1
|
Méndez-López TT, Carrero JC, Lanz-Mendoza H, Ochoa-Zarzosa A, Mukherjee K, Contreras-Garduño J. Metabolism and immune memory in invertebrates: are they dissociated? Front Immunol 2024; 15:1379471. [PMID: 39055712 PMCID: PMC11269087 DOI: 10.3389/fimmu.2024.1379471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.
Collapse
Affiliation(s)
- Texca T. Méndez-López
- Posgrado en Ciencias Biológicas, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Julio César Carrero
- Departmento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Humberto Lanz-Mendoza
- Instituto Nacional de Salud Pública, Departamento de Enfermedades Infecciosas, Cuernavaca, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Krishnendu Mukherjee
- Institute of Hygiene, University Hospital Müenster, University of Münster, Münster, Germany
| | - Jorge Contreras-Garduño
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Escuela Nacional de Estudios Superiores, unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| |
Collapse
|
2
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
3
|
Shao L, Wang W, Gong X, Yu Y, Xue J, Zeng X, Liu J. The Toxicity Differences of Fluralaner against the Red Imported Fire Ant ( Solenopsis invicta) at Different Developmental Stages. Int J Mol Sci 2023; 24:15627. [PMID: 37958611 PMCID: PMC10649654 DOI: 10.3390/ijms242115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The red imported fire ant (RIFA), Solenopsis invicta, is an invasive pest that causes damage to agricultural and ecological environments worldwide. Fluralaner is a new isoxazoline pesticide with the potential to become a control agent against RIFA. However, it is not clear whether S. invicta responds the same way to fluralaner at different reproductive stages. The present study firstly evaluated the toxicity of fluralaner to S. invicta at different developmental stages, finding that fourth instar larvae (LD50, 1744.23 mg/kg) and worker ants (LD50, 8.62 mg/kg) were differently susceptible to fluralaner, while the mortality rate of fourth instar larvae was significantly lower at the same concentration of 10 mg/L (5.56 ± 3.14%) than that of worker ants (62.22 ± 3.14%), demonstrating a greater tolerance to fluralaner. Subsequently, the metabolic responses of worker and larval ants to fluralaner stress (10 mg/L) were investigated using non-targeted metabolomics, which indicated that the amount of differential metabolites and the KEGG metabolic pathways enriched were different between workers and larvae when exposed to the same dose (10 mg/L) of fluralaner. Differential metabolites of larvae and worker ants under fluralaner stress were mainly concentrated in organic acids and their derivatives, lipids and lipid-like molecules, nucleosides, nucleotides, and analogues, combined with the enriched metabolic pathways, revealed that the differential metabolic responses of larvae and worker ants were mainly in energy metabolism, detoxification metabolism, and neurotransmitter ligands. Workers consumed more substrates in the arginine synthesis pathway (l-glutamic acid, l-aspartic acid, and fumaric acid) to provide energy for the detoxification (glutathione) of pesticides when exposed to fluralaner stress, and the high accumulation of l-aspartic acid induced excitotoxicity in the worker ants. Larval ants consumed more arachidonic acid to synthesize PG D2, and changes in the metabolism of antioxidants such as catechins, hesperidin, and l-ascorbic acid suggested that larvae were more capable of scavenging the ROS response than worker ants. The results of non-targeted metabolomics successfully revealed differences in the sensitivity of larvae and workers to fluralaner agents, providing insights into the fluralaner control of Solenopsis invicta.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiali Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (L.S.); (W.W.); (X.G.); (Y.Y.); (J.X.); (X.Z.)
| |
Collapse
|
4
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Felden A, Dobelmann J, Baty JW, McCormick J, Haywood J, Lester PJ. Can immune gene silencing via dsRNA feeding promote pathogenic viruses to control the globally invasive Argentine ant? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2755. [PMID: 36196505 DOI: 10.1002/eap.2755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Pest control methods that can target pest species with limited environmental impacts are a conservation and economic priority. Species-specific pest control using RNA interference is a challenging but promising avenue in developing the next generation of pest management. We investigate the feasibility of manipulating a biological invader's immune system using double-stranded RNA (dsRNA) in order to increase susceptibility to naturally occurring pathogens. We used the invasive Argentine ant as a model, targeting the immunity-associated genes Spaetzle and Dicer-1 with dsRNA. We show that feeding with Spaetzle dsRNA can result in partial target gene silencing for up to 28 days in the laboratory and 5 days in the field. Dicer-1 dsRNA only resulted in partial gene knockdown after 2 days in the laboratory. Double-stranded RNA treatments were associated with significant gene expression disruptions across immune pathways in the laboratory and to a lower extent in the field. In total, 12 viruses and four bacteria were found in these ant populations. Some changes in viral loads in dsRNA-treated groups were observed. For example, Linepithema humile Polycipivirus 2 (LhuPCV2) loads increased after 2 days of treatment with Spaetzle and Dicer-1 dsRNA treatments in the laboratory. After treatment with the dsRNA in the field, after 5 days the virus Linepithema humile toti-like virus 1 (LhuTLV1) was significantly more abundant. However, immune pathway disruption did not result in a consistent increase in microbial infections, nor did it alter ant abundance in the field. Some viruses even declined in abundance after dsRNA treatment. Our study explored the feasibility of lowering a pest's immunity as a control tool. We demonstrate that it is possible to alter immune gene expression of pest species and pathogen loads, although in our specific system the affected pathogens did not appear to influence pest abundance. We provide suggestions on future directions for dsRNA-mediated immune disruption in pest species, including potential avenues to improve dsRNA delivery as well as the importance of pest and pathogen biology. Double-stranded RNA targeting immune function might be especially useful for pest control in systems in which viruses or other microorganisms are prevalent and have the potential to be pathogenic.
Collapse
Affiliation(s)
- Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jana Dobelmann
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joseph McCormick
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Vaibhvi V, Künzel S, Roeder T. Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections. Front Immunol 2022; 13:1040510. [PMID: 36505446 PMCID: PMC9726733 DOI: 10.3389/fimmu.2022.1040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila is an excellent model to study the response of different immunocompetent organs during systemic infection. In the present study, we intended to test the hypothesis that the only professional immune organs of the fly, the fat body and hemocytes, show substantial similarities in their responses to systemic infection. However, comprehensive transcriptome analysis of isolated organs revealed highly divergent transcript signatures, with the few commonly regulated genes encoding mainly classical immune effectors from the antimicrobial peptide family. The fat body and the hemocytes each have specific reactions that are not present in the other organ. Fat body-specific responses comprised those enabling an improved peptide synthesis and export. This reaction is accompanied by transcriptomic shifts enabling the use of the energy resources of the fat body more efficiently. Hemocytes, on the other hand, showed enhanced signatures related to phagocytosis. Comparing immune-induced signatures of both cell types with those of whole-body responses showed only a minimal correspondence, mostly restricted again to antimicrobial peptide genes. In summary, the two major immunocompetent cell types of Drosophila show highly specific responses to infection, which are closely linked to the primary function of the respective organ in the landscape of the systemic immune response.
Collapse
Affiliation(s)
- Vaibhvi Vaibhvi
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany,German Center for Lung Research, Airway Research Center North, Kiel, Germany,*Correspondence: Thomas Roeder,
| |
Collapse
|
8
|
Gao Z, Batool R, Xie W, Huang X, Wang Z. Transcriptome and Metabolome Analysis Reveals the Importance of Amino-Acid Metabolism in Spodoptera Frugiperda Exposed to Spinetoram. INSECTS 2022; 13:852. [PMID: 36135553 PMCID: PMC9504701 DOI: 10.3390/insects13090852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 05/31/2023]
Abstract
Pests are inevitably exposed to sublethal and lethal doses in the agroecosystem following the application of pesticides indispensable to protect food sources. The effect of spinetoram on amino-acid metabolism of fall armyworm, Spodoptera frugiperda (J.E. Smith), was investigated, at the dose of LC10 and LC90, by transcriptome and LC-MS/MS analysis. Using statistics-based analysis of both POS and NEG mode, a total of 715,501 metabolites in S. frugiperda were significantly changed after spinetoram treatment. The enhancement of glucose metabolism provides energy support for detoxification in larvae. The decrease in valine and isoleucine is associated with an increase in leucine, without maintaining the conservation of citric acid in the larvae. The down-regulation of phenylalanine may retard the tricarboxylic acid cycle to produce GTP. The abundance of lysine was decreased in response to spinetoram exposure, which damages the nervous system of the larvae. The abundance of arginine increases and causes non-functional contraction of the insect's muscles, causing the larva to expend excess energy. Tryptophan provides an important substrate for eliminating ROS. The changes in glutamic acid, aspartic acid, and lysine cause damage to the nerve centers of the larvae. The results of transcriptome and LC-MS/MS analysis revealed the effects of pesticide exposure on amino-acid metabolism of S. frugiperda successfully and provide a new overview of the response of insect physio-biochemistry against pesticides.
Collapse
Affiliation(s)
- Zupeng Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weifeng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xiaodan Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Luo W, Liu S, Zhang F, Zhao L, Su Y. Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:291-302. [PMID: 37073169 PMCID: PMC10077226 DOI: 10.1007/s42995-022-00134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Macrophages are well known for their phagocytic functions in innate immunity across species. In mammals, they rapidly consume a large amount of energy by shifting their metabolism from mitochondrial oxidative phosphorylation toward aerobic glycolysis, to perform the effective bactericidal function upon infection. Meanwhile, they strive for sufficient energy resources by restricting systemic metabolism. In contrast, under nutrient deprivation, the macrophage population is down-regulated to save energy for survival. Drosophila melanogaster possesses a highly conserved and comparatively simple innate immune system. Intriguingly, recent studies have shown that Drosophila plasmatocytes, the macrophage-like blood cells, adopt comparable metabolic remodeling and signaling pathways to achieve energy reassignment when challenged by pathogens, indicating the conservation of such metabolic strategies between insects and mammals. Here, focusing on Drosophila macrophages (plasmatocytes), we review recent advances regarding their comprehensive roles in local or systemic metabolism under homeostasis or stress, emphasizing macrophages as critical players in the crosstalk between the immune system and organic metabolism from a Drosophila perspective.
Collapse
Affiliation(s)
- Wang Luo
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Sumin Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Fang Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Long Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Fisheries College, Ocean University of China, Qingdao, 266003 China
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao, 266003 China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
10
|
Deshpande R, Lee B, Grewal SS. Enteric bacterial infection in Drosophila induces whole-body alterations in metabolic gene expression independently of the immune deficiency signaling pathway. G3 GENES|GENOMES|GENETICS 2022; 12:6628587. [PMID: 35781508 PMCID: PMC9635644 DOI: 10.1093/g3journal/jkac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
When infected by intestinal pathogenic bacteria, animals initiate both local and systemic defence responses. These responses are required to reduce pathogen burden and also to alter host physiology and behavior to promote infection tolerance, and they are often mediated through alterations in host gene expression. Here, we have used transcriptome profiling to examine gene expression changes induced by enteric infection with the Gram-negative bacteria Pseudomonas entomophila in adult female Drosophila. We find that infection induces a strong upregulation of metabolic gene expression, including gut and fat body-enriched genes involved in lipid transport, lipolysis, and beta-oxidation, as well as glucose and amino acid metabolism genes. Furthermore, we find that the classic innate immune deficiency (Imd)/Relish/NF-KappaB pathway is not required for, and in some cases limits, these infection-mediated increases in metabolic gene expression. We also see that enteric infection with Pseudomonas entomophila downregulates the expression of many transcription factors and cell–cell signaling molecules, particularly those previously shown to be involved in gut-to-brain and neuronal signaling. Moreover, as with the metabolic genes, these changes occurred largely independent of the Imd pathway. Together, our study identifies many metabolic, signaling, and transcription factor gene expression changes that may contribute to organismal physiological and behavioral responses to enteric pathogen infection.
Collapse
Affiliation(s)
- Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Deshpande R, Lee B, Qiao Y, Grewal SS. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in Drosophila. Dis Model Mech 2022; 15:dmm049551. [PMID: 35363274 PMCID: PMC9118046 DOI: 10.1242/dmm.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022] Open
Abstract
When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Zhao X, Karpac J. Glutamate metabolism directs energetic trade-offs to shape host-pathogen susceptibility in Drosophila. Cell Metab 2021; 33:2428-2444.e8. [PMID: 34710355 PMCID: PMC9153082 DOI: 10.1016/j.cmet.2021.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022]
Abstract
Individual hosts within populations often show inter-individual variation in their susceptibility to bacterial pathogen-related diseases. Utilizing Drosophila, we highlight that phenotypic variation in host-pathogen susceptibility within populations is driven by energetic trade-offs, facilitated by infection-mediated changes in glutamate metabolism. Furthermore, host-pathogen susceptibility is conditioned by life history, which adjusts immunometabolic sensing in muscles to direct vitamin-dependent reallocation of host energy substrates from the adipose tissue (i.e., a muscle-adipose tissue axis). Life history conditions inter-individual variation in the activation strength of intra-muscular NF-κB signaling. Limited intra-muscular NF-κB signaling activity allows for enhanced infection-mediated mitochondrial biogenesis and function, which stimulates glutamate dehydrogenase-dependent synthesis of glutamate. Muscle-derived glutamate acts as a systemic metabolite to promote lipid mobilization through modulating vitamin B enzymatic cofactor transport and function in the adipose tissue. This energy substrate reallocation improves pathogen clearance and boosts host survival. Finally, life history events that adjust energetic trade-offs can shape inter-individual variation in host-pathogen susceptibility after infection.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, TX 77807, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
14
|
Akhmetova K, Balasov M, Chesnokov I. Drosophila STING protein has a role in lipid metabolism. eLife 2021; 10:e67358. [PMID: 34467853 PMCID: PMC8443252 DOI: 10.7554/elife.67358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.
Collapse
Affiliation(s)
- Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of MedicineBirminghamUnited States
| |
Collapse
|
15
|
Feng M, Fei S, Xia J, Zhang M, Wu H, Swevers L, Sun J. Global Metabolic Profiling of Baculovirus Infection in Silkworm Hemolymph Shows the Importance of Amino-Acid Metabolism. Viruses 2021; 13:v13050841. [PMID: 34066413 PMCID: PMC8148188 DOI: 10.3390/v13050841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses rely on host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Infection of the silkworm, Bombyx mori, by Bombyx mori nucleopolyhedrovirus (BmNPV), has been studied extensively in the past to unravel interactions between baculoviruses and their lepidopteran hosts. To understand the interaction between the host metabolic responses and BmNPV infection, we analyzed global metabolic changes associated with BmNPV infection in silkworm hemolymph. Our metabolic profiling data suggests that amino acid metabolism is strikingly altered during a time course of BmNPV infection. Amino acid consumption is increased during BmNPV infection at 24 h post infection (hpi), but their abundance recovered at 72 hpi. Central carbon metabolism, on the other hand, particularly glycolysis and glutaminolysis, did not show obvious changes during BmNPV infection. Pharmacologically inhibiting the glycolytic pathway and glutaminolysis also failed to reduce BmNPV replication, revealing that glycolysis and glutaminolysis are not essential during BmNPV infection. This study reveals a unique amino acid utilization process that is implemented during BmNPV infection. Our metabolomic analysis of BmNPV-infected silkworm provides insights as to how baculoviruses induce alterations in host metabolism during systemic infection.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, 15310 Athens, Greece
- Correspondence: (L.S.); (J.S.)
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.F.); (S.F.); (J.X.); (M.Z.); (H.W.)
- Correspondence: (L.S.); (J.S.)
| |
Collapse
|
16
|
Hosseinzadeh S, Higgins SA, Ramsey J, Howe K, Griggs M, Castrillo L, Heck M. Proteomic Polyphenism in Color Morphotypes of Diaphorina citri, Insect Vector of Citrus Greening Disease. J Proteome Res 2021; 20:2851-2866. [PMID: 33890474 DOI: 10.1021/acs.jproteome.1c00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Steven A Higgins
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - John Ramsey
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Kevin Howe
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michael Griggs
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Louela Castrillo
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
19
|
How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110564. [PMID: 33508422 DOI: 10.1016/j.cbpb.2021.110564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/19/2023]
Abstract
An explosion of data has provided detailed information about organisms at the molecular level. For some traits, this information can accurately predict phenotype. However, knowledge of the underlying molecular networks often cannot be used to accurately predict higher order phenomena, such as the response to multiple stressors. This failure raises the question of whether methodological reductionism is sufficient to uncover predictable connections between molecules and phenotype. This question is explored in this paper by examining whether our understanding of the molecular responses to food limitation and pathogens in insects can be used to predict their combined effects. The molecular pathways underlying the response to starvation and pathogen attack in insects demonstrates the complexity of real-world physiological networks. Although known intracellular signaling pathways suggest that food restriction should enhance immune function, a reduction in food availability leads to an increase in some immune components, a decrease in others, and a complex effect on disease resistance in insects such as the caterpillar Manduca sexta. However, our inability to predict the effects of food restriction on disease resistance is likely due to our incomplete knowledge of the intra- and extracellular signaling pathways mediating the response to single or multiple stressors. Moving from molecules to organisms will require novel quantitative, integrative and experimental approaches (e.g. single cell RNAseq). Physiological networks are non-linear, dynamic, highly interconnected and replete with alternative pathways. However, that does not make them impossible to predict, given the appropriate experimental and analytical tools. Such tools are still under development. Therefore, given that molecular data sets are incomplete and analytical tools are still under development, it is premature to conclude that methodological reductionism cannot be used to predict phenotype.
Collapse
|
20
|
Hesketh-Best PJ, Mouritzen MV, Shandley-Edwards K, Billington RA, Upton M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog Dis 2021; 79:6121426. [PMID: 33503238 DOI: 10.1093/femspd/ftab003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Galleria mellonella is a recognised model to study antimicrobial efficacy; however, standardisation across the scientific field and investigations of methodological components are needed. Here, we investigate the impact of weight on mortality following infection with Methicillin-resistant Staphylococcus aureus (MRSA). Larvae were separated into six weight groups (180-300 mg at 20 mg intervals) and infected with a range of doses of MRSA to determine the 50% lethal dose (LD50), and the 'lipid weight' of larvae post-infection was quantified. A model of LD50 values correlated with weight was developed. The LD50 values, as estimated by our model, were further tested in vivo to prove our model. We establish a weight-dependent LD50 in larvae against MRSA and demonstrate that G. mellonella is a stable model within 180-260 mg. We present multiple linear models correlating weight with: LD50, lipid weight, and larval length. We demonstrate that the lipid weight is reduced as a result of MRSA infection, identifying a potentially new measure in which to understand the immune response. Finally, we demonstrate that larval length can be a reasonable proxy for weight. Refining the methodologies in which to handle and design experiments involving G. mellonella, we can improve the reliability of this powerful model.
Collapse
Affiliation(s)
- Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Michelle V Mouritzen
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| | - Kayleigh Shandley-Edwards
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| |
Collapse
|
21
|
Weaver LN, Drummond-Barbosa D. The Nuclear Receptor Seven Up Regulates Genes Involved in Immunity and Xenobiotic Response in the Adult Drosophila Female Fat Body. G3 (BETHESDA, MD.) 2020; 10:4625-4635. [PMID: 33087412 PMCID: PMC7718730 DOI: 10.1534/g3.120.401745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023]
Abstract
The physiology of organisms depends on inter-organ communication in response to changes in the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating molecules to control many biological processes, including immunity, detoxification, and reproduction. Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown. Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female fat body that might mediate this response. svp knockdown in the adult female fat body significantly downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate detoxification as part of its mechanisms to promote oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
22
|
Zhao X, Karpac J. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:100-105. [PMID: 32898765 PMCID: PMC7669600 DOI: 10.1016/j.cois.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The evolution of complex organ systems in metazoans has dictated that the maintenance of energy homeostasis requires coordinating local and systemic energy demands between organs with specialized functions. The gastrointestinal tract is one of many organs that is indispensable for the systemic coordination of energy substrate uptake, storage, and usage, and the spatial organization of this organ (i.e. proximity to other metabolic organs) within a complex body plan underlies its role in organ crosstalk. Studies of various arthropod intestines, and in particular insects, have shed light on the evolution and function of the gastrointestinal tract in the maintenance of energy homeostasis. This brief review focuses on studies and theories derived from the insect intestine (particularly the midgut) of adult Drosophila melanogaster to inform on the how, what, and why of the gastrointestinal tract in the systemic regulation of lipids, the most common form of stored energy in insects.
Collapse
Affiliation(s)
- Xiao Zhao
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jason Karpac
- Dept. of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
23
|
Wang RJ, Chen K, Xing LS, Lin Z, Zou Z, Lu Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103720. [PMID: 32344046 DOI: 10.1016/j.dci.2020.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
24
|
Huot L, Bigourdan A, Pagès S, Ogier JC, Girard PA, Nègre N, Duvic B. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103676. [PMID: 32184079 DOI: 10.1016/j.dci.2020.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The Steinernema carpocapsae-Xenorhabdus nematophila association is a nematobacterial complex used in biological control of insect crop pests. The infection success of this dual pathogen strongly depends on its interactions with the host's immune system. Here, we used the lepidopteran pest Spodoptera frugiperda to analyze the respective impact of each partner in the induction of its immune responses. First, we used previously obtained RNAseq data to construct the immunome of S. frugiperda and analyze its induction. We then selected representative genes to study by RT-qPCR their induction kinetics and specificity after independent injections of each partner. We showed that both X. nematophila and S. carpocapsae participate in the induction of stable immune responses to the complex. While X. nematophila mainly induces genes classically involved in antibacterial responses, S. carpocapsae induces lectins and genes involved in melanization and encapsulation. We discuss putative relationships between these differential inductions and the pathogen immunosuppressive strategies.
Collapse
Affiliation(s)
- Louise Huot
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
25
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
26
|
Hu Z, Cao X, Guo M, Li C. Identification and characterization of a novel short-type peptidoglycan recognition protein in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 99:257-266. [PMID: 32061713 DOI: 10.1016/j.fsi.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of the innate immune system via specific recognizing peptidoglycan, a unique component of bacterial cell wall. In the present study, a homologous gene encoding PGRP-S was identified and characterized from Apostichopus japonicus and designated as AjPGRP-S. The open reading frame of AjPGRP-S is 756 bp encoding a polypeptide of 251 amino acids (aa) with a signal peptide (1-24 aa) and a typical PGRP domain (37-178 aa). Phylogenetic analysis and sequence alignment revealed that AjPGRP-S is a member of the PGRP-S family. In healthy sea cucumbers, AjPGRP-S was expressed in all examined tissues with the highest distribution in body wall, muscle, and intestine. In Vibrio splendidus-infected sea cucumbers, AjPGRP-S was remarkably induced in coelomocytes. The recombinant AjPGRP-S (rAjPGRP-S) was shown to possess the highly amidase activity in the presence of Zn2+. Moreover, rAjPGRP-S exhibited agglutination abilities and strong bacteriostatic activities against V. splendidus, V. harveyi, V. parahaemolyticus, Staphylococcus aureus, and Micrococcus luteus. Furthermore, the agglutination ability can be enhanced in the presence of Zn2+. In conclusion, our results suggested that AjPGRP-S serves as a pattern recognition molecule involved in the immune response towards various pathogenic infections.
Collapse
Affiliation(s)
- Zhenguo Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuebin Cao
- National Algae and Sea Cucumber Project Technology Research Center, Shandong Oriental Ocean Sci-Tech Company Limited, Yantai, 264003, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
27
|
Colombani J, Andersen DS. The
Drosophila
gut: A gatekeeper and coordinator of organism fitness and physiology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e378. [DOI: 10.1002/wdev.378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Colombani
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| | - Ditte S. Andersen
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
28
|
Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage. Immunity 2020; 52:374-387.e6. [DOI: 10.1016/j.immuni.2020.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
|
29
|
Thioester-containing Proteins in the Drosophila melanogaster Immune Response against the Pathogen Photorhabdus. INSECTS 2020; 11:insects11020085. [PMID: 32013030 PMCID: PMC7073583 DOI: 10.3390/insects11020085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster forms a magnificent model for interpreting conserved host innate immune signaling and functional processes in response to microbial assaults. In the broad research field of host-microbe interactions, model hosts are used in conjunction with a variety of pathogenic microorganisms to disentangle host immune system activities and microbial pathogenicity strategies. The pathogen Photorhabdus is considered an established model for analyzing bacterial virulence and symbiosis due to its unique life cycle that extends between two invertebrate hosts: an insect and a parasitic nematode. In recent years, particular focus has been given to the mechanistic participation of the D. melanogaster thioester-containing proteins (TEPs) in the overall immune capacity of the fly upon response against the pathogen Photorhabdus alone or in combination with its specific nematode vector Heterorhabditis bacteriophora. The original role of certain TEPs in the insect innate immune machinery was linked to the antibacterial and antiparasite reaction of the mosquito malaria vector Anopheles gambiae; however, revamped interest in the immune competence of these molecules has recently emerged from the D. melanogaster-Photorhabdus infection system. Here, we review the latest findings on this topic with the expectation that such information will refine our understanding of the evolutionary immune role of TEPs in host immune surveillance.
Collapse
|
30
|
Somerville AGT, Gleave K, Jones CM, Reimer LJ. The consequences of Brugia malayi infection on the flight and energy resources of Aedes aegypti mosquitoes. Sci Rep 2019; 9:18449. [PMID: 31804546 PMCID: PMC6895159 DOI: 10.1038/s41598-019-54819-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Evidence from experimental infection studies has shown that infected mosquitoes exhibit altered host-seeking behaviours, with suppression and activation of behaviours dependent on the parasite's development stage. The mechanisms are poorly characterised; however, infections can impact mosquito energy reserves, thereby influencing key life-history traits and behaviours. In addition, filarial infection is likely detrimental to flight due to damage caused by developing worms. This study aimed to evaluate the impacts of Brugia malayi infection on Aedes aegypti flight parameters: distance, average speed, maximum speed and number of flight bursts, using a tethered flight mill. In addition, we explored whether differences in flight capacity may be due to the effect of infection on glycogen and lipid reserves. Infection with filarial worms significantly reduced flight distance but increased the number of flight bursts. Exposure to microfilaermic blood led to a significant decrease in average and maximum flight speeds even in the absence of an established infection. Mosquitoes fed on microfilaraemic blood showed reduced levels of glycogen (-37.9%) and lipids (-49.7%) compared to controls at nine days post-exposure. However, a one-hour period of flight activity caused an increase in lipid content for both infected and control mosquitoes. Consequential flight incapacitation may serve in explaining the heterogeneous distribution of lymphatic filariasis.
Collapse
Affiliation(s)
| | - Katherine Gleave
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christopher M Jones
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Lisa J Reimer
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
31
|
Capo F, Wilson A, Di Cara F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms 2019; 7:microorganisms7090336. [PMID: 31505811 PMCID: PMC6780840 DOI: 10.3390/microorganisms7090336] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.
Collapse
Affiliation(s)
- Florence Capo
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Alexa Wilson
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
32
|
Sugar Alcohols of Polyol Pathway Serve as Alarmins to Mediate Local-Systemic Innate Immune Communication in Drosophila. Cell Host Microbe 2019; 26:240-251.e8. [PMID: 31350199 DOI: 10.1016/j.chom.2019.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
Interorgan immunological communication is critical to connect the local-systemic innate immune response and orchestrate a homeostatic host defense. However, the factors and their roles in this process remain unclear. We find Drosophila IMD response in guts can sequentially trigger a systemic IMD reaction in the fat body. Sugar alcohols of the polyol pathway are essential for the spatiotemporal regulation of gut-fat body immunological communication (GFIC). IMD activation in guts causes elevated levels of sorbitol and galactitol in hemolymph. Aldose reductase (AR) in hemocytes, the rate-limiting enzyme of the polyol pathway, is necessary and sufficient for the increase of plasma sugar alcohols. Sorbitol relays GFIC by subsequent activation of Metalloprotease 2, which cleaves PGRP-LC to activate IMD response in fat bodies. Thus, this work unveils how GFIC relies on the intermediate activation of the polyol pathway in hemolymph and demonstrates that AR provides a critical metabolic checkpoint in the global inflammatory response.
Collapse
|
33
|
Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci Rep 2019; 9:10138. [PMID: 31300668 PMCID: PMC6626034 DOI: 10.1038/s41598-019-46222-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Immune deficiency (IMD) is a death domain-containing protein that is essential for the IMD/NF-κB humoral and epithelial immune responses to Gram-negative bacteria and viruses in insects. In the immune signaling cascade, IMD is recruited together with FADD and the caspase DREDD after the mobilization of PGRP receptors. Activated IMD regulates the expression of effector antimicrobial peptides (AMP) that protect against invading microorganisms. To date, most studies of the IMD pathway, and the IMD gene in particular, have been restricted to Drosophila; few similar studies have been conducted in other model insects. Herein, we cloned and functionally characterized an IMD homolog from the mealworm beetle Tenebrio molitor (TmIMD) and studied its role in host survival in the context of pathogenic infections. Phylogenetic analysis revealed the conserved caspase cleavage site and inhibitor of apoptosis (IAP)-binding motif (IBM). TmIMD expression was high in the hemocytes and Malpighian tubules of Tenebrio late-instar larvae and adults. At 3 and 6 hours’ post-infection with Escherichia coli, Staphylococcus aureus, or Candida albicans, TmIMD expression significantly increased compared with mock-infected controls. Knockdown of the TmIMD transcript by RNAi significantly reduced host resistance to the Gram-negative bacterium E. coli and fungus C. albicans in a survival assay. Strikingly, the expression of nine T. molitor AMPs (TmTenecin1, TmTenecin2, TmTenecin4, TmDefensin2, TmColeoptericin1, TmColeoptericin2, TmAttacin1a, TmAttacin1b, and TmAttacin2) showed significant downregulation in TmIMD knockdown larvae challenged with E. coli. These results suggest that TmIMD is required to confer humoral immunity against the Gram-negative bacteria, E. coli by inducing the expression of critical transcripts that encode AMPs.
Collapse
|
34
|
Terra WR, Dias RO, Oliveira PL, Ferreira C, Venancio TM. Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. CURRENT OPINION IN INSECT SCIENCE 2018; 29:34-40. [PMID: 30551823 DOI: 10.1016/j.cois.2018.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
The study of insect midgut features has been made possible by the recent availability of transcriptome datasets. These data uncovered the preferential expression of mucus-forming mucins at midgut regions that require protection (e.g. the acidic middle midgut of Musca domestica) or at sites of enzyme immobilization, particularly around the peritrophic membrane of Spodoptera frugiperda. Coleoptera lysosomal peptidases are directed to midgut lumen when over-expressed and targeted to lysosomes by a mechanism other than the mannose 6-phosphate-dependent pathway. We show that this second trend is likely conserved across Annelida, Mollusca, Nematoda, and Arthropoda. Furthermore, midgut transcriptomes of distantly related species reveal a general overexpression of xenobiotic detoxification pathways. In addition to attenuating toxicity of plant-derived compounds and insecticides, we also discuss a role for these detoxification pathways in regulating host-microbiota interactions by metabolizing bacterial secondary metabolites.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| | - Renata O Dias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|