1
|
Deng Z, Chen L, Qian C, Liu J, Wu Q, Song X, Xiong Y, Wang Z, Hu X, Inuzuka H, Zhong Y, Xiang Y, Lin Y, Dung Pham N, Shi Y, Wei W, Jin J. The First-In-Class Deubiquitinase-Targeting Chimera Stabilizes and Activates cGAS. Angew Chem Int Ed Engl 2024:e202415168. [PMID: 39150898 DOI: 10.1002/anie.202415168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Deubiquitinase-targeting chimera (DUBTAC) is a promising technology for inducing targeted protein stabilization (TPS). Despite its therapeutic potential, very few proteins have been stabilized by DUBTACs to date. The limited applicability of this technology is likely due to the modest DUBTAC-induced protein stabilization effect, and the scarcity of effective deubiquitinase ligands that can be harnessed for DUBTAC development. Here, we report the discovery of MS7829 and MS8588, the first-in-class DUBTACs of cGAS, a key component of the cGAS-STING pathway. While these DUBTACs are based on a cGAS inhibitor, they effectively stabilized cGAS and activated the cGAS/STING/IRF3 signaling. To develop these cGAS DUBTACs, we optimized EN523, an OTUB1 covalent ligand, into an improved ligand, MS5105. We validated MS5105 by generating a MS5105-based CFTR DUBTAC, which was approximately 10-fold more effective in stabilizing the ΔF508-CFTR mutant protein than the previously reported EN523-based CFTR DUBTAC. Overall, this work advances the DUBTAC technology for TPS.
Collapse
Affiliation(s)
- Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Present address: Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Chao Qian
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Present address: Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Qiong Wu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Xiangyang Song
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Present address: Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Present address: Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Yufei Xiang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Yindan Lin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Ngoc Dung Pham
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Yi Shi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, Massachusetts, United States
- Present address: Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, New York, United States
| |
Collapse
|
2
|
Yang M, Gao L, Gao Y, Hao Z, Zhou X, Su G, Bai C, Wei Z, Liu X, Yang L, Li G. Inactivation of Myostatin Delays Senescence via TREX1-SASP in Bovine Skeletal Muscle Cells. Int J Mol Sci 2024; 25:5277. [PMID: 38791317 PMCID: PMC11120739 DOI: 10.3390/ijms25105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (M.Y.); (L.G.); (Y.G.); (Z.H.); (X.Z.); (G.S.); (C.B.); (Z.W.); (X.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (M.Y.); (L.G.); (Y.G.); (Z.H.); (X.Z.); (G.S.); (C.B.); (Z.W.); (X.L.)
| |
Collapse
|
3
|
Ramini D, Giuliani A, Kwiatkowska KM, Guescini M, Storci G, Mensà E, Recchioni R, Xumerle L, Zago E, Sabbatinelli J, Santi S, Garagnani P, Bonafè M, Olivieri F. Replicative senescence and high glucose induce the accrual of self-derived cytosolic nucleic acids in human endothelial cells. Cell Death Discov 2024; 10:184. [PMID: 38643201 PMCID: PMC11032409 DOI: 10.1038/s41420-024-01954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Recent literature shows that loss of replicative ability and acquisition of a proinflammatory secretory phenotype in senescent cells is coupled with the build-in of nucleic acids in the cytoplasm. Its implication in human age-related diseases is under scrutiny. In human endothelial cells (ECs), we assessed the accumulation of intracellular nucleic acids during in vitro replicative senescence and after exposure to high glucose concentrations, which mimic an in vivo condition of hyperglycemia. We showed that exposure to high glucose induces senescent-like features in ECs, including telomere shortening and proinflammatory cytokine release, coupled with the accrual in the cytoplasm of telomeres, double-stranded DNA and RNA (dsDNA, dsRNA), as well as RNA:DNA hybrid molecules. Senescent ECs showed an activation of the dsRNA sensors RIG-I and MDA5 and of the DNA sensor TLR9, which was not paralleled by the involvement of the canonical (cGAS) and non-canonical (IFI16) activation of the STING pathway. Under high glucose conditions, only a sustained activation of TLR9 was observed. Notably, senescent cells exhibit increased proinflammatory cytokine (IL-1β, IL-6, IL-8) production without a detectable secretion of type I interferon (IFN), a phenomenon that can be explained, at least in part, by the accumulation of methyl-adenosine containing RNAs. At variance, exposure to exogenous nucleic acids enhances both IL-6 and IFN-β1 expression in senescent cells. This study highlights the accrual of cytoplasmic nucleic acids as a marker of senescence-related endothelial dysfunction, that may play a role in dysmetabolic age-related diseases.
Collapse
Affiliation(s)
- Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | | | - Michele Guescini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | | | - Jacopo Sabbatinelli
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
5
|
Lv J, Zhu X, Xing C, Chen Y, Bian H, Yin H, Gu X, Su L. Stimulator of interferon genes (STING): Key therapeutic targets in ischemia/reperfusion injury. Biomed Pharmacother 2023; 167:115458. [PMID: 37699319 DOI: 10.1016/j.biopha.2023.115458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The Stimulator of Interferon Genes (STING) is predominantly expressed in immune cells, including macrophages, natural killer cells, dendritic cells, and T cells, functioning as a pattern recognition receptor. STING activation upon detecting cytosolic DNA released from damaged cells initiates downstream pathways, leading to the production of inflammatory cytokines such as IFNs, IL-6, and TNF-α. Dysregulated STING activation has been implicated in inflammatory and metabolic diseases. Ischemia/reperfusion injury (I/RI) is common in stroke, acute myocardial infarction, organ transplantation, and surgeries for certain end-stage diseases. Recent studies suggest that STING could be a novel therapeutic target for I/RI treatment. In this review, we provide a concise overview of the cGAS-STING signaling pathway's general functions and summarize STING's role in I/RI across various organs, including the heart, liver, kidney, and lung. Moreover, we explore potential therapeutic approaches for I/RI by targeting STING.
Collapse
Affiliation(s)
- Juan Lv
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuhong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Xiaofeng Gu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Li Su
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Burke GW, Mitrofanova A, Fontanella A, Ciancio G, Roth D, Ruiz P, Abitbol C, Chandar J, Merscher S, Fornoni A. The podocyte: glomerular sentinel at the crossroads of innate and adaptive immunity. Front Immunol 2023; 14:1201619. [PMID: 37564655 PMCID: PMC10410139 DOI: 10.3389/fimmu.2023.1201619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular disorder that manifests clinically with the nephrotic syndrome and has a propensity to recur following kidney transplantation. The pathophysiology and therapies available to treat FSGS currently remain elusive. Since the podocyte appears to be the target of apparent circulating factor(s) that lead to recurrence of proteinuria following kidney transplantation, this article is focused on the podocyte. In the context of kidney transplantation, the performance of pre- and post-reperfusion biopsies, and the establishment of in vitro podocyte liquid biopsies/assays allow for the development of clinically relevant studies of podocyte biology. This has given insight into new pathways, involving novel targets in innate and adaptive immunity, such as SMPDL3b, cGAS-STING, and B7-1. Elegant experimental studies suggest that the successful clinical use of rituximab and abatacept, two immunomodulating agents, in our case series, may be due to direct effects on the podocyte, in addition to, or perhaps distinct from their immunosuppressive functions. Thus, tissue biomarker-directed therapy may provide a rational approach to validate the mechanism of disease and allow for the development of new therapeutics for FSGS. This report highlights recent progress in the field and emphasizes the importance of kidney transplantation and recurrent FSGS (rFSGS) as a platform for the study of primary FSGS.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Fontanella
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney−Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phil Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
7
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
8
|
Wu H, Wu L, Xiao L, Gu Y, Liu H, Zhang L, Zhang M, Qi L. Atractylenolide III suppresses senescence-associated secretome via inhibiting cGAS/NF-κB pathway in hepatic stellate cells. Clin Exp Pharmacol Physiol 2023; 50:316-324. [PMID: 36648378 DOI: 10.1111/1440-1681.13753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Senescence of activated hepatic stellate cells (aHSCs) is a stable growth arrest that is implicated in liver fibrosis regression. Senescent cells often accompanied by a multi-faceted senescence-associated secretory phenotype (SASP). Induction of aHSCs senescence by inhibiting SASP may be a potential therapeutic model against hepatic fibrosis. To evaluate the role of atractylenolide III (ATR III) in the development of chemotherapeutic drug-induced SASPs in hepatic stellate cells. Etoposide-induced senescent HSC-LX2 model was established and treated with ATR III at different concentrations (20, 30 and 40 μM). We found that ATR III dose-dependently enhanced senescence in etoposide-induced LX2 cells. ATR III dose-dependently decreased the release and expression of SASP factors (interleukin [IL]-1α, IL-1β, IL6 and IL-8) in senescent cells. ATR III regulated cyclic GMP-AMP synthase (cGAS)/nuclear factor κ (NF-κB) signalling to affect SASP expression in senescent cells. The addition of 2'3' cGAMP counteracted the effect of ATR III. The release of SASP factors in the conditioned medium from senescent cells could affect cell migration, proliferation and contraction through paracrine manner. Our results indicated ATR III could still enter senescence and prevent the production of SASP and its paracrine effects in senescent cells, an effect that may be related to the possible inhibition of cGAS/NF-κB signalling by ATR III. Our study proves that ATR III may be an effective potential drug against liver fibrosis by promoting aHSC senescence, which can provide a new choice for the future clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China.,School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lixia Wu
- Department of Pediatrics, Lujiang People's Hospital, Hefei, China
| | - Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yaqin Gu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongxia Liu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lihu Zhang
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China.,School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Mingguang Zhang
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liang Qi
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
9
|
Wei J, Arber C, Wray S, Hardy J, Piers TM, Pocock JM. Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type 1 IFN- response pathway activation and senescence in differentiated microglia; an early life stress model. Glia 2023; 71:1036-1056. [PMID: 36571248 DOI: 10.1002/glia.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Jingzhang Wei
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Charles Arber
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| |
Collapse
|
10
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Carvajal Ibañez D, Skabkin M, Hooli J, Cerrizuela S, Göpferich M, Jolly A, Volk K, Zumwinkel M, Bertolini M, Figlia G, Höfer T, Kramer G, Anders S, Teleman AA, Marciniak-Czochra A, Martin-Villalba A. Interferon regulates neural stem cell function at all ages by orchestrating mTOR and cell cycle. EMBO Mol Med 2023; 15:e16434. [PMID: 36636818 PMCID: PMC10086582 DOI: 10.15252/emmm.202216434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Stem cells show intrinsic interferon signalling, which protects them from viral infections at all ages. In the ageing brain, interferon signalling also reduces the ability of stem cells to activate. Whether these functions are linked and at what time interferons start taking on a role in stem cell functioning is unknown. Additionally, the molecular link between interferons and activation in neural stem cells and how this relates to progenitor production is not well understood. Here we combine single-cell transcriptomics, RiboSeq and mathematical models of interferon to show that this pathway is important for proper stem cell function at all ages in mice. Interferon orchestrates cell cycle and mTOR activity to post-transcriptionally repress Sox2 and induces quiescence. The interferon response then decreases in the subsequent maturation states. Mathematical simulations indicate that this regulation is beneficial for the young and harmful for the old brain. Our study establishes molecular mechanisms of interferon in stem cells and interferons as genuine regulators of stem cell homeostasis and a potential therapeutic target to repair the ageing brain.
Collapse
Affiliation(s)
- Damian Carvajal Ibañez
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maxim Skabkin
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jooa Hooli
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany
| | - Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Göpferich
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Adrien Jolly
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Volk
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zumwinkel
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matilde Bertolini
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gianluca Figlia
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guenter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Anders
- Bioquant, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Heidelberg, Germany.,Interdisciplinary Center of Scientific Computing (IWR) and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbé-Tuana FM. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol 2023; 14:1132653. [PMID: 36926349 PMCID: PMC10011111 DOI: 10.3389/fimmu.2023.1132653] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is associated with an increased incidence of autoimmune diseases, despite the progressive decline of immune responses (immunosenescence). This apparent paradox can be explained by the age-related chronic low-grade systemic inflammation (inflammaging) and progressive dysregulation of innate signaling. During cellular aging, there is an accumulation of damaged DNA in the cell's cytoplasm, which serves as ubiquitous danger-associated molecule, promptly recognized by DNA sensors. For instance, the free cytoplasmic DNA can be recognized, by DNA-sensing molecules like cGAS-STING (cyclic GMP-AMP synthase linked to a stimulator of interferon genes), triggering transcriptional factors involved in the secretion of pro-inflammatory mediators. However, the contribution of this pathway to the aging immune system remains largely unknown. Here, we highlight recent advances in understanding the biology of the cGAS-STING pathway, its influence on the senescence-associated secretory phenotype (SASP), and its modulation of the immune system during sterile inflammation. We propose that this important stress sensor of DNA damage is also a trigger of immunosenescence and inflammaging.
Collapse
Affiliation(s)
- Carine Raquel Richter Schmitz
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fatima T C R Guma
- Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés Evandro Bauer
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia - Neuroimunomodulação (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.,Programa de Pós-Graduação em Gerontologia Biomédica, Escola de Medicina, Pontifícia Universidade do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Florencia Maria Barbé-Tuana
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Pediatria e Saúde da Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
14
|
Antiaging Effects of Dietary Polysaccharides: Advance and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4362479. [PMID: 35864870 PMCID: PMC9296321 DOI: 10.1155/2022/4362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
Aging is a process in which the various physiological functions of the body gradually deteriorate and eventually lead to death. During this process, the body’s resistance to external stresses gradually decreases and the aging-related diseases gradually are increased. Polysaccharides are a group of active substances extracted from living organisms and are widely found in plants, animals, and microorganisms. In the last decade, a variety of natural polysaccharides from functional and medicinal foods have attracted considerable interest for their beneficial effects in the prevention of chronic diseases such as cancers, diabetes, and neurodegenerative diseases. Interestingly, these polysaccharides have also been found to delay aging by reducing oxidative damage, inhibiting telomere shortening, and being anti-inflammatory in different animal models of aging. These reviews summarized the progresses in effects of polysaccharides on antiaging and the potential mechanisms and especially focused on the signaling pathways involved in the antiaging functions. Finally, the applications and prospects of the antiaging effects of polysaccharides are discussed.
Collapse
|
15
|
Qi X, Zheng S, Ma M, Lian N, Wang H, Chen L, Song A, Lu C, Zheng S, Jin H. Curcumol Suppresses CCF-Mediated Hepatocyte Senescence Through Blocking LC3B–Lamin B1 Interaction in Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:912825. [PMID: 35837283 PMCID: PMC9273900 DOI: 10.3389/fphar.2022.912825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Recent studies indicated that hepatocyte senescence plays an important role in the development of alcoholic fatty liver disease (AFLD), suggesting that inhibition of hepatocyte senescence might be a potential strategy for AFLD treatment. The present study investigated the effect of curcumol, a component from the root of Rhizoma Curcumae, on hepatocyte senescence in AFLD and the underlying mechanisms implicated. The results showed that curcumol was able to reduce lipid deposition and injury in livers of ethanol liquid diet-fed mice and in ethanol-treated LO2 cells. Both in vivo and in vitro studies indicated that supplementation with curcumol effectively alleviated ethanol-induced cellular senescence as manifested by a decrease in senescence-associated β-galactosidase (SA-β-gal) activity, a downregulated expression of senescence-related markers p16 and p21, and dysfunction of the telomere and telomerase system. Consistently, treatment with curcumol led to a marked suppression of ethanol-induced formation of cytoplasmic chromatin fragments (CCF) and subsequent activation of cGAS-STING, resulting in a significant reduction in senescence-associated secretory phenotype (SASP)-related inflammatory factors’ secretion. Further studies indicated that curcumol’s inhibition of CCF formation might be derived from blocking the interaction of LC3B with lamin B1 and maintaining nuclear membrane integrity. Taken together, these results indicated that curcumol was capable of ameliorating AFLD through inhibition of hepatocyte senescence, which might be attributed to its blocking of LC3B and lamin B1 interaction and subsequent inactivation of the CCF-cGAS-STING pathway. These findings suggest a promising use of curcumol in the treatment of AFLD.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongting Wang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lerong Chen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| |
Collapse
|
16
|
Pang ES, Daraj G, Balka KR, De Nardo D, Macri C, Hochrein H, Masterman KA, Tan PS, Shoppee A, Magill Z, Jahan N, Bafit M, Zhan Y, Kile BT, Lawlor KE, Radford KJ, Wright MD, O’Keeffe M. Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations. Front Immunol 2022; 13:794776. [PMID: 35281062 PMCID: PMC8914948 DOI: 10.3389/fimmu.2022.794776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.
Collapse
Affiliation(s)
- Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ghazal Daraj
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Katherine R. Balka
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Kelly-Anne Masterman
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Peck S. Tan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Angus Shoppee
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zoe Magill
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nazneen Jahan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mariam Bafit
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Benjamin T. Kile
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Kristen J. Radford
- Translational Research Institute, Mater Research-University of Queensland, Woolloongabba, QLD, Australia
| | - Mark D. Wright
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Meredith O’Keeffe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Meredith O’Keeffe,
| |
Collapse
|
17
|
Age-related Activation of Cyclic GMP-AMP synthase-Stimulator of Interferon Genes Signaling in the Auditory System is Associated with Presbycusis in C57BL/6J Male Mice. Neuroscience 2022; 481:73-84. [PMID: 34848262 DOI: 10.1016/j.neuroscience.2021.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 11/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), is primarily associated with sensory or transduction nerve cell degeneration in the peripheral and/or central auditory systems. During aging, the auditory system shows mitochondrial dysfunction and increased inflammatory responses. Mitochondrial dysfunction promotes leakage of mitochondrial DNA (mtDNA) into the cytosol, which activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce type I interferon and inflammatory responses. However, whether this pathway is involved in the occurrence and development of ARHL is unknown. This study aimed to determine whether there are age-related changes in the levels of cytosolic mtDNA and cGAS-STING pathway activation in the auditory pathway and to explore their relationship with ARHL. The results showed that cGAS-positive immunoreactive cells were observed in the cochlea, inferior colliculus, and auditory cortex. Levels of cytosolic mtDNA, cGAS, STING, phosphorylated interferon regulatory factor 3, and cytokines were significantly increased in the cochlea, inferior colliculus, and auditory cortex of 6-, 9-, and 12-month-old mice compared with 3-month-old mice. These findings suggested that cytosolic mtDNA may play an important role in the pathogenesis of ARHL by activating cGAS-STING-mediated type I interferon and inflammatory responses.
Collapse
|
18
|
The cyclic dinucleotide 2'3'-cGAMP induces a broad antibacterial and antiviral response in the sea anemone Nematostella vectensis. Proc Natl Acad Sci U S A 2021; 118:2109022118. [PMID: 34903650 PMCID: PMC8713801 DOI: 10.1073/pnas.2109022118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In mammals, cyclic dinucleotides (CDNs) bind and activate STING to initiate an antiviral type I interferon response. CDNs and STING originated in bacteria and are present in most animals. By contrast, interferons are believed to have emerged in vertebrates; thus, the function of CDN signaling in invertebrates is unclear. Here, we use a CDN, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP), to activate immune responses in a model cnidarian invertebrate, the starlet sea anemone Nematostella vectensis Using RNA sequencing, we found that 2'3'-cGAMP induces robust transcription of both antiviral and antibacterial genes in N. vectensis Many of the antiviral genes induced by 2'3'-cGAMP are homologs of vertebrate interferon-stimulated genes, implying that the interferon response predates the evolution of interferons. Knockdown experiments identified a role for NF-κB in specifically inducing antibacterial genes downstream of 2'3'-cGAMP. Some of these putative antibacterial genes were also found to be induced during Pseudomonas aeruginosa infection. We characterized the protein product of one of the putative antibacterial genes, the N. vectensis homolog of Dae4, and found that it has conserved antibacterial activity. This work suggests that a broad antibacterial and antiviral transcriptional response is an evolutionarily ancestral output of 2'3'-cGAMP signaling in animals.
Collapse
|
19
|
Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Res 2021; 49:9389-9403. [PMID: 34387695 PMCID: PMC8450086 DOI: 10.1093/nar/gkab689] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor that detects aberrant cytosolic DNA arising from pathogen invasions or genotoxic stresses. Upon binding to DNA, cGAS is activated and catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which induces potent antimicrobial and antitumor responses. Kaposi sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that causes Kaposi sarcoma and several other malignancies. We previously reported that KSHV inhibitor of cGAS (KicGAS) encoded by ORF52, inhibits cGAS enzymatic activity, but the underlying mechanisms remained unclear. To define the inhibitory mechanisms, here we performed in-depth biochemical and functional characterizations of KicGAS, and mapped its functional domains. We found KicGAS self-oligomerizes and binds to double stranded DNA cooperatively. This self-oligomerization is essential for its DNA binding and cGAS inhibition. Interestingly, KicGAS forms liquid droplets upon binding to DNA, which requires collective multivalent interactions with DNA mediated by both structured and disordered domains coordinated through the self-oligomerization of KicGAS. We also observed that KicGAS inhibits the DNA-induced phase separation and activation of cGAS. Our findings reveal a novel mechanism by which DNA viruses target the host protein phase separation for suppression of the host sensing of viral nucleic acids.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Mingjian Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390-9148, USA
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Siming Ma
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jianjun Wu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390-9148, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
20
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
21
|
Guo Q, Zhu D, Wang Y, Miao Z, Chen Z, Lin Z, Lin J, Huang C, Pan L, Wang L, Zeng S, Wang J, Zheng X, Lin Y, Zhang X, Wu Y. Targeting STING attenuates ROS induced intervertebral disc degeneration. Osteoarthritis Cartilage 2021; 29:1213-1224. [PMID: 34020031 DOI: 10.1016/j.joca.2021.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE DNA damage induced by ROS is considered one of the main causes of nucleus pulposus (NP) cells degeneration during the progression of intervertebral disc degeneration (IVDD). cGAS-STING pathway acts as DNA-sensing mechanism for monitoring DNA damage. Recent studies have proved that cGAS-STING contributes to the development of various diseases by inducing inflammation, senescence, and apoptosis. This work explored the role of STING, the main effector of cGAS-STING signaling pathway, in NP degeneration. METHOD Immunohistochemistry was conducted to measure STING protein levels in the nucleus pulposus tissues from human and puncture-induced IVDD rat models. TBHP induces degeneration of nucleus pulposus cells in vitro. For in vivo experiments, lv-NC or lv-STING were injected into the central intervertebral disc space. The degeneration level of IVDD was assessed by MRI, X-ray, HE, and Safranin O staining. RESULTS We found that the expression of STING was upregulated in human and rat degenerated NP tissue as well as in TBHP-treated NP cells. Overexpression of STING promoted the degradation of extracellular matrix; it also promoted apoptosis and senescence of TBHP-treated and untreated NP cells. Knock-down of STING significantly reversed these effects. Mechanistically, STING activated IRF3, whereas blockage of IRF3 attenuated STING-induced apoptosis, senescence and ECM degradation. In vivo experiments revealed that STING knock-down alleviated puncture-induced IVDD development. CONCLUSION STING promotes IVDD progress via IRF3, while suppression of STING may be a promising treatment for IVDD.
Collapse
Affiliation(s)
- Q Guo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - D Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Z Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Z Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Z Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - C Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - L Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - L Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - S Zeng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Zheng
- Department of Vascular Surgery, The Second Affiliated Hospital & Yuying Ghildren's Hospital of Wenzhou Medical University, China
| | - Y Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, China.
| | - Y Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Benarroch E. What Is the Role of the Cytosolic DNA Response in Neurodegeneration? Neurology 2021; 96:940-943. [PMID: 34001541 DOI: 10.1212/wnl.0000000000011944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/15/2022] Open
|
23
|
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis 2021; 41:1625-1634. [PMID: 33146705 DOI: 10.1093/carcin/bgaa114] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Age and DNA repair deficiencies are strong risk factors for developing cancer. This is reflected in the comorbidity of cancer with premature aging diseases associated with DNA damage repair deficiencies. Recent research has suggested that DNA damage accumulation, telomere dysfunction and the accompanying mitochondrial dysfunction exacerbate the aging process and may increase the risk of cancer development. Thus, an area of interest in both cancer and aging research is the elucidation of the dynamic crosstalk between the nucleus and the mitochondria. In this review, we discuss current research on aging and cancer with specific focus on the role of mitochondrial dysfunction in cancer and aging as well as how nuclear to mitochondrial DNA damage signaling may be a driving factor in the increased cancer incidence with aging. We suggest that therapeutic interventions aimed at the induction of autophagy and mediation of nuclear to mitochondrial signaling may provide a mechanism for healthier aging and reduced tumorigenesis.
Collapse
Affiliation(s)
- Jaimin Patel
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Edward Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Mansoor Hussain
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
24
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
25
|
Abstract
The use of DNA-damaging agents such as radiotherapy and chemotherapy has been a mainstay treatment protocol for many cancers, including lung and prostate. Recently, FDA approval of inhibitors of DNA repair, and targeting innate immunity to enhance the efficacy of DNA-damaging agents have gained much attention. Yet, inherent or acquired resistance against DNA-damaging therapies persists as a fundamental drawback. While cancer eradication by causing cancer cell death through induction of apoptosis is the ultimate goal of anti-cancer treatments, autophagy and senescence are two major cellular responses induced by clinically tolerable doses of DNA-damaging therapies. Unlike apoptosis, autophagy and senescence can act as both pro-tumorigenic as well as tumor suppressive mechanisms. DNA damage-induced senescence is associated with a pro-inflammatory secretory phenotype, which contributes to reshaping the tumor- immune microenvironment. Moreover, PTEN (phosphatase and tensin homolog) is a tumor supressor deleted in many tumors, and has been implicated in both senescence and autophagy. This review presents an overview of the literature on the regulation and consequences of DNA damage- induced senescence in cancer cells, with a specific focus on autophagy and PTEN. Both autophagy and senescence occur concurrently in the same cells in response to DNA damaging agents. However, a deterministic relationship between these fundamental processes has been controversial. We present experimental evidence obtained with tumor cells, with a prime focus on two models of cancer, prostate and lung. A better understanding of mechanisms associated with DNA damage-induced cellular senescence is central to fully exploit the potential of DNA-damaging agents against cancer.
Collapse
Affiliation(s)
- Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
26
|
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev 2021; 41:1138-1166. [PMID: 33200838 PMCID: PMC7983894 DOI: 10.1002/med.21754] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune depigment disease results from extensive melanocytes destruction. The destruction of melanocyte is thought to be of multifactorial causation. Genome-wide associated studies have identified single-nucleotide polymorphisms in a panel of susceptible loci as risk factors in melanocyte death. But vitiligo onset can't be solely attributed to a susceptive genetic background. Oxidative stress triggered by elevated levels of reactive oxygen species accounts for melanocytic molecular and organelle dysfunction, a minority of melanocyte demise, and melanocyte-specific antigens exposure. Of note, the self-responsive immune function directly contributes to the bulk of melanocyte deaths in vitiligo. The aberrantly heightened innate immunity, type-1-skewed T helper, and incompetent regulatory T cells tip the balance toward autoreaction and CD8+ cytotoxic T lymphocytes finally execute the killing of melanocytes, possibly alarmed by resident memory T cells. In addition to the well-established apoptosis and necrosis, we discuss several death modalities like oxeiptosis, ferroptosis, and necroptosis that are probably employed in melanocyte destruction. This review focuses on the various mechanisms of melanocytic death in vitiligo pathogenesis to demonstrate a panorama of that. We hope to provide new insights into vitiligo pathogenesis and treatment strategies by the review.
Collapse
Affiliation(s)
- Jianru Chen
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Shuli Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Chunying Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
27
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
28
|
G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat Commun 2020; 11:4979. [PMID: 33020468 PMCID: PMC7536198 DOI: 10.1038/s41467-020-18734-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a known driver of carcinogenesis and age-related diseases, yet senescence is required for various physiological processes. However, the mechanisms and factors that control the negative effects of senescence while retaining its benefits are still elusive. Here, we show that the rasGAP SH3-binding protein 1 (G3BP1) is required for the activation of the senescent-associated secretory phenotype (SASP). During senescence, G3BP1 achieves this effect by promoting the association of the cyclic GMP-AMP synthase (cGAS) with cytosolic chromatin fragments. In turn, G3BP1, through cGAS, activates the NF-κB and STAT3 pathways, promoting SASP expression and secretion. G3BP1 depletion or pharmacological inhibition impairs the cGAS-pathway preventing the expression of SASP factors without affecting cell commitment to senescence. These SASPless senescent cells impair senescence-mediated growth of cancer cells in vitro and tumor growth in vivo. Our data reveal that G3BP1 is required for SASP expression and that SASP secretion is a primary mediator of senescence-associated tumor growth. The mechanisms that control the deleterious behaviour of senescent cells is unclear. Here, the authors show that G3BP1 is required for the induction of the senescence-associated secretory phenotype (SASP), without affecting senescence, and that SASP secretion is a primary mediator of senescence-associated tumour growth.
Collapse
|
29
|
Frisch SM, MacFawn IP. Type I interferons and related pathways in cell senescence. Aging Cell 2020; 19:e13234. [PMID: 32918364 PMCID: PMC7576263 DOI: 10.1111/acel.13234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
This review article addresses the largely unanticipated convergence of two landmark discoveries. The first is the discovery of interferons, critical signaling molecules for all aspects of both innate and adaptive immunity, discovered originally by Isaacs and Lindenmann at the National Institute for Medical Research, London, in 1957 (Proceedings of the Royal Society of London. Series B: Biological Sciences, 1957, 147, 258). The second, formerly unrelated discovery, by Leonard Hayflick and Paul Moorhead (Wistar Institute, Philadelphia) is that cultured cells undergo an irreversible but viable growth arrest, termed senescence, after a finite and predictable number of cell divisions (Experimental Cell Research, 1961, 25, 585). This phenomenon was suspected to relate to organismal aging, which was confirmed subsequently (Nature, 2011, 479, 232). Cell senescence has broad‐ranging implications for normal homeostasis, including immunity, and for diverse disease states, including cancer progression and response to therapy (Nature Medicine, 2015, 21, 1424; Cell, 2019, 179, 813; Cell, 2017, 169, 1000; Trends in Cell Biology, 2018, 28, 436; Journal of Cell Biology, 2018, 217, 65). Here, we critically address the bidirectional interplay between interferons (focusing on type I) and cell senescence, with important implications for health and healthspan.
Collapse
Affiliation(s)
- Steven M. Frisch
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| | - Ian P. MacFawn
- Department of Biochemistry and WVU Cancer Institute West Virginia University Morgantown West Virginia USA
| |
Collapse
|
30
|
Gao M, He Y, Tang H, Chen X, Liu S, Tao Y. cGAS/STING: novel perspectives of the classic pathway. MOLECULAR BIOMEDICINE 2020; 1:7. [PMID: 35006429 PMCID: PMC8603984 DOI: 10.1186/s43556-020-00006-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor and innate immune response initiator. Binding with exogenous or endogenous nucleic acids, cGAS activates its downstream adaptor, stimulator of interferon genes (STING). STING then triggers protective immune to enable the elimination of the pathogens and the clearance of cancerous cells. Apparently, aberrantly activated by self-DNA, cGAS/STING pathway is threatening to cause autoimmune and inflammatory diseases. The effects of cGAS/STING in defenses against infection and autoimmune diseases have been well studied, still it is worthwhile to discuss the roles of cGAS/STING pathway beyond the “classical” realm of innate immunity. Recent studies have revealed its involvement in non-canonical inflammasome formation, calcium hemostasis regulation, endoplasmic reticulum (ER) stress response, perception of leaking mitochondrial DNA (mtDNA), autophagy induction, cellular senescence and senescence-associated secretory phenotype (SASP) production, providing an exciting area for future exploration. Previous studies generally focused on the function of cGAS/STING pathway in cytoplasm and immune response. In this review, we summarize the latest research of this pathway on the regulation of other physiological process and STING independent reactions to DNA in micronuclei and nuclei. Together, these studies provide a new perspective of cGAS/STING pathway in human diseases.
Collapse
Affiliation(s)
- Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
31
|
Landman SL, Ressing ME, van der Veen AG. Balancing STING in antimicrobial defense and autoinflammation. Cytokine Growth Factor Rev 2020; 55:1-14. [PMID: 32563552 DOI: 10.1016/j.cytogfr.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Rapid detection of microbes is crucial for eliciting an effective immune response. Innate immune receptors survey the intracellular and extracellular environment for signs of a microbial infection. When they detect a pathogen-associated molecular pattern (PAMP), such as viral DNA, they alarm the cell about the ongoing infection. The central signaling hub in sensing of viral DNA is the stimulator of interferon genes (STING). Upon activation, STING induces downstream signaling events that ultimately result in the production of type I interferons (IFN I), important cytokines in antimicrobial defense, in particular towards viruses. In this review, we describe the molecular features of STING, including its upstream sensors and ligands, its sequence and structural conservation, common polymorphisms, and its localization. We further highlight how STING activation requires a careful balance: its activity is essential for antiviral defense, but unwanted activation through mutations or accidental recognition of self-derived DNA causes autoinflammatory diseases. Several mechanisms, such as post-translational modifications, ensure this balance by fine-tuning STING activation. Finally, we discuss how viruses evade detection of their genomes by either exploiting cells that lack a functional DNA sensing pathway as a niche or by interfering with STING activation through viral evasion molecules. Insight into STING's exact mechanisms in health and disease will guide the development of novel clinical interventions for microbial infections, autoinflammatory diseases, and beyond.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Annemarthe G van der Veen
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
32
|
Tian Y, Bao Z, Ji Y, Mei X, Yang H. Epigallocatechin-3-Gallate Protects H 2O 2-Induced Nucleus Pulposus Cell Apoptosis and Inflammation by Inhibiting cGAS/Sting/NLRP3 Activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2113-2122. [PMID: 32546974 PMCID: PMC7266312 DOI: 10.2147/dddt.s251623] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Intervertebral disc degeneration (IDD) is the most common diagnosis of patients with lower back pain. IDD is the underlying lesion of many spinal degenerative diseases; however, the role of cGAS/Sting/NLRP3 pathway and epigallocatechin gallate (EGCG) in the development of IDD remained unclear. Methods The expressions of cGAS, Sting and NLRP3 mRNA of intervertebral disc (IVD) samples from IDD patients and controls were detected by RT-PCR. The nucleus pulposus cells (NPCs) were induced by hydrogen peroxide (H2O2) and used as an in-vitro model. Both 5 μM and 25 μM EGCG treatment were used to detect the effect of EGCG on the in-vitro model. Cell viability was detected by the MTT method, and cell apoptosis and cell cycle would be detected by flow cytometry. Western blot was used in the detection of the expression of cGAS/Sting/NLRP3 as well as apoptosis-related protein level. ELISA was used in the detection of pro-inflammatory factors, including IL-1β, TNF-α, IL-6 and IL-10. Results The expressions of cGAS, Sting and NLRP3 mRNA were significantly increased in the IVD samples from IDD patients and NLRP3 was associated with cGAS and Sting. Advanced in-vitro study showed that H2O2 significantly increased the expression of cGAS, Sting and NLRP3 protein levels. Advanced experiments showed that EGCG treatment demonstrated significant protective effects in cell viability, apoptosis, cell cycle arrest and inflammatory status through down-regulation of cGAS/Sting/NLRP3 pathway. Conclusion It was shown that the cGAS, Sting and NLRP3 up-regulation was associated with the incidence of IDD. Our findings also suggest that EGCG treatment would provide anti-apoptosis, anti-inflammation and promote cell viability in H2O2 treatment-incubated NPCs through inhibiting cGAS/Sting/NLRP3 pathway.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhaohua Bao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yiming Ji
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Mei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
The role of the adaptor molecule STING during Schistosoma mansoni infection. Sci Rep 2020; 10:7901. [PMID: 32404867 PMCID: PMC7220917 DOI: 10.1038/s41598-020-64788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a human parasitic disease responsible for serious consequences for public health, as well as severe socioeconomic impacts in developing countries. Here, we provide evidence that the adaptor molecule STING plays an important role in Schistosoma mansoni infection. S. mansoni DNA is sensed by cGAS leading to STING activation in murine embryonic fibroblasts (MEFs). Sting-/- and C57BL/6 (WT) mice were infected with schistosome cercariae in order to assess parasite burden and liver pathology. Sting-/- mice showed worm burden reduction but no change in the number of eggs or granuloma numbers and area when compared to WT animals. Immunologically, a significant increase in IFN-γ production by the spleen cells was observed in Sting-/- animals. Surprisingly, Sting-/- mice presented an elevated percentage of neutrophils in lungs, bronchoalveolar lavage, and spleens. Moreover, Sting-/- neutrophils exhibited increased survival rate, but similar ability to kill schistosomula in vitro when stimulated with IFN-γ when compared to WT cells. Finally, microbiota composition was altered in Sting-/- mice, revealing a more inflammatory profile when compared to WT animals. In conclusion, this study demonstrates that STING signaling pathway is important for S. mansoni DNA sensing and the lack of this adaptor molecule leads to enhanced resistance to infection.
Collapse
|
34
|
Mabrouk N, Ghione S, Laurens V, Plenchette S, Bettaieb A, Paul C. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers (Basel) 2020; 12:cancers12051145. [PMID: 32370259 PMCID: PMC7281185 DOI: 10.3390/cancers12051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Véronique Laurens
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-51
| |
Collapse
|
35
|
Hamann L, Szwed M, Mossakowska M, Chudek J, Puzianowska-Kuznicka M. First evidence for STING SNP R293Q being protective regarding obesity-associated cardiovascular disease in age-advanced subjects - a cohort study. IMMUNITY & AGEING 2020; 17:7. [PMID: 32190093 PMCID: PMC7071752 DOI: 10.1186/s12979-020-00176-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for several aging-related diseases such as type 2 diabetes, cardiovascular disease, and cancer. Especially, cardiovascular disease is triggered by obesity by inducing vascular senescence and chronic low-grade systemic inflammation, also known as inflamm-aging. Released molecules from damaged cells and their recognition by the innate immune system is one of the mechanisms driving inflamm-aging. Obesity results in mitochondrial damage, leading to endothelial inflammation triggered by cytosolic mtDNA via the cGAS/STING pathway. Recently, we have shown STING SNP R293Q to be associated with a decreased risk for aging-related diseases in current smokers. Since current smoking triggers DNA damage that, similar to obesity, may result in the release of DNA into the cytoplasm, we hypothesized that the cGAS/STING pathway can modify the phenotype of aging also in obese subjects. Therefore, the objective of our study was to investigate whether STING R293Q is associated with aging-related diseases in obese individuals. We indeed show that STING 293Q is associated with protection from combined aging-related diseases (P = 0.014) and, in particular, cardiovascular disease in these subjects (P = 0.010). Therefore, we provide the first evidence that stratification for obesity may reveal new genetic loci determining the risk for aging-related diseases.
Collapse
Affiliation(s)
- Lutz Hamann
- 1Institute for Microbiology and Infection Immunology, Charité University Medical Center, CBF, Hindenburgdamm 27, 12203 Berlin, Germany
| | - Malgorzata Szwed
- 2Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Mossakowska
- 3PolSenior Project, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jerzy Chudek
- 4Department of Internal Medicine and Oncological Chemotherapy, Medical School in Katowice, Medical University of Silesia, Katowice, Poland
| | - Monika Puzianowska-Kuznicka
- 2Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,5Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
36
|
Saeed AFUH, Ruan X, Guan H, Su J, Ouyang S. Regulation of cGAS-Mediated Immune Responses and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902599. [PMID: 32195086 PMCID: PMC7080523 DOI: 10.1002/advs.201902599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Indexed: 05/08/2023]
Abstract
Early detection of infectious nucleic acids released from invading pathogens by the innate immune system is critical for immune defense. Detection of these nucleic acids by host immune sensors and regulation of DNA sensing pathways have been significant interests in the past years. Here, current understandings of evolutionarily conserved DNA sensing cyclic GMP-AMP (cGAMP) synthase (cGAS) are highlighted. Precise activation and tight regulation of cGAS are vital in appropriate innate immune responses, senescence, tumorigenesis and immunotherapy, and autoimmunity. Hence, substantial insights into cytosolic DNA sensing and immunotherapy of indispensable cytosolic sensors have been detailed to extend limited knowledge available thus far. This Review offers a critical, in-depth understanding of cGAS regulation, cytosolic DNA sensing, and currently established therapeutic approaches of essential cytosolic immune agents for improved human health.
Collapse
Affiliation(s)
- Abdullah F. U. H. Saeed
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
- College of Chemistry and Materials ScienceFujian Normal UniversityFuzhou350117China
| | - Xinglin Ruan
- Department of NeurologyFujian Medical University Union Hospital29 Xinquan Road Gulou DistrictFuzhou350001China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Jingqian Su
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
| |
Collapse
|
37
|
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020; 21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Cadena C, Hur S. Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Mol Cell 2019; 76:243-254. [PMID: 31626748 PMCID: PMC6880955 DOI: 10.1016/j.molcel.2019.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
Self versus non-self discrimination by innate immune sensors is critical for mounting effective immune responses against pathogens while avoiding harmful auto-inflammatory reactions against the host. Foreign DNA and RNA sensors must discriminate between self versus non-self nucleic acids, despite their shared building blocks and similar physicochemical properties. Recent structural and biochemical studies suggest that multiple steps of filament-like assembly are required for the functions of several nucleic acid sensors. Here, we discuss ligand discrimination and oligomerization of RIG-I-like receptors, AIM2-like receptors, and cGAS. We discuss how filament-like assembly allows for robust and accurate discrimination of self versus non-self nucleic acids and how these assemblies enable sensing of multiple distinct features in foreign nucleic acids, including structure, length, and modifications. We also discuss how individual receptors differ in their assembly and disassembly mechanisms and how these differences contribute to the diversity in nucleic acid specificity and pathogen detection strategies.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
39
|
Ohtani N. Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. J Biochem 2019; 166:289-295. [PMID: 31297533 DOI: 10.1093/jb/mvz055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2023] Open
Abstract
Cellular senescence is an irreversible form of cell cycle arrest that can be induced by persistent DNA damage, and is well known to function as an important tumour suppression mechanism. Cellular senescence is detected in aged organisms; thus, it is also recognized as a hallmark of organismal ageing. Unlike apoptotic cells, senescent cells can survive for long periods of time. Recently, it has been shown that the late stage of senescent cells are capable of expressing a variety of secreted proteins such as cytokines, chemokines and proteases, and this condition is now known as senescence-associated secretory phenotype (SASP). These secreted factors are involved in myriad of physiological functions including tissue repair and clearance of damaged cells. Alternatively, these factors may promote detrimental effects, such as chronic inflammation or cancer progression, should the SASP persist. Recent scientific advances have indicated that innate immune responses, particularly involving the cGAS-STING pathway, trigger SASP induction. Therefore, developing a strategy to regulate SASP may provide scientific insights for the management of age-associated diseases and the implementation of healthy ageing in the future.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan
| |
Collapse
|
40
|
Wu Y, Wei Q, Yu J. The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration. Clin Interv Aging 2019; 14:1277-1283. [PMID: 31371933 PMCID: PMC6628971 DOI: 10.2147/cia.s200637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly. Considering the relatively limited effect of therapy on early AMD, it is important to focus on the pathogenesis of AMD, especially early AMD. Ageing is one of the strongest risk factors for AMD, and analysis of the impact of ageing on AMD development is valuable. Among all the ageing hallmarks, increased DNA damage accumulation is regarded as the beginning of cellular senescence and is related to abnormal expression of inflammatory cytokines, which is called the senescence-associated secretory phenotype (SASP). The exact pathway for DNA damage that triggers senescence-associated hallmarks is poorly understood. Recently, mounting evidence has shown that the cGAS/STING pathway is an important DNA sensor related to proinflammatory factor secretion and is associated with another hallmark of ageing, SASP. Thus, we hypothesized that the cGAS/STING pathway is a vital signalling pathway for early AMD development and that inhibition of STING might be a potential therapeutic strategy for AMD cases.
Collapse
Affiliation(s)
- Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China.,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China
| |
Collapse
|
41
|
Sterile Lung Inflammation Induced by Silica Exacerbates Mycobacterium tuberculosis Infection via STING-Dependent Type 2 Immunity. Cell Rep 2019; 27:2649-2664.e5. [DOI: 10.1016/j.celrep.2019.04.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/17/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
|
42
|
Tan DX. Aging: An evolutionary competition between host cells and mitochondria. Med Hypotheses 2019; 127:120-128. [PMID: 31088635 DOI: 10.1016/j.mehy.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Here, a new theory of aging is proposed. This new theory is referred as the Host-Mitochondria Intracellular Innate Immune Theory of Aging (HMIIITA). The main point of this theory is that the aging is rooted from an evolutionary competition, that is, a never ending coevolutionary race between host cells and mitochondria. Mitochondria are the descendants of bacteria. The host cells will inevitably sense their bacterial origin, particularly their circular mtDNA. The host intracellular innate immune pressure (HIIIP) aims to eliminate mtDNA as more as possible while mitochondria have to adapt the HIIIP for survival. Co-evolution is required for both of them. From biological point of view, the larger, the mtDNA, the higher, the chance, it becomes the target of HIIIP. As a result, mitochondria have to reduce their mtDNA size via deletion. This process has last for 1.5-2 billion yeas and the result is that mitochondria have lost excessive 95% of their DNA. This mtDNA deletion is not associated with free radical attack but a unique trait acquired during evolution. In the postmitotic cells, the deletion is passively selected by the mitochondrial fission-fusion cycles. Eventually, the accumulation of deletion will significantly jeopardize the mitochondrial function. The dysfunctional mitochondria no longer provide sufficient ATP to support host cells' continuous demanding for growth. At this stage, the cell or the organism aging is inevitable.
Collapse
Affiliation(s)
- Dun-Xian Tan
- The Department of Cell System and Anatomy, The University of Texas, Health, San Antonio, TX 78229, USA.
| |
Collapse
|
43
|
Manel N, Di Santo JP. Editorial overview: Pillars of innate immunity: constantly learning and trying to remember. Curr Opin Immunol 2019; 56:iii-vi. [PMID: 30981385 DOI: 10.1016/j.coi.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| |
Collapse
|
44
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
45
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
46
|
DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in Escherichia coli ECOR31. mBio 2019; 10:mBio.02492-18. [PMID: 30837338 PMCID: PMC6401482 DOI: 10.1128/mbio.02492-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species. Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD. Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3′3′-cGAMP. In vivo, only the 3′3′-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli. Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.
Collapse
|