1
|
Oh MS, Annable MD, Kim H. Temporary hydraulic barriers using organic gel for enhanced aquifer remediation during groundwater flushing: Bench-scale experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 255:104143. [PMID: 36773413 DOI: 10.1016/j.jconhyd.2023.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This study presents the use of organic gel-forming material for the construction of hydraulic barriers in aquifer, which can be easily removed after use. Experiments on the performance of the temporary hydraulic barrier during NAPL removal (aquifer flushing) were also conducted. An aqueous solution of sodium alginate was injected into the horizontally oriented, 2-dimensional flow chamber packed with sand, followed by gelation using a calcium solution. The alginate gel formed in the porous media produced a circular shape barrier (24 cm diameter, 1.3 cm thickness) that was successfully removed using sodium bicarbonate solution (1.0 M) in 72 h, whereas the gel was stable for 7 days during simulated groundwater flushing at the same flow rate as the sodium bicarbonate solution. When circular hydraulic barriers (12 cm diameter each, 14 cm apart) were set on either side of the NAPL (n-hexane and PCE mixture)-contaminated zone, the increased water flux during water flushing resulted in significantly increased PCE removal by almost 108%. When a surfactant solution (sodium dodecyl sulfate, 0.037%) was applied, the influenced groundwater flow controlled by hydraulic barriers on the NAPL removal was amplified by 196% removal.
Collapse
Affiliation(s)
- Min-Su Oh
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Michael D Annable
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Heonki Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.
| |
Collapse
|
2
|
Earnden L, Marangoni AG, Laredo T, Stobbs J, Pensini E. Self-Assembled glycerol monooleate demixes miscible liquids through selective hydrogen bonding to water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Earnden L, Marangoni AG, Laredo T, Stobbs J, Marshall T, Pensini E. Decontamination of water co-polluted by copper, toluene and tetrahydrofuran using lauric acid. Sci Rep 2022; 12:15832. [PMID: 36138091 PMCID: PMC9500063 DOI: 10.1038/s41598-022-20241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Co-contamination by organic solvents (e.g., toluene and tetrahydrofuran) and metal ions (e.g., Cu2+) is common in industrial wastewater and in industrial sites. This manuscript describes the separation of THF from water in the absence of copper ions, as well as the treatment of water co-polluted with either THF and copper, or toluene and copper. Tetrahydrofuran (THF) and water are freely miscible in the absence of lauric acid. Lauric acid separates the two solvents, as demonstrated by proton nuclear magnetic resonance (1H NMR) and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). The purity of the water phase separated from 3:7 (v/v) THF:water mixtures using 1 M lauric acid is ≈87%v/v. Synchrotron small angle X-Ray scattering (SAXS) indicates that lauric acid forms reverse micelles in THF, which swell in the presence of water (to host water in their interior) and ultimately lead to two free phases: 1) THF-rich and 2) water-rich. Deprotonated lauric acid (laurate ions) also induces the migration of Cu2+ ions in either THF (following separation from water) or in toluene (immiscible in water), enabling their removal from water. Laurate ions and copper ions likely interact through physical interactions (e.g., electrostatic interactions) rather than chemical bonds, as shown by ATR-FTIR. Inductively coupled plasma-optical emission spectrometry (ICP-OES) demonstrates up to 60% removal of Cu2+ ions from water co-polluted by CuSO4 or CuCl2 and toluene. While lauric acid emulsifies water and toluene in the absence of copper ions, copper salts destabilize emulsions. This is beneficial, to avoid that copper ions are re-entrained in the water phase alongside with toluene, following their migration in the toluene phase. The effect of copper ions on emulsion stability is explained based on the decreased interfacial activity and compressional rigidity of interfacial films, probed using a Langmuir trough. In wastewater treatment, lauric acid (a powder) can be mixed directly in the polluted water. In the context of groundwater remediation, lauric acid can be solubilized in canola oil to enable its injection to treat aquifers co-polluted by organic solvents and Cu2+. In this application, injectable filters obtained by injecting cationic hydroxyethylcellulose (HEC +) would impede the flow of toluene and copper ions partitioned in it, protecting downstream receptors. Co-contaminants can be subsequently extracted upstream of the filters (using pumping wells), to enable their simultaneous removal from aquifers.
Collapse
Affiliation(s)
- Laura Earnden
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Alejandro G Marangoni
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thamara Laredo
- Chemistry Department, Lakehead University, 500 University Ave, Orillia, ON, L3V 0B9, Canada
| | - Jarvis Stobbs
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Canadian Light Source Synchrotron, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Tatianna Marshall
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Erica Pensini
- School of Engineering, University of Guelph, Room 2525 Richards Bld., 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Earnden L, Marangoni AG, Gregori S, Paschos A, Pensini E. Zein-Bonded Graphene and Biosurfactants Enable the Electrokinetic Clean-Up of Hydrocarbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11153-11169. [PMID: 34514802 DOI: 10.1021/acs.langmuir.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonaqueous phase liquids (NAPL, e.g., hydrocarbons and chlorinated compounds) are common groundwater pollutants. Electrokinetic remediation of NAPLs uses electric fields to draw them toward electrodes and remove them from groundwater. The treatment requires NAPL mobility. Emulsification increases mobility, but at a risk for downstream receptors. We propose using alkaline aqueous solutions of zein and graphene nanoparticles (GNP) to form conductive materials, which could also act as barriers to control NAPL migration. Alkaline zein-GNP solutions can be injected in the polluted soil and solidified by neutralizing the pH (e.g., with glacial acetic acid, GAA). Shear rheology experiments showed that zein-GNP composites were cohesive, and voltammetry showed that GNP increased electrical conductivity of zein-based materials by 3.5 times. Gas chromatography-mass spectroscopy (GC-MS) demonstrated that the electrokinetic treatment of model sandy aquifers yielded >60% and ∼47% removal of emulsified toluene in freshwater and in salt solutions, respectively (with 30 min treatment using a 10 V differential voltage between a zein-GNP and an aluminum electrode. NaCl was used as model salt contaminant. The conductivity of surfactant solutions was lower in saline water than in freshwater, explaining differences in toluene removal. Toluene-water emulsions were stabilized using the natural surfactants lecithin and saponin. These surfactants acted synergistically in stabilizing emulsions in either freshwater or salt solutions. Lecithin and saponin likely interacted at toluene-water interfaces, as indicated by the morphology, interfacial tension and compressional rigidity of toluene-water interfaces with both components (relative to interfaces of either lecithin or saponin alone). The compressional behavior of interfacial films was well-described by the Marczak model. Electrokinetic treatment of saturated model sandy aquifers also decreased the turbidity of emulsions of water and either tricholoroethylene (TCE, by ∼41%) or diesel (by ∼75%), in the presence of a bacterial biosurfactant. This decrease was used as semiquantitative indicator of NAPL removal from water.
Collapse
Affiliation(s)
- Laura Earnden
- University of Guelph, School of Engineering, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Alejandro G Marangoni
- University of Guelph, Food Science Department, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Stefano Gregori
- University of Guelph, School of Engineering, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Athanasios Paschos
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Mohawk College, School of Engineering and Technology, 135 Fennell Ave W, Hamilton, Ontario L9C 0E5, Canada
| | - Erica Pensini
- University of Guelph, School of Engineering, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Hood C, Laredo T, Marangoni AG, Pensini E. Water‐repellent
films from corn protein and tomato cutin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine Hood
- School of Engineering University of Guelph Guelph Ontario Canada
| | - Thamara Laredo
- Departments of Sustainability Sciences and Chemistry Lakehead University Orillia Ontario Canada
| | | | - Erica Pensini
- School of Engineering University of Guelph Guelph Ontario Canada
| |
Collapse
|
6
|
Poureini F, Najafpour GD, Nikzad M, Najafzadehvarzi H, Mohammadi M. Loading of apigenin extracted from parsley leaves on colloidal core-shell nanocomposite for bioavailability enhancement. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Pensini E, Laredo T, Earnden L, Marangoni AG, Ghazani SM. A ‘three in one’ complexing agent enables copper desorption from polluted soil, its removal from groundwater and its detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Injectable cationic traps and sticky bacterial emulsifiers: A safe alliance during diesel bioremediation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Marshall T, Marangoni AG, Corradini MG, Rodriguez-Uribe A, Misra M, Mohanty AK, Rodriguez BM, Pensini E. Path-dependent rheology of carbon particle-hydroxyethylcellulose fluids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Marshall T, Lamont K, Marangoni AG, Lim LT, Wang X, Pensini E. Trypan blue removal from water with zein sorbents and laccase. SN APPLIED SCIENCES 2021; 3:29. [PMID: 33442668 PMCID: PMC7790779 DOI: 10.1007/s42452-020-04107-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Abstract Zein-based materials were used to remove Trypan blue from water under flow conditions and in batch tests. In flow tests, zein dissolved at pH = 13 was injected in sand columns and subsequently coagulated with CaCl2, to create an adsorbent filter which removed over 99% of Trypan blue. Batch tests were conducted using zein powder, zein dissolved at pH = 13 and coagulated with CaCl2, Fe2Cl3 or citric acid, and zein dissolved in ethanol and then coagulated with water. The highest Trypan blue removal was achieved with zein powder (4000 mg Trypan blue/kg sorbent, as determined through spectrophotometry), followed by zein coagulated with Fe2Cl3 (500 mg Trypan blue/kg sorbent) and with other salts (140 mg Trypan blue/kg sorbent). Differences in the sorption efficiency are attributed to differences in the surface area. The sorption isotherm of Trypan blue onto zein-based sorbents was a Type II isotherm, suggesting physisorption. Desorption of Trypan blue was limited when zein-based coagulated sorbents were immersed in pure water. Trypan blue could be degraded by free laccase in water, as determined through spectrophotometry and electrospray ionization mass spectroscopy (ESI-MS). Trypan blue could also be degraded by laccase when zein-based laccase-containing sorbents were prepared at pH = 10, using Fe2Cl3 as coagulant. Graphic abstract Supplementary information The online version contains supplementary material available at 10.1007/s42452-020-04107-w.
Collapse
Affiliation(s)
- Tatianna Marshall
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Kristine Lamont
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Alejandro G. Marangoni
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Loong-Tak Lim
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Xiuju Wang
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Erica Pensini
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
11
|
Laccase-zein interactions at the air-water interface: Reactors on an air bubble and naphthalene removal from water. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Marshall T, Estepa KM, Corradini M, Marangoni AG, Sleep B, Pensini E. Selective solvent filters for non-aqueous phase liquid separation from water. Sci Rep 2020; 10:11931. [PMID: 32686747 PMCID: PMC7371871 DOI: 10.1038/s41598-020-68920-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 01/18/2023] Open
Abstract
Injectable filters permeable to water but impermeable to non-polar solvents were developed to contain non-aqueous phase liquids (NAPL) in contaminated aquifers, hence protecting downstream receptors during NAPL remediation. Filters were produced by injecting aqueous solutions of 0.01% chitosan, hydroxyethylcellulose and quaternized hydroxyethylcellulose into sand columns, followed by rinsing with water. Polymer sorption onto silica was verified using a quartz-crystal microbalance with dissipation monitoring. Fluorescence and gas chromatography mass spectroscopy showed low ppm range concentrations of non-polar solvents (e.g., hexane and toluene) in water eluted from the filters (in the absence of emulsifiers). The contact angles between polymer-coated surfaces and hexane or toluene were > 90°, indicating surface oleophobicity. Organic, polar solvents (e.g. tetrahydrofuran and tetrachloroethylene, TCE) were not separated from water. The contact angles between polymer-coated surfaces and TCE was also > 90°. However, the contact area with polymer coated surfaces was greater for TCE than non-polar solvents, suggesting higher affinity between TCE and the surfaces. Emulsifiers can be used to facilitate NAPL extraction from aquifers. Emulsion separation efficiency depended on the emulsifier used. Emulsions were not separated with classical surfactants (e.g. Tween 20 and oleic acid) or alkaline zein solutions. Partial emulsion separation was achieved with humic acids and zein particles.
Collapse
Affiliation(s)
- Tatianna Marshall
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Klaudine M Estepa
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Maria Corradini
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Food Science Department, Ontario Agricultural College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Alejandro G Marangoni
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brent Sleep
- Civil and Mineral Engineering Department, University of Toronto, 35 St George St, Toronto, ON, M5S 1A4, Canada
| | - Erica Pensini
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|