1
|
Rathinam Thiruppathi Venkadajapathy V, Sivaperumal S. Tailoring functional two-dimensional nanohybrids: A comprehensive approach for enhancing photocatalytic remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116221. [PMID: 38547728 DOI: 10.1016/j.ecoenv.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.
Collapse
|
2
|
Liao M, Zheng Z, Jiang H, Ma M, Wang L, Wang Y, Zhuang S. MXenes as emerging adsorbents for removal of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169014. [PMID: 38040375 DOI: 10.1016/j.scitotenv.2023.169014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
MXenes are a recently emerging class of two-dimensional nanomaterials that have gained considerable interest in the field of environmental protection. Owing to their high surface area, abundant terminal groups, and unique two-dimensional layered structures, MXenes have demonstrated high efficacy as adsorbents for various pollutants. Here we focused on the latest developments in the field of MXene-based adsorbents, including the structure and properties of MXenes, their synthesis and modification methods, and their adsorption performance and mechanisms for various pollutants. Among the pollutants that have been reported to be adsorbed by MXenes are radionuclides (U(VI), Sr(II), Cs(I), Eu(III), Ba(II), Th(IV), and Tc(VII)/Re(VII)), heavy metals (Hg(II), Cu(II), Cr(VI), and Pb(II)), dyes, per- and polyfluoroalkyl substances (PFAS), antibiotics (tetracycline, ciprofloxacin, and sulfonamides), antibiotic resistance genes (ARGs), and other contaminates. Moreover, future directions in MXene research are also suggested in this review.
Collapse
Affiliation(s)
- Mingjia Liao
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Zhili Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Haiyang Jiang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Mingyu Ma
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Liming Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Yi Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Shuting Zhuang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
3
|
Moosavi NS, Yamini Y, Ghaemmaghami M. MXene nanosheets woven in polyacrylonitrile nanofiber yarns aligned spider web as a highly efficient sorbent for in-tube solid phase microextraction of beta-blockers from biofluids. J Chromatogr A 2023; 1706:464232. [PMID: 37506463 DOI: 10.1016/j.chroma.2023.464232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The use of electrospinning has received much attention in the production of nanofiber webs due to its advantages such as flexibility and simplicity. The direct electrospinning of nanofibers in an aligned or twisted form and the production of nanofiber yarns can turn nanofibers into woven fabrics, which leads to an increase in the diversity of nanofiber applications and improves their end-use possibilities. In this work, a victorious nanofiber yarn spinning system was used with the help of a rotating funnel. Yarn formation was studied using a composited polyacrylonitrile (PAN)/MXene polymer solution ejected from two oppositely charged nozzles. Finaly their application for packed-in-tube solid-phase microextraction of β-blocker drugs from biofluids was demonstrated. The separation and quantification of analytes were performed by HPLC-UV instrument. The 3D-yarn PAN/MXene sorbent exhibited high flexibility, porosity, sorbent loading, mechanical stability, and a long lifetime. The characterization of the final nanofiber was carried out utilizing Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray mapping, transmission electron microscope and X-ray diffraction analysis. Various parameters that affect the extraction efficiency, such as extraction time, pH, ionic strength and flow rate of sample solution, and type, volume and flow rate of eluent, were investigated and optimized. Under optimized conditions, the limits of detection were obtained in the range of 1.5-3.0 μg L-1. This method demonstrated appropriate linearity for β-blockers in the range of 5.0-1000.0 μg L-1, with coefficients of determination greater than 0.990. The inter- and intra-assay precisions (RSDs, for n = 3) are in the range of 2.5-3.5%, and 4.5-5.2%, respectively. Finally, the validated method was put in an application for the analysis of atenolol, propranolol and betaxolol in human urine and saliva samples at different hours and acceptable relative recoveries were obtained in the range of 89.5% to 110.4%.
Collapse
Affiliation(s)
- Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
| |
Collapse
|
4
|
An J, Park H, Kim J, Park H, Kim TH, Park C, Kim J, Lee MH, Lee T. Extended-Gate Field-Effect Transistor Consisted of a CD9 Aptamer and MXene for Exosome Detection in Human Serum. ACS Sens 2023; 8:3174-3186. [PMID: 37585601 DOI: 10.1021/acssensors.3c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Cancer progresses silently to the terminal stage of the impossible operable condition. There are many limitations in the treatment options of cancer, but diagnosis in an early stage can improve survival rates and low recurrence. Exosomes are the biomolecules released from cancer cells and are promising candidates for clinical diagnosis. Among them, the cluster of differentiation 9 (CD9) protein is an important exosomal biomarker that can be used for exosome determination. Therefore, here, a CD9 aptamer was first synthesized and applied to an extended-gate field-effect transistor (EGFET)-type biosensor containing a disposable sensing membrane to suggest the possibility of detecting exosomes in a clinical environment. Systematically evaluating ligands using the exponential enrichment (SELEX) technique was performed to select nucleic acid sequences that can specifically target the CD9 protein. Exosomes were detected according to the electrical signal changes on a membrane, which is an extended gate using an Au microelectrode. The fabricated biosensor showed a limit of detection (LOD) of 10.64 pM for CD9 proteins, and the detection range was determined from 10 pM to 1 μM in the buffer. In the case of the clinical test, the LOD and detection ranges of exosomes in human serum samples were 6.41 × 102 exosomes/mL and 1 × 103 to 1 × 107 exosomes/mL, respectively, showing highly reliable results with low error rates. These findings suggest that the proposed aptasensor can be a powerful tool for a simple and early diagnosis of exosomes.
Collapse
Affiliation(s)
- Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
5
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
6
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
7
|
Asif UA, Mahmood K, Naqvi SR, Mehran MT, Noor T. Development of high-capacity surface-engineered MXene composite for heavy metal Cr (VI) removal from industrial wastewater. CHEMOSPHERE 2023; 326:138448. [PMID: 36940825 DOI: 10.1016/j.chemosphere.2023.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The substantial quantity of Cr(VI) contaminants in the aqueous atmosphere is a major environmental fear that cannot be overlooked. For the first time, MXene and chitosan-coated polyurethane foam have been employed for wastewater treatment, including heavy metal ions (Cr (VI)) through a fixed-bed column study. It is also the most inexpensive, lightweight, and globally friendly material tested. The Mxene and chitosan-coated polyurethane foam hybrid materials were thoroughly investigated using FTIR (Fourier transform infrared), SEM (scanning electron microscope), XPS (X-ray photoelectron spectroscopy) and XRD (X-ray diffraction). The presence of the rough surface and the pore creation in the Mxene- MX3@CS3@PUF should rise its surface area, which is useful to interact the surface-active assembly of MX3@CS3@PUF and the Cr(VI) contaminations in the aqueous solution. With the help of the ion exchange mechanism and electrostatic contact, negatively charged MXene hexavalent ions were being adsorbed on the surface. MXene and chitosan have been coated on PUF foam in the form of three different layers, which shows the highest adsorption capacity, where up to ∼70% Cr (VI) was removed in the first 10 min and more than 60% elimination after 3 h when the metal ion concentration was 20 ppm. The electrostatic interaction between the negative charge MXene and the positive charge chitosan on the surface of PUF, which was absent in MX@PUF, is accountable for the high removal efficiency. This was done through a sequence of fixed-bed column studies, which took place in the continuous flowing of wastewater.
Collapse
Affiliation(s)
- Umair Ali Asif
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Khalid Mahmood
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore, Faisalabad Campus, Khurrianwala - Makkuana By-Pass, Faisalabad, Pakistan.
| | - Salman Raza Naqvi
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan.
| | - Muhammad Taqi Mehran
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Tayyaba Noor
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| |
Collapse
|
8
|
A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Raheem I, Mubarak NM, Karri RR, Solangi NH, Jatoi AS, Mazari SA, Khalid M, Tan YH, Koduru JR, Malafaia G. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. CHEMOSPHERE 2023; 311:137056. [PMID: 36332734 DOI: 10.1016/j.chemosphere.2022.137056] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.
Collapse
Affiliation(s)
- Ijlal Raheem
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
10
|
Zheng C, Yao Y, Rui X, Feng Y, Yang D, Pan H, Yu Y. Functional MXene-Based Materials for Next-Generation Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204988. [PMID: 35944190 DOI: 10.1002/adma.202204988] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Indexed: 06/15/2023]
Abstract
MXenes are seen as an exceptional candidate to reshape the future of energy with their viable surface chemistry, ultrathin 2D structure, and excellent electronic conductivity. The extensive research efforts bring about rapid expansion of the MXene families with enriched functionalities, which significantly boost performance of the existing energy-storage devices. In this review, the strategies that are developed to functionalize the MXene-based materials, including tailoring their microstructure by ions/molecules/polymers-initiated interaction or self-assembly, surface/interface engineering with dopants or functional groups, constructing heterostructures from MXenes with various materials, and transforming them into a series of derivatives inheriting the merits of the MXene precursors are highlighted. Their applications in emerging battery technologies are demonstrated and discussed. With delicate functionalization and structural engineering, MXene-based electrode materials exhibit improved specific capacity and rate capability, and their presence further suppresses and even eliminates dendrite formation on the metal anodes, which lengthens the lifespan of the rechargeable batteries. Meanwhile, MXenes serve as additives for electrolytes, separators, and current collectors. Finally, some future directions worth of exploration to address the remaining challenging issues of MXene-based materials and achieve the next-generation high-power and low-cost rechargeable batteries are proposed.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), National Synchrotron Radiation Laboratory, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450002, China
| | - Dan Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), National Synchrotron Radiation Laboratory, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
11
|
Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, Al-Sehemi AG, Algarni H, Amin MA, Aqeel Sarwar M, Nawawi WI, Palamanit A, Orooji Y, Ajmal Z. Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. CHEM REC 2022; 22:e202200097. [PMID: 36103617 DOI: 10.1002/tcr.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - A Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, 10012, Beijing, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Majid Hussain
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Sami Ullah
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Aqeel Sarwar
- Land Resource research Institute and Crop Science Center, National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| |
Collapse
|
12
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
13
|
Long X, Zhao GQ, Zheng Y, Hu J, Zuo Y, Zhang J, Jiao F. Porous and carboxyl functionalized titanium carbide MXene sheets for fast oil-in-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Khan K, Tareen AK, Iqbal M, Zhang Y, Mahmood A, Mahmood N, Yin J, Khatoon R, Zhang H. Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Zhang L, Yang L, Huang J, Chen S, Huang C, Lin Y, Shen A, Zheng Z, Zheng W, Tang S. A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing. Asian J Pharm Sci 2022; 17:666-678. [PMID: 36382298 PMCID: PMC9640674 DOI: 10.1016/j.ajps.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox. However, its applications are still limited by its inefficient transduction. Herein, we present a novel gene vector, the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery. Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells. The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene, which was expected to inhibit the expression of PLK1. Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently. The transduction with ZEBRA was cell line dependent, which showed ∼10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones. Furthermore, ZEBRA induced high-level expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene, and inhibited the tumor cell growth significantly. This zwitterionic polymer-inspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.
Collapse
Affiliation(s)
- Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Langyu Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jionghua Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Chuangjia Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Isfahani AP, Shamsabadi AA, Alimohammadi F, Soroush M. Efficient mercury removal from aqueous solutions using carboxylated Ti 3C 2T x MXene. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128780. [PMID: 35460992 DOI: 10.1016/j.jhazmat.2022.128780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Water supplies contaminated with heavy metals are a worldwide concern. MXenes have properties that make them attractive for the removal of metal ions from water. This work presents a simple one-step method of Ti3C2Tx carboxylation that involves the use of a chelating agent with a linear structure, providing strong carboxylic acid groups with high mobility. The carboxylation decreases the zeta-potential of Ti3C2Tx by ~16 to ~18 mV over a pH range of 2.0-8.5 and improves Ti3C2Tx stability in the presence of molecular oxygen. pH in the range of 2-6 has a negligible effect on the adsorption capacity of Ti3C2Tx and COOH-Ti3C2Tx. Compared to Ti3C2Tx, COOH-Ti3C2Tx has a slightly higher and much faster mercury uptake, and the concentration of mercury ions leached out from COOH-Ti3C2Tx is lower. For both Ti3C2Tx and COOH-Ti3C2Tx, the leached mercury ion concentration is far below the U.S.-EPA maximum level. At an initial Hg2+ concentration of 50 ppm and pH of 6, COOH-Ti3C2Tx has the equilibrium adsorption capacity of 499.7 mg/g and removes 95% of Hg2+ in less than 1 min. Moreover, it has an equilibrium time of 5 min, which is significantly shorter than that of Ti3C2Tx (~ 60 min). Finally, its mercury-ion uptake capacity is higher than commercially available adsorbents reported in the literature. Its mercury removal is mainly via chemisorption and monolayer adsorption.
Collapse
Affiliation(s)
- Ali Pournaghshband Isfahani
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad A Shamsabadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Farbod Alimohammadi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
17
|
Yang H, Xu Y, Hou Q, Xu Q, Ding C. Magnetic antifouling material based ratiometric electrochemical biosensor for the accurate detection of CEA in clinical serum. Biosens Bioelectron 2022; 208:114216. [DOI: 10.1016/j.bios.2022.114216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
|
18
|
Ahmaruzzaman M. MXene-based novel nanomaterials for remediation of aqueous environmental pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Shi XY, Gao MH, Hu WW, Luo D, Hu SZ, Huang T, Zhang N, Wang Y. Largely enhanced adsorption performance and stability of MXene through in-situ depositing polypyrrole nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Dixit F, Zimmermann K, Dutta R, Prakash NJ, Barbeau B, Mohseni M, Kandasubramanian B. Application of MXenes for water treatment and energy-efficient desalination: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127050. [PMID: 34534806 DOI: 10.1016/j.jhazmat.2021.127050] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
MXenes are a new type of two-dimensional (2D) material which are rapidly gaining traction for a range of environmental, chemical and medical applications. MXenes and MXene-composites exhibit high surface area, superlative chemical stability, thermal conductivity, hydrophilicity and are environmentally compatible. Consequently, MXenes have been successfully employed for hydrogen storage, semiconductor manufacture and lithium ion batteries. In recent years, MXenes have been utilized in numerous environmental applications for treating contaminated surface waters, ground and industrial/ municipal wastewaters and for desalination, often outperforming conventional materials in each field. MXene-composites can adsorb multiple organic and inorganic contaminants, and undergo Faradaic capacitive deionization (CDI) when utilized for electrochemical applications. This approach allows for a significant decrease in the energy demand by overcoming the concentration polarization limitation of conventional CDI electrodes, offering a solution for low-energy desalination of brackish waters. This article presents a state-of-the-art review on water treatment and desalination applications of MXenes and MXene-composites. An investigation into the kinetics and isotherms is presented, as well as the impact of water constituents and operating conditions are also discussed. The applications of MXenes for CDI, pervaporation desalination and solar thermal desalination are also examined based on the reviewed literature. The effects of the water composition and operational protocols on the regeneration efficacy and long-term usage are also highlighted.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Rahul Dutta
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Niranjana Jaya Prakash
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Quebec, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Pune, India.
| |
Collapse
|
22
|
Ibrahim Y, Meslam M, Eid K, Salah B, Abdullah AM, Ozoemena KI, Elzatahry A, Sharaf MA, Sillanpää M. A review of MXenes as emergent materials for dye removal from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Rethinasabapathy M, Bhaskaran G, Park B, Shin JY, Kim WS, Ryu J, Huh YS. Iron oxide (Fe 3O 4)-laden titanium carbide (Ti 3C 2T x) MXene stacks for the efficient sequestration of cationic dyes from aqueous solution. CHEMOSPHERE 2022; 286:131679. [PMID: 34375833 DOI: 10.1016/j.chemosphere.2021.131679] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
We prepared two-dimensional (2D) stack-structured magnetic iron oxide (Fe3O4) nanoparticle anchored titanium carbide (Ti3C2Tx) MXene material (Ti3C2Tx/Fe3O4). It was used as a potential adsorbent to remove carcinogenic cationic dyes, such as methylene blue (MB) and rhodamine B (Rh B), from aqueous solutions. Ti3C2Tx/Fe3O4 exhibited maximum adsorption capacities of 153 and 86 mg g-1 for MB and Rh B dyes, respectively. Batch adsorption experimental data fits the Langmuir model well, revealing monolayer adsorption of MB and Rh B onto the adsorption sites of Ti3C2Tx/Fe3O4. Additionally, Ti3C2Tx/Fe3O4 showed rapid MB/Rh B adsorption kinetics and attained equilibrium within 45 min. Moreover, Ti3C2Tx/Fe3O4 demonstrated recyclability over four cycles with high stability due to the presence of magnetic Fe3O4 nanoparticles. Furthermore, it exhibited remarkable selectivities of 91% and 88% in the presence of co-existing cationic and anionic dyes, respectively. Given the extraordinary adsorption capacities, Ti3C2Tx/Fe3O4 may be a promising material for the effective removal of cationic dyes from aqueous media.
Collapse
Affiliation(s)
- Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Gokul Bhaskaran
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Bumjun Park
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Jin-Yong Shin
- Chungcheong Division Reliability Center, Korea Confomity Laboratories, Yuseong-gu, Daejeon, 34027, Republic of Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Jungho Ryu
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
24
|
Hao C, Li G, Wang G, Chen W, Wang S. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Li Z, Li J, Tan J, Jiang M, Fu S, Zhang T, Wang X. In situ synthesis of novel peroxo-functionalized Ti 3C 2T x adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups. CHEMOSPHERE 2022; 286:131801. [PMID: 34371352 DOI: 10.1016/j.chemosphere.2021.131801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 05/22/2023]
Abstract
A novel peroxo-functionalized Ti3C2Tx adsorbent with abundant surface termination groups was facilely prepared in situ to remove aqueous anionic and cationic dyes. The adsorption behavior of methylene blue on peroxo-functionalized Ti3C2Tx was systematically investigated by adsorption kinetics, isotherms, and thermodynamics. Compared with Ti3C2Tx, the adsorption capacities of peroxo-functionalized Ti3C2Tx for cationic dyes methylene blue (558.0 mg g-1), rhodamine B (524.6 mg g-1) and anionic dyes methyl orange (292.6 mg g-1), congo red (258.2 mg g-1) were increased at room temperature without adjustment of pH, background ions and humic acid, etc of the contaminant solution by 7.9, 5.3, 5.9 and 4.6 times, respectively. In addition, peroxo-functionalized Ti3C2Tx could well tolerate the effects of pH, ionic strength, and humic acid. As revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, the adsorption mechanism of peroxo-functionalized Ti3C2Tx for anionic and cationic dyes was mainly attributed to the electrostatic interaction, hydrogen bonding interaction, and noncovalent surface-π attraction interaction. This study demonstrates a facile modification strategy for Ti3C2Tx adsorbent materials and aims to provide insights for the development of excellent Ti3C2Tx-based adsorbent materials.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Tan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengyun Jiang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuhan Fu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
26
|
Kumar JA, Prakash P, Krithiga T, Amarnath DJ, Premkumar J, Rajamohan N, Vasseghian Y, Saravanan P, Rajasimman M. Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. CHEMOSPHERE 2022; 286:131607. [PMID: 34311398 DOI: 10.1016/j.chemosphere.2021.131607] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 05/02/2023]
Abstract
MXene, comprised of two-dimensional transition metal carbides/nitride, has emerged as a novel material suitable for environmental remediation of toxic compounds. Due to their inherent and superior physical and chemical properties, MXene is employed in separation techniques like photocatalysis, adsorption, and membrane separation. MXene is equipped with a highly hydrophilic surface, ion exchange property, and robust surface functional groups. In this review paper, a comprehensive discussion on the structural patterns, preparation, properties of MXene and its application for the removal of toxic pollutants like Radionuclide, Uranium, Thorium, and dyes is presented. The mechanism of removal of the pollutants by MXene is extensively reviewed. Synthesis of MXene based membranes, their properties, and application for water purification and properties were also discussed. This review will be highly helpful to understand critically the methods of synthesis and use of MXene material for priority environmental pollutants removal. In addition, the challenges behind the synthesis and use of MXene for decontamination of pollutants were reviewed and reported.
Collapse
Affiliation(s)
- Jagadeesan Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | - Pandurangan Prakash
- Department of Biotechnology, Sathyabama Institute of Science of Technology, Chennai, India
| | - Thangavelu Krithiga
- Department of Chemistry, Sathyabama Institute of Science of Technology, Sathyabama Institute of Science of Technology, Chennai, India
| | - Duvuru Joshua Amarnath
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | - Jayapal Premkumar
- Department of Biomedical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | | | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
27
|
Yang G, Hu X, Liang J, Huang Q, Dou J, Tian J, Deng F, Liu M, Zhang X, Wei Y. Surface functionalization of MXene with chitosan through in-situ formation of polyimidazoles and its adsorption properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126220. [PMID: 34323712 DOI: 10.1016/j.jhazmat.2021.126220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel imidazoles-MXene hybrid composite, namely polyimidazoles chain overlaying on the surface of MXene (Ti3C2@IMIZ), was prepared by a simple method. Through this strategy, imidazoles can be in situ growth on the surface of MXenes via a facile multicomponent reaction using chitosan as a renewable reactant. Based on the characterization results, we demonstrated that a thin layer imidazoles with an ordered chain structure was embedded on the surface of Ti3C2, which resulted in the formation of a novel imidazoles-MXene hybrid composite. The adsorption performance of Ti3C2@IMIZ for removal environmental pollutants was evaluated using heavy metal ions of Cr(Ⅵ) as adsorbate. Detailed adsorption characteristics of Ti3C2@IMIZ including operational factors, adsorption kinetics and isotherms models were investigated. XPS analysis showed that Cr(VI) was converted to Cr(III) with low toxicity during the adsorption process. The adsorption of Cr(VI) and reduction of Cr(VI) to Cr(III) contribute to elimination of Cr(VI) species. The adsorption behavior and process analysis show that the adsorption mechanism is mainly physical adsorption through electrostatic interaction. The excellent reproducibility suggests that Ti3C2@IMIZ may be a potential candidate for remove of Cr(Ⅵ) in actual sewage treatment.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jibo Dou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China; Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang 330006, Jiangxi, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
28
|
Echols IJ, An H, Yun J, Sarang KT, Oh JH, Habib T, Zhao X, Cao H, Holta DE, Radovic M, Green MJ, Lutkenhaus JL. Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with Chemically Diverse MXenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11338-11350. [PMID: 34523932 DOI: 10.1021/acs.langmuir.1c01904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes, 2D nanomaterials derived from ceramic MAX phases, have drawn considerable interest in a wide variety of fields including energy storage, catalysis, and sensing. There are many possible MXene compositions due to the chemical and structural diversity of parent MAX phases, which can bear different possible metal atoms "M", number of layers, and carbon or nitrogen "X" constituents. Despite the potential variety in MXene types, the bulk of MXene research focuses upon the first MXene discovered, Ti3C2T. With the recent discovery of polymer/MXene multilayer assemblies as thin films and coatings, there is a need to broaden the accessible types of multilayers by including MXenes other than Ti3C2Tz; however, it is not clear how altering the MXene type influences the resulting multilayer growth and properties. Here, we report on the first use of MXenes other than Ti3C2Tz, specifically Ti2CTz and Nb2CTz, for the layer-by-layer (LbL) assembly of polycation/MXene multilayers. By comparing these MXenes, we evaluate both how changing M (Ti vs Nb) and "n" (Ti3C2Tzvs Ti2CTz) affect the growth and properties of the resulting multilayer. Specifically, the aqueous LbL assembly of each MXene with poly(diallyldimethylammonium) into films and coatings is examined. Further, we compare the oxidative stability, optoelectronic properties (refractive index, absorption coefficient, optical conductivity, and direct and indirect optical band gaps), and the radio frequency heating response of each multilayer. We observe that MXene multilayers with higher "n" are more electrically conductive and oxidatively stable. We also demonstrate that Nb2CTz containing films have lower optical band gaps and refractive indices at the cost of lower electrical conductivities as compared to their Ti2CTz counterparts. Our work demonstrates that the properties of MXene/polycation multilayers are highly dependent on the choice of constituent MXene and that the MXene type can be altered to suit specific applications.
Collapse
Affiliation(s)
- Ian J Echols
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hyosung An
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Junyeong Yun
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kasturi T Sarang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ju-Hyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Touseef Habib
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaofei Zhao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dustin E Holta
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Miladin Radovic
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Khandelwal N, Darbha GK. A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. CHEMOSPHERE 2021; 279:130587. [PMID: 33901892 DOI: 10.1016/j.chemosphere.2021.130587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Clean water, the elixir of life, is of tremendous importance in achieving environmental sustainability and the balanced functioning of our ecosystem. Coupled with population growth, several anthropogenic activities and environmental catastrophes have together contributed to an alarming increase in the concentration of toxic pollutants in water bodies. Diversified physiochemical conditions of water matrices, ranging from mining drainage to seawater, is the critical challenge in designing adsorbents. MXenes, a new class of 2D layered materials, are transition metal nitrides, carbides, carbonitrides or borides formed through selective etching process. MXenes are known to have high surface area and activity with biological compatibility and chemical stability and therefore are promising adsorbents and have been explored for a broad range of contaminants. This review starts with a brief about environmental contaminants followed by synthesis and modifications of MXenes. It then revolves around their so far explored adsorbing and degradation properties for different contaminants ranging from toxic metals, inorganic ions, and radionuclides to various organic pollutants, including dyes, pharmaceuticals, aromatic hydrocarbons, and pesticides, etc. Finally, we have discussed associated toxicity, secondary contamination, future trends, and challenges in ascertaining scalability and wide-range applicability of MXenes in natural environmental conditions to make them a warrior of water sustainability.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
30
|
Mayorga-Burrezo P, Muñoz J, Zaoralová D, Otyepka M, Pumera M. Multiresponsive 2D Ti 3C 2T x MXene via Implanting Molecular Properties. ACS NANO 2021; 15:10067-10075. [PMID: 34125533 DOI: 10.1021/acsnano.1c01742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design and fabrication of active nanomaterials exhibiting multifunctional properties is a must in the so-called global "Fourth Industrial Revolution". In this sense, molecular engineering is a powerful tool to implant original capabilities on a macroscopic scale. Herein, different bioinspired 2D-MXenes have been developed via a versatile and straightforward synthetic approach. As a proof of concept, Ti3C2Tx MXene has been exploited as a highly sensitive transducing platform for the covalent assembly of active biomolecular architectures (i.e., amino acids). All pivotal properties originated from the anchored targets were proved to be successfully transferred to the resulting bioinspired 2D-MXenes. Appealing applications have been devised for these 2D-MXene prototypes showing (i) chiroptical activity, (ii) fluorescence capabilities, (iii) supramolecular π-π interactions, and (iv) stimuli-responsive molecular switchability. Overall, this work demonstrates the fabrication of programmable 2D-MXenes, taking advantage of the inherent characteristics of the implanted (bio)molecular components. Thus, the current bottleneck in the field of 2D-MXenes can be overcome after the significant findings reported here.
Collapse
Affiliation(s)
- Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Dagmar Zaoralová
- Czech Advanced Technology and Research Institute (CATRIN), Regional Centre of Advanced Technologies and Materials (RCPTM), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute (CATRIN), Regional Centre of Advanced Technologies and Materials (RCPTM), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
- Center for Nanorobotics and Machine Intelligence, Department of Food Technology, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Liu Y, Dai Z, Zhang W, Jiang Y, Peng J, Wu D, Chen B, Wei W, Chen X, Liu Z, Wang Z, Han F, Ding D, Wang L, Li L, Yang Y, Huang Y. Sulfonic-Group-Grafted Ti 3C 2T x MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries. ACS NANO 2021; 15:9065-9075. [PMID: 33913691 DOI: 10.1021/acsnano.1c02215] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyaniline (PANI) is a promising cathode material for Zn-ion batteries (ZIBs) due to its intrinsic conductivity and redox activity; however, the achievements of PANI in high-performance ZIBs are largely hindered by its instability during the repeated charge/discharge. Taking advantage of the high conductivity, flexibility, and grafting ability together, a surface-engineered Ti3C2Tx MXene is designed as a silver bullet to fight against the deprotonation and swelling/shrinking issues occurring in the redox process of PANI, which are the origins of its instability. Specifically, the sulfonic-group-grafted Ti3C2Tx(S-Ti3C2Tx) continuously provides protons to improve the protonation degree of PANI and maintains the polymer backbone at a locally low pH, which effectively inhibits deprotonation and brings high redox activity along with good reversibility. Meanwhile, the conductive and flexible natures of S-Ti3C2Tx assist the fast redox reaction of PANI and concurrently buffer its corresponding swelling/shrinking. Therefore, the S-Ti3C2Tx-enhanced PANI cathode simultaneously achieves a high discharge capacity of 262 mAh g-1 at 0.5 A g-1, a superior rate capability of 160 mAh g-1 at 15 A g-1, and a good cyclability over 5000 cycles with 100% coulombic efficiency. This work enlightens the development of versatile MXene via surface engineering for advanced batteries.
Collapse
Affiliation(s)
- Ying Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ziwen Dai
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wang Zhang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- Institute for Superconducting & Electronic Materials, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yue Jiang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jian Peng
- Institute for Superconducting & Electronic Materials, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Dianlun Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Bin Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Wei Wei
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Zhenjie Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Fei Han
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Dahu Ding
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yang Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
32
|
Khatami M, Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Green Synthesis of A Novel MXene–CS Composite Applied in Treatment of Cr(VI) Contaminated Aqueous Solution. Processes (Basel) 2021. [DOI: 10.3390/pr9030524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The considerable amount of Cr(VI) pollutants in the aqueous environment is a significant environmental concern that cannot be ignored. A series of novel Mxene–CS inorganic–organic composite nanomaterials synthesized by using the solution reaction method was applied to treat the Cr(VI) contaminated water. The Mxene–CS composites were characterized through SEM (scanning electron microscope), XRD (X–ray diffraction), XPS (X–ray photoelectron spectroscopy), and FTIR (Fourier transform infrared). The XRD patterns (observed at 2θ of 18.1°, 35.8°, 41.5°, and 60.1°) and the FT–IR spectra (-NH2 group for 1635 and 1517 cm−1, and -OH group for 3482 cm−1) illustrated that CS was successfully loaded on the Mxene. The effects of solution pH, the dosage of Mxene–CS, and duration time on the adsorption of Cr(VI) by synthesized Mxene–CS were investigated. The removal efficiency of Cr(VI) was increased from 12.9% to 40.5% with Mxene–CS dosage ranging from 0.02 to 0.12 g/L. The adsorption process could be well fitted by the pseudo–second–order kinetics model, indicating chemisorption occurred. The Langmuir isotherm model could be better to describe the process with a maximum adsorption capacity of 43.1 mg/g. The prepared novel Mxene–CS composite was considered as an alternative for adsorption of heavy metals from wastewater.
Collapse
|
34
|
Tunesi MM, Soomro RA, Han X, Zhu Q, Wei Y, Xu B. Application of MXenes in environmental remediation technologies. NANO CONVERGENCE 2021; 8:5. [PMID: 33594612 PMCID: PMC7887147 DOI: 10.1186/s40580-021-00255-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
MXenes have recently been recognized as potential materials based on their unique physical and chemical characteristics. The widely growing family of MXenes is rapidly expanding their application domains since their first usage as energy materials was reported in 2011. The inherent chemical nature, high hydrophilicity, and robust electrochemistry regard MXenes as a promising avenue for environment-remediation technologies such as adsorption, membrane separation, photocatalysis and the electrocatalytic sensor designed for pollutant detection. As the performance of MXenes in these technologies is on a continuous path to improvement, this review intends to cumulatively discuss the diversity and chemical abilities of MXenes and their hybrid composites in the fields mentioned above with a focus on MXenes improving surface-characteristics. The review is expected to promote the diversity of MXenes and their hybrid configuration for advanced technologies widely applied for environmental remediation.
Collapse
Affiliation(s)
- Mawada Mohammed Tunesi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xi Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qizhen Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
35
|
Yaqub A, Shafiq Q, Khan AR, Husnain SM, Shahzad F. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj00772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes, since their discovery in 2011, have garnered significant research attention for a variety of applications due to their exciting physico-chemical properties.
Collapse
Affiliation(s)
- Azra Yaqub
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Qamar Shafiq
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| | - Abdul Rehman Khan
- Materials Division
- Directorate of Technology
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Syed M. Husnain
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Faisal Shahzad
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| |
Collapse
|
36
|
Jeon M, Jun BM, Kim S, Jang M, Park CM, Snyder SA, Yoon Y. A review on MXene-based nanomaterials as adsorbents in aqueous solution. CHEMOSPHERE 2020; 261:127781. [PMID: 32731014 DOI: 10.1016/j.chemosphere.2020.127781] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and finding methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. One of the widely used water treatment technologies is adsorption and various kinds of adsorbents for the removal of inorganic and organic contaminants from water have been discovered. Recently, MXene, as an emerging nanomaterial, has gained rapid attention owing to its unique characteristics and various applicability. Particularly, in the area of adsorptive application, MXene and MXene-based adsorbents have shown great potential in a large number of studies. In this regard, a comprehensive understanding of the adsorptive behavior of MXene-based nanomaterials is necessary in order to explain how they remove inorganic and organic contaminants in water. Adsorption by MXene-based adsorbents tends to be highly influenced by not only the physicochemical properties of these adsorbents but also water quality, such as pH value, temperature, background ion, and natural organic matter. Therefore, in this review paper, the effect of various water quality on the adsorption of inorganic and organic contaminants by various types of MXene and MXene-based adsorbents is explored. Furthermore, this review also covers general trends in the synthesis of MXene and regeneration of MXene-based adsorbents in order to assess their stability.
Collapse
Affiliation(s)
- Minjung Jeon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Shane A Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
37
|
Ren H, Zhang S, Huang Y, Chen Y, Lv L, Dai H. Dual-readout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets. Chem Commun (Camb) 2020; 56:13413-13416. [PMID: 33035288 DOI: 10.1039/d0cc05148a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, an ingenious dual-readout sensing platform based on a proximity hybridization-regulated strategy is proposed for protein detection. For the first time, Ti3C2 MXene@thionine composites (MXene@Thi) with an excellent photothermal effect not only acted as an amplifier to enhance the electrochemical signal, but were also used as a converter to achieve the temperature readout.
Collapse
Affiliation(s)
- Huizhu Ren
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | |
Collapse
|
38
|
MXenes: Are they emerging materials for analytical chemistry applications? - A review. Anal Chim Acta 2020; 1143:267-280. [PMID: 33384123 DOI: 10.1016/j.aca.2020.08.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
MXenes are an emerging class of 2D materials that exhibit unique properties of high conductivity and hydrophilicity. They can be easily functionalized with other materials due to the abundance of surface terminated functionalities. The versatile chemistry of MXenes allows fine-tuning their properties for different analytical chemistry applications such as electrochemical and optical sensing. MXenes may also be useful adsorbents for analytical extractions due to their exceptional surface chemistry, high surface areas, and ease of functionalization as per the nature of the target compounds. The features of the MXenes that can make them excellent materials for analytical applications are listed and critically appraised. The emerging applications of MXenes in electrochemical and optical sensing are discussed with the pertinent examples. The potential of MXene-based sorbents for analytical extractions is highlighted based on the current literature that describes their applications in adsorptive removal and environmental remediation. In the end, limitations, challenges, and future opportunities are briefly presented.
Collapse
|
39
|
Chen J, Huang Q, Huang H, Mao L, Liu M, Zhang X, Wei Y. Recent progress and advances in the environmental applications of MXene related materials. NANOSCALE 2020; 12:3574-3592. [PMID: 32016223 DOI: 10.1039/c9nr08542d] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MXenes are a new type of two-dimensional (2D) transition metal carbide or carbonitride material with a 2D structure similar to graphene. The general formula of MXenes is Mn+1XnTx, in which M is an early transition metal element, X represents carbon, nitrogen and boron, and T is a surface oxygen-containing or fluorine-containing group. These novel 2D materials possess a unique 2D layered structure, large specific surface area, good conductivity, stability, and mechanical properties. Benefitting from these properties, MXenes have received increasing attention and emerged as new substrate materials for exploration of various applications including, energy storage and conversion, photothermal treatment, drug delivery, environmental adsorption and catalytic degradation. The progress on various applications of MXene-based materials has been reviewed; while only a few of them covered environmental remediation, surface modification of MXenes has never been highlighted. In this review, we highlight recent advances and achievements in surface modification and environmental applications (such as environmental adsorption and catalytic degradation) of MXene-based materials. The current studies on the biocompatibility and toxicity of MXenes and related materials are summarized in the following sections. The challenges and future directions of the environmental applications of MXene-based materials are also discussed and highlighted.
Collapse
Affiliation(s)
- Junyu Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiang Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hongye Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Liucheng Mao
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Xiaoyong Zhang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China. and Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
40
|
Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Tong Q, Jiao T. Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124468] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Zhang R, Liu J, Li Y. MXene with Great Adsorption Ability toward Organic Dye: An Excellent Material for Constructing a Ratiometric Electrochemical Sensing Platform. ACS Sens 2019; 4:2058-2064. [PMID: 31264407 DOI: 10.1021/acssensors.9b00654] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ratiometric electrochemical sensors coupled with an intrinsic built-in correction have received much attention in biochemical analysis, which can effectively avoid potential impacts from both intrinsic and extrinsic factors. However, the complex modification procedure and the unstable reference signal limit development and application of ratiometric sensing. To address these issues, we proposed a novel ratiometric electrochemical platform based on MXene. Introduction of built-in correction was realized via simple one-step incubation of MXene in solution containing the reference molecule methylene blue (MB), and their firm electrostatic interaction ensures the strong adsorption capability of MXene toward MB. Remarkable enhancement in repeatibility and stability compared with nonratio sensor was proved by detecting the model analyte piroxicam. Furthermore, compatibility of the ratio sensor was demonstrated by integrating copper nanoparticles (CuNPs) into the platform. It turned out that sensing performance of the hybrid electrochemical sensor was significantly improved owing to synergistic effect of MXene and CuNPs, where the former affords a large specific surface area as well as quick electron transport, and the latter possess decent electrical catalytic ability. In all, the proposed ratiometric sensor based on MXene features easy preparation, superb reproducibility, robustness, and broad applicability, affording the platform highly competitive and reliable in the determination of a wide range of substances.
Collapse
Affiliation(s)
- Ruyue Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Jiang Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Yin J, Zhang L, Jiao T, Zou G, Bai Z, Chen Y, Zhang Q, Xia M, Peng Q. Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1009. [PMID: 31336924 PMCID: PMC6669661 DOI: 10.3390/nano9071009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
Abstract
With development of the society, the problem of environmental pollution is becoming more and more serious. There is the urgent need to develop a new type of sustainable green material for degradable pollutants. However, the conventional preparation method is limited by conditions such as cumbersome operation, high energy consumption, and high pollution. Here, a simple method named self-reduction has been proposed, to synthesize highly efficient catalytic nitro compounds and morin self-assembled MXene-Pd nanocomposites. Palladium nanoparticles were grown in situ on MXene nanosheets to form MXene@PdNPs. MXene@PdNPs composites with different reaction times were prepared by adjusting the reduction reaction time. In particular, MXene@PdNPs20 exhibited a high catalytic effect on 4-NP and 2-NA, and the first-order rate constants of the catalysis were 0.180 s-1 and 0.089 s-1, respectively. It should be noted that after eight consecutive catalytic cycles, the conversion to catalyze 4-NP was still greater than 94%, and the conversion to catalyze 2-NA was still greater than 91.8%. Therefore, the research of self-assembled MXene@PdNPs nanocomposites has important potential value for environmental management and sustainable development of human health, and provides new clues for the future research of MXene-based new catalyst materials.
Collapse
Affiliation(s)
- Juanjuan Yin
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Lun Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Yan Chen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| | - Meirong Xia
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
43
|
Zhang P, Xiang M, Liu H, Yang C, Deng S. Novel Two-Dimensional Magnetic Titanium Carbide for Methylene Blue Removal over a Wide pH Range: Insight into Removal Performance and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24027-24036. [PMID: 31246391 DOI: 10.1021/acsami.9b04222] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) layer-structured titanium carbide MXenes (e.g., 2D Ti3C2 MXene) have received tremendous attention owing to their excellent properties and unique 2D planar topology. Nevertheless, there are still several challenges to be addressed for well dispersibility and easy separation from a heterogeneous system, hindering the practical applications. Herein, 2D Ti3C2 MXene, as the most typical member of 2D MXenes, is functionalized with magnetic Fe3O4 nanoparticles via an in situ growth approach (designated as MXene@Fe3O4), which exhibits the intriguing phenomenon on methylene blue (MB) adsorption in the environmental remediation realm. The maximum adsorption capacity of the MXene@Fe3O4 composites for MB is calculated to be 11.68 mg·g-1 by a Langmuir isotherm model. A thermodynamic study of the adsorption demonstrates that the reaction process is exothermic and entropy-driven. Attractively, the removal process is a pH-independent process, and the optimal MB adsorption capacity is achieved at pH = 3 or 11, which is ascribed to electrostatic interactions and the hydrogen bond effect. X-ray diffraction, Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculation results reveal that the adsorption process is based on a combination of Ti-OH···N bonding, electrostatic attraction, and reductivity. Furthermore, multiple cycle runs demonstrate an excellent stability and reusability of MXene@Fe3O4 composites. This study provides a promising approach for the alternative removal of MB and broadens the potential application of 2D MXene for the treatment of practical acidic or alkaline wastewater.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Mingxue Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Chenkai Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
| | - Shuguang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang 330031 , China
- School for Engineering of Matter, Transport and Energy , Arizona State University , 551 E. Tyler Mall , Tempe , Arizona 85287 , United States
| |
Collapse
|
44
|
Structural regulation of NiFe2O4 colloidal nanocrystal assembly and their magnetic and electrocatalytic properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Yu H, Wang Y, Jing Y, Ma J, Du CF, Yan Q. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901503. [PMID: 31066206 DOI: 10.1002/smll.201901503] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Indexed: 06/09/2023]
Abstract
In recent years, the rapidly growing attention on MXenes makes the material a rising star in the 2D materials family. Although most researchers' interests are still focused on the properties of bare MXenes, little attention has been paid to the surface chemistry of MXenes and MXene-based nanocomposites. To this end, this Review offers a comprehensive discussion on surface modified MXene-based nanocomposites for energy conversion and storage (ECS) applications. Based on the structure and reaction mechanism, the related synthesis methods toward MXenes are briefly summarized. After the discussion of existing surface modification techniques, the surface modified MXene-based nanocomposites and their inherent chemical principles are presented. Finally, the application of these surface modified nanocomposites for supercapacitors (SCs), lithium/sodium-ion batteries (LIBs/SIBs), and electrocatalytic water splitting is discussed. The challenges and prospects of MXene-based nanocomposites for future ECS applications are also presented.
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yonghui Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yao Jing
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
46
|
Duan P, Yang X, Huang G, Wei J, Sun Z, Hu X. La2O3-CuO2/CNTs electrode with excellent electrocatalytic oxidation ability for ceftazidime removal from aqueous solution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Jana S, Ray J, Jana D, Mondal B, Bhanja SK, Tripathy T. Removal of vanadium (IV) from water solution by sulfated Katira gum-cl-poly (acrylic acid) hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|