1
|
Grol MW. The evolving landscape of gene therapy strategies for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:372-384. [PMID: 38199296 DOI: 10.1016/j.joca.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Odiba AS, Okoro NO, Durojaye OA, Wu Y. Gene therapy in PIDs, hemoglobin, ocular, neurodegenerative, and hemophilia B disorders. Open Life Sci 2021; 16:431-441. [PMID: 33987480 PMCID: PMC8093481 DOI: 10.1515/biol-2021-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
A new approach is adopted to treat primary immunodeficiency disorders, such as the severe combined immunodeficiency (SCID; e.g., adenosine deaminase SCID [ADA-SCID] and IL-2 receptor X-linked severe combined immunodeficiency [SCID-X1]). The success, along with the feasibility of gene therapy, is undeniable when considering the benefits recorded for patients with different classes of diseases or disorders needing treatment, including SCID-X1 and ADA-SCID, within the last two decades. β-Thalassemia and sickle cell anemia are two prominent monogenic blood hemoglobin disorders for which a solution has been sought using gene therapy. For instance, transduced autologous CD34+ HSCs via a self-inactivating (SIN)-Lentivirus (LV) coding for a functional copy of the β-globin gene has become a feasible procedure. adeno-associated virus (AAV) vectors have found application in ocular gene transfer in retinal disease gene therapy (e.g., Leber's congenital amaurosis type 2), where no prior treatment existed. In neurodegenerative disorders, successes are now reported for cases involving metachromatic leukodystrophy causing severe cognitive and motor damage. Gene therapy for hemophilia also remains a viable option because of the amount of cell types that are capable of synthesizing biologically active FVIII and FIX following gene transfer using AAV vectors in vivo to correct hemophilia B (FIX deficiency), and it is considered an ideal target, as proven in preclinical studies. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene-editing tool has taken a center stage in gene therapy research and is reported to be efficient and highly precise. The application of gene therapy to these areas has pushed forward the therapeutic clinical application.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Pharmaceutical and Medicinal Chemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Pharmaceutical and medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Olanrewaju Ayodeji Durojaye
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanjun Wu
- Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Institute for Laboratory Animal, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
4
|
Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics 2019; 11:pharmaceutics11090441. [PMID: 31480568 PMCID: PMC6781272 DOI: 10.3390/pharmaceutics11090441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
The built-in innate immunity in the human body combats various diseases and their causative agents. One of the components of this system is Toll-like receptors (TLRs), which recognize structurally conserved molecules derived from microbes and/or endogenous molecules. Nonetheless, under certain conditions, these TLRs become hypofunctional or hyperfunctional, thus leading to a disease-like condition because their normal activity is compromised. In this regard, various small-molecule drugs and recombinant therapeutic proteins have been developed to treat the relevant diseases, such as rheumatoid arthritis, psoriatic arthritis, Crohn’s disease, systemic lupus erythematosus, and allergy. Some drugs for these diseases have been clinically approved; however, their efficacy can be enhanced by conventional or targeted drug delivery systems. Certain delivery vehicles such as liposomes, hydrogels, nanoparticles, dendrimers, or cyclodextrins can be employed to enhance the targeted drug delivery. This review summarizes the TLR signaling pathway, associated diseases and their treatments, and the ways to efficiently deliver the drugs to a target site.
Collapse
|
5
|
Stirnadel-Farrant H, Kudari M, Garman N, Imrie J, Chopra B, Giannelli S, Gabaldo M, Corti A, Zancan S, Aiuti A, Cicalese MP, Batta R, Appleby J, Davinelli M, Ng P. Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J Rare Dis 2018; 13:49. [PMID: 29625577 PMCID: PMC5889583 DOI: 10.1186/s13023-018-0791-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Strimvelis (autologous CD34+ cells transduced to express adenosine deaminase [ADA]) is the first ex vivo stem cell gene therapy approved by the European Medicines Agency (EMA), indicated as a single treatment for patients with ADA-severe combined immunodeficiency (ADA-SCID) who lack a suitable matched related bone marrow donor. Existing primary immunodeficiency registries are tailored to transplantation outcomes and do not capture the breadth of safety and efficacy endpoints required by the EMA for the long-term monitoring of gene therapies. Furthermore, for extended monitoring of Strimvelis, the young age of children treated, small patient numbers, and broad geographic distribution of patients all increase the risk of loss to follow-up before sufficient data have been collected. Establishing individual investigator sites would be impractical and uneconomical owing to the small number of patients from each location receiving Strimvelis. Results An observational registry has been established to monitor the safety and effectiveness of Strimvelis in up to 50 patients over a minimum of 15 years. To address the potential challenges highlighted above, data will be collected by a single investigator site at Ospedale San Raffaele (OSR), Milan, Italy, and entered into the registry via a central electronic platform. Patients/families and the patient’s local physician will also be able to submit healthcare information directly to the registry using a uniquely designed electronic platform. Data entry will be monitored by a Gene Therapy Registry Centre (funded by GlaxoSmithKline) who will ensure that necessary information is collected and flows between OSR, the patient/family and the patient’s local healthcare provider. Conclusion The Strimvelis registry sets a precedent for the safety monitoring of future gene therapies. A unique, patient-focused design has been implemented to address the challenges of long-term follow-up of patients treated with gene therapy for a rare disease. Strategies to ensure data completeness and patient retention in the registry will help fulfil pharmacovigilance requirements. Collaboration with partners is being sought to expand from a treatment registry into a disease registry. Using practical and cost-efficient approaches, the Strimvelis registry is hoped to encourage further innovation in registry design within orphan drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Michela Gabaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Pauline Ng
- GlaxoSmithKline, Brentford, Middlesex, UK
| |
Collapse
|
6
|
Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, Appleby J, Roncarolo MG, Aiuti A. Gene Therapy for Adenosine Deaminase Deficiency: A Comprehensive Evaluation of Short- and Medium-Term Safety. Mol Ther 2018; 26:917-931. [PMID: 29433935 PMCID: PMC5910668 DOI: 10.1016/j.ymthe.2017.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
Loss of adenosine deaminase activity leads to severe combined immunodeficiency (ADA-SCID); production and function of T, B, and natural killer (NK) cells are impaired. Gene therapy (GT) with an autologous CD34+-enriched cell fraction that contains CD34+ cells transduced with a retroviral vector encoding the human ADA cDNA sequence leads to immune reconstitution in most patients. Here, we report short- and medium-term safety analyses from 18 patients enrolled as part of single-arm, open-label studies or compassionate use programs. Survival was 100% with a median of 6.9 years follow-up (range, 2.3 to 13.4 years). Adverse events were mostly grade 1 or grade 2 and were reported by all 18 patients following GT. Thirty-nine serious adverse events (SAEs) were reported by 15 of 18 patients; no SAEs were considered related to GT. The most common adverse events reported post-GT include upper respiratory tract infection, gastroenteritis, rhinitis, bronchitis, oral candidiasis, cough, neutropenia, diarrhea, and pyrexia. Incidence rates for all of these events were highest during pre-treatment, treatment, and/or 3-month follow-up and then declined over medium-term follow-up. GT did not impact the incidence of neurologic/hearing impairments. No event indicative of leukemic transformation was reported.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132
| | - Laura Castagnaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132
| | - Katie Rolfe
- GSK Research and Development, GlaxoSmithKline, UB11 1BT and SG1 2NY, UK
| | - Erika De Boever
- GSK Research and Development, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Rickey R Reinhardt
- GSK Research and Development, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Jonathan Appleby
- GSK Research and Development, GlaxoSmithKline, UB11 1BT and SG1 2NY, UK
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132; Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132.
| |
Collapse
|
7
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
9
|
Sinn PL, Hwang BY, Li N, Ortiz JLS, Shirazi E, Parekh KR, Cooney AL, Schaffer DV, McCray PB. Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther 2017; 24:674-679. [PMID: 28880020 DOI: 10.1038/gt.2017.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Lentiviral vectors pseudotyped with the baculovirus envelope protein GP64 transduce primary cultures of human airway epithelia (HAE) at their apical surface. Our goal in this study was to harness a directed evolution approach to develop a novel envelope glycoprotein with increased transduction properties for HAE. Using error-prone PCR, a library of GP64 mutants was generated and used to prepare a diverse pool of lentiviral virions pseudotyped with GP64 variants. The library was serially passaged on HAE and three GP64 mutations were recovered. Single-, double- and the triple-combination mutant envelope glycoproteins were compared with wild-type GP64 for their ability to transduce HAE. Our results suggest that lentiviral vectors pseudotyped with evolved GP64 transduced HAE with greater efficiency than wild-type GP64. This effect was not observed in primary cultures of porcine airway epithelial cells, suggesting that the directed evolution protocol was species specific. In summary, our studies indicate that serial passage of a GP64 mutant library yielded specific variants with improved HAE cell tropism, yielding tools with the potential to improve the success of gene therapy for airway diseases.
Collapse
Affiliation(s)
- P L Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - B-Y Hwang
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - N Li
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - J L S Ortiz
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - E Shirazi
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K R Parekh
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A L Cooney
- Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - D V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - P B McCray
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Abstract
Transfer of gene-corrected autologous hematopoietic stem cells in patients with primary immunodeficiencies has emerged as a new therapeutic approach. Patients with various conditions lacking a suitable donor have been treated with retroviral vectors and a gene-addition strategy. Initial promising results were shadowed by the occurrence of malignancies in some of these patients. Current trials, developed in the last decade, use safer viral vectors to overcome the risk of genotoxicity and have led to improved clinical outcomes. This review reflects the progresses made in specific disorders, including adenosine deaminase deficiency, X-linked severe combined immunodeficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome.
Collapse
|
11
|
Abstract
Viral vector use in gene therapy has highlighted several safety concerns, including genotoxic events. Generally, vector-mediated genotoxicity results from upregulation of cellular proto-oncogenes via promoter insertion, promoter activation, or gene transcript truncation, with enhancer-mediated activation of nearby genes the primary mechanism reported in gene therapy trials. Vector-mediated genotoxicity can be influenced by virus type, integration target site, and target cell type; different vectors have distinct integration profiles which are cell-specific. Non-viral factors, including patient age, disease, and dose can also influence genotoxic potential, thus the choice of test models and clinical trial populations is important to ensure they are indicative of efficacy and safety. Efforts have been made to develop viral vectors with less risk of insertional mutagenesis, including self-inactivating (SIN) vectors, enhancer-blocking insulators, and microRNA targeting of vectors, although insertional mutagenesis is not completely abrogated. Here we provide an overview of the current understanding of viral vector-mediated genotoxicity risk from factors contributing to viral vector-mediated genotoxicity to efforts made to reduce genotoxicity, and testing strategies required to adequately assess the risk of insertional mutagenesis. It is clear that there is not a 'one size fits all' approach to vector modification for reducing genotoxicity, and addressing these challenges will be a key step in the development of therapies such as CRISPR-Cas9 and delivery of future gene-editing technologies.
Collapse
Affiliation(s)
- Rhiannon M David
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Ann T Doherty
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| |
Collapse
|
12
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
13
|
Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int J Hematol 2016; 104:42-72. [PMID: 27289360 DOI: 10.1007/s12185-016-2030-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Gene therapies are classified into two major categories, namely, in vivo and ex vivo. Clinical trials of human gene therapy began with the ex vivo techniques. Based on the initial successes of gene-therapy clinical trials, these approaches have spread worldwide. The number of gene therapy trials approved worldwide increased gradually starting in 1989, reaching 116 protocols per year in 1999, and a total of 2210 protocols had been approved by 2015. Accumulating clinical evidence has demonstrated the safety and benefits of several types of gene therapy, with the exception of serious adverse events in several clinical trials. These painful experiences were translated backward to basic science, resulting in the development of several new technologies that have influenced the recent development of ex vivo gene therapy in this field. To date, six gene therapies have been approved in a limited number of countries worldwide. In Japan, clinical trials of gene therapy have developed under the strong influence of trials in the US and Europe. Since the initial stages, 50 clinical trials have been approved by the Japanese government. In this review, the history and current status of clinical trials of ex vivo gene therapy for hematological disorders are introduced and discussed.
Collapse
|
14
|
Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 2016; 128:45-54. [PMID: 27129325 DOI: 10.1182/blood-2016-01-688226] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.
Collapse
|
15
|
Abstract
In the recent past, the gene therapy field has witnessed a remarkable series of
successes, many of which have involved primary immunodeficiency diseases, such
as X-linked severe combined immunodeficiency, adenosine deaminase deficiency,
chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress
has widened the choice of therapeutic options in some specific cases of primary
immunodeficiency, much remains to be done to extend the geographical
availability of such an advanced approach and to increase the number of diseases
that can be targeted. At the same time, emerging technologies are stimulating
intensive investigations that may lead to the application of precise genetic
editing as the next form of gene therapy for these and other human genetic
diseases.
Collapse
Affiliation(s)
- Fabio Candotti
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Cicalese MP, Aiuti A. Clinical applications of gene therapy for primary immunodeficiencies. Hum Gene Ther 2016; 26:210-9. [PMID: 25860576 DOI: 10.1089/hum.2015.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- 1 San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute , 20132 Milan, Italy
| | | |
Collapse
|
17
|
Abstract
Since the approval of insulin as the first recombinant therapeutic protein, the prominence of biologic therapies in drug development has grown significantly. Many modalities beyond traditional biologics are now being developed or explored for various indications with significant unmet medical needs. From early traditional replacement proteins to more recent, highly engineered antibodies, oligonucleotides, fusion proteins, and gene constructs, biologic agents have delivered life-changing therapies, despite often having scientifically and technically challenging development programs. This brief review outlines some of the major biotherapeutic classes and identifies the advantages and challenges with the development of these products.
Collapse
|
18
|
Ghosh S, Thrasher AJ, Gaspar HB. Gene therapy for monogenic disorders of the bone marrow. Br J Haematol 2015; 171:155-170. [DOI: 10.1111/bjh.13520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sujal Ghosh
- Infection, Immunity, Inflammation and Physiological Medicine; Molecular and Cellular Immunology Section; University College London - Institute of Child Health; London UK
- Department of Paediatric Oncology, Haematology and Clinical Immunology; Medical Faculty; Centre of Child and Adolescent Health; Heinrich-Heine-University; Düsseldorf Germany
| | - Adrian J. Thrasher
- Infection, Immunity, Inflammation and Physiological Medicine; Molecular and Cellular Immunology Section; University College London - Institute of Child Health; London UK
| | - H. Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine; Molecular and Cellular Immunology Section; University College London - Institute of Child Health; London UK
| |
Collapse
|
19
|
King NMP, Iltis AS. Cell-based interventions in utero: time to reconsider. Front Pharmacol 2014; 5:214. [PMID: 25278899 PMCID: PMC4166231 DOI: 10.3389/fphar.2014.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/03/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy M P King
- Department of Social Sciences and Health Policy and Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine Winston-Salem, NC, USA ; Center for Bioethics, Health, and Society, Wake Forest University Winston-Salem, NC, USA
| | - Ana S Iltis
- Center for Bioethics, Health, and Society, Wake Forest University Winston-Salem, NC, USA ; Department of Philosophy, Wake Forest University Winston-Salem, NC, USA
| |
Collapse
|
20
|
Happle C, Lachmann N, kuljec J, Wetzke M, Ackermann M, Brennig S, Mucci A, Jirmo AC, Groos S, Mirenska A, Hennig C, Rodt T, Bankstahl JP, Schwerk N, Moritz T, Hansen G. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med 2014; 6:250ra113. [DOI: 10.1126/scitranslmed.3009750] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Farinelli G, Capo V, Scaramuzza S, Aiuti A. Lentiviral vectors for the treatment of primary immunodeficiencies. J Inherit Metab Dis 2014; 37:525-33. [PMID: 24619149 DOI: 10.1007/s10545-014-9690-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 01/22/2023]
Abstract
In the last years important progress has been made in the treatment of several primary immunodeficiency disorders (PIDs) with gene therapy. Hematopoietic stem cell (HSC) gene therapy indeed represents a valid alternative to conventional transplantation when a compatible donor is not available and recent success confirmed the great potential of this approach. First clinical trials performed with gamma retroviral vectors were promising and guaranteed clinical benefits to the patients. On the other hand, the outcome of severe adverse events as the development of hematological abnormalities highlighted the necessity to develop a safer platform to deliver the therapeutic gene. Self-inactivating (SIN) lentiviral vectors (LVVs) were studied to overcome this hurdle through their preferable integration pattern into the host genome. In this review, we describe the recent advancements achieved both in vitro and at preclinical level with LVVs for the treatment of Wiskott-Aldrich syndrome (WAS), chronic granulomatous disease (CGD), ADA deficiency (ADA-SCID), Artemis deficiency, RAG1/2 deficiency, X-linked severe combined immunodeficiency (γchain deficiency, SCIDX1), X-linked lymphoproliferative disease (XLP) and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome.
Collapse
Affiliation(s)
- Giada Farinelli
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | | | | | | |
Collapse
|
22
|
Advanced cell-based therapies for the treatment of primary immunodeficiency (Cell-PID). HUM GENE THER CL DEV 2014; 25:54-6. [PMID: 24933560 DOI: 10.1089/humc.2014.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Chiriaco M, Farinelli G, Capo V, Zonari E, Scaramuzza S, Di Matteo G, Sergi LS, Migliavacca M, Hernandez RJ, Bombelli F, Giorda E, Kajaste-Rudnitski A, Trono D, Grez M, Rossi P, Finocchi A, Naldini L, Gentner B, Aiuti A. Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis. Mol Ther 2014; 22:1472-1483. [PMID: 24869932 DOI: 10.1038/mt.2014.87] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/18/2014] [Indexed: 01/11/2023] Open
Abstract
Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development.
Collapse
Affiliation(s)
- Maria Chiriaco
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | - Giada Farinelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Valentina Capo
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Gigliola Di Matteo
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | - Lucia Sergi Sergi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | | | - Ezio Giorda
- Laboratory of Flow Cytometry and B Cell Development, Children's Hospital Bambino Gesù, Rome, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Didier Trono
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Paolo Rossi
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | - Andrea Finocchi
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy; "Vita-Salute" S. Raffaele University, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy
| | - Alessandro Aiuti
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy; San Raffaele Telethon Institute for Gene Therapy (TIGET), Scientific Institute HS Raffaele, Milan, Italy.
| |
Collapse
|
24
|
Lachmann N, Happle C, Ackermann M, Lüttge D, Wetzke M, Merkert S, Hetzel M, Kensah G, Jara-Avaca M, Mucci A, Skuljec J, Dittrich AM, Pfaff N, Brennig S, Schambach A, Steinemann D, Göhring G, Cantz T, Martin U, Schwerk N, Hansen G, Moritz T. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2014; 189:167-82. [PMID: 24279725 DOI: 10.1164/rccm.201306-1012oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.
Collapse
Affiliation(s)
- Nico Lachmann
- 1 Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
O'Reilly M, Kohn DB, Bartlett J, Benson J, Brooks PJ, Byrne BJ, Camozzi C, Cornetta K, Crystal RG, Fong Y, Gargiulo L, Gopal-Srivastava R, High KA, Jacobson SG, Jambou RC, Montgomery M, Rosenthal E, Samulski RJ, Skarlatos SI, Sorrentino B, Wilson JM, Xie Y, Corrigan-Curay J. Gene therapy for rare diseases: summary of a National Institutes of Health workshop, September 13, 2012. Hum Gene Ther 2014; 24:355-62. [PMID: 23517518 DOI: 10.1089/hum.2013.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy has shown clinical efficacy for several rare diseases, using different approaches and vectors. The Gene Therapy for Rare Diseases workshop, sponsored by the National Institutes of Health (NIH) Office of Biotechnology Activities and Office of Rare Diseases Research, brought together investigators from different disciplines to discuss the challenges and opportunities for advancing the field including means for enhancing data sharing for preclinical and clinical studies, development and utilization of available NIH resources, and interactions with the U.S. Food and Drug Administration.
Collapse
Affiliation(s)
- Marina O'Reilly
- Office of Biotechnology Activities, Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|
27
|
Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Pai SY, Ballard B, Bauer SC, Bleesing JJH, Boyle M, Brower A, Buckley RH, van der Burg M, Burroughs LM, Candotti F, Cant AJ, Chatila T, Cunningham-Rundles C, Dinauer MC, Dvorak CC, Filipovich AH, Fleisher TA, Bobby Gaspar H, Gungor T, Haddad E, Hovermale E, Huang F, Hurley A, Hurley M, Iyengar S, Kang EM, Logan BR, Long-Boyle JR, Malech HL, McGhee SA, Modell F, Modell V, Ochs HD, O'Reilly RJ, Parkman R, Rawlings DJ, Routes JM, Shearer WT, Small TN, Smith H, Sullivan KE, Szabolcs P, Thrasher A, Torgerson TR, Veys P, Weinberg K, Zuniga-Pflucker JC. Primary Immune Deficiency Treatment Consortium (PIDTC) report. J Allergy Clin Immunol 2014; 133:335-47. [PMID: 24139498 PMCID: PMC3960312 DOI: 10.1016/j.jaci.2013.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023]
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, and chronic granulomatous disease through retrospective, prospective, and cross-sectional studies. The PIDTC additionally seeks to encourage training of junior investigators, establish partnerships with European and other International colleagues, work with patient advocacy groups to promote community awareness, and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for primary immunodeficiency diseases. To date, the PIDTC has funded 2 pilot projects: newborn screening for SCID in Navajo Native Americans and B-cell reconstitution in patients with SCID after hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first 2 PIDTC workshops, and consideration of future consortium objectives.
Collapse
Affiliation(s)
- Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Morton J Cowan
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Luigi D Notarangelo
- Division of Immunology, the Manton Center for Orphan Disease Research, Children's Hospital, and Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Donald B Kohn
- Departments of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif; Institute for Human Genetics, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Pediatric Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Sarah C Bauer
- Developmental and Behavioral Pediatrics, Lurie Children's Hospital of Chicago, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Jack J H Bleesing
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Amy Brower
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, Md
| | - Rebecca H Buckley
- Pediatric Allergy and Immunology, Duke University School of Medicine, Durham, NC
| | | | - Lauri M Burroughs
- Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Wash
| | - Fabio Candotti
- Genetics & Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Andrew J Cant
- Pediatric Immunology and Infectious Diseases and Pediatric Bone Marrow Transplant, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | - Talal Chatila
- Pediatric Allergy/Immunology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Mary C Dinauer
- Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, Mo
| | - Christopher C Dvorak
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Alexandra H Filipovich
- Pediatric Clinical Immunology, Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Hubert Bobby Gaspar
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Tayfun Gungor
- Pediatric Immunology and Blood and Marrow Transplantation, Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elie Haddad
- Pediatric Immunology, Mother and Child Ste-Justine Hospital, Montreal, Quebec, Canada
| | | | - Faith Huang
- Pediatric Allergy/Immunology, Mount Sinai Medical Center, New York, NY
| | - Alan Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | - Mary Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | | | - Elizabeth M Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Brent R Logan
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Janel R Long-Boyle
- Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, Calif
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sean A McGhee
- Pediatric Allergy/Immunology, Lucile Packard Children's Hospital, Stanford University Medical Center, Stanford, Calif
| | | | | | - Hans D Ochs
- Center for Immunity and Immunotherapy, Seattle Children's Hospital Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Richard J O'Reilly
- Pediatrics and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robertson Parkman
- Division of Research Immunology/B.M.T., Children's Hospital Los Angeles, Los Angeles, Calif
| | - David J Rawlings
- Pediatric Immunology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - John M Routes
- Pediatric Allergy and Clinical Immunology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - William T Shearer
- Pediatric Allergy & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Trudy N Small
- Pediatric Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Kathleen E Sullivan
- Pediatric Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Paul Szabolcs
- Bone Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Adrian Thrasher
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Troy R Torgerson
- Pediatric Rheumatology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Paul Veys
- Blood and Marrow Transplantation, Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | - Kenneth Weinberg
- Pediatric Stem Cell Transplantation and Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, Calif
| | | |
Collapse
|
28
|
Candotti F. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. Int J Hematol 2014; 99:383-92. [DOI: 10.1007/s12185-014-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
|
29
|
A glance on recent progresses in diagnosis and treatment of primary immunodeficiencies/ Progrese recente în diagnosticul şi tratamentul imunodeficienţelor primare. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Brendel C, Kaufmann KB, Krattenmacher A, Pahujani S, Grez M. Generation of X-CGD cells for vector evaluation from healthy donor CD34(+) HSCs by shRNA-mediated knock down of gp91(phox). MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14037. [PMID: 26015977 PMCID: PMC4362359 DOI: 10.1038/mtm.2014.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/10/2014] [Accepted: 06/26/2014] [Indexed: 12/16/2022]
Abstract
Innovative approaches for the treatment of rare inherited diseases are hampered by limited availability of patient derived samples for preclinical research. This also applies for the evaluation of novel vector systems for the gene therapy of monogenic hematological diseases like X-linked chronic granulomatous disease (X-CGD), a severe primary immunodeficiency caused by mutations in the gp91phox subunit of the phagocytic NADPH oxidase. Since current gene therapy protocols involve ex vivo gene modification of autologous CD34+ hematopoietic stem cells (HSC), the ideal preclinical model should simulate faithfully this procedure. However, the low availability of patient-derived CD34+ cells limits the feasibility of this approach. Here, we describe a straightforward experimental strategy that circumvents this limitation. The knock down of gp91phox expression upon lentiviral delivery of shRNAs into CD34+ cells from healthy donors generates sufficient amounts of X-CGD CD34+ cells which subsequently can be used for the evaluation of novel gene therapeutic strategies using a codon-optimized gp91phox transgene. We have used this strategy to test the potential of a novel gene therapy vector for X-CGD.
Collapse
Affiliation(s)
- Christian Brendel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus , Frankfurt, Germany
| | - Kerstin B Kaufmann
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus , Frankfurt, Germany
| | - Anja Krattenmacher
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus , Frankfurt, Germany
| | - Shweta Pahujani
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus , Frankfurt, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus , Frankfurt, Germany
| |
Collapse
|
31
|
De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, Giannetti A, De Santis G, Recchia A, Pellegrini G, De Luca M. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports 2013; 2:1-8. [PMID: 24511464 PMCID: PMC3916757 DOI: 10.1016/j.stemcr.2013.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
We report a long-term follow-up (6.5 years) of a phase I/II clinical trial envisaging the use of autologous genetically modified cultured epidermal stem cells for gene therapy of junctional epidermolysis bullosa, a devastating genetic skin disease. The critical goals of the trial were to evaluate the safety and long-term persistence of genetically modified epidermis. A normal epidermal-dermal junction was restored and the regenerated transgenic epidermis was found to be fully functional and virtually indistinguishable from a normal control. The epidermis was sustained by a discrete number of long-lasting, self-renewing transgenic epidermal stem cells that maintained the memory of the donor site, whereas the vast majority of transduced transit-amplifying progenitors were lost within the first few months after grafting. These data pave the way for the safe use of epidermal stem cells in combined cell and gene therapy for genetic skin diseases.
Collapse
Affiliation(s)
- Laura De Rosa
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sonia Carulli
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabienne Cocchiarella
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Eleonora Franchini
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alberto Giannetti
- Emeritus of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giorgio De Santis
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandra Recchia
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
32
|
Passerini L, Mel ER, Sartirana C, Fousteri G, Bondanza A, Naldini L, Roncarolo MG, Bacchetta R. CD4+ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by FOXP3 Gene Transfer. Sci Transl Med 2013; 5:215ra174. [DOI: 10.1126/scitranslmed.3007320] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5:1642-61. [PMID: 24106209 PMCID: PMC3840483 DOI: 10.1002/emmm.201202287] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023] Open
Abstract
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders.
Collapse
Affiliation(s)
| | - Hildegard Büning
- Department I of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of CologneCologne, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical SchoolHannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - Manuel Grez
- Institute for Biomedical ResearchGeorg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
34
|
Ariga T. A possible turning point in the hematopoietic stem cell gene therapy for primary immunodeficiency diseases? Lentiviral vectors could take the place of retroviral vectors. Expert Rev Clin Immunol 2013; 9:1015-8. [PMID: 24168409 DOI: 10.1586/1744666x.2013.850416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wiskott-Aldrich syndrome (WAS), an X-linked primary immunodeficiency disease (PID) with unique and characteristic features, had been considered to be a good candidate for gene therapy. In 2010, hematopoietic stem cell (HSC) gene therapy, using a retroviral vector, was performed for WAS patients; however, concerns remain regarding the long-term safety of this therapy as several patients with PID developed myeloproliferative diseases due to insertional mutagenesis related to HSC gene therapy using retroviral vectors. Aiuti et al. first reported HSC gene therapy for WAS using a lentiviral vector and compared the safety and efficacy of the two therapies in the context of the same disease background. They undertook a detailed study of the vector integration sites and concluded that lentiviral HSC gene therapy was safer than retroviral gene therapy.
Collapse
Affiliation(s)
- Tadashi Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku Sapporo, 060-8638, Japan
| |
Collapse
|
35
|
Stein S, Scholz S, Schwäble J, Sadat MA, Modlich U, Schultze-Strasser S, Diaz M, Chen-Wichmann L, Müller-Kuller U, Brendel C, Fronza R, Kaufmann KB, Naundorf S, Pech NK, Travers JB, Matute JD, Presson RG, Sandusky GE, Kunkel H, Rudolf E, Dillmann A, von Kalle C, Kühlcke K, Baum C, Schambach A, Dinauer MC, Schmidt M, Grez M. From bench to bedside: preclinical evaluation of a self-inactivating gammaretroviral vector for the gene therapy of X-linked chronic granulomatous disease. HUM GENE THER CL DEV 2013; 24:86-98. [PMID: 23845071 DOI: 10.1089/humc.2013.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.
Collapse
Affiliation(s)
- Stefan Stein
- Institute for Biomedical Research, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chronic Granulomatous Disease: A 25-Year Patient Registry Based on a Multistep Diagnostic Procedure, from the Referral Center for Primary Immunodeficiencies in Greece. J Clin Immunol 2013; 33:1302-9. [DOI: 10.1007/s10875-013-9940-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|
37
|
Hara T. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Symposium: 2. Diseases originated from stem cell abnormalities; 1) Abnormalities in hematopoietic stem cells: congenital immunodeficiencies]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2255-2261. [PMID: 24228408 DOI: 10.2169/naika.102.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Japan
| |
Collapse
|
38
|
Nienhuis AW. Development of gene therapy for blood disorders: an update. Blood 2013; 122:1556-64. [PMID: 23843498 PMCID: PMC3757369 DOI: 10.1182/blood-2013-04-453209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/29/2013] [Indexed: 02/02/2023] Open
Abstract
This review addresses the current status of gene therapy for immunodeficiencies, chronic granulomatous disease, suicide gene therapy for graft-versus-host disease, viral infections, malignant hematologic disorders, hemophilia, and the hemoglobin disorders. New developments in vector design have fostered improved expression as well as enhanced safety, particularly of integrating retroviral vectors. Several immunodeficiencies have been treated successfully by stem cell-targeted, retroviral-mediated gene transfer with reconstitution of the immune system following infusion of the transduced cells. In a trial for hemophilia B, long-term expression of human FIX has been observed following adeno-associated viral vector-mediated gene transfer into the liver. This approach should be successful in treating any disorder in which liver production of a specific protein is therapeutic.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
39
|
Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341:1233151. [PMID: 23845947 PMCID: PMC4375961 DOI: 10.1126/science.1233151] [Citation(s) in RCA: 803] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is an inherited immunodeficiency caused by mutations in the gene encoding WASP, a protein regulating the cytoskeleton. Hematopoietic stem/progenitor cell (HSPC) transplants can be curative, but, when matched donors are unavailable, infusion of autologous HSPCs modified ex vivo by gene therapy is an alternative approach. We used a lentiviral vector encoding functional WASP to genetically correct HSPCs from three WAS patients and reinfused the cells after a reduced-intensity conditioning regimen. All three patients showed stable engraftment of WASP-expressing cells and improvements in platelet counts, immune functions, and clinical scores. Vector integration analyses revealed highly polyclonal and multilineage haematopoiesis resulting from the gene-corrected HSPCs. Lentiviral gene therapy did not induce selection of integrations near oncogenes, and no aberrant clonal expansion was observed after 20 to 32 months. Although extended clinical observation is required to establish long-term safety, lentiviral gene therapy represents a promising treatment for WAS.
Collapse
Affiliation(s)
- Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells, and Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
| | - Christian Joerg Braun
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| | - Kaan Boztug
- Hannover Medical School, Department of Pediatric Hematology/Oncology, Munich, Germany
| | - Christoph Klein
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
41
|
Gelfand EW, Ochs HD, Shearer WT. Controversies in IgG replacement therapy in patients with antibody deficiency diseases. J Allergy Clin Immunol 2013; 131:1001-5. [PMID: 23540617 DOI: 10.1016/j.jaci.2013.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
This Current perspectives article will review and highlight the importance of accurate diagnosis of patients who have failed to produce specific antibodies to naturally encountered foreign proteins or polysaccharides or after vaccination and the appropriate institution of immunoglobulin replacement therapy. The field of primary immunodeficiency disease (PIDD) has expanded remarkably since the early descriptions 6 decades ago. With greater recognition and advanced cellular and molecular diagnostic technology, new entities and single-gene defects in patients with PIDD are rapidly being defined. This, combined with treatment advances and newborn screening for severe combined immunodeficiency, has resulted in improved outcomes and survival and even permanent cures. Awareness of PIDD has also increased, but the guidelines for recognition remain to be validated. The zeal for registering and enrolling patients has potentially created a large body of "patients" treated with immunoglobulin replacement unnecessarily. The complexity, diversity, and availability of laboratory testing have brought awareness of PIDD to the forefront, but because of an absence of standardization of certain assays, concerns about the correct diagnosis and appropriate treatment have increased. We hope to refocus the discussion on identifying clear laboratory and clinical guidelines for the establishment of an accurate diagnosis of antibody deficiency, its rationale, and, where indicated, institution of safe treatment.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | | |
Collapse
|
42
|
Carulli S, Contin R, De Rosa L, Pellegrini G, De Luca M. The long and winding road that leads to a cure for epidermolysis bullosa. Regen Med 2013; 8:467-81. [DOI: 10.2217/rme.13.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
43
|
Aiuti A, Cossu G, de Felipe P, Galli MC, Narayanan G, Renner M, Stahlbom A, Schneider CK, Voltz-Girolt C. The Committee for Advanced Therapies' of the European Medicines Agency Reflection Paper on Management of Clinical Risks Deriving from Insertional Mutagenesis. HUM GENE THER CL DEV 2013; 24:47-54. [DOI: 10.1089/humc.2013.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alessandro Aiuti
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- San Raffaele-Telethon Institute for Gene Therapy, Via Olgettina 58, 20132 Milan, Italy
- University Department of Pediatrics, Bambino Gesù Children's Hospital and Tor Vergata University, Rome, Italy
| | - Giulio Cossu
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Department of Cell and Development Biology, University College London, Gower Street, London, WC1E 6BT United Kingdom
| | - Pablo de Felipe
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Maria Cristina Galli
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Gopalan Narayanan
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Medicines and Healthcare Products Regulatory Agency, 151 Buckingham Palace Road, Victoria, London, SW1W 9SZ United Kingdom
| | - Matthias Renner
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Axel Stahlbom
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Läkemedelsverket (Medical Products Agency), Dag Hammarskjölds väg 42, 75103 Uppsala, Sweden
| | - Christian K. Schneider
- Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
- Danish Health and Medicines Authority, Axel Heides Gade 1, 2300 Copenhagen, Denmark
- Twincore Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 730625 Hannover, Germany
| | - Caroline Voltz-Girolt
- Gene Therapy Working Party of the Committee for Advanced Therapies, European Medicines Agency, 7, Westferry Circus E14 4HB, London, United Kingdom
| |
Collapse
|
44
|
Abstract
In a retrospective analysis of the French Registry of patients with Wiskott-Aldrich Syndrome (WAS), Mahlaoui et al have identified severe refractory thrombocytopenia (SRT) early in life as a major risk factor for poor outcome.
Collapse
|
45
|
Gene therapy for PIDs: progress, pitfalls and prospects. Gene 2013; 525:174-81. [PMID: 23566838 PMCID: PMC3725417 DOI: 10.1016/j.gene.2013.03.098] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.
Collapse
|
46
|
Hackett PB, Largaespada DA, Switzer KC, Cooper LJN. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res 2013; 161:265-83. [PMID: 23313630 PMCID: PMC3602164 DOI: 10.1016/j.trsl.2012.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
Investigational therapy can be successfully undertaken using viral- and nonviral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently, the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity. We discuss the context in which the SB system can be harnessed for gene therapy and describe the human application of SB-modified CAR(+) T cells. We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease.
Collapse
Affiliation(s)
- Perry B Hackett
- Department of Genetics Cell Biology and Development, Center for Genome Engineering and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|