1
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
2
|
Sakai A, Tagami M, Misawa N, Haruna Y, Tomita M, Honda S. Serum PD-1 regulation and PD-1 expression of CD4+Foxp3+ regulatory T cells in patients in thyroid eye disease associated with immunosuppression treatment. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1491053. [PMID: 39736883 PMCID: PMC11683052 DOI: 10.3389/fopht.2024.1491053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Purpose Thyroid eye disease (TED) primarily occurs in hyperthyroid patients, sometimes resulting in poor visual prognosis. Although other autoimmune diseases have been reported to be associated with serum programmed cell death 1 (PD-1), the relationship with TED remains unknown. This study investigated the relationship between TED and immune checkpoint molecules. Methods Serum immune checkpoint molecules were measured in TED and control patient blood samples. In TED patients, blood samples were compared before and 6 months after steroid pulse treatment. Cytometry analysis was additionally performed in TED and control patients to compare the expression of (PD-1) of T cells. Results Serum concentrations of PD-1 in TED and control patients were 163.49 ± 79.01 (pg/mL) and 123.58 ± 46.61 (pg/mL) (P = 0.03). Serum PD-L1 concentration in TED was 157.89 ± 55.34 (pg/mL), while 152.58 ± 22.70 (pg/mL) in control patients (P = 0.92). For flow cytometry analysis, the mean fluorescence intensity (MFI) ratio of PD-1 in Foxp3high CD45RA- of the CD4+ T cells and CD127-CD25high of the CD4+ T cells were higher in TED versus control patients (P = 0.04, P = 0.02). There was also a higher percentage of PD-1 expressions on CD4+ T cells and Foxp3high CD45- T cells in TED patients versus that for control patients (P < 0.001, P = 0.003). Conclusions PD-1 expression of CD4+Foxp3+ regulatory T cells appear to be associated with TED pathogenesis before and after treatment. Regulatory T cells expressed PD-1 have possibilities of clinical activity and autoimmune pathology of TED.
Collapse
|
3
|
Moen FM, Youssef MM, Shukla M, Nierodzik ML, Mayerhoefer ME, Park C. BRAF V600E mutation and high expression of PD-L1 in Rosai-Dorfman disease: case report and review of the literature. J Hematop 2024; 17:183-189. [PMID: 39592527 PMCID: PMC11635026 DOI: 10.1007/s12308-024-00611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BRAF V600E mutations are frequently found in histiocytic/dendritic cell neoplasms such as Erdheim-Chester disease (ECD) and Langerhans cell histiocytosis (LCH), but few reports have also described BRAF mutations in Rosai-Dorfman disease (RDD), and even these cases may predominantly represent mixed histiocytosis. BRAF mutations have been studied in histiocytic/dendritic cell neoplasms and described to be associated with increased risk of relapse and long-term consequences, but few studies have examined BRAF V600E mutation in RDD, which is recognized as a neoplasm given the high frequency of MAPK pathway alterations. Here, we report a case of BRAF V600E-mutated RDD in a patient who presented with generalized lymphadenopathy. During our evaluation of this patient, we also found expression of PD-L1 in neoplastic histiocytes. During our review period, only few cases of RDD reported to harbor BRAF mutation or were evaluated for the expression of PDL1 by neoplastic cells. Given the potential challenges in distinguishing RDD from other histiocytic/dendritic cell neoplasms, including mixed histiocytosis with similar clinicopathological manifestations, we will discuss the current state of knowledge regarding the frequency and clinical impact of BRAF V600E in RDD, as well as the role of BRAF mutations in RDD pathogenesis. Distinction of BRAF V600E mutated histiocytic/dendritic cell neoplasms requires consideration of distinctive histopathological and immunophenotypic findings in appropriate clinical and radiologic setting. Given the increasing use of BRAF inhibitors as well as checkpoint blockade inhibitors to treat a number of cancers, we will discuss the clinical implications of the presence of BRAF V600E mutation and PD-L1 expression in RDD.
Collapse
Affiliation(s)
- Farnoush M Moen
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, UC Davis, Davis, CA, USA.
| | - Mariam M Youssef
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mihir Shukla
- Department of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mary Lynn Nierodzik
- Department of Medicine, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Marius E Mayerhoefer
- Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Park
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Cho H, Kwon H, Kim SH, Ahn HM, Choi BK, Lee GK, Park SY, Lim HJ, Hwang JA, Lim J, Han JY, Lee Y. Seasonal influences on the efficacy of anti-programmed cell death (ligand) 1 inhibitors in lung cancer. Cancer 2024; 130:3647-3657. [PMID: 38941496 DOI: 10.1002/cncr.35454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Seasonal variations in systemic immunity have been reported. This study aimed to evaluate whether seasonality affects the efficacy of anticancer immunotherapy. METHODS A total of 604 patients with lung cancer receiving single anti-programmed cell death (ligand) 1 (anti-PD-[L]1) inhibitors from two prospective observational cohorts were screened. Primary outcomes were progression-free survival (PFS) and overall survival (OS). Patients were classified into two groups according to the season when the treatment started: winter (November-February) and other seasons (March-October). Kaplan-Meier analysis and Cox proportional hazards models were fitted to evaluate the impact of seasonality on survival. For validation, propensity score matching was performed. RESULTS A total of 484 patients with advanced non-small cell lung cancer were included. In an unmatched population, multivariable analysis demonstrated that the winter group (n = 173) had a significantly lower risk of progression or death from immunotherapy than the other group (n = 311) (PFS: hazard ratio [HR], 0.77 [95% confidence interval (CI), 0.62-0.96]; p = .018; OS: HR, 0.77 [95% CI, 0.1-0.98]; p = .032). In a propensity score-matched population, the winter group (n = 162) showed significantly longer median PFS (2.8 months [95% CI, 1.9-4.1 months] vs. 2.0 months [95% CI, 1.4-2.7 months]; p = .009) than the other group (n = 162). The winter group's median OS was also significantly longer than that of the other group (13.4 months [95% CI, 10.2-18.0 months] vs. 8.0 months [95% CI, 3.6-8.7 months]; p = .012). The trend toward longer survival in the winter group continued in subgroup analyses. CONCLUSIONS Starting an anti-PD-(L)1 inhibitor in winter was associated with better treatment outcomes in patients with lung cancer compared to other seasons.
Collapse
Affiliation(s)
- Hyunsoon Cho
- Department of Cancer AI and Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
- Integrated Biostatistics Branch, Division of Cancer Data Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hoejun Kwon
- Department of Cancer AI and Digital Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Min Ahn
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Biomedicine Production Branch, National Cancer Center, Goyang, Republic of Korea
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang, Republic of Korea
| | - Hyun-Ju Lim
- Department of Radiology, National Cancer Center, Goyang, Republic of Korea
| | - Jung-Ah Hwang
- Genomics Core Facility, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jiyeon Lim
- Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Youn Han
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Youngjoo Lee
- Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
5
|
Fu R, Chen Y, Zhao J, Xie X. The signature of SARS-CoV-2-related genes predicts the immune therapeutic response and prognosis in breast cancer. BMC Med Genomics 2024; 17:260. [PMID: 39482662 PMCID: PMC11526603 DOI: 10.1186/s12920-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally contagious single-stranded RNA virus with a strong positive contagion. The COVID-19 pandemic refers to the swift worldwide dissemination of SARS-CoV-2 infection, which began in late 2019. The COVID-19 epidemic has disrupted many cancer treatments. A few reports indicate that the prevalence of SARS-CoV-2 has disrupted the treatment of breast cancer patients (BCs). However, the role of SARS-CoV-2 in the occurrence and prognosis of BC has not been elucidated. Here, we applied bioinformatics to construct a prognostic signature of SARS-CoV-2-related genes (SCRGs). Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to extract co-expressed genes of differentially expressed genes (DEGs) in breast cancer and SCRGs. Then, we utilized the least absolute shrinkage and selection operator (LASSO) algorithm and univariate regression analysis to screen out three hub genes (DCTPP1, CLIP4 and ANO6) and constructed a risk score model. We further analyzed tumor immune invasion, HLA-related genes, immune checkpoint inhibitors (ICIs), and sensitivity to anticancer drugs in different SARS-CoV-2 related risk subgroups. In addition, we have developed a nomination map to expand clinical applicability. The results of our study indicate that BCs with a high-risk score are linked to negative outcomes, lower immune scores, and reduced responsiveness to anticancer medications. This suggests that the SARS-CoV-2 related signature could be used to guide prognosis assessment and treatment decisions for BCs.
Collapse
Affiliation(s)
- Ruizhi Fu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiajing Zhao
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
6
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
7
|
Cao Y, Du X, Yu J, Wang Y, Jin X, Gu B, Yin Q. Seno-antigen-pulsed dendritic cell vaccine induce anti-aging immunity to improve adipose tissue senescence and metabolic abnormalities. Biomed Pharmacother 2024; 179:117433. [PMID: 39260327 DOI: 10.1016/j.biopha.2024.117433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
Anti-aging immunity induced by vaccines was recently reported to enable the elimination of senescent cells. However, the initial immune response to vaccination declines with age, and there is evidence that elderly dendritic cells (DCs) have a reduced capacity to stimulate T cells. Identification of alternative anti-aging vaccine is therefore warranted. Here, we developed a DC vaccine that delivers a cationic protein (CP) fused with the seno-antigen peptides Gpnmb (Gpnmb-CP) into DCs. The Gpnmb-CP-pulsed DC vaccine (Gpnmb-CP-DC) efficiently presented antigens and activated CD8+ T cells, leading to enhanced immune cytotoxicity and memory responses in CD8+ T cells. Thus, the targeted anti-aging immunity triggered by Gpnmb-CP-DC has the ability to selectively eliminate senescent adipocytes and effectively improve age-related metabolic abnormalities in both high-fat diet (HFD)-induced young and aged mice models, as well as in natural aging mouse model. In contrast, the Gpnmb-CP protein vaccine exhibits minimal efficacy in aged mice model. Furthermore, we observed a decreased phagocytic capacity for antigens in aging DCs, accompanied by an upregulation of the immune checkpoint PDL1 expression and a noticeable decline in activated CD8+ T cell. Hence, Gpnmb-CP-DC emerges as a promising vaccine candidate, demonstrating the capacity to induce potent anti-aging immunity, mitigating adipose tissue senescence and metabolic abnormalities, while resilient to the senescent environment of the organism.
Collapse
Affiliation(s)
- Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Du
- Departments of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Jiahong Yu
- Departments of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Academy of Health Management, Changchun University of Chinese Medicine, Changchun, China
| | - Xinliang Jin
- Department of General Surgery, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Baijian Gu
- Department of Anorectal, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Qian X, Ning W, Dunmall LC, Qu Y, Wang Y, Zhang H. Treatment of intracranial inflammatory myofibroblastic tumor with PD-L1 inhibitor and novel oncolytic adenovirus Ad-TD-nsIL12: a case report and literature review. Front Immunol 2024; 15:1427554. [PMID: 39114662 PMCID: PMC11303231 DOI: 10.3389/fimmu.2024.1427554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a rare pathological entity first described in 1939. This lesion is most commonly found in the lungs, but cases involving other systems, such as the central nervous system known as intracranial IMT (IIMT), have also been reported. Diagnosis currently relies on pathological results due to the lack of characteristic imaging changes. Surgical resection is an effective treatment, though the disease is invasive and may recur. Previous literature has reported a high level of programmed death 1 (PD-1) expression in IMT tissues, suggesting that immunotherapy may be effective for this condition. In this case report, we present a middle-aged male who received PD-1 inhibitor and oncolytic adenovirus (Ad-TD-nsIL12) treatment after IIMT resection surgery. This successful approach provides a new direction for the treatment of IIMT.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Eric H, Piersiala K, Lagebro V, Farrajota Neves Da Silva P, Petro M, Starkhammar M, Elliot A, Bark R, Margolin G, Kumlien Georén S, Cardell LO. High expression of PD-L1 on conventional dendritic cells in tumour-draining lymph nodes is associated with poor prognosis in oral cancer. Cancer Immunol Immunother 2024; 73:165. [PMID: 38954023 PMCID: PMC11219651 DOI: 10.1007/s00262-024-03754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), while common and with a favorable prognosis in early stages, presents a marked reduction in survival rate upon metastasis to lymph nodes. Early detection of lymph node metastasis via biomarkers could enhance the therapeutic strategy for OSCC. Here, we explored dendritic cells (DCs) and cytotoxic T-cells in tumour-draining lymph nodes (TDLNs) as potential biomarkers. METHOD Dendritic cells and cytotoxic T-cells in 33 lymph nodes were analyzed with multi-parameter flow cytometry in TDLNs, regional non-TDLNs surgically excised from 12 OSCC patients, and compared to 9 lymph nodes from patients with benign conditions. RESULTS Our results displayed a higher proportion of conventional cDC1s with immunosuppressive features in TDLN. Further, high PD-L1 expression on cDC1 in TDLNs was associated with metastasis and/or recurrent disease risk. Also, elevated levels of memory CD8+ T-cells and terminally exhausted PD-1+TCF-1-CD8+ T-cells were observed in TDLNs and non-TDLNs compared to healthy lymph nodes. CONCLUSIONS We conclude that TDLNs contain cells that could trigger an anti-tumor adaptive response, as evidenced by activated cDC1s and progenitor-like TCF-1+ T-cells. The detection of high PDL1 expression on cDC1s was indicative of TDLN metastasis and an adverse prognosis, proposing that PD-L1 on dendritic cells in TDLN could serve as a predictive biomarker of OSCC patients with a worse prognosis.
Collapse
Affiliation(s)
- Hjalmarsson Eric
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Marianne Petro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Starkhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Elliot
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Head and Neck Surgery, Medical Unit Head Neck Lung and Skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Rusana Bark
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Head and Neck Surgery, Medical Unit Head Neck Lung and Skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gregori Margolin
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Gupta S, Gupta R, Motwani V, Kalwaniya DS. Adjuvant Therapy for Endometrial Cancer in the Era of Molecular Classification. J Midlife Health 2024; 15:142-152. [PMID: 39610963 PMCID: PMC11601929 DOI: 10.4103/jmh.jmh_88_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 11/30/2024] Open
Abstract
Endometrial cancer primarily undergoes surgical intervention, with adjuvant treatments such as external beam pelvic radiotherapy, vaginal brachytherapy, chemotherapy, and combined therapy investigated in randomized trials. Treatment decisions hinge on clinicopathological risk factors. Low-risk cases usually require surgery alone, whereas high-intermediate risk often benefit from adjuvant vaginal brachytherapy for enhanced local control with minimal side effects. Recent trials advocate pelvic radiotherapy for high-risk cases, particularly in Stage I-II tumors with risk factors. Chemoradiation proves advantageous for serous cancers and Stage III disease, improving recurrence-free, and overall survival. Molecular studies, notably the Cancer Genome Atlas project, identified four distinct molecular classes, transcending stages, and histological types. These molecular subtypes exhibit a stronger prognostic impact than histopathological characteristics, heralding a shift toward molecular-integrated diagnostics and treatments. Incorporating molecular factors into adjuvant strategies, including targeted therapies, marks a new paradigm in endometrial cancer management, underpinning ongoing research, and clinical trials. This review outlines current adjuvant approaches, underscores the emergence of molecular-integrated risk profiling, and touches on developments in targeted therapy.
Collapse
Affiliation(s)
- Sumedha Gupta
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Ratika Gupta
- Department of Radiation Oncology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Varsha Motwani
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Dheer Singh Kalwaniya
- Department of Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
11
|
Niu Y, Liu Y, Huang L, Liu W, Cheng Q, Liu T, Ning Q, Chen T. Antiviral immunity of severe fever with thrombocytopenia syndrome: current understanding and implications for clinical treatment. Front Immunol 2024; 15:1348836. [PMID: 38646523 PMCID: PMC11026560 DOI: 10.3389/fimmu.2024.1348836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Hosseinzadeh R, Moini A, Hosseini R, Fatehnejad M, Yekaninejad MS, Javidan M, Changaei M, Feizisani F, Rajaei S. A higher number of exhausted local PD1+, but not TIM3+, NK cells in advanced endometriosis. Heliyon 2024; 10:e23294. [PMID: 38173487 PMCID: PMC10761348 DOI: 10.1016/j.heliyon.2023.e23294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Endometriosis (EMT) is a chronic inflammatory disease characterized by the presence and growth of endometrial-like glandular epithelial and stromal cells outside the uterus. Natural Killer (NK) cell dysfunction/exhaustion has been shown in patients with EMT. In this case-control study, we compared the frequency of exhausted PD-1 or TIM-3 positive NK cells in peripheral blood (PB) and peritoneal fluid (PF) of women with advanced endometriosis to control fertile women. PB and PF were collected from women aged 25-40 who underwent the laparoscopic procedure, including 13 stages III/IV endometriosis and 13 control samples. Multicolor flowcytometry was used to compare the frequency of PD-1 or TIM-3 positive NK (CD3-CD56+) cells in PB and PF of two groups. We demonstrated a higher percentage of PD-1+ NK cells in the peritoneal fluid of patients with endometriosis rather than controls (P-value = 0.039). This significance was related to stage IV of endometriosis (P-value = 0.047). We can not show any significant difference in the number of PD-1 or TIM-3 positive NK cells in peripheral blood. Our results suggest a local exhausted NK cell response in endometriosis that can be a leading factor in the endometriosis pathogenesis.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hosseini
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Department of Obstetrics and Gynecology, Arash Women’s Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moslem Javidan
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Changaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Feizisani
- Student Research Committee, Tabriz University of Medical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yao K, Xiaojun Z, Tingxiao Z, Shiyao L, Lichen J, Wei Z, Yanlei L, Jinlong T, Xiaoyan D, Jun Z, Qing B, Jun L. Multidimensional analysis to elucidate the possible mechanism of bone metastasis in breast cancer. BMC Cancer 2023; 23:1213. [PMID: 38066539 PMCID: PMC10704724 DOI: 10.1186/s12885-023-11588-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) patients tend to suffer from distant metastasis, especially bone metastasis. METHODS All the analysis based on open-accessed data was performed in R software, dependent on multiple algorithms and packages. The RNA levels of specific genes were detected using quantitative Real-time PCR as a method of detecting the RNA levels. To assess the ability of BC cells to proliferate, we utilized the CCK8 test, colony formation, and the 5-Ethynyl-20-deoxyuridine assay. BC cells were evaluated for invasion and migration by using Transwell assays and wound healing assays. RESULTS In our study, we identified the molecules involved in BC bone metastasis based on the data from multiple BC cohorts. Then, we comprehensively investigated the effect pattern and underlying biological role of these molecules. We found that in the identified molecules, the EMP1, ACKR3, ITGA10, MMP13, COL11A1, and THY1 were significantly correlated with patient prognosis and mainly expressed in CAFs. Therefore, we explored the CAFs in the BC microenvironment. Results showed that CAFs could activate multiple carcinogenic pathways and most of these pathways play an important role in cancer metastasis. Meanwhile, we noticed the interaction between CAFs and malignant, endothelial, and M2 macrophage cells. Moreover, we found that CAFs could induce the remodeling of the BC microenvironment and promote the malignant behavior of BC cells. Then, we identified MMP13 for further analysis. It was found that MMP13 can enhance the malignant phenotype of BC cells. Meanwhile, biological enrichment and immune infiltration analysis were conducted to present the effect pattern of MMP13 in BC. CONCLUSIONS Our result can improve the understanding of researchers on the underlying mechanisms of BC bone metastasis.
Collapse
Affiliation(s)
- Kang Yao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhu Xiaojun
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- State Key laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liao Shiyao
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji Lichen
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Wei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Yanlei
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tian Jinlong
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Xiaoyan
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhang Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial People`s Hospital Bijie Hospital, Bijie, China.
| | - Bi Qing
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Affliated People`s Hospital, Zhejiang Provincial People`s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Laboratory Medicine, Affliated People`s Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
15
|
Bolivar AM, Duzagac F, Sinha KM, Vilar E. Advances in vaccine development for cancer prevention and treatment in Lynch Syndrome. Mol Aspects Med 2023; 93:101204. [PMID: 37478804 PMCID: PMC10528439 DOI: 10.1016/j.mam.2023.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Lynch Syndrome (LS) is one of the most common hereditary cancer syndromes, and is caused by mutations in one of the four DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6 and PMS2. Tumors developed by LS carriers display high levels of microsatellite instability, which leads to the accumulation of large numbers of mutations, among which frameshift insertion/deletions (indels) within microsatellite (MS) loci are the most common. As a result, MMR-deficient (MMRd) cells generate increased rates of tumor-specific neoantigens (neoAgs) that can be recognized by the immune system to activate cancer cell killing. In this context, LS is an ideal disease to leverage immune-interception strategies. Therefore, the identification of these neoAgs is an ongoing effort for the development of LS cancer preventive vaccines. In this review, we summarize the computational methods used for in silico neoAg prediction, including their challenges, and the experimental techniques used for in vitro validation of their immunogenicity. In addition, we outline results from past and on-going vaccine clinical trials and highlight avenues for improvement and future directions.
Collapse
Affiliation(s)
- Ana M Bolivar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Han Z, Wu X, Qin H, Yuan YC, Schmolze D, Su C, Zain J, Moyal L, Hodak E, Sanchez JF, Lee PP, Feng M, Rosen ST, Querfeld C. Reprogramming of PD-1+ M2-like tumor-associated macrophages with anti-PD-L1 and lenalidomide in cutaneous T cell lymphoma. JCI Insight 2023; 8:e163518. [PMID: 37427589 PMCID: PMC10371344 DOI: 10.1172/jci.insight.163518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti-programmed cell death ligand 1 (anti-PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti-PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti-PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti-PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology
- Beckman Research Institute
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine
- Integrative Genomics Core
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine
- Center for informatics
| | | | - Chingyu Su
- Division of Dermatology
- Beckman Research Institute
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lilach Moyal
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Department of Dermatology, Rabin Medical Center, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Beilinson Hospital, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James F Sanchez
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Peter P Lee
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Beckman Research Institute
- Department of Immuno-Oncology, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Division of Dermatology
- Beckman Research Institute
- Department of Pathology, and
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| |
Collapse
|
17
|
Song KY, Han YH, Roehrich H, Brown ME, Torres-Cabala C, Giubellino A. MET Receptor Tyrosine Kinase Inhibition Reduces Interferon-Gamma (IFN-γ)-Stimulated PD-L1 Expression through the STAT3 Pathway in Melanoma Cells. Cancers (Basel) 2023; 15:3408. [PMID: 37444518 DOI: 10.3390/cancers15133408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Melanoma is the leading cause of death from cutaneous malignancy. While targeted therapy and immunotherapy with checkpoint inhibitors have significantly decreased the mortality rate of this disease, advanced melanoma remains a therapeutic challenge. Here, we confirmed that interferon-gamma (IFN-γ)-induced PD-L1 expression in melanoma cell lines. This increased expression was down-regulated by the reduction in phosphorylated STAT3 signaling via MET tyrosine kinase inhibitor treatment. Furthermore, immunoprecipitation and confocal immunofluorescence microscopy analysis reveals MET and PD-L1 protein-protein interaction and colocalization on the cell surface membrane of melanoma cells. Together, these findings demonstrate that the IFN-γ-induced PD-L1 expression in melanoma cells is negatively regulated by MET inhibition through the JAK/STAT3 signaling pathway and establish the colocalization and interaction between an RTK and a checkpoint protein in melanoma cells.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yong Hwan Han
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mary E Brown
- University Imaging Centers, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Sham NFR, Hasani NAH, Hasan N, Karim MKA, Fuad SBSA, Hasbullah HH, Ibahim MJ. Acquired radioresistance in EMT6 mouse mammary carcinoma cell line is mediated by CTLA-4 and PD-1 through JAK/STAT/PI3K pathway. Sci Rep 2023; 13:3108. [PMID: 36813833 PMCID: PMC9946948 DOI: 10.1038/s41598-023-29925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer recurrence is often associated with the acquisition of radioresistance by cancer tissues due to failure in radiotherapy. The underlying mechanism leading to the development of acquired radioresistance in the EMT6 mouse mammary carcinoma cell line and the potential pathway involved was investigated by comparing differential gene expressions between parental and acquired radioresistance cells. EMT6 cell line was exposed to 2 Gy/per cycle of gamma-ray and the survival fraction between EMT6-treated and parental cells was compared. EMT6RR_MJI (acquired radioresistance) cells was developed after 8 cycles of fractionated irradiation. The development of EMT6RR_MJI cells was confirmed with further irradiation at different doses of gamma-ray, and both the survival fraction and migration rates were measured. Higher survival fraction and migration rates were obtained in EMT6RR_MJI cells after exposure to 4 Gy and 8 Gy gamma-ray irradiations compared to their parental cells. Gene expression between EMT6RR_MJI and parental cells was compared, and 16 genes identified to possess more than tenfold changes were selected and validated using RT-PCR. Out of these genes, 5 were significantly up-regulated i.e., IL-6, PDL-1, AXL, GAS6 and APCDD1. Based on pathway analysis software, the development of acquired radioresistance in EMT6RR_MJI was hypothesized through JAK/STAT/PI3K pathway. Presently, CTLA-4 and PD-1 were determined to be associated with JAK/STAT/PI3K pathway, where both their expressions were significantly increased in EMT6RR_MJI compared to parental cells in the 1st, 4th and 8th cycle of radiation. As a conclusion, the current findings provided a mechanistic platform for the development of acquired radioresistance in EMT6RR_MJI through overexpression of CTLA-4 and PD-1, and novel knowledge on therapeutic targets for recurrent radioresistant cancers.
Collapse
Affiliation(s)
- Nur Fatihah Ronny Sham
- Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Narimah Abdul Hamid Hasani
- Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurhaslina Hasan
- Faculty of Dentistry, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | | | - Syed Baharom Syed Ahmad Fuad
- Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Harissa Husainy Hasbullah
- Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Mohammad Johari Ibahim
- Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
19
|
Molga-Magusiak M, Rzepakowska A, Żurek M, Kotuła I, Demkow U, Niemczyk K. Prognostic and predictive role of soluble programmed death ligand-1 in head and neck cancer. Braz J Otorhinolaryngol 2023; 89:417-424. [PMID: 36868994 PMCID: PMC10164823 DOI: 10.1016/j.bjorl.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVES The aim of the study was to investigate clinical significance of soluble PD-L1 (sPD-L1) serum level in head and neck cancer and to evaluate its role as a possible prognostic and predictive biomarker. METHODS A prospective analysis of sPD-L1 levels in 60 patients diagnosed and treated due to malignant and non-malignant lesions in the region of head and neck was performed in peripheral blood by an ELISA test. RESULTS The range of sPD-L1 in the study group was 0.16-1.63ng/mL, mean 0.64±0.32. There were no differences in the mean sPD-L1 regarding patients' age, sex, and the localization of the lesion. Statistically significant difference was revealed in the average sPD-L1 level (p= 0.006) depending on the histopathological advancement of the lesions, 0.704 ± 0.349 and 0.512 ± 0.177 respectively in the malignant and benign group. The separate analysis of laryngeal lesions confirmed statistical difference in sPD-L1 (p= 0.002) for the malignant lesions (0.741 ± 0.353) compared with the benign (0.489 ± 0.175). The sPD-L1 level of 0.765 ng/mL or higher, revealed 35% sensitivity and 95.5% specificity for the diagnosis of head and neck malignant lesions (AUC=0.664, 95% CI 0.529‒0.8, p-value=0.039). The 1-year DFS was 83.3% in the group of patients with low sPD-L1 levels (< 0.765ng/mL) and 53.8% in patients with high sPD-L1 (≥0.765ng/mL). The 2-year OS were 68% and 69.2% respectively in both groups. The log-rank test confirmed statistically significant prognostic value of sPD-L1 level for 1-year DFS (p-value=0.035). CONCLUSIONS sPD-L1 is a promising prognostic and early recurrence predictive biomarker for head and neck cancers, most significantly for laryngeal lesions. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Maria Molga-Magusiak
- Medical University of Warsaw, Department of Otorhinolaryngology Head and Neck Surgery, Warsaw, Poland
| | - Anna Rzepakowska
- Medical University of Warsaw, Department of Otorhinolaryngology Head and Neck Surgery, Warsaw, Poland.
| | - Michał Żurek
- Medical University of Warsaw, Department of Otorhinolaryngology Head and Neck Surgery, Warsaw, Poland
| | - Iwona Kotuła
- Medical University of Warsaw, Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw, Poland
| | - Urszula Demkow
- Medical University of Warsaw, Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw, Poland
| | - Kazimierz Niemczyk
- Medical University of Warsaw, Department of Otorhinolaryngology Head and Neck Surgery, Warsaw, Poland
| |
Collapse
|
20
|
Lin YY, Gao HF, Yang X, Zhu T, Zheng XX, Ji F, Zhang LL, Yang CQ, Yang M, Li JQ, Cheng MY, Wang K. Neoadjuvant therapy in triple-negative breast cancer: A systematic review and network meta-analysis. Breast 2022; 66:126-135. [PMID: 36265208 PMCID: PMC9587342 DOI: 10.1016/j.breast.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence for the preferred neoadjuvant therapy regimen in triple-negative breast cancer (TNBC) is not yet established. METHODS Literature search was conducted from inception to February 12, 2022. Phase 2 and 3 randomized controlled trials (RCTs) investigating neoadjuvant therapy for TNBC were eligible. The primary outcome was pathologic complete response (pCR); the secondary outcomes were all-cause treatment discontinuation, disease-free survival or event-free survival (DFS/EFS), and overall survival. Odd ratios (OR) with 95% credible intervals (CrI) were used to estimate binary outcomes; hazard ratios (HR) with 95% CrI were used to estimate time-to-event outcomes. Bayesian network meta-analysis was implemented for each endpoint. Sensitivity analysis and network meta-regression were done. RESULTS 41 RCTs (N = 7109 TNBC patients) were eligible. Compared with anthracycline- and taxane-based chemotherapy (ChT), PD-1 inhibitor plus platinum plus anthracycline- and taxane-based ChT was associated with a significant increased pCR rate (OR 3.95; 95% CrI 1.81-9.44) and a higher risk of premature treatment discontinuation (3.25; 1.26-8.29). Compared with dose-dense anthracycline- and taxane-based ChT, the combined treatment was not associated with significantly improved pCR (OR 2.57; 95% CrI 0.69-9.92). In terms of time-to-event outcomes, PD-1 inhibitor plus platinum plus anthracycline- and taxane-based ChT was associated with significantly improved DFS/EFS (HR 0.42; 95% CrI 0.19-0.81). CONCLUSIONS PD-1 inhibitor plus platinum and anthracycline- and taxane-based ChT was currently the most efficacious regimen for pCR and DFS/EFS improvement in TNBC. The choice of chemotherapy backbone, optimization of patient selection with close follow-up and proactive symptomatic managements are essential to the antitumor activity of PD-1 inhibitor.
Collapse
Affiliation(s)
- Ying-Yi Lin
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Hong-Fei Gao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xin Yang
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Anesthesiology, the First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xing-Xing Zheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China; Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Liu-Lu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ci-Qiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Min-Yi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Kun Wang
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
21
|
T-cell membrane coating for improving polymeric nanoparticle-based cancer therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
23
|
The Expression Levels and Concentrations of PD-1 and PD-L1 Proteins in Septic Patients: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12082004. [PMID: 36010357 PMCID: PMC9407082 DOI: 10.3390/diagnostics12082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a series of life-threatening organ dysfunction caused by an impaired host response to infection. A large number of molecular studies of sepsis have revealed complex interactions between infectious agents and hosts that result in heterogeneous manifestations of sepsis. Sepsis can cause immunosuppression and increase the expression of checkpoint inhibitor molecules, including programmed death protein (PD-1) and programmed death ligand 1 (PD-L1), and thus PD-1 and PD-L1 are thought to be useful as diagnostic and prognostic tools for sepsis. PD-1 is an inhibitor of both adaptive and innate immune responses, and is expressed on activated T lymphocytes, natural killer (NK) cells, B lymphocytes, macrophages, dendritic cells (DCs), and monocytes, whereas PD-L1 is expressed on macrophages, some activated T and B cells, and mesenchymal stem cells as well as various non-hematopoietic cells. This systematic review aims to assess the PD-1 and PD-L1 protein expression levels and concentrations in septic and other infectious patients.
Collapse
|
24
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. Immunorthodontics: PD-L1, a Novel Immunomodulator in Cementoblasts, Is Regulated by HIF-1α under Hypoxia. Cells 2022; 11:cells11152350. [PMID: 35954195 PMCID: PMC9367578 DOI: 10.3390/cells11152350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have revealed that hypoxia alters the PD-L1 expression in periodontal cells. HIF-1α is a key regulator for PD-L1. As hypoxia presents a hallmark of an orthodontically induced microenvironment, hypoxic stimulation of PD-L1 expression may play vital roles in immunorthodontics and orthodontically induced inflammatory root resorption (OIIRR). This study aims to investigate the hypoxic regulation of PD-L1 in cementoblasts, and its interaction with hypoxia-induced HIF-1α expression. The cementoblast (OCCM-30) cells (M. Somerman, NIH, NIDCR, Bethesda, Maryland) were cultured in the presence and absence of cobalt (II) chloride (CoCl2). Protein expression of PD-L1 and HIF-1α as well as their gene expression were evaluated by Western blotting and RT-qPCR. Immunofluorescence was applied to visualize the localization of the proteins within cells. The HIF-1α inhibitor (HY-111387, MedChemExpress) was added, and CRISPR/Cas9 plasmid targeting HIF-1α was transferred for further investigation by flow cytometry analysis. Under hypoxic conditions, cementoblasts undergo an up-regulation of PD-L1 expression at protein and mRNA levels. Silencing of HIF-1α using CRISPR/Cas9 indicated a major positive correlation with HIF-1α in regulating PD-L1 expression. Taken together, these findings show the influence of hypoxia on PD-L1 expression is modulated in a HIF-1α dependent manner. The HIF-1α/PD-L1 pathway may play a role in the immune response of cementoblasts. Thus, combined HIF-1α/PD-L1 inhibition could be of possible therapeutic relevance for OIIRR prevention.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| |
Collapse
|
25
|
Hassanian H, Asadzadeh Z, Baghbanzadeh A, Derakhshani A, Dufour A, Rostami Khosroshahi N, Najafi S, Brunetti O, Silvestris N, Baradaran B. The expression pattern of Immune checkpoints after chemo/radiotherapy in the tumor microenvironment. Front Immunol 2022; 13:938063. [PMID: 35967381 PMCID: PMC9367471 DOI: 10.3389/fimmu.2022.938063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
As a disease with the highest disease-associated burden worldwide, cancer has been the main subject of a considerable proportion of medical research in recent years, intending to find more effective therapeutic approaches with fewer side effects. Combining conventional methods with newer biologically based treatments such as immunotherapy can be a promising approach to treating different tumors. The concept of "cancer immunoediting" that occurs in the field of the tumor microenvironment (TME) is the aspect of cancer therapy that has not been at the center of attention. One group of the role players of the so-called immunoediting process are the immune checkpoint molecules that exert either co-stimulatory or co-inhibitory effects in the anti-tumor immunity of the host. It involves alterations in a wide variety of immunologic pathways. Recent studies have proven that conventional cancer therapies, such as chemotherapy, radiotherapy, or a combination of them, i.e., chemoradiotherapy, alter the "immune compartment" of the TME. The mentioned changes encompass a wide range of variations, including the changes in the density and immunologic type of the tumor-infiltrating lymphocytes (TILs) and the alterations in the expression patterns of the different immune checkpoints. These rearrangements can have either anti-tumor immunity empowering or immune attenuating sequels. Thus, recognizing the consequences of various chemo(radio)therapeutic regimens in the TME seems to be of great significance in the evolution of therapeutic approaches. Therefore, the present review intends to summarize how chemo(radio)therapy affects the TME and specifically some of the most important, well-known immune checkpoints' expressions according to the recent studies in this field.
Collapse
Affiliation(s)
- Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Insitute, Hotchkiss Brain Institute, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi” University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Imataki O, Uemura M, Fujita H, Kadowaki N. Application of PD‑L1 blockade in refractory histiocytic sarcoma: A case report. Mol Clin Oncol 2022; 17:136. [PMID: 35949894 PMCID: PMC9353867 DOI: 10.3892/mco.2022.2569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Histiocytic sarcoma (HS) is a rare hematological malignancy, which exhibits morphological and immunophenotypic features of histiocytes. A standard therapy for HS has not yet been established due to its rareness; therefore, disease control is not always possible. A multimodal treatment strategy has been suggested for HS. The present study reported on a case of a 43-year-old female patient who complained of left femoral pain, which was caused by left femoral bone mass. A biopsy of their left femoral bone tumor revealed that the patient had HS. Their sarcoma was localized in the femoral bone and was not considered to be curable, due to local infiltration of the bone tumor beyond the periosteum. The patient then underwent two types of HS-specific chemotherapy; however, both regimens were ineffective. As a result, they underwent radiation therapy at the sites of progressive disease. Because the HS cells of the patient expressed PD-L1, they were treated with nivolumab (240 mg/body, biweekly) for residual diseases in the right occipital bone, multiple lung nodules, intrapelvic right lymph node and primary site. Nivolumab treatment resulted in a complete response at all sites, with the exception of the primary site, which was confirmed by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. The patient received additional nivolumab treatment as consolidation therapy for 1 year. In addition, residual disease of the femoral head was completely resected. The surgically resected refractory tumor revealed the tumor cells no longer pathologically expressed PD-L1 . In conclusion, for refractory and recurrent HS in which surgical resection is not appropriate, treatment with immune-checkpoint inhibitors, such as nivolumab, may be considered an optional but promising immunotherapy if the tumor histologically expresses PD-L1. The present study detected one of the refractory mechanisms of ICI treatment.
Collapse
Affiliation(s)
- Osamu Imataki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa 761‑0793, Japan
| | - Makiko Uemura
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa 761‑0793, Japan
| | - Haruyuki Fujita
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa 761‑0793, Japan
| | - Norimitsu Kadowaki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Miki, Kagawa 761‑0793, Japan
| |
Collapse
|
27
|
Immunorthodontics: Role of HIF-1α in the Regulation of (Peptidoglycan-Induced) PD-L1 Expression in Cementoblasts under Compressive Force. Int J Mol Sci 2022; 23:ijms23136977. [PMID: 35805974 PMCID: PMC9266671 DOI: 10.3390/ijms23136977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Patients with periodontitis undergoing orthodontic therapy may suffer from undesired dental root resorption. The purpose of this in vitro study was to investigate the molecular mechanisms resulting in PD-L1 expression of cementoblasts in response to infection with Porphyromonas gingivalis (P. gingivalis) peptidoglycan (PGN) and compressive force (CF), and its interaction with hypoxia-inducible factor (HIF)-1α molecule: The cementoblast (OCCM-30) cells were kinetically infected with various concentrations of P. gingivalis PGN in the presence and absence of CF. Western blotting and RT-qPCR were performed to examine the protein expression of PD-L1 and HIF-1α as well as their gene expression. Immunofluorescence was applied to visualize the localization of these proteins within cells. An HIF-1α inhibitor was added for further investigation of necroptosis by flow cytometry analysis. Releases of soluble GAS-6 were measured by ELISA. P. gingivalis PGN dose dependently stimulated PD-L1 upregulation in cementoblasts at protein and mRNA levels. CF combined with P. gingivalis PGN had synergistic effects on the induction of PD-L1. Blockade of HIF-1α inhibited the P. gingivalis PGN-inducible PD-L1 protein expression under compression, indicating an HIF-1α dependent regulation of PD-L1 induction. Concomitantly, an HIF-1α inhibitor decreased the GAS-6 release in the presence of CF and P. gingivalis PGN co-stimulation. The data suggest that PGN of P. gingivalis participates in PD-L1 up-regulation in cementoblasts. Additionally, the influence of compressive force on P. gingivalis PGN-induced PD-L1 expression occurs in HIF-1α dependently. In this regard, HIF-1α may play roles in the immune response of cementoblasts via immune-inhibitory PD-L1. Our results underline the importance of molecular mechanisms involved in bacteria-induced periodontics and root resorption.
Collapse
|
28
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8%' and 2*3*8=6*8 and 'ika1'!='ika1%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
29
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8" and 2*3*8=6*8 and "sudy"="sudy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
30
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
31
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8' and 2*3*8=6*8 and 'qlv1'='qlv1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
32
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8gje4tfn3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
33
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
34
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 DOI: 10.1038/s41591-022-01800-8'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 01/29/2024]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
35
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, Zhang X, Lu Z, Lu M, Yuan J, Wang Z, Wang Y, Peng X, Gao H, Liu Z, Wang H, Yuan D, Xiao J, Ma H, Wang W, Li Z, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28:1189-1198. [PMID: 35534566 PMCID: PMC9205778 DOI: 10.1038/s41591-022-01800-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/25/2022] [Indexed: 02/03/2023]
Abstract
Despite success in hematologic malignancies, the treatment landscape of chimeric antigen receptor (CAR) T cell therapy for solid tumors remains limited. Claudin18.2 (CLDN18.2)-redirected CAR T cells showed promising efficacy against gastric cancer (GC) in a preclinical study. Here we report the interim analysis results of an ongoing, open-label, single-arm, phase 1 clinical trial of CLDN18.2-targeted CAR T cells (CT041) in patients with previously treated, CLDN18.2-positive digestive system cancers ( NCT03874897 ). The primary objective was safety after CT041 infusion; secondary objectives included CT041 efficacy, pharmacokinetics and immunogenicity. We treated 37 patients with one of three CT041 doses: 2.5 × 108, 3.75 × 108 or 5.0 × 108 cells. All patients experienced a grade 3 or higher hematologic toxicity. Grade 1 or 2 cytokine release syndrome (CRS) occurred in 94.6% of patients. No grade 3 or higher CRS or neurotoxicities, treatment-related deaths or dose-limiting toxicities were reported. The overall response rate (ORR) and disease control rate (DCR) reached 48.6% and 73.0%, respectively. The 6-month duration of response rate was 44.8%. In patients with GC, the ORR and DCR reached 57.1% and 75.0%, respectively, and the 6-month overall survival rate was 81.2%. These initial results suggest that CT041 has promising efficacy with an acceptable safety profile in patients with heavily pretreated, CLDN18.2-positive digestive system cancers, particularly in those with GC.
Collapse
Affiliation(s)
- Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Huiping Gao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zhen Liu
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Huamao Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jun Xiao
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Hong Ma
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Wei Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
36
|
Multi-Omics Approaches for the Prediction of Clinical Endpoints after Immunotherapy in Non-Small Cell Lung Cancer: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061237. [PMID: 35740259 PMCID: PMC9219996 DOI: 10.3390/biomedicines10061237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the management of locally advanced and advanced non-small lung cancer (NSCLC). With an improvement in the overall survival (OS) as both first- and second-line treatments, ICIs, and especially programmed-death 1 (PD-1) and programmed-death ligands 1 (PD-L1), changed the landscape of thoracic oncology. The PD-L1 level of expression is commonly accepted as the most used biomarker, with both prognostic and predictive values. However, even in a low expression level of PD-L1, response rates remain significant while a significant number of patients will experience hyperprogression or adverse events. The dentification of such subtypes is thus of paramount importance. While several studies focused mainly on the prediction of the PD-L1 expression status, others aimed directly at the development of prediction/prognostic models. The response to ICIs depends on a complex physiopathological cascade, intricating multiple mechanisms from the molecular to the macroscopic level. With the high-throughput extraction of features, omics approaches aim for the most comprehensive assessment of each patient. In this article, we will review the place of the different biomarkers (clinical, biological, genomics, transcriptomics, proteomics and radiomics), their clinical implementation and discuss the most recent trends projecting on the future steps in prediction modeling in NSCLC patients treated with ICI.
Collapse
|
37
|
Silva ACO, Bonfim M, Fontes JLM, Dos-Santos WLC, Mengel J, Cardillo F. C57BL/6 Mice Pretreated With Alpha-Tocopherol Show a Better Outcome of Trypanosoma cruzi Infection With Less Tissue Inflammation and Fibrosis. Front Immunol 2022; 13:833560. [PMID: 35154155 PMCID: PMC8832012 DOI: 10.3389/fimmu.2022.833560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is accompanied by a multisystem inflammatory disorder that follows Trypanosoma cruzi infection. Alpha-tocopherol has been described as an antioxidant and a potential adjuvant to enhance immune responses to vaccines. Therefore, we have evaluated the immune response to T. cruzi infection upon alpha-tocopherol pre-administration. The results show that administration of alpha-tocopherol before the infection results in lower parasitemia and lower mortality of C57BL/6 mice infected with the Tulahuen T. cruzi strain. Alpha-tocopherol administration in normal C57BL/6 mice resulted in higher levels of IFN-γ production by T and NK cells before and after the infection with T. cruzi. More importantly, previous administration of alpha-tocopherol increased the production of IL-10 by T and myeloid suppressor cells and the formation of effector memory T cells while decreasing the expression of PD-1 on T cells. These results suggest that alpha-tocopherol may limit the appearance of dysfunctional T cells during the acute and early chronic phases of T. cruzi infection, contributing to control infection. In addition, alpha-tocopherol could diminish tissue inflammation and fibrosis in late acute disease. These results strongly suggest that alpha-tocopherol may be a helpful agent to be considered in Chagas disease.
Collapse
Affiliation(s)
- Amanda C O Silva
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Maiara Bonfim
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Jonathan L M Fontes
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Washington L C Dos-Santos
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil.,Department of Pathology, Faculty of Medicine, Federal University of Bahia, UFBA, Salvador, Brazil
| | - José Mengel
- Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.,Petrópolis Medical School, UNIFASE, Petrópolis, Brazil
| | - Fabíola Cardillo
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| |
Collapse
|
38
|
Chen L, Jiang X, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol 2022; 237:108962. [DOI: 10.1016/j.clim.2022.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|
39
|
Li J, Che L, Xu C, Lu D, Xu Y, Liu M, Chai W. XIST/miR-34a-5p/PDL1 axis regulated the development of lung cancer cells and the immune function of CD8+ T cells. J Recept Signal Transduct Res 2022; 42:469-478. [PMID: 35067156 DOI: 10.1080/10799893.2021.2019274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Li
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Liyan Che
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Emergency Dpartment, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Dongdong Lu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Yan Xu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Mengru Liu
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Wenshu Chai
- Respiratory Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
40
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Mignogna C, Maddaloni E, D'Onofrio L, Buzzetti R. Investigational therapies targeting CD3 for prevention and treatment of type 1 diabetes. Expert Opin Investig Drugs 2021; 30:1209-1219. [PMID: 34936848 DOI: 10.1080/13543784.2022.2022119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Immunotherapies for type 1 diabetes mellitus (T1D) have been the focus of intense research over the past few decades; nevertheless, the results of clinical trials have not matched expectations. However, thanks to the recent and promising results on T1D prevention, among all the different immune-intervention tested strategies, clinical evidence on anti-CD3 monoclonal antibodies (mAb) deserve particular attention and in-depth evaluation. AREAS COVERED In this narrative review, we introduce the role of T-cells and their co-receptor CD3 in the pathogenesis of T1D and examine the potential of anti-CD3 mAbs as a treatment for preventing or curing T1D. We discuss pre-clinical studies, phase II/III clinical trials, testing the anti-CD3 mAb teplizumab in subjects at T1D high risk, and testing teplizumab and otelixizumab in T1D recent onset patients. In this work we discuss the current evidence gathered on anti-CD3 therapy to offer insights on the treatment strengths, limitations and unmet needs. EXPERT OPINION Recent phase II clinical trials with teplizumab in recent-onset T1D seem encouraging, but benefits associated with the use of anti-CD3 mAb in recent-onset T1D are still controversial. A better patient selection, based on immunological profiles and specific biomarkers, is crucial to improve clinical outcomes in T1D immunotherapies.
Collapse
Affiliation(s)
- Carmen Mignogna
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | |
Collapse
|
42
|
Li Y, An H, Shen C, Wang B, Zhang T, Hong Y, Jiang H, Zhou P, Ding X. Deep phenotyping of T cell populations under long-term treatment of tacrolimus and rapamycin in patients receiving renal transplantations by mass cytometry. Clin Transl Med 2021; 11:e629. [PMID: 34841735 PMCID: PMC8574956 DOI: 10.1002/ctm2.629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tacrolimus (FK506) and rapamycin (RAPA) are widely used to maintain long-term immunosuppression after organ transplantation. However, the impact of accumulative drug administration on the recipients' immune systems remains unclear. We investigated the impact of 3-year FK506 or RAPA treatment after renal transplantation on the human immune systems. A discovery cohort of 30 patients was first recruited, and we discovered two distinctive T lineage suppressive regulatory patterns induced by chronic treatment of FK506 and RAPA. The increased percentage of senescent CD8+ CD57+ T lineages and less responsive T cell receptor (TCR) pathway in the FK506 group indicate better graft acceptance. Meanwhile, percentages of regulatory T cells (Tregs) and expression of CTLA-4 were both up to two-fold higher in the RAPA group, suggesting the inconsistent reactivation potential of the FK506 and RAPA groups when an anti-tumour or anti-infection immune response is concerned. Additionally, up-regulation of phosphorylated signaling proteins in T lineages after in vitro CD3/CD28 stimulation suggested more sensitive TCR-signaling pathways reserved in the RAPA group. An independent validation cohort of 100 renal transplantation patients was further investigated for the hypothesis that long-term RAPA administration mitigates the development of tumours and infections during long-term intake of immunosuppressants. Our results indicate that RAPA administration indeed results in less clinical oncogenesis and infection. The deep phenotyping of T-cell lineages, as educated by the long-term treatment of different immunosuppressants, provides new evidence for personalized precision medicine after renal transplantations.
Collapse
Affiliation(s)
- Yiyang Li
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Huimin An
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Chuan Shen
- Department of Liver SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yifan Hong
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Hui Jiang
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Peijun Zhou
- Division of Kidney TransplantDepartment of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute for Personalized MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
43
|
von Massow G, Oh S, Lam A, Gustafsson K. Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections. Front Immunol 2021; 12:741218. [PMID: 34777353 PMCID: PMC8586491 DOI: 10.3389/fimmu.2021.741218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The global outbreak of the SARS-Cov-2 virus in 2020 has killed millions of people worldwide and forced large parts of the world into lockdowns. While multiple vaccine programs are starting to immunize the global population, there is no direct cure for COVID-19, the disease caused by the SARS-Cov-2 infection. A common symptom in patients is a decrease in T cells, called lymphopenia. It is as of yet unclear what the exact role of T cells are in the immune response to COVID-19. The research so far has mainly focused on the involvement of classical αβ T cells. However, another subset of T cells called γδ T cells could have an important role to play. As part of the innate immune system, γδ T cells respond to inflammation and stressed or infected cells. The γδ T cell subset appears to be particularly affected by lymphopenia in COVID-19 patients and commonly express activation and exhaustion markers. Particularly in children, this subset of T cells seems to be most affected. This is interesting and relevant because γδ T cells are more prominent and active in early life. Their specific involvement in this group of patients could indicate a significant role for γδ T cells in this disease. Furthermore, they seem to be involved in other viral infections and were able to kill SARS infected cells in vitro. γδ T cells can take up, process and present antigens from microbes and human cells. As e.g. tumour-associated antigens are presented by MHC on γδ T cells to classical T-cells, we argue here that it stands to reason that also viral antigens, such as SARS-Cov-2-derived peptides, can be presented in the same way. γδ T cells are already used for medical purposes in oncology and have potential in cancer therapy. As γδ T cells are not necessarily able to distinguish between a transformed and a virally infected cell it could therefore be of great interest to investigate further the relationship between COVID-19 and γδ T cells.
Collapse
Affiliation(s)
- Georg von Massow
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
| | - Kenth Gustafsson
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
44
|
Bu X, Juneja VR, Reynolds CG, Mahoney KM, Bu MT, McGuire KA, Maleri S, Hua P, Zhu B, Klein SR, Greenfield EA, Armand P, Ritz J, Sharpe AH, Freeman GJ. Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunol Res 2021; 9:1465-1475. [PMID: 34635486 DOI: 10.1158/2326-6066.cir-21-0493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.
Collapse
Affiliation(s)
- Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vikram R Juneja
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Carol G Reynolds
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen M Mahoney
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Melissa T Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen A McGuire
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Seth Maleri
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Baogong Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edward A Greenfield
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
45
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
47
|
Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. mBio 2021; 12:e0184921. [PMID: 34399615 PMCID: PMC8406333 DOI: 10.1128/mbio.01849-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pregnant women are highly susceptible to infection by the bacterial pathogen Listeria monocytogenes, leading to miscarriage, premature birth, and neonatal infection. L. monocytogenes is thought to breach the placental barrier by infecting trophoblasts at the maternal/fetal interface. However, the fate of L. monocytogenes within chorionic villi and how infection reaches the fetus are unsettled. Hofbauer cells (HBCs) are fetal placental macrophages and the only leukocytes residing in healthy chorionic villi, forming a last immune barrier protecting fetal blood from infection. Little is known about the HBCs’ antimicrobial responses to pathogens. Here, we studied L. monocytogenes interaction with human primary HBCs. Remarkably, despite their M2 anti-inflammatory phenotype at basal state, HBCs phagocytose and kill non-pathogenic bacteria like Listeria innocua and display low susceptibility to infection by L. monocytogenes. However, L. monocytogenes can exploit HBCs to spread to surrounding placental cells. Transcriptomic analyses by RNA sequencing revealed that HBCs undergo pro-inflammatory reprogramming upon L. monocytogenes infection, similarly to macrophages stimulated by the potent M1-polarizing agents lipopolysaccharide (LPS)/interferon gamma (IFN-γ). Infected HBCs also express pro-inflammatory chemokines known to promote placental infiltration by maternal leukocytes. However, HBCs maintain the expression of a collection of tolerogenic genes and secretion of tolerogenic cytokines, consistent with their tissue homeostatic role in prevention of fetal rejection. In conclusion, we propose a previously unrecognized model in which HBCs promote the spreading of L. monocytogenes among placental cells and transition to a pro-inflammatory state likely to favor innate immune responses, while maintaining the expression of tolerogenic factors known to prevent maternal anti-fetal adaptive immunity.
Collapse
|
48
|
Porcine reproductive and respiratory syndrome virus infection upregulates negative immune regulators and T-cell exhaustion markers. J Virol 2021; 95:e0105221. [PMID: 34379512 DOI: 10.1128/jvi.01052-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine alveolar macrophage (PAM) is one of the primary cellular targets for PRRSV, but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystanders PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP) and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA-sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ as compared to GFP- PAMs. Importantly, negative immune regulators including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3), and T-cell exhaustion markers (PD-L1, PD-L2, IL10, IDO1, and TGFB2) were highly upregulated in GFP+ cells as compared to GFP- cells. By using in situ hybridization assay, RNA transcripts of TNF and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. Importance PRRSV is widespread in many swine producing countries, causing substantial economic loses to the swine industry. PAM is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAM from an acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV-GFP strain to infect pigs and sorted infected- and bystander- PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of and NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.
Collapse
|
49
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
50
|
Perry DJ, Peters LD, Lakshmi PS, Zhang L, Han Z, Wasserfall CH, Mathews CE, Atkinson MA, Brusko TM. Overexpression of the PTPN22 Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:849-859. [PMID: 34301848 PMCID: PMC8323970 DOI: 10.4049/jimmunol.2000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Leeana D Peters
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Priya Saikumar Lakshmi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Lin Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Zhao Han
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| |
Collapse
|