited LXRα-binding activity. Among them, two previously unknown LXRα-antagonist compounds, catechol and 4-acetamidoantipyrine, were identified, based on authentic standards. The two LXRα-antagonist compounds exhibited weak LXRα-antagonist activities in a yeast two-hybrid assay. Catechol and 4-acetamidoantipyrine inhibited the β-galactosidase activity induced by 60 nM of TO901317 in an LXRα yeast assay, with IC20 values of 79,938.9 nM and 6286.4 nM, respectively. To the best of our knowledge, this is the first study to identify EDCs in reclaimed wastewater with LXRα-agonist/antagonist activity using the NRBE-HRMS method.
Collapse
Affiliation(s)
- Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Zhuoheng Tang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Wenxin Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
26
|
Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and β (ERα and ERβ), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and β (TRα and TRβ). More recently, the retinoid X receptors (RXRα, RXRβ and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARβ and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and β (LXRα and LXβ) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
27
|
Re A, Ferraù F, Cafiero C, Spagnolo F, Barresi V, Romeo DP, Ragonese M, Grassi C, Pontecorvi A, Farsetti A, Cannavò S. Somatic Deletion in Exon 10 of Aryl Hydrocarbon Receptor Gene in Human GH-Secreting Pituitary Tumors. Front Endocrinol (Lausanne) 2020; 11:591039. [PMID: 33281746 PMCID: PMC7689685 DOI: 10.3389/fendo.2020.591039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE/PURPOSE The aryl hydrocarbon receptor (AHR) pathway plays a critical role in the biology of Growth Hormone (GH)-secreting pituitary tumor (somatotropinoma). Germline rs2066853 AHR variant was found to be more frequent among acromegaly patients and associated with a more severe disease with larger invasive somatropinoma, and with resistance to somatostatin analogs treatment in patients living in polluted areas. However, no somatic changes in AHR gene have been reported so far in acromegaly patients. On that basis, the aim of the study was to assess at the somatic level the AHR gene status encompassing exon 10 region, also because of the high rate of variants found in this genomic region. METHODS A cohort of 13 patients aged 20-76 years with biochemical, clinical and histological diagnosis of somatotropinoma was studied. DNA and RNA from pituitary tumor histological samples have been extracted and analyzed by PCR and direct sequencing for AHR gene variants, and compared with corresponding patients' germline DNA as well as normal pituitary tissue as reference control. RESULTS A degenerated letter codes in the region corresponding to AHR exon 10 (c.1239-c.2056) was detected in somatotropinomas-derived DNA but not in that of matched germline and pituitary normal tissue. By multiple PCR and sequencing analysis, we observed amplification only before codon 1246 and after codon 1254, confirming the presence of a tumor-restricted somatic deletion in the 5' upstream region of AHR exon 10. Analysis of PCR-amplified cDNA revealed a wildtype sequence of exon 9 and 10 in normal pituitary tissue, and a wildtype sequence of exon 9 and 10 up to codon 1246 and no sequence after the deletion region (c.1246-c.1254) in 6 out of 9 tumor samples. Patients carrying the germline rs2066853 AHR variant showed no somatic LOH at the corresponding genetic locus. CONCLUSION This is the first demonstration of a recurrent somatic deletion in the exon 10 of the AHR gene in somatotropinomas. The functional impact of this genetic finding needs to be clarified.
Collapse
Affiliation(s)
- Agnese Re
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
- *Correspondence: Salvatore Cannavò, ; Agnese Re,
| | - Francesco Ferraù
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
- Endocrine Unit, University Hospital G. Martino, Messina, Italy
| | | | | | - Valeria Barresi
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Marta Ragonese
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Claudio Grassi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Salvatore Cannavò
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
- Endocrine Unit, University Hospital G. Martino, Messina, Italy
- *Correspondence: Salvatore Cannavò, ; Agnese Re,
| |
Collapse
|
28
|
Gajęcka M, Dąbrowski M, Otrocka-Domagała I, Brzuzan P, Rykaczewska A, Cieplińska K, Barasińska M, Gajęcki MT, Zielonka Ł. Correlations between exposure to deoxynivalenol and zearalenone and the immunohistochemical expression of estrogen receptors in the intestinal epithelium and the mRNA expression of selected colonic enzymes in pre-pubertal gilts. Toxicon 2019; 173:75-93. [PMID: 31734251 DOI: 10.1016/j.toxicon.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
Plant-based materials used in the production of pig feed are very often contaminated with deoxynivalenol and zearalenone. Daily intake of small amounts of these mycotoxins with feed induces various subclinical states in gilts and influences different biological processes. The aim of this preclinical study was to determine the correlation between monotonic doses of zearalenone and deoxynivalenol (40 μg/kg body weight and 12 μg/kg body weight, respectively, administered over a period of 42 days) and the immunohistochemical expression of estrogen receptors in the intestinal tract and the mRNA expression of selected colonic enzymes. The immunohistochemical expression of estrogen receptor alpha was observed in the colon, but its intensity varied in different weeks of exposure. A minor increase in estrogen receptor beta expression was noted only in the colon, whereas the expression of cytochrome P450 1A1 enzyme mRNA and mRNA isoform of the glutathione S-transferase π gene decreased. The observed correlations suggest that the risk of loss of control over the biotransformation and biological activity of the parent compounds in distal intestinal mucosa is delayed.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13D, 10-718, Olsztyn, Poland.
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Anna Rykaczewska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, ul. Limanowskiego 31A, 10-342, Olsztyn, Poland.
| | - Marzena Barasińska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| |
Collapse
|