1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
4
|
Jacquerie A, Hoeben A, Eekers DBP, Postma AA, Vanmechelen M, de Smet F, Ackermans L, Anten M, Severens K, Zur Hausen A, Broen MPG, Beckervordersandforth J. Prognostic relevance of high expression of kynurenine pathway markers in glioblastoma. Sci Rep 2024; 14:14975. [PMID: 38951170 PMCID: PMC11217262 DOI: 10.1038/s41598-024-65907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Glioblastoma (GBM) continues to exhibit a discouraging survival rate despite extensive research into new treatments. One factor contributing to its poor prognosis is the tumor's immunosuppressive microenvironment, in which the kynurenine pathway (KP) plays a significant role. This study aimed to explore how KP impacts the survival of newly diagnosed GBM patients. We examined tissue samples from 108 GBM patients to assess the expression levels of key KP markers-tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO1/2), and the aryl hydrocarbon receptor (AhR). Using immunohistochemistry and QuPath software, three tumor cores were analyzed per patient to evaluate KP marker expression. Kaplan-Meier survival analysis and stepwise multivariate Cox regression were used to determine the effect of these markers on patient survival. Results showed that patients with high expression of TDO2, IDO1/2, and AhR had significantly shorter survival times. This finding held true even when controlling for other known prognostic variables, with a hazard ratio of 3.393 for IDO1, 2.775 for IDO2, 1.891 for TDO2, and 1.902 for AhR. We suggest that KP markers could serve as useful tools for patient stratification, potentially guiding future immunomodulating trials and personalized treatment approaches for GBM patients.
Collapse
Affiliation(s)
- Arnaud Jacquerie
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maxime Vanmechelen
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO-KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Frederik de Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO-KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Linda Ackermans
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kim Severens
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martinus P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Beckervordersandforth
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Wu D, Wang G, Wen S, Liu X, He Q. ARID5A stabilizes Indoleamine 2,3-dioxygenase expression and enhances CAR T cell exhaustion in colorectal cancer. Transl Oncol 2024; 42:101900. [PMID: 38316094 PMCID: PMC10862068 DOI: 10.1016/j.tranon.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Resistance to chimeric antigen receptor (CAR) T-cell therapy remains a significant challenge in the treatment of solid tumors. This resistance is attributed to various factors, including antigen loss, immunosuppressive tumor microenvironment, and upregulated checkpoint molecules. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that promotes immune escape in tumors. In this study, we investigated the role of ARID5A (AT-rich interactive domain 5A) in resistance to CAR-T cell therapy. Our findings revealed that ARID5A upregulation in tumor cells induces T cell exhaustion and immune evasion. Mechanistically, ARID5A plays a crucial role in resistance to CAR-T cell therapy by stabilizing IDO1 mRNA, leading to upregulation of IDO1 expression. Elevated IDO1 expression facilitates the conversion of tryptophan to kynurenine, which contributes to CAR-T cell exhaustion. Moreover, kynurenine accumulation within CAR-T cells activates the aryl hydrocarbon receptor (AhR), further exacerbating the exhaustion phenotype. Importantly, we demonstrated that targeting the ARID5A-IDO1-AhR axis using AhR or IDO1 inhibitors effectively alleviated T cell exhaustion induced by ARID5A. These findings suggest that modulating the ARID5A-IDO1-AhR axis may represent a promising therapeutic strategy to overcome CAR T-cell therapy resistance in solid tumors and enhance treatment efficacy.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China
| | - Guijun Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China
| | | | - Xian Liu
- Jinzhou Medical University, China
| | - Qiang He
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Jinzhou Medical University, China.
| |
Collapse
|
6
|
Hamouda MM, El-Saied AS, Zaher A, Khalil AF, ElBlihy AA, Nabih N, El-Beshbishi SN. Toxoplasma gondii: Seroprevalence and association with childhood brain tumors in Egypt. Acta Trop 2024; 251:107123. [PMID: 38242223 DOI: 10.1016/j.actatropica.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Childhood brain tumors are a significant global health challenge, yet the etiology of these tumors remains elusive. While research has identified potential risk factors, recent studies have explored the involvement of infectious agents, particularly Toxoplasma gondii (T. gondii), in brain tumor development. METHODS This study aimed to explore the prevalence of T. gondii infection in children diagnosed with brain tumors and to investigate the potential association between T. gondii infection and childhood brain tumors in Egypt. A total of 64 children with brain tumors and 92 healthy controls were enrolled in this study. Demographics and risk factors data were collected using structured questionnaires. Serological assay using ELISA technique was performed to detect anti-T. gondii antibodies in both cases and control groups. RESULTS This study revealed a significantly higher seroprevalence of T. gondii infection in brain tumor cases (62.5 %) compared to healthy controls (38 %). Furthermore, a strong association was observed between T. gondii seropositivity and childhood brain tumors (odds ratio: 2.7). Notably, the consumption of unwashed vegetables emerged as a significant risk factor for T. gondii infection in Egypt. Analysis of T. gondii seroprevalence across different subtypes of brain tumors revealed varying rates, with glioma cases displaying a striking 100 % seroprevalence. CONCLUSIONS These findings support the hypothesis that T. gondii infection may be a risk factor for childhood brain tumors and emphasize the need for further research in this area. The study also highlights the potential implications of control of T. gondii infection for prevention and treatment of childhood brain tumors.
Collapse
Affiliation(s)
- Marwa M Hamouda
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt.
| | - Amany S El-Saied
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Ahmed Zaher
- Neurosurgery Department, Faculty of Medicine, Mansoura University, Egypt
| | - Amr Farid Khalil
- Neurosurgery Department, Faculty of Medicine, Mansoura University, Egypt
| | - Ayat A ElBlihy
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Nairmen Nabih
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt
| | - Samar N El-Beshbishi
- Medical Parasitology Department, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura 35516, Egypt; Medical Parasitology Department, Faculty of Medicine, New Mansoura University, Egypt
| |
Collapse
|
7
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | | | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | | | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain
| | - Luis G Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain
| | | | - José M Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
8
|
Muzik O, Shields AF, Barger GR, Jiang H, Chamiraju P, Juhász C. The First Human Application of an F-18-Labeled Tryptophan Analog for PET Imaging of Cancer. Mol Imaging Biol 2024; 26:29-35. [PMID: 38012510 DOI: 10.1007/s11307-023-01877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Preclinical studies showed the tryptophan analog PET radiotracer 1-(2-18F-fluoroethyl)-L-tryptophan (18F-FETrp) to accumulate in various tumors, including gliomas, and being metabolized via the immunosuppressive kynurenine pathway. In this first-in-human study, we tested the use 18F-FETrp-PET in patients with neuroendocrine and brain tumors. PROCEDURES We applied dynamic brain imaging in patients with gliomas (n = 2) and multi-pass 3D whole-body PET scans in patients with neuroendocrine tumors (n =4). Semiquantitative analysis of organ and tumor tracer uptake was performed using standardized uptake values (SUVs). In addition, organ dosimetry was performed based on extracted time-activity curves and the OLINDA software. RESULTS Neuroendocrine tumors showed an early peak (10-min post-injection) followed by washout. Both gliomas showed prolonged 18F-FETrp accumulation plateauing around 40 min and showing heterogeneous uptake including non-enhancing tumor regions. Biodistribution showed moderate liver uptake and fast clearance of radioactivity into the urinary bladder; the estimated effective doses were similar to other 18F-labeled radioligands. CONCLUSIONS The study provides proof-of-principle data for the safety and potential clinical value of 18F-FETrp-PET for molecular imaging of human gliomas.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University, Detroit, MI, USA.
- Department of Neurology, Wayne State University, Detroit, MI, USA.
- PET Center, Karmanos Cancer Institute, Detroit, MI, USA.
| | - Anthony F Shields
- PET Center, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
| | | | - Huailei Jiang
- PET Center, Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
| | | | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
- PET Center, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
9
|
Wang C, Sun M, Shao C, Schlicker L, Zhuo Y, Harim Y, Peng T, Tian W, Stöffler N, Schneider M, Helm D, Chu Y, Fu B, Jin X, Mallm JP, Mall M, Wu Y, Schulze A, Liu HK. A multidimensional atlas of human glioblastoma-like organoids reveals highly coordinated molecular networks and effective drugs. NPJ Precis Oncol 2024; 8:19. [PMID: 38273014 PMCID: PMC10811239 DOI: 10.1038/s41698-024-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.
Collapse
Affiliation(s)
- Changwen Wang
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Meng Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chunxuan Shao
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Yue Zhuo
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Tianping Peng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Weili Tian
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Nadja Stöffler
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Beibei Fu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200025, Shanghai, China
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
10
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Fang Y, Qiu W, Li X, Jin Q, Yan H, Yu N, Zhao J, Tan Y, Zhao Z. A combination of umbilical cord mesenchymal stem cells and monosialotetrahexosy 1 ganglioside alleviates neuroinflammation in traumatic brain injury. Exp Brain Res 2023; 241:713-726. [PMID: 36694046 DOI: 10.1007/s00221-023-06554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Neuro-inflammation and activated microglia play important roles in neuron damage in the traumatic brain injury (TBI). In this study, we determined the effect of neural network reconstruction after human umbilical cord mesenchymal stem cells (UMSCs) combined with monosialotetrahexosy 1 ganglioside (GM1) transplantation and the effect on the neuro-inflammation and polarization of microglia in a rat model of TBI, which was established in male rats using a fluid percussion brain injury device. Rats survived until day 7 after TBI were randomly treated with normal control (NC), saline (NS), GM1, UMSCs, and GM1 plus UMSCs. Modified neurological severity score (mNSS) was assessed on days 7 and 14, and the brain tissue of the injured region was collected. Immunofluorescence, RT-PCR, and western blot analysis found that inhibitory neuro-inflammatory cytokines TGF-β and CD163 protein expression levels in injured brain tissues were significantly increased in rats treated with GM1 + UMSCs, GM1, or UMSCs and were up-regulated compared to saline-treated rats. Neuro-inflammatory cytokines IL-6, COX-2 and iNOS protein expressions were down-regulated compared to rats treated with saline. The protein expression levels of NE, NF-200, MAP-2 and β-tubulin III were increased in the injured brain tissues from rats treated with GM1 + UMSCs, or GM1 and UMSCs alone compared to those in the rats treated with NS. The protein expression levels in rats treated with GM1 plus UMSCs were most significant on day 7 following UMSC transplantation. The rats treated with GM1 plus UMSCs had the lowest mNSS compared with that in the other groups. These data suggest that UMSCs and GM1 promote neural network reconstruction and reduce the neuro-inflammation and neurodegeneration through coordinating injury local immune inflammatory microenvironment to promote the recovery of neurological functions in the TBI.
Collapse
Affiliation(s)
- Yanwei Fang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Wenna Qiu
- Department of Neonatology, Hebei Children's Hospital, Shijiazhuang, Hebei, China
| | - Xin Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hongshan Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Ning Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jianhui Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yi Tan
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd. Jinan, Shandong, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Pérez de la Cruz G, Pérez de la Cruz V, Navarro Cossio J, Vázquez Cervantes GI, Salazar A, Orozco Morales M, Pineda B. Kynureninase Promotes Immunosuppression and Predicts Survival in Glioma Patients: In Silico Data Analyses of the Chinese Glioma Genome Atlas (CGGA) and of the Cancer Genome Atlas (TCGA). Pharmaceuticals (Basel) 2023; 16:ph16030369. [PMID: 36986469 PMCID: PMC10051585 DOI: 10.3390/ph16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Kynureninase (KYNU) is a kynurenine pathway (KP) enzyme that produces metabolites with immunomodulatory properties. In recent years, overactivation of KP has been associated with poor prognosis of several types of cancer, in particular by promoting the invasion, metastasis, and chemoresistance of cancer cells. However, the role of KYNU in gliomas remains to be explored. In this study, we used the available data from TCGA, CGGA and GTEx projects to analyze KYNU expression in gliomas and healthy tissue, as well as the potential contribution of KYNU in the tumor immune infiltrate. In addition, immune-related genes were screened with KYNU expression. KYNU expression correlated with the increased malignancy of astrocytic tumors. Survival analysis in primary astrocytomas showed that KYNU expression correlated with poor prognosis. Additionally, KYNU expression correlated positively with several genes related to an immunosuppressive microenvironment and with the characteristic immune tumor infiltrate. These findings indicate that KYNU could be a potential therapeutic target for modulating the tumor microenvironment and enhancing an effective antitumor immune response.
Collapse
Affiliation(s)
- Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de México, UNAM, Mexico City 04510, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Javier Navarro Cossio
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Aleli Salazar
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Mario Orozco Morales
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Benjamin Pineda
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
- Correspondence: ; Tel.: +52-55-5606-4040
| |
Collapse
|
13
|
Abu Hejleh AP, Huck K, Jähne K, Tan CL, Lanz TV, Epping L, Sonner JK, Meuth SG, Henneberg A, Opitz CA, Herold-Mende C, Sahm F, Platten M, Sahm K. Endothelial Indoleamine-2,3-Dioxygenase-1 is not Critically Involved in Regulating Antitumor Immunity in the Central Nervous System. Int J Tryptophan Res 2023; 16:11786469231153111. [PMID: 36798537 PMCID: PMC9926378 DOI: 10.1177/11786469231153111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/08/2023] [Indexed: 02/11/2023] Open
Abstract
The vascular niche of malignant gliomas is a key compartment that shapes the immunosuppressive brain tumor microenvironment (TME). The blood-brain-barrier (BBB) consisting of specialized endothelial cells (ECs) and perivascular cells forms a tight anatomical and functional barrier critically controlling transmigration and effector function of immune cells. During neuroinflammation and tumor progression, the metabolism of the essential amino acid tryptophan (Trp) to metabolites such as kynurenine has long been identified as an important metabolic pathway suppressing immune responses. Previous studies have demonstrated that indoleamine-2,3-dioxygenase-1 (IDO1), a key rate-limiting enzyme in tryptophan catabolism, is expressed within the TME of high-grade gliomas. Here, we investigate the role of endothelial IDO1 (eIDO1) expression for brain tumor immunity. Single-cell RNA sequencing data revealed that in human glioma tissue, IDO1 is predominantly expressed by activated ECs showing a JAK/STAT signaling pathway-related CXCL11+ gene expression signature. In a syngeneic experimental glioma model, eIDO1 is induced by low-dose tumor irradiation. However, cell type-specific ablation of eIDO1 in experimental gliomas did not alter frequency and phenotype of tumor-infiltrating T cells nor tumor growth. Taken together these data argue against a dominant role of eIDO1 for brain tumor immunity.
Collapse
Affiliation(s)
- AP Abu Hejleh
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - K Huck
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - K Jähne
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - CL Tan
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - TV Lanz
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,Department of Medicine, Division of Immunology and Rheumatology, Stanford University, CA, USA
| | - L Epping
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany
| | - JK Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - SG Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany,Department of Neurology, Heinrich Heine University Düsseldorf, Germany
| | - A Henneberg
- Division of Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Bioscience, Heidelberg University, Germany
| | - CA Opitz
- Division of Metabolic Crosstalk in Cancer, German Consortium of Translational Cancer Research (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University Hospital Heidelberg, Germany
| | - F Sahm
- Department of Neuropathology, Heidelberg University Hospital, Germany,DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Platten
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - K Sahm
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Germany,DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany,Katharina Sahm, Department of Neurology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany,
| |
Collapse
|
14
|
Li W, Ling L, Xiang L, Ding P, Yue W. Identification and validation of a risk model and molecular subtypes based on tryptophan metabolism-related genes to predict the clinical prognosis and tumor immune microenvironment in lower-grade glioma. Front Cell Neurosci 2023; 17:1146686. [PMID: 36925967 PMCID: PMC10011102 DOI: 10.3389/fncel.2023.1146686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background Lower-grade glioma (LGG) is one of the most common malignant tumors in the central nervous system (CNS). Accumulating evidence have demonstrated that tryptophan metabolism is significant in tumor. Therefore, this study aims to comprehensively clarify the relationship between tryptophan metabolism-related genes (TRGs) and LGGs. Methods The expression level of TRGs in LGG and normal tissues was first analyzed. Next, the key TRGs with prognostic value and differential expression in LGGs were identified using the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a risk model was constructed and Consensus clustering analysis was conducted based on the expression level of key TRGs. Then, the prognostic value, clinicopathological factors, and tumor immune microenvironment (TIME) characteristics between different risk groups and molecular subtypes were analyzed. Finally, the expression, prognosis, and TIME of each key TRGs were analyzed separately in LGG patients. Results A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA) dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx) dataset were included to evaluate the expression level of TRGs. After LASSO regression analysis, we identified six key TRGs and constructed a TRGs risk model. The survival analysis revealed that the risk model was the independent predictor in LGG patients. And the nomogram containing risk scores and independent clinicopathological factors could accurately predict the prognosis of LGG patients. In addition, the results of the Consensus cluster analysis based on the expression of the six TRGs showed that it could classify the LGG patients into two distinct clusters, with significant differences in prognosis, clinicopathological factors and TIME between these two clusters. Finally, we validated the expression, prognosis and immune infiltration of six key TRGs in patients with LGG. Conclusion This study demonstrated that tryptophan metabolism plays an important role in the progression of LGG. In addition, the risk model and the molecular subtypes we constructed not only could be used as an indicator to predict the prognosis of LGG patients but also were closely related to the clinicopathological factors and TIME of LGG patients. Overall, our study provides theoretical support for the ultimate realization of precision treatment for patients with LGG.
Collapse
Affiliation(s)
- Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peng Ding
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
15
|
Liu Y, Xiang J, Liao Y, Peng G, Shen C. Identification of tryptophan metabolic gene-related subtypes, development of prognostic models, and characterization of tumor microenvironment infiltration in gliomas. Front Mol Neurosci 2022; 15:1037835. [PMID: 36407768 PMCID: PMC9673907 DOI: 10.3389/fnmol.2022.1037835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Epigenetic regulation and immunotherapy of tumor microenvironment (TME) is a hot topic in recent years. However, the potential value of tryptophan metabolism genes in regulating TME and immunotherapy is still unclear. MATERIALS AND METHODS A comprehensive study of glioma patients was carried out based on 40 tryptophan metabolic genes. Subsequently, these prognostic tryptophan metabolic genes are systematically associated with immunological characteristics and immunotherapy. A risk score model was constructed and verified in the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) cohorts to provide guidance for prognosis prediction and immunotherapy of glioma patients. RESULTS We described the changes of tryptophan metabolism genes in 966 glioma samples from genetic and transcriptional fields and evaluated their expression patterns from two independent data sets. We identified two different molecular subtypes and found that two subtypes were associated with clinicopathological features, prognosis, TME cell infiltration, and immune checkpoint blockers (ICBs). Then, four genes (IL4I1, CYP1A1, OGDHL, and ASMT) were screened out by univariate and multivariate cox regression analysis of tryptophan metabolism genes, and a risk score model for predicting the overall survival (OS) of glioma patients was constructed. And its predictive ability is verified using the CGGA database. At the same time, we verified the expression of IL4I1, CYP1A1, OGDHL, and ASMT four genes in glioma specimens and cell lines in GES4260 and GES15824. Therefore, we constructed a nomogram to improve the clinical applicability of the risk assessment model. The high risk score group, characterized by increased TMB and immune cell infiltration, was also sensitive to temozolomide immunotherapy. Our comprehensive analysis of tryptophan metabolic genes in gliomas shows that they play a potential role in tumor immune stromal microenvironment, clinicopathological features, and prognosis. CONCLUSION Tryptophan metabolism genes play an indispensable role in the complexity, diversity, and prognosis of TME. This risk score model based on tryptophan metabolism gene is a new predictor of clinical prognosis and immunotherapy response of glioma, and guides a more appropriate immunotherapy strategy for glioma patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Xiang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
17
|
Nasser H, Takahashi N, Eltalkhawy YM, Reda O, Lotfi S, Nasu K, Sakuragi JI, Suzu S. Inhibitory and Stimulatory Effects of IL-32 on HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2022; 209:970-978. [DOI: 10.4049/jimmunol.2200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The proinflammatory cytokine IL-32 is elevated in the plasma and tissues of HIV-1–infected individuals. However, its significance in HIV-1 infection remains unclear because IL-32 inhibits and stimulates viral production in monocyte-derived macrophages (MDMs) and CD4+ T cells, respectively. In this study, we initially found that the inhibitory effect on human MDMs depends on SAMHD1, a dNTP triphosphohydrolase that inhibits viral reverse transcription. IL-32 increased the unphosphorylated active form of SAMHD1, which was consistent with the reduced expression of the upstream cyclin-dependent kinases. Indeed, IL-32 lost its anti–HIV-1 activity in MDMs when SAMHD1 was depleted. These results explain why IL-32 inhibits HIV-1 in MDMs but not CD4+ T cells, because SAMHD1 restricts HIV-1 in noncycling MDMs but not in cycling CD4+ T cells. Another unique feature of IL-32 is the induction of the immunosuppressive molecule IDO1, which is beneficial for HIV-1 infection. In this study, we found that IL-32 also upregulates other immunosuppressive molecules, including PD-L1, in MDMs. Moreover, IL-32 promoted the motility of MDMs, which potentially facilitates intercellular HIV-1 transmission. Our findings indicate that IL-32 has both the direct inhibitory effect on HIV-1 production in MDMs and the indirect stimulatory effects through phenotypic modulation of MDMs, and they suggest that the stimulatory effects may outweigh the inhibitory effect because the window for IL-32 to inhibit HIV-1 is relatively confined to SAMHD1-mediated reverse transcription suppression in the viral life cycle.
Collapse
Affiliation(s)
- Hesham Nasser
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Naofumi Takahashi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Youssef M. Eltalkhawy
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Omnia Reda
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Sameh Lotfi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Kanako Nasu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Jun-ichi Sakuragi
- †Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Shinya Suzu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| |
Collapse
|
18
|
Li C, Chen S, Jia W, Li W, Wei D, Cao S, Qian Y, Guan R, Liu H, Lei D. Identify metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 as potential prognostic markers and correlate with immune infiltrates in head and neck squamous cell carcinoma. Front Immunol 2022; 13:955614. [PMID: 36090994 PMCID: PMC9455275 DOI: 10.3389/fimmu.2022.955614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of head and neck squamous cell carcinoma (HNSCC) with poor prognosis. Metabolic reprogramming may regulate the tumor microenvironment (TME) by adapting quickly to cellular stress and regulating immune response, but its role in HSCC has not been reported. We used the nCounter® Metabolic Pathways Panel to investigate metabolic reprogramming, cellular stress, and their relationship in HSCC tissues and adjacent normal tissues. Metabolism-related pathways nucleotide synthesis and glycolysis pathways were significantly upregulated, while amino acid synthesis and fatty acid oxidation pathways were significantly downregulated in HSCC tissues compared to adjacent normal tissues. There is a significant correlation between metabolism-related pathways and cellular stress pathways. Enrichment of immune cell and tumor infiltrating lymphocyte (TIL) analysis showed changes in immune responses between HSCC tissues and adjacent normal tissues. Overall survival analysis showed that upregulated genes CD276, LDHB, SLC3A2, EGFR, SLC7A5, and HPRT1 are potential unfavorable prognostic markers in HNSCC, while downregulated genes EEA1, IDO1, NCOA2, REST, CCL19, and ALDH2 are potential favorable prognostic markers in HNSCC. Moreover, metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 are correlated with immune infiltrates in HNSCC. These results suggest that metabolic reprogramming occurs and correlates with cellular stress and immune response in HSCC, which may help researchers understand mechanisms of metabolic reprogramming and develop effective immunotherapeutic strategies in HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heng Liu
- *Correspondence: Dapeng Lei, ; Heng Liu,
| | - Dapeng Lei
- *Correspondence: Dapeng Lei, ; Heng Liu,
| |
Collapse
|
19
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
20
|
Jianfeng W, Yutao W, Jianbin B. Indolethylamine-N-Methyltransferase Inhibits Proliferation and Promotes Apoptosis of Human Prostate Cancer Cells: A Mechanistic Exploration. Front Cell Dev Biol 2022; 10:805402. [PMID: 35252179 PMCID: PMC8891133 DOI: 10.3389/fcell.2022.805402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Indolethylamine-N-methyltransferase (INMT) is a methyltransferase downregulated in lung cancer, meningioma, and prostate cancer; however, its role and mechanism in prostate cancer remain unclear. By analyzing The Cancer Genome Atlas (TCGA)-PRAD, we found that the expression of INMT in prostate cancer was lower than that of adjacent non-cancerous prostate tissues and was significantly correlated with lymph node metastasis Gleason score, PSA expression, and survival. Combined with the GSE46602 cohorts for pathway enrichment analysis, we found that INMT was involved in regulating the MAPK, TGFβ, and Wnt signaling pathways. After overexpression of INMT in prostate cancer cell lines 22Rv1 and PC-3, we found an effect of INMT on these tumor signal pathways; overexpression of INMT inhibited the proliferation of prostate cancer cells and promoted apoptosis. Using the ESTIMATE algorithm, we found that with the increase of INMT expression, immune and stromal scores in the tumor microenvironment increased, immune response intensity increased, and tumor purity decreased. The difference in INMT expression affected the proportion of several immune cells. According to PRISM and CTRP2.0, the potential therapeutic agents associated with the INMT expression subgroup in TCGA were predicted. The area under the curve (AUC) values of 26 compounds positively correlated with the expression of INMT, while the AUC values of 14 compounds were negatively correlated with the expression of INMT. These findings suggest that INMT may affect prostate cancer’s occurrence, development, and drug sensitivity via various tumor signaling pathways and tumor microenvironments.
Collapse
|
21
|
Hernández A, Domènech M, Muñoz-Mármol AM, Carrato C, Balana C. Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment. Cells 2021; 10:cells10123529. [PMID: 34944036 PMCID: PMC8700075 DOI: 10.3390/cells10123529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment (TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and metabolism pathways are two main elements that influence tumor immune cells and TME. In this manuscript, we review how both factors can contribute to an immunosuppressive state and overview the strategies being tested.
Collapse
Affiliation(s)
- Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Ana M. Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Carmen Balana
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
- Correspondence: ; Tel.: +34-4978925
| |
Collapse
|
22
|
Sabnis RW. Novel Substituted Piperazine Amide Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1639-1640. [PMID: 34795851 DOI: 10.1021/acsmedchemlett.1c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
23
|
Panitz V, Končarević S, Sadik A, Friedel D, Bausbacher T, Trump S, Farztdinov V, Schulz S, Sievers P, Schmidt S, Jürgenson I, Jung S, Kuhn K, Pflüger I, Sharma S, Wick A, Pfänder P, Selzer S, Vollmuth P, Sahm F, von Deimling A, Heiland I, Hopf C, Schulz-Knappe P, Pike I, Platten M, Wick W, Opitz CA. Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Am J Cancer Res 2021; 11:9217-9233. [PMID: 34646367 PMCID: PMC8490504 DOI: 10.7150/thno.60679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tryptophan (Trp)-catabolic enzymes (TCEs) produce metabolites that activate the aryl hydrocarbon receptor (AHR) and promote tumor progression and immunosuppression in glioblastoma. As therapies targeting TCEs or AHR become available, a better understanding of Trp metabolism is required. Methods: The combination of LC-MS/MS with chemical isobaric labeling enabled the simultaneous quantitative comparison of Trp and its amino group-bearing metabolites in multiple samples. We applied this method to the sera of a cohort of 43 recurrent glioblastoma patients and 43 age- and sex-matched healthy controls. Tumor volumes were measured in MRI data using an artificial neural network-based approach. MALDI MSI visualized Trp and its direct metabolite N-formylkynurenine (FK) in glioblastoma tissue. Analysis of scRNA-seq data was used to detect the presence of Trp metabolism and AHR activity in different cell types in glioblastoma. Results: Compared to healthy controls, glioblastoma patients showed decreased serum Trp levels. Surprisingly, the levels of Trp metabolites were also reduced. The decrease became smaller with more enzymatic steps between Trp and its metabolites, suggesting that Trp availability controls the levels of its systemic metabolites. High tumor volume associated with low systemic metabolite levels and low systemic kynurenine levels associated with worse overall survival. MALDI MSI demonstrated heterogeneity of Trp catabolism across glioblastoma tissues. Analysis of scRNA-seq data revealed that genes involved in Trp metabolism were expressed in almost all the cell types in glioblastoma and that most cell types, in particular macrophages and T cells, exhibited AHR activation. Moreover, high AHR activity associated with reduced overall survival in the glioblastoma TCGA dataset. Conclusion: The novel techniques we developed could support the identification of patients that may benefit from therapies targeting TCEs or AHR activation.
Collapse
|
24
|
Sabnis RW. Novel Substituted Tetrahydroquinoline Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1524-1525. [PMID: 34676029 DOI: 10.1021/acsmedchemlett.1c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
25
|
Targeted Therapies and Immune Checkpoint Inhibitors in Primary CNS Lymphoma. Cancers (Basel) 2021; 13:cancers13123073. [PMID: 34203062 PMCID: PMC8234854 DOI: 10.3390/cancers13123073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
This review article outlines the current development of emerging treatment strategies for primary central nervous system lymphoma, a rare brain tumor with, thus far, limited therapeutic options. Small molecule targeted tyrosine kinase inhibitors, immunomodulatory agents, and immune checkpoint inhibitors will be discussed. The mechanisms of action, results of completed clinical studies, ongoing clinical trials, and future perspectives are summarized. Among the most promising clinical developments in the field of CNS lymphomas is ibrutinib, an inhibitor of Bruton's tyrosine kinase, which relays activation of nuclear factor kappa B upon integration of constitutive B cell receptor and Toll-like receptor signals. Down-stream of nuclear factor kappa B, the thalidomide analogs lenalidomide and pomalidomide exert immunomodulatory functions and are currently explored against CNS lymphomas. Finally, immune checkpoint inhibitors, such as drugs targeting the PD-1 pathway, may become novel therapeutic options to unleash anti-tumor immunity in patients with primary CNS lymphoma.
Collapse
|
26
|
Zhang X, Liu X, Zhou W, Du Q, Yang M, Ding Y, Hu R. Blockade of IDO-Kynurenine-AhR Axis Ameliorated Colitis-Associated Colon Cancer via Inhibiting Immune Tolerance. Cell Mol Gastroenterol Hepatol 2021; 12:1179-1199. [PMID: 34087454 PMCID: PMC8445903 DOI: 10.1016/j.jcmgh.2021.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation in colon section is associated with an increased risk of colorectal cancer (CRC). Proinflammatory cytokines were produced in a tumor microenvironment and correlated with poor clinical outcome. Tumor-infiltrating T cells were reported to be greatly involved in the development of colon cancer. In this study, we demonstrated that kynurenine (Kyn), a metabolite catalyzed by indoleamine 2,3-dioxygenase (IDO), was required for IDO-mediated T cell function, and adaptive immunity indeed played a critical role in CRC. METHODS Supernatant of colon cancer cells was used to culture activated T cells and mice spleen lymphocytes, and the IDO1-Kyn-aryl hydrocarbon (AhR) receptor axis was determined in vitro. In vivo, an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC model was established in IDO-/-, Rag1-/-, and wild-type mice, and tumor-associated T lymphocyte infiltration and Kyn/AhR signaling pathway changes were measured in each group. RESULTS Kyn promoted AhR nuclear translocation increased the transcription of Foxp3, a marker of regulatory T cells (Tregs), through improving the interaction between AhR and Foxp3 promoter. Additionally, compared WT mice, IDO-/- mice treated with AOM/DSS exhibited fewer and smaller tumor burdens in the colon, with less Treg and more CD8+ T cells infiltration, while Kyn administration abolished this regulation. Rag1-/- mice were more sensitive to AOM/DSS-induced colitis-associated colon cancer (CRC) compared with the wild-type mice, suggesting that T cell-mediated adaptive immunity indeed played a critical role in CRC. CONCLUSIONS We demonstrated that inhibition of IDO diminished Kyn/AhR-mediated Treg differentiation and could be an effective strategy for the prevention and treatment of inflammation-related colon cancer.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiuting Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|