1
|
Sanquer H, Heyman J, Hanna K, Le Borgne T. Microscale Chaotic Mixing as a Driver for Chemical Reactions in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8899-8908. [PMID: 38710098 DOI: 10.1021/acs.est.3c09749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mixing-induced reactions play a key role in a large range of biogeochemical and contaminant transport processes in the subsurface. Fluid flow through porous media was recently shown to exhibit chaotic mixing dynamics at the pore scale, enhancing microscale concentration gradients and controlling mixing rates. While this phenomenon is likely ubiquitous in environmental systems, it is not known how it affects chemical reactions. Here, we use refractive index matching and laser-induced fluorescence imaging of a bimolecular redox reaction to investigate the consequence of pore scale chaotic mixing on the reaction rates. The overestimation of measured reaction rates by the classical macrodispersion model highlights the persistence of incomplete mixing on the pore scale. We show that the reaction product formation is controlled by microscale chaotic mixing, which induces an exponential increase of the mixing interface and of the reaction rates. We derive a reactive transport model that captures experimental results and predicts that chaotic mixing has a first order control on reaction rates across a large range of time scales and Péclet and Damköhler numbers. These findings provide a new framework for understanding, assessing, and predicting mixing-induced reactions and their role on the fate and mobility of environmental compounds in natural porous media.
Collapse
Affiliation(s)
- Hugo Sanquer
- Géosciences Rennes, Université de Rennes, UMR CNRS 6118, 263 Avenue du Général Leclerc, F-35042 Rennes, France
| | - Joris Heyman
- Géosciences Rennes, Université de Rennes, UMR CNRS 6118, 263 Avenue du Général Leclerc, F-35042 Rennes, France
| | - Khalil Hanna
- École Nationale Supérieure de Chimie, Université de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, F-35708 Cedex 7 Rennes, France
| | - Tanguy Le Borgne
- Géosciences Rennes, Université de Rennes, UMR CNRS 6118, 263 Avenue du Général Leclerc, F-35042 Rennes, France
| |
Collapse
|
2
|
De Luca C, Zanetti D, Battisti T, Ferreira RR, Lopez S, McMillan AH, Lesher-Pérez SC, Maggini L, Bonifazi D. Photoreduction of Anthracenes Catalyzed by peri-Xanthenoxanthene: a Scalable and Sustainable Birch-Type Alternative. Chemistry 2023; 29:e202302129. [PMID: 37593905 DOI: 10.1002/chem.202302129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
The typical Birch reduction transforms arenes into cyclohexa-1,4-dienes by using alkali metals, an alcohol as a proton source, and an amine as solvent. Capitalizing on the strong photoreductive properties of peri-xanthenoxanthene (PXX), herein we report the photocatalyzed "Birch-type" reduction of acenes by employing visible blue light irradiation at room temperature in the presence of air. Upon excitation at 405 or 460 nm in the presence of a mixture of N,N-diisopropylethylamine (DIPEA) and trifluoromethanesulfonimide (HNTf2 ) in DMSO, PXX photocatalyzes the selective reduction of full-carbon acene derivatives (24-75 %). Immobilization of PXX onto polydimethylsiloxane (PDMS) beads (PXX-PDMS) allowed the use of the catalyst in heterogeneous batch reactions, giving 9-phenyl-9,10-dihydroanthracene in high yield (68 %). The catalyst could easily be recovered and reused, with no notable drop in performance observed after five reaction cycles. Integration of the PXX-PDMS beads into a microreactor enabled the reduction of acenes under continuous-flow conditions, thereby validating the sustainability and scalability of this heterogeneous-phase approach.
Collapse
Affiliation(s)
- Cristian De Luca
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Zanetti
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Park Place, CF10 3AT, Cardiff, UK
| | - Rúben R Ferreira
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Sofia Lopez
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, Mar del Plata, B7606BWV, Buenos Aires, Argentina
| | | | - Sasha Cai Lesher-Pérez
- Department of Chemical Engineering, Department of Biomedical Engineering, University of Michigan, North Campus Research Complex Building 28, 2800 Plymouth Rd, 48109-2800, Ann Arbor, MI, USA
| | - Laura Maggini
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, Ahangarian M, Aidun A, Bungau S, Hassan SSU. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine. Front Bioeng Biotechnol 2023; 10:1057699. [PMID: 36727042 PMCID: PMC9885973 DOI: 10.3389/fbioe.2022.1057699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Bones damaged due to disease or accidents can be repaired in different ways. Tissue engineering has helped with scaffolds made of different biomaterials and various methods. Although all kinds of biomaterials can be useful, sometimes their weakness in cellular activity or osteoconductivity prevents their optimal use in the fabrication of bone scaffolds. To solve this problem, we need additional processes, such as surface modification. One of the common methods is coating with polydopamine. Polydopamine can not only cover the weakness of the scaffolds in terms of cellular properties, but it can also create or increase osteoconductivity properties. Polydopamine creates a hydrophilic layer on the surface of scaffolds due to a large number of functional groups such as amino and hydroxyl groups. This layer allows bone cells to anchor and adheres well to the surfaces. In addition, it creates a biocompatible environment for proliferation and differentiation. Besides, the polydopamine coating makes the surfaces chemically active by catechol and amine group, and as a result of their presence, osteoconductivity increases. In this mini-review, we investigated the characteristics, structure, and properties of polydopamine as a modifier of bone substitutes. Finally, we evaluated the cell adhesion and osteoconductivity of different polydopamine-modified bone scaffolds.
Collapse
Affiliation(s)
- Ali Mahnavi
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Mostafa Ahangarian
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran,Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| |
Collapse
|
4
|
Yang X, Xiong S, Zhou J, Zhang Y, He H, Chen P, Li C, Wang Q, Shao Z, Wang L. Coating of manganese functional polyetheretherketone implants for osseous interface integration. Front Bioeng Biotechnol 2023; 11:1182187. [PMID: 37207123 PMCID: PMC10191212 DOI: 10.3389/fbioe.2023.1182187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Polyetheretherketone (PEEK) has been used extensively in biomedical engineering and it is highly desirable for PEEK implant to possess the ability to promote cell growth and significant osteogenic properties and consequently stimulate bone regeneration. In this study, a manganese modified PEEK implant (PEEK-PDA-Mn) was fabricated via polydopamine chemical treatment. The results showed that manganese was successfully immobilized on PEEK surface, and the surface roughness and hydrophilicity significantly improved after surface modification. Cell experiments in vitro demonstrated that the PEEK-PDA-Mn possesses superior cytocompatibility in cell adhesion and spread. Moreover, the osteogenic properties of PEEK-PDA-Mn were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Further rat femoral condyle defect model was utilized to assess bone formation ability of different PEEK implants in vivo. The results revealed that the PEEK-PDA-Mn group promoted bone tissue regeneration in defect area. Taken together, the simple immersing method can modify the surface of PEEK, giving outstanding biocompatibility and enhanced bone tissue regeneration ability to the modified PEEK, which could be applied as an orthopedic implant in clinical.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| |
Collapse
|
5
|
Tolabi H, Bakhtiary N, Sayadi S, Tamaddon M, Ghorbani F, Boccaccini AR, Liu C. A critical review on polydopamine surface-modified scaffolds in musculoskeletal regeneration. Front Bioeng Biotechnol 2022; 10:1008360. [PMID: 36466324 PMCID: PMC9715616 DOI: 10.3389/fbioe.2022.1008360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Increasing concern about age-related diseases, particularly musculoskeletal injuries and orthopedic conditions, highlights the need for strategies such as tissue engineering to address them. Surface modification has been developed to create pro-healing interfaces, personalize scaffolds and provide novel medicines. Polydopamine, a mussel-inspired adhesive polymer with highly reactive functional groups that adhere to nearly all substrates, has gained attention in surface modification strategies for biomaterials. Polydopamine was primarily developed to modify surfaces, but its effectiveness has opened up promising approaches for further applications in bioengineering as carriers and nanoparticles. This review focuses on the recent discoveries of the role of polydopamine as a surface coating material, with focus on the properties that make it suitable for tackling musculoskeletal disorders. We report the evolution of using it in research, and discuss papers involving the progress of this field. The current research on the role of polydopamine in bone, cartilage, muscle, nerve, and tendon regeneration is discussed, thus giving comprehensive overview about the function of polydopamine both in-vitro and in-vivo. Finally, the report concludes presenting the critical challenges that must be addressed for the clinical translation of this biomaterial while exploring future perspectives and research opportunities in this area.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Shaghayegh Sayadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Tamaddon
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Farnaz Ghorbani
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| |
Collapse
|
6
|
Yang Z, Huang T, Cao P, Cui Y, Nie J, Chen T, Yang H, Wang F, Sun L. Carbonized Silk Nanofibers in Biodegradable, Flexible Temperature Sensors for Extracellular Environments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18110-18119. [PMID: 35435678 DOI: 10.1021/acsami.2c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Temperature is one of the key parameters for activity of cells. The trade-off between sensitivity and biocompatibility of cell temperature measurement is a challenge for temperature sensor development. Herein, a highly sensitive, biocompatible, and degradable temperature sensor was proposed to detect the living cell extracellular environments. Biocompatible silk materials were applied as sensing and packing layers, which endow the device with biocompatibility, biodegradability, and flexibility. The silk-based temperature sensor presented a sensitivity of 1.75%/°C and a working range of 35-63 °C with the capability to measure the extracellular environments. At the bending state, this sensor worked at promising response of cells at different temperatures. The applications of this developed silk material-based temperature sensor include biological electronic devices for cell manipulation, cell culture, and cellular metabolism.
Collapse
Affiliation(s)
- Zhan Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Ting Huang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Peidong Cao
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Yangchen Cui
- School of Public Health, Medical College of Soochow University, Soochow University, Suzhou 215131, China
| | - Jihua Nie
- School of Public Health, Medical College of Soochow University, Soochow University, Suzhou 215131, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Hao Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Fengxia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Lining Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| |
Collapse
|
7
|
Liang JP, Accolla RP, Soundirarajan M, Emerson A, Coronel MM, Stabler CL. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater 2021; 130:268-280. [PMID: 34087442 DOI: 10.1016/j.actbio.2021.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Insufficient oxygenation is a serious issue arising within cell-based implants, as the hypoxic period between implantation and vascularization of the graft is largely unavoidable. In situ oxygen supplementation at the implant site should significantly mitigate hypoxia-induced cell death and dysfunction, as well as improve transplant efficacy, particularly for highly metabolically active cells such as pancreatic islets. One promising approach is the use of an oxygen generating material created through the encapsulation of calcium peroxide within polydimethylsiloxane (PDMS), termed OxySite. In this study, OxySite microbeads were incorporated within a macroporous PDMS scaffold to create a single, streamlined, oxygen generating macroporous scaffold. The resulting OxySite scaffold generated sufficient local oxygenation for up to 20 days, with nontoxic levels of reaction intermediates or by-products. The benefit of local oxygen release on transplant efficacy was investigated in a diabetic Lewis rat syngeneic transplantation model using a clinically relevant islet dosage (10,000 IEQ/kg BW) with different isolation purities (80%, 90%, and 99%). Impure islet preparations containing pancreatic non-islet cells, which are common in the clinical setting, permit examination of the effect of increased overall oxygen demand. Our transplantation outcomes showed that elevating the oxygen demand of the graft with decreasing isolation purity resulted in decreased graft efficacy for control implants, while the integration of OxySite significantly mitigated this impact and resulted in improved graft outcomes. Results highlight the superior clinical translational potential of these off-the-shelf OxySite scaffolds, where islet purity and the overall oxygen demands of implants are increased and highly variable. The oxygen-generating porous scaffold further provides a broad platform for enhancing the survival and efficacy of cellular implants for numerous other applications. STATEMENT OF SIGNIFICANCE: Hypoxia is a serious issue within tissue engineered implants. To address this challenge, we developed a distinct macroporous scaffold platform containing oxygen-generating microbeads. This oxygen-generating scaffold showed the potential to support clinically relevant cell dosages for islet transplantation, leading to improved treatment efficacy. This platform can also be used to mitigate hypoxia for other biomedical applications.
Collapse
Affiliation(s)
- Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | | | - Amy Emerson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Maria M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Liang JP, Accolla RP, Jiang K, Li Y, Stabler CL. Controlled Release of Anti-Inflammatory and Proangiogenic Factors from Macroporous Scaffolds. Tissue Eng Part A 2021; 27:1275-1289. [PMID: 33403942 DOI: 10.1089/ten.tea.2020.0287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The simultaneous local delivery of anti-inflammatory and proangiogenic agents via biomaterial scaffolds presents a promising method for improving the engraftment of tissue-engineered implants while avoiding potentially detrimental systemic delivery. In this study, polydimethylsiloxane (PDMS) microbeads were loaded with either anti-inflammatory dexamethasone (Dex) or proangiogenic 17β-estradiol (E2) and subsequently integrated into a single macroporous scaffold to create a controlled, dual-drug delivery platform. Compared to a standard monolithic drug dispersion scaffold, macroporous scaffolds containing drug-loaded microbeads exhibited reduced initial burst release and increased durability of drug release for both agents. The incubation of scaffolds with lipopolysaccharide (LPS)-stimulated M1 macrophages found that Dex suppressed the production of proinflammatory and proangiogenic factors when compared to drug-free control scaffolds; however, the coincubation of macrophages with Dex and E2 scaffolds restored their proangiogenic features. Following implantation, Dex-loaded microbead scaffolds (Dex-μBS) suppressed host cell infiltration and integration, when compared to controls. In contrast, the codelivery of dexamethasone with estrogen from the microbead scaffold (Dex+E2-μBS) dampened overall host cell infiltration, but restored graft vascularization. These results demonstrate the utility of a microbead scaffold approach for the controlled, tailored, and local release of multiple drugs from an open framework implant. It further highlights the complementary impacts of local Dex and E2 delivery to direct the healthy integration of implants, which has broad applications to the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Kaiyuan Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA.,Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA.,UF Diabetes Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Razavi M, Primavera R, Vykunta A, Thakor AS. Silicone-based bioscaffolds for cellular therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111615. [DOI: 10.1016/j.msec.2020.111615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
|
10
|
Razavi M, Primavera R, Kevadiya BD, Wang J, Ullah M, Buchwald P, Thakor AS. Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles. NANO LETTERS 2020; 20:7220-7229. [PMID: 32909757 PMCID: PMC8121116 DOI: 10.1021/acs.nanolett.0c02576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the present study, we created a nanoscale platform that can deliver nutrients to pancreatic islets in a controlled manner. Our platform consists of a mesoporous silica nanoparticle (MSNP), which can be loaded with glutamine (G: an essential amino acid required for islet survival and function). To control the release of G, MSNPs were coated with a polydopamine (PD) layer. With the optimal parameters (0.5 mg/mL and 0.5 h), MSNPs were coated with a layer of PD, which resulted in a delay of G release from MSNPs over 14 d (57.4 ± 4.7% release). Following syngeneic renal subcapsule islet transplantation in diabetic mice, PDG-MSNPs improved the engraftment of islets (i.e., enhanced revascularization and reduced inflammation) as well as their function, resulting in re-establishment of glycemic control. Collectively, our data show that PDG-MSNPs can support transplanted islets by providing them with a controlled and sustained supply of nutrients.
Collapse
Affiliation(s)
- Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States; Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine and Department of Materials Science & Engineering, University of Central Florida, Orlando, Florida 32827, United States
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
11
|
Hung HS, Yu AYH, Hsieh SC, Kung ML, Huang HY, Fu RH, Yeh CA, Hsu SH. Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44393-44406. [PMID: 32697572 DOI: 10.1021/acsami.0c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Alex Yang-Hao Yu
- Ministry of Health & Welfare, Changhua Hospital, Changhua 51341, Taiwan, R.O.C
| | - Shu-Chen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, R.O.C
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
12
|
Ye W, Wang N, Hu K, Zhang L, Liu A, Pan C, Gong T, Liu T, Ding H. Bio-inspired microcapsule for targeted antithrombotic drug delivery. RSC Adv 2018; 8:27253-27259. [PMID: 35539989 PMCID: PMC9083295 DOI: 10.1039/c8ra04273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis or embolism is the leading cause of death and long-term adult disability worldwide. To reduce the risk of thrombosis and hemorrhaging in patients, a facile and versatile method was developed to fabricate microcapsules for targeted antithrombotic drug delivery. The microcapsules were prepared via oxidative polymerization of dopamine on polystyrene microspheres, followed by immobilization of fibrinogen onto the surface of poly(dopamine) layers. Subsequently, microcapsules were obtained by removing the cores with THF. Nattokinase was loaded into the microcapsules via diffusion. The loading amount was approximately 0.05 mg g−1 at 37 °C, and the loading efficiency was nearly 75%, based on the initial concentration of nattokinase in PBS. The release of nattokinase was a gradual process at 37 °C, and the activity of the targeted activated platelets was highly efficient. The antithrombotic activity of the nattokinase microcapsules was evidenced by the sharp dissolution of fibrin clots and the blood clotting time indexes. A gradual release mechanism of platelet-inspired microcapsules used for targeted antithrombotic therapy was proposed. This strategy for targeted antithrombotic drug delivery, which lowers the demand dose and minimizes side effects while maximizing drug efficacy, provides a potential new way to treat life-threatening diseases caused by vascular disruption. NK-loaded hollow microcapsules were fabricated and assessed as a potential antithrombosis therapy.![]()
Collapse
Affiliation(s)
- Wei Ye
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Nan Wang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Kebang Hu
- Department of Urology
- The First Hospital of Jilin University
- Changchun 130021
- PR China
| | - Lincai Zhang
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Aihui Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Changjiang Pan
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Gong
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Tao Liu
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Hongyan Ding
- Jiangsu Provincial Key Lab for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
13
|
Chung EJ, Jun DR, Kim DW, Han MJ, Kwon TK, Choi SW, Kwon SK. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS One 2017; 12:e0186877. [PMID: 29095854 PMCID: PMC5667927 DOI: 10.1371/journal.pone.0186877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
The use of injectable bulking agents is a feasible alternative procedure for conventional surgical therapy. In this study, poly(dimethylsiloxane) (PDMS) microspheres coated with polydopamine (PDA) were developed as a potential injection agent to prevent migration in vocal fold. Uniform PDMS microspheres are fabricated using a simple fluidic device and then coated with PDA. Cell attachment test reveals that the PDA-coated PDMS (PDA-PDMS) substrate favors cell adhesion and attachment. The injected PDA-PDMS microspheres persist without migration on reconstructed axial CT images, whereas, pristine PDMS locally migrates over a period of 12 weeks. The gross appearance of the implants retrieved at 4, 8, 12 and 34 weeks indicates that the PDA-PDMS group maintained their original position without significant migration until 34 weeks after injection. By contrast, there is diffuse local migration of the pristine PDMS group from 4 weeks after injection. The PDA-coated PDMS microspheres can potentially be used as easily injectable, non-absorbable filler without migration.
Collapse
Affiliation(s)
- Eun-Jae Chung
- Department of Otorhinolaryngology, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dae-Ryong Jun
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Dong-Wook Kim
- Department of Otorhinolaryngology, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Mi-Jung Han
- Department of Otorhinolaryngology, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tack-Kyun Kwon
- Department of Otorhinolaryngology, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung-Wook Choi
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
- * E-mail: (SKK); (SWC)
| | - Seong Keun Kwon
- Department of Otorhinolaryngology, College of Medicine, Seoul National University Hospital, Seoul, Korea
- * E-mail: (SKK); (SWC)
| |
Collapse
|
14
|
Alves D, Magalhães A, Grzywacz D, Neubauer D, Kamysz W, Pereira MO. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces. Acta Biomater 2016; 44:313-22. [PMID: 27514277 DOI: 10.1016/j.actbio.2016.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/23/2016] [Accepted: 08/07/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Biomaterial-associated infections, in particular, catheter-associated infections (CAI) are a major problem in clinical practice due to their ability to resist antimicrobial treatment and the host immune system. This study aimed to co-immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both antimicrobial and anti-adhesive functionalities to polydimethylsiloxane (PDMS) material, using dopamine chemistry. Surface characterization confirmed the immobilization of both compounds and no leaching of Palm from the surfaces for up to 5days. Co-immobilization of both agents resulted in a bifunctional coating with excellent surface antimicrobial and anti-biofilm properties against both Staphylococcus aureus and Pseudomonas aeruginosa. The modified surfaces demonstrated superior biocompatibility. To better discriminate co-adhesion of both species on modified surfaces, PNA FISH (Fluorescence in situ hybridization using peptide nucleic acid probes) was employed, and results showed that P. aeruginosa was the dominant organism, with S. aureus adhering afterwards on P. aeruginosa agglomerates. Furthermore, Palm immobilization exhibited no propensity to develop bacterial resistance, as opposite to the immobilization of an antibiotic. The overall results highlighted that co-immobilization of Palm and DNase I holds great potential to be applied in the development of catheters. STATEMENT OF SIGNIFICANCE Catheter-associated infections (CAI) are the most common hospital-acquired infections worldwide. Several coating strategies have been proposed to fight these infections but most of them present some important limitations, including the emergence of resistant bacteria and toxicity concerns. The present work describes a two-step polydopamine-based surface modification strategy to successfully co-immobilize an antimicrobial peptide (Palm) and an enzyme targeting an important component of biofilm matrix (DNase I). This immobilization approach imparted polydimethylsiloxane surfaces with both anti-adhesive and antimicrobial properties against the adhesion of relevant bacteria as single and dual-species, with excellent stability and biocompatible and anti-biofilm properties, holding, therefore, great potential in the development of catheters able to prevent CAI.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Andreia Magalhães
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Damian Neubauer
- Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Peptideweb.com, 80-298 Gdansk, Poland; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
Huang S, Liang N, Hu Y, Zhou X, Abidi N. Polydopamine-Assisted Surface Modification for Bone Biosubstitutes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2389895. [PMID: 27595097 PMCID: PMC4993928 DOI: 10.1155/2016/2389895] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
Polydopamine (PDA) prepared in the form of a layer of polymerized dopamine (DA) in a weak alkaline solution has been used as a versatile biomimetic surface modifier as well as a broadly used immobilizing macromolecule. This review mainly discusses the progress of biomaterial surface modification inspired by the participation of PDA in bone tissue engineering. A comparison between PDA-assisted coating techniques and traditional surface modification applied to bone tissue engineering is first presented. Secondly, the chemical composition and the underlying formation mechanism of PDA coating layer as a unique surface modifier are interpreted and discussed. Furthermore, several typical examples are provided to evidence the importance of PDA-assisted coating techniques in the construction of bone biosubstitutes and the improvement of material biocompatibility. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration.
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nuanyi Liang
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yang Hu
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Xin Zhou
- Centre for Human Tissues and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Alves D, Pereira MO. Bio-Inspired Coating Strategies for the Immobilization of Polymyxins to Generate Contact-Killing Surfaces. Macromol Biosci 2016; 16:1450-1460. [PMID: 27345452 DOI: 10.1002/mabi.201600122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/15/2016] [Indexed: 11/10/2022]
Abstract
Microbial colonization of indwelling devices remains a major concern in modern healthcare. Developing approaches to prevent biomaterial-associated infections (BAI) is, therefore, in great demand. This study aimed to immobilize two antimicrobial peptides (polymyxins B and E) onto polydimethylsiloxane (PDMS) using two polydopamine (pDA)-based approaches: the conventional two-step method involving the deposition of a pDA layer to which biomolecules are immobilized, and a one-step method where peptides are dissolved together with dopamine before its polymerization. Surface characterization confirms the immobilization of polymyxins onto PDMS at a non-toxic concentration. Immobilization of polymyxins using a one-step pDA-based approach is able to prevent Pseudomonas aeruginosa adhesion and kill a significant fraction of the adherent ones. Living cells adhered to these modified surfaces exhibit the same susceptibility pattern as cells adhered to unmodified surfaces, highlighting no resistance development. Results suggest that polymyxins immobilization holds a great potential as an additional antimicrobial functionality in the design of biomaterials.
Collapse
Affiliation(s)
- Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
17
|
Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules 2015; 16:2541-55. [DOI: 10.1021/acs.biomac.5b00852] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sajeesh Kumar Madhurakkat Perikamana
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jinkyu Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yu Bin Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Young Min Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Esther J. Lee
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Antonios G. Mikos
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Heungsoo Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| |
Collapse
|
18
|
Ryu TK, Lee GJ, Rhee CK, Choi SW. Cellular Uptake Behavior of Doxorubicin-Conjugated Nanodiamond Clusters for Efficient Cancer Therapy. Macromol Biosci 2015; 15:1469-75. [DOI: 10.1002/mabi.201500176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/26/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Tae-Kyung Ryu
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Gyoung-Ja Lee
- Nuclear Materials Research Division; Korea Atomic Energy Research Institute; 1045 Daedeok Daero Yuseong-gu Daejeon 305-353 Republic of Korea
| | - Chang-Kyu Rhee
- Nuclear Materials Research Division; Korea Atomic Energy Research Institute; 1045 Daedeok Daero Yuseong-gu Daejeon 305-353 Republic of Korea
| | - Sung-Wook Choi
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu, Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| |
Collapse
|