1
|
Zhou S, Jin M, Yin J, Shi D, Li H, Gao Z, Chen Z, Yang Z, Chen T, Wang H, Li J, Yang D. Graphene-Based Virus Enrichment Protocol Increases the Detection Sensitivity of Human Norovirus in Strawberry and Oyster Samples. Foods 2024; 13:2967. [PMID: 39335897 PMCID: PMC11431745 DOI: 10.3390/foods13182967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Human noroviruses (HuNoVs), the most prevalent viral contaminant in food, account for a substantial proportion of nonbacterial gastroenteritis cases. Extensive work has been focused on the diagnosis of HuNoVs in clinical samples, whereas the availability of sensitive detection methods for their detection in food is lacking. Here, we developed a virus enrichment approach utilizing graphene-based nanocomposites (CTAB-rGO-Fe3O4) that does not rely on large instruments and is suitable for on-site food pretreatment. The recovery efficiency of the developed virus enrichment procedure for serially diluted GII.4 norovirus ranged from 10.06 to 72.67% in strawberries and from 2.66 to 79.65% in oysters. Furthermore, we developed a real-time recombinase polymerase amplification (real-time RPA) assay, which can detect as low as 1.22 genome copies µL-1 of recombinant plasmid standard and has no cross-reactivity with genomes of astrovirus, rotavirus, adenovirus, and MS2 bacteriophage. Notably, the combined virus enrichment and real-time RPA detection assay enhanced the detection limits to 2.84 and 37.5 genome copies g-1 in strawberries and oysters, respectively, compared to those of qPCR. Our strategy, the graphene-based virus enrichment method combined with real-time RPA, presents a promising tool for sensitively detecting HuNoVs in food samples.
Collapse
Affiliation(s)
- Shuqing Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Min Jin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Jing Yin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Danyang Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Haibei Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhixian Gao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhengshan Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhongwei Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Tianjiao Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Huaran Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Junwen Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Dong Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
2
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
3
|
Xue P, Peng Y, Wang R, Wu Q, Chen Q, Yan C, Chen W, Xu J. Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38659323 DOI: 10.1080/10408398.2024.2343413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.
Collapse
Affiliation(s)
- Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qian Wu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, P. R. China
| |
Collapse
|
4
|
Kim SH, Roy PK, Jeon EB, Kim JS, Heu MS, Lee JS, Park SY. Inactivation of Human Norovirus GII.4's Infectivity in Fresh Oysters ( Crassostrea gigas) through Thermal Treatment in Association with Propidium Monoazide. Viruses 2024; 16:110. [PMID: 38257810 PMCID: PMC10821128 DOI: 10.3390/v16010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The current study investigated the effects of heat treatment (85 °C or 100 °C for 5-20 min) on human norovirus (HuNoV) GII.4's capsid stability in fresh oysters. In addition, propidium monoazide (PMA) was used in viral samples to distinguish infectious viruses and evaluated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Further, we explored the effect of the heat treatment on oyster quality (Hunter color and hardness). The titer of HuNoV for oysters significantly (p < 0.05) decreased to 0.39-1.32 and 0.93-2.27 log10 copy number/μL in the non-PMA and PMA-treated groups, respectively, after heat treatment. HuNoV in oysters not treated with PMA showed a decrease of <1.5 - log10, whereas in PMA-treated oysters, a decrease of >1 - log10 was observed after treatment at 85 °C for 10 min. Treatments for both 15 min and 20 min at 100 °C showed a >99% log10 reduction using PMA/RT-qPCR. In the Hunter color, an increase in heat temperature and duration was associated with a significant decrease in 'L' (brightness+, darkness-) and an increase in 'a' (redness+, greenness-) and 'b' (yellowness+, blueness-) (p < 0.05). Our findings confirmed that the hardness of oyster meat significantly increased with increasing temperature and time (p < 0.05). This study demonstrated that PMA/RT-qPCR was effective in distinguishing HuNoV viability in heat-treated oysters. The optimal heat treatment for oysters was 10 min at 85 °C and 5 min at 100 °C.
Collapse
Affiliation(s)
- So Hee Kim
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| | - Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| | - Jin-Soo Kim
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| | - Min Soo Heu
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jung-Suck Lee
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (S.H.K.); (P.K.R.); (E.B.J.); (J.-S.K.)
| |
Collapse
|
5
|
Kim TY, Zhu X, Kim SM, Lim JA, Woo MA, Lim MC, Luo K. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques. Food Res Int 2023; 174:113502. [PMID: 37986417 DOI: 10.1016/j.foodres.2023.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-A Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
6
|
Lyu C, An R, Liu C, Shi Z, Wang Y, Luo G, Li J, Wang D. Bioaccumulation Pattern of the SARS-CoV-2 Spike Proteins in Pacific Oyster Tissues. Appl Environ Microbiol 2023; 89:e0210622. [PMID: 36815797 PMCID: PMC10057954 DOI: 10.1128/aem.02106-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
There is mounting evidence of the contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the sewage, surface water, and even marine environment. Various studies have confirmed that bivalve mollusks can bioaccumulate SARS-CoV-2 RNA to detectable levels. However, these results do not provide sufficient evidence for the presence of infectious viral particles. To verify whether oysters can bind the viral capsid and bioaccumulate the viral particles, Pacific oysters were artificially contaminated with the recombinant SARS-CoV-2 spike protein S1 subunit (rS1). The bioaccumulation pattern of the rS1 in different tissues was investigated by immunohistological assays. The results revealed that the rS1 was bioaccumulated predominately in the digestive diverticula. The rS1 was also present in the epithelium of the nondigestive tract tissues, including the gills, mantle, and heart. In addition, three potential binding ligands, including angiotensin-converting enzyme 2 (ACE 2)-like substances, A-type histo-blood group antigen (HBGA)-like substances, and oyster heat shock protein 70 (oHSP 70), were confirmed to bind rS1 and were distributed in tissues with various patterns. The colocalization analysis of rS1 and those potential ligands indicated that the distributions of rS1 are highly consistent with those of ACE 2-like substances and oHSP 70. Both ligands are distributed predominantly in the secretory absorptive cells of the digestive diverticula and may serve as the primary ligands to bind rS1. Therefore, oysters are capable of bioaccumulating the SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands, especially in digestive diverticula. IMPORTANCE This is the first article to investigate the SARS-CoV-2 spike protein bioaccumulation pattern and mechanism in Pacific oysters by the histochemical method. Oysters can bioaccumulate SARS-CoV-2 capsid readily by filter-feeding behavior assisted by specific binding ligands. The new possible foodborne transmission route may change the epidemic prevention strategies and reveal some outbreaks that current conventional epidemic transmission routes cannot explain. This original and interdisciplinary paper advances a mechanistic understanding of the bioaccumulation of SARS-CoV-2 in oysters inhabiting contaminated surface water.
Collapse
Affiliation(s)
- Chenang Lyu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Chu Liu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhentao Shi
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Guangda Luo
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Wang Z, Jung S, Yeo D, Park S, Woo S, Seo Y, Hossain MI, Kim M, Choi C. Assessing the Removal Efficiency of Murine Norovirus 1, Hepatitis A Virus, and Human Coronavirus 229E on Dish Surfaces Through General Wash Program of Household Dishwasher. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:61-70. [PMID: 36595129 PMCID: PMC9807978 DOI: 10.1007/s12560-022-09546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/26/2022] [Indexed: 05/25/2023]
Abstract
The performance of dishwashers in removing live viruses is an important informative value in practical applications. Since foodborne viruses are present in contaminated food surfaces and water environments. Insufficient washing of dishes typically makes a carrier of foodborne viruses. Dishwashers have shown excellent performance in removing bacterial pathogens, but very limited reports related to eliminate foodborne viruses on contaminated dish surfaces. Here, murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and human coronavirus 229E (HCoV-229E) were experimentally inoculated on the dish surfaces (plate, rice bowl, and soup bowl). Plaque assay, 50% tissue culture infectious dose (TCID50), and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to determine their removal efficiency of them through the general wash program of household dishwashers. Using titration assay, MNV-1 and HAV were reduced by 7.44 and 6.57 log10 PFU/dish, and HCoV-229E was reduced by 6.43 log10 TCID50/dish through the general wash program, achieving a ≥ 99.999% reduction, respectively. Additionally, RT-qPCR results revealed that viral RNA of MNV-1 and HCoV-229E reduced 5.02 and 4.54 log10 genome copies/dish; in contrast, HAV was not detected on any dish surfaces. This study confirmed the performance of household dishwashers in removing pathogenic live viruses through the general wash program. However, residual viral RNA was not sufficiently removed. Further studies are needed to determine whether the viral RNA can be sufficiently removed using combination programs in household dishwashers.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sunho Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seoyoung Woo
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yeeun Seo
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Iqbal Hossain
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Minji Kim
- Technology R&D Office, SK magic, Hwaseong, Gyeonggi-do, 18298, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
8
|
Zhang X, Yang Y, Cao J, Qi Z, Li G. Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. FOOD FRONTIERS 2022; 4:FFT2176. [PMID: 36712576 PMCID: PMC9874772 DOI: 10.1002/fft2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 02/01/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great public health concern and has been a global threat due to its high transmissibility and morbidity. Although the SARS-CoV-2 transmission mainly relies on the person-to-person route through the respiratory droplets, the possible transmission through the contaminated cold-chain food and packaging to humans has raised widespread concerns. This review discussed the possibility of SARS-CoV-2 transmission via the contaminated cold-chain food and packaging by tracing the occurrence, the survival of SARS-CoV-2 in the contaminated cold-chain food and packaging, as well as the transmission and outbreaks related to the contaminated cold-chain food and packaging. Rapid, accurate, and reliable diagnostics of SARS-CoV-2 is of great importance for preventing and controlling the COVID-19 resurgence. Therefore, we summarized the recent advances on the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system-based biosensing technology that is promising and powerful for preventing the possible COVID-19 resurgence caused by the contaminated cold-chain food and packaging during the COVID-19 pandemic, including CRISPR/Cas system-based biosensors and their integration with portable devices (e.g., smartphone, lateral flow assays, microfluidic chips, and nanopores). Impressively, this review not only provided an insight on the possibility of SARS-CoV-2 transmission through the food supply chain, but also proposed the future opportunities and challenges on the development of CRISPR/Cas system-based detection methods for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Xianlong Zhang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Yan Yang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Juanjuan Cao
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Zihe Qi
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Guoliang Li
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| |
Collapse
|
9
|
Baker CA, Gibson KE. Persistence of SARS-CoV-2 on surfaces and relevance to the food industry. Curr Opin Food Sci 2022; 47:100875. [PMID: 35784376 PMCID: PMC9238272 DOI: 10.1016/j.cofs.2022.100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the prevalence and persistence of viruses outside the human host aids our ability to characterize exposure risk across multiple transmission pathways. Since 2020, the Coronavirus Disease 2019 pandemic has resulted in a surge of research regarding severe acute respiratory syndrome-coronavirus-type 2 (SARS-CoV-2) and its potential to spread via direct and indirect contact transmission routes. Here, the authors discuss the current state of the science concerning SARS-CoV-2 transmission via contaminated surfaces and its persistence on environmental surfaces. This review aims to provide the reader with an overview of the currently published SARS-CoV-2 persistence studies, factors impacting persistence, guidelines for performing persistence studies, limitation of current data, and future directions for assessing SARS-CoV-2 persistence on fomites.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| |
Collapse
|
10
|
Guo M, Yan J, Hu Y, Xu L, Song J, Yuan K, Cheng X, Ma S, Liu J, Wu X, Liu L, Rong S, Wang D. Transmission of SARS-CoV-2 on Cold-Chain Food: Precautions Can Effectively Reduce the Risk. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:295-303. [PMID: 35767120 PMCID: PMC9244345 DOI: 10.1007/s12560-022-09521-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has generated a new era in the world, also in the food safety. Up to now, there is no evidence to suggest that people can infect COVID-19 via food contaminated by SARS-CoV-2. Here, we analyzed the results of regular SARS-CoV-2 nucleic acid testing of considerable cold-chain food practitioners, cold-chain food surfaces, and their internal or external packaging as well as their associated environments, aiming to explore the risk of cold-chain food being contaminated by SARS-CoV-2 and the probability of people infecting COVID-19 through contaminated cold-chain food in the context of COVID-19 epidemic. This study found that only two batches of cold-chain food were contaminated by SARS-CoV-2, none of the cold-chain food handler were infected due to effective regulatory measures for cold-chain food. Therefore, effective supervision and preventive methods could effectively reduce the transmission risk of SARS-CoV-2 on cold-chain food.
Collapse
Affiliation(s)
- Meiyue Guo
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Junfeng Yan
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Yuan Hu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Lu Xu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Jinling Song
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Kun Yuan
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Xiangru Cheng
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Sui Ma
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Jie Liu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Xianbing Wu
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shuang Rong
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 2, Huangjiahu Road, Wuhan, 430065 Hubei Province People’s Republic of China
| | - Di Wang
- Xiangyang Public Inspection and Testing Center, No. 69, Taiziwan Road, 441000 Xiangyang, Hubei Province People’s Republic of China
- Xiangyang Public Health and Anti-Epidemic Materials Research Key Laboratory, No. 69, Taiziwan Road, Xiangyang, 441000 Hubei Province People’s Republic of China
| |
Collapse
|
11
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Umair M, Jabbar S, Zhaoxin L, Jianhao Z, Abid M, Khan KUR, Korma SA, Alghamdi MA, El-Saadony MT, Abd El-Hack ME, Cacciotti I, AbuQamar SF, El-Tarabily KA, Zhao L. Probiotic-Based Bacteriocin: Immunity Supplementation Against Viruses. An Updated Review. Front Microbiol 2022; 13:876058. [PMID: 36033850 PMCID: PMC9402254 DOI: 10.3389/fmicb.2022.876058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Lu Zhaoxin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhang Jianhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Kashif-Ur R. Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mashail A. Alghamdi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Rome, Italy
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
14
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
15
|
Chen W, Chen CL, Cao Q, Chiu CH. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed J 2022; 45:432-438. [PMID: 35276413 PMCID: PMC8904003 DOI: 10.1016/j.bj.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Contaminations in frozen food imported from countries with ongoing COVID-19 epidemics have been reported in China. However, the epidemiological features of the outbreaks initiated by material-to-human transmission were less reported. The risk of this route of transmission remains unclear, and strategies to prevent resurgence could be flawed. We aimed to demonstrate the existence of cold-chain food or packaging contamination transmission and describe the time course and epidemiological features associated with the transmission in China. This review was based on the official reports or literature for resurging COVID-19 events that were related to cold-chain food or packaging contamination in China and other countries. Although SARS-CoV-2 on the material surface is not the main source of infection, the closed and humid environment for food packaging and transportation is a place favoring the material-to-human spread of SARS-CoV-2. In this transmission mode, patient zero is often hidden and difficult to detect, such that the outbreak usually can only be perceived after a period of a secret epidemic. Regular testing for high-risk populations and imported cold-chain products, proper disinfection of imported products, and protection of susceptible population while working remain an effective way to detect and prevent SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Trmčić A, Demmings E, Kniel K, Wiedmann M, Alcaine S. Food Safety and Employee Health Implications of COVID-19: A Review. J Food Prot 2021; 84:1973-1989. [PMID: 34265068 PMCID: PMC9906301 DOI: 10.4315/jfp-21-201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022]
Abstract
The COVID-19 pandemic has greatly impacted the U.S. food supply and consumer behavior. Food production and processing are being disrupted as illnesses, proactive quarantines, and government-mandated movement restrictions cause labor shortages. In this environment, the food industry has been required to adopt new, additional practices to minimize the risk of COVID-19 cases and outbreaks among its workforce. Successfully overcoming these challenges requires a comprehensive approach that addresses COVID-19 transmission both within and outside the facility. Possible interventions include strategies (i) to vaccinate employees, (ii) to assure that employees practice social distancing, (iii) to assure that employees wear face coverings, (iv) to screen employees for COVID-19, (v) to assure that employees practice frequent hand washing and avoid touching their faces, (vi) to clean frequently touched surfaces, and (vii) to assure proper ventilation. Compliance with these control strategies must be verified, and an overall COVID-19 control culture must be established to implement an effective program. Despite some public misperceptions about the health risk of severe acute respiratory syndrome coronavirus 2 on foods or food packaging, both the virus biology and epidemiological data clearly support a negligible risk of COVID-19 transmission through food and food packing. However, COVID-19 pandemic-related supply chain and workforce disruptions and the shift in resources to protect food industry employees from COVID-19 may increase the actual food safety risks. The goal of this review was to describe the COVID-19 mitigation practices adopted by the food industry and the potential impact of these practices and COVID-19-related disruptions on the industry's food safety mission. A review of these impacts is necessary to ensure that the food industry is prepared to maintain a safe and nutritious food supply in the face of future global disruptions.
Collapse
Affiliation(s)
- Aljoša Trmčić
- Department of Food Science, Cornell University, Ithaca, New York 14850
| | | | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14850
| | - Sam Alcaine
- Department of Food Science, Cornell University, Ithaca, New York 14850
| |
Collapse
|
17
|
Benkeblia N. In the landscape of SARS-CoV-2 and fresh fruits and vegetables: The fake and hidden transmission risks. J Food Saf 2021; 41:e12898. [PMID: 34219847 PMCID: PMC8236916 DOI: 10.1111/jfs.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022]
Abstract
From the first notification reporting to the WHO a cluster of coronavirus in Wuhan City (China), over 114 million cases of SARS-CoV-2 have been confirmed, with more than 2,530,000 deaths, and over 400,000 new cases and 10,000 deaths daily. Numerous viruses are susceptible to contaminate crops during growth, harvesting, handling, marketing and minimally processing, and these steps share one common factor which is human. Different studies showed that viruses might persist on different crops for periods of 2 to 14 days under different conditions such as refrigeration, household and freezing. Little is known on SARS-CoV-2, but preliminary studies showed that this virus might survive 24 hr on cardboard and 72 hr on plastic, materials used in fruits and vegetables packaging. Based on preliminary data, there is no evidence of food or food packaging being associated with transmission of SARS-CoV-2. Certainly, to date there is no scientific evidence that SARS-CoV-2 might be transmitted by a contact with, or the ingestion of contaminated fresh or minimally processed fruits and vegetables. However, this risk even though being considered improbable, it cannot be "completely and definitely" discarded or ignored, particularly where the virus is spreading in the word. Some agencies indicated that in case some commodities and handlers are contaminated among the multiple people involved from the farm to the table, a cross-contamination may occur, and the risk of the contamination of food, food contact materials, and packaging from infected but asymptomatic workers should not be discarded even though considered "Very Low = meaning very rare but cannot be excluded."
Collapse
|
18
|
Eshaghi Gorji M, Tan MTH, Zhao MY, Li D. No Clinical Symptom Experienced after Consumption of Berry Fruits with Positive RT-qPCR Signals of Human Norovirus. Pathogens 2021; 10:pathogens10070846. [PMID: 34357997 PMCID: PMC8308847 DOI: 10.3390/pathogens10070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Human noroviruses (hNoVs) are the most important foodborne viruses, and soft berries are one of the most common food sources of hNoV outbreaks and contamination. This paper presents a human volunteer study in order to investigate the correlation between molecular detection results of hNoV in berries with the public health risks. The participants with diverse histo-blood group antigens (HBGAs) phenotypes were required to consume self-purchased berries and meanwhile submit aliquots of the products for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection. As a result, none of the 20 participants reported any hNoV infection-like symptoms after six independent consumptions (120 consumptions in total). In contrast, within the 68 berry samples with >1% virus recoveries, 28 samples were detected to be positive for hNoV GI and/or GII (the positive rate at 41%). All of the positive signals were below the limit of quantification (<120 genome copies/g) except one fresh strawberry sample at 252 genome copies/g. It is expected that this study would contribute to the definition of quantitative standards for risk assessment purposes in the future.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- Correspondence: ; Tel.: +65-6601-7500
| |
Collapse
|
19
|
|
20
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
21
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|
22
|
Blanco A, Ojembarrena FDB, Clavo B, Negro C. Ozone potential to fight against SAR-COV-2 pandemic: facts and research needs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16517-16531. [PMID: 33389580 PMCID: PMC7778500 DOI: 10.1007/s11356-020-12036-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/08/2020] [Indexed: 05/05/2023]
Abstract
The greatest challenge the world is facing today is to win the battle against COVID-19 pandemic as soon as possible. Until a vaccine is available, personal protection, social distancing, and disinfection are the main tools against SARS-CoV-2. Although it is quite infectious, the SARS-CoV-2 virus itself is an enveloped virus that is relatively fragile because its protective fatty layer is sensitive to heat, ultraviolet radiation, and certain chemicals. However, heat and liquid treatments can damage some materials, and ultraviolet light is not efficient in shaded areas, so other disinfection alternatives are required to allow safe re-utilization of materials and spaces. As of this writing, evidences are still accumulating for the use of ozone gas as a disinfectant for sanitary materials and ambient disinfection in indoor areas. This paper reviews the most relevant results of virus disinfection by the application of gaseous ozone. The review covers disinfection treatments of both air and surfaces carried out in different volumes, which varies from small boxes and controlled chambers to larger rooms, as a base to develop future ozone protocols against COVID-19. Published papers have been critically analyzed to evaluate trends in the required ozone dosages, as a function of relative humidity (RH), contact time, and viral strains. The data have been classified depending on the disinfection objective and the volume and type of the experimental set-up. Based on these data, conservative dosages and times to inactivate the SARS-CoV-2 are estimated. In small chambers, 10-20 mg ozone/m3 over 10 to 50 min can be sufficient to significantly reduce the virus load of personal protection equipment. In large rooms, 30 to 50 mg ozone/m3 would be required for treatments of 20-30 min. Maximum antiviral activity of ozone is achieved at high humidity, while the same ozone concentrations under low RH could result inefficient. At these ozone levels, safety protocols must be strictly followed. These data can be used for reducing significantly the viral load although for assuring a safe disinfection, the effective dosages under different conditions need to be confirmed with experimental data.
Collapse
Affiliation(s)
- Angeles Blanco
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Francisco de Borja Ojembarrena
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Bernardino Clavo
- Research Unit, Chronic Pain Unit, Dr. Negrín University Hospital, Calle Barranco de la Ballena, s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Carlos Negro
- Chemical Engineering and Materials Department, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
23
|
Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis 2021. [PMID: 32603505 DOI: 10.1111/tbed.13707-35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Although the unprecedented efforts the world has been taking to control the spread of the human coronavirus disease (COVID-19) and its causative aetiology [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], the number of confirmed cases has been increasing drastically. Therefore, there is an urgent need for devising more efficient preventive measures, to limit the spread of the infection until an effective treatment or vaccine is available. The preventive measures depend mainly on the understanding of the transmission routes of this virus, its environmental stability, and its persistence on common touch surfaces. Due to the very limited knowledge about SARS-CoV-2, we can speculate its stability in the light of previous studies conducted on other human and animal coronaviruses. In this review, we present the available data on the stability of coronaviruses (CoVs), including SARS-CoV-2, from previous reports to help understand its environmental survival. According to available data, possible airborne transmission of SARS-CoV-2 has been suggested. SARS-CoV-2 and other human and animal CoVs have remarkably short persistence on copper, latex and surfaces with low porosity as compared to other surfaces like stainless steel, plastics, glass and highly porous fabrics. It has also been reported that SARS-CoV-2 is associated with diarrhoea and that it is shed in the faeces of COVID-19 patients. Some CoVs show persistence in human excrement, sewage and waters for a few days. These findings suggest a possible risk of faecal-oral, foodborne and waterborne transmission of SARS-CoV-2 in developing countries that often use sewage-polluted waters in irrigation and have poor water treatment systems. CoVs survive longer in the environment at lower temperatures and lower relative humidity. It has been suggested that large numbers of COVID-19 cases are associated with cold and dry climates in temperate regions of the world and that seasonality of the virus spread is suspected.
Collapse
Affiliation(s)
- Hamada A Aboubakr
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Tamer A Sharafeldin
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sagar M Goyal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
24
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 PMCID: PMC7836549 DOI: 10.1016/j.scitotenv.2020.141364] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/14/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
25
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 DOI: 10.20944/preprints202007.0471.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
26
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32836117 DOI: 10.1016/j.scitotenv.2020.141364pmid-32836117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
27
|
Abstract
At present, humanity is confronting with a novel life-threatening challenge from the COVID-19 pandemic infectious disease caused by the novel coronavirus SARS-CoV-2. To date, the various transmission modes of SARS-CoV-2 have not been completely determined. Food products might be carriers for SARS-CoV-2. The COVID-19 pandemic not only can spread through the respiratory tract like SARS and MERS but also the presence of the SARS-CoV-2 RNA in feces of several patients, shows the possibility of their fecal-oral route spread. Besides, people with gastric problems, including gastric intestinal metaplasia and atrophic gastritis, may be susceptible to this kind of COVID-19 infection. Accordingly, food may act as a potential vehicle of SARS-CoV-2 due to whether carry-through or carry-over contaminations. Considering carry-over, SARS-CoV-2 spread from personnel to food products or food surfaces is feasible. Beyond that, some shreds of evidence showed that pigs and rabbits can be infected by SARS-CoV-2. Thus, viral transmission through meat products may be conceivable, indicating carry-through contamination. As the spread rate of SARS-CoV-2 is high and its stability in different environments, especially food processing surfaces, is also remarkable, it may enter foods in whether industrialized processing or the traditional one. Therefore, established precautious acts is suggested to be applied in food processing units. The present review elucidates the risk of various staple food products, including meat and meat products, dairy products, bread, fruits, vegetables, and ready-to-eat foods as potential carriers for transmission of SARS-CoV-2.
Collapse
|
28
|
Zuber S, Brüssow H. COVID 19: challenges for virologists in the food industry. Microb Biotechnol 2020; 13:1689-1701. [PMID: 32700430 PMCID: PMC7404336 DOI: 10.1111/1751-7915.13638] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic is not only a challenge for public health and hospitals, but affects many aspects of our societies. This Lilliput minireview deals with problems that the pandemic causes for the food industry, addressing the presence and persistence of SARS-CoV-2 in the food environment, methods of virus inactivation and the protection of the food worker and the consumer. So far food has not been implicated in the transmission of the infection, but social disruptions caused by the pandemic could cause problems with food security.
Collapse
Affiliation(s)
- Sophie Zuber
- Institute of Food Safety and Analytical ScienceNestlé ResearchLausanne 261000Switzerland
| | - Harald Brüssow
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
29
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
30
|
Akour A. Probiotics and COVID-19: is there any link? Lett Appl Microbiol 2020; 71:229-234. [PMID: 32495940 PMCID: PMC7300613 DOI: 10.1111/lam.13334] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Understanding mechanisms of the novel SARS-CoV2 infection and progression can provide potential novel targets for prevention and/or treatment. This could be achieved via the inhibition of viral entry and/or replication, or by suppression of the immunologic response that is provoked by the infection (known as the cytokine storm). Probiotics are defined as 'live microorganisms that, when administered in adequate amounts, confer a health benefit on the host'. There is scarcity of evidence about the relationship between COVID-19 and gut microbiota. So, whether or not these supplements can prevent or ameliorate COVID-19-associated symptoms is not fully understood. The aim of this study is to provide an indirect evidence about the utility of probiotics in combating COVID-19 or its associated symptoms, through the review of its antiviral and anti-inflammatory properties in vitro, animal models and human trials. SIGNIFICANCE AND IMPACT OF THE STUDY: The role of probiotics in alleviation of the novel COVID-19 has not been established. This review provides an insight about the anti-inflammatory, antiviral effects of probiotics in vitro, animal models and human. The latter can provide an indirect evidence and/or hypothesis-driven approach to investigate the use of probiotics as adjunctive therapy in the prophylaxis and/or alleviation of COVID-19 symptoms.
Collapse
Affiliation(s)
- A Akour
- Department of Biopharmaceutics and Clinical Pharmacy, The School of Pharmacy, The University of Jordan, Amman, Jordan.,Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
31
|
Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis 2020; 68:296-312. [PMID: 32603505 PMCID: PMC7361302 DOI: 10.1111/tbed.13707] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022]
Abstract
Although the unprecedented efforts the world has been taking to control the spread of the human coronavirus disease (COVID‐19) and its causative aetiology [severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)], the number of confirmed cases has been increasing drastically. Therefore, there is an urgent need for devising more efficient preventive measures, to limit the spread of the infection until an effective treatment or vaccine is available. The preventive measures depend mainly on the understanding of the transmission routes of this virus, its environmental stability, and its persistence on common touch surfaces. Due to the very limited knowledge about SARS‐CoV‐2, we can speculate its stability in the light of previous studies conducted on other human and animal coronaviruses. In this review, we present the available data on the stability of coronaviruses (CoVs), including SARS‐CoV‐2, from previous reports to help understand its environmental survival. According to available data, possible airborne transmission of SARS‐CoV‐2 has been suggested. SARS‐CoV‐2 and other human and animal CoVs have remarkably short persistence on copper, latex and surfaces with low porosity as compared to other surfaces like stainless steel, plastics, glass and highly porous fabrics. It has also been reported that SARS‐CoV‐2 is associated with diarrhoea and that it is shed in the faeces of COVID‐19 patients. Some CoVs show persistence in human excrement, sewage and waters for a few days. These findings suggest a possible risk of faecal–oral, foodborne and waterborne transmission of SARS‐CoV‐2 in developing countries that often use sewage‐polluted waters in irrigation and have poor water treatment systems. CoVs survive longer in the environment at lower temperatures and lower relative humidity. It has been suggested that large numbers of COVID‐19 cases are associated with cold and dry climates in temperate regions of the world and that seasonality of the virus spread is suspected.
Collapse
Affiliation(s)
- Hamada A Aboubakr
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.,Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Tamer A Sharafeldin
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sagar M Goyal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|