1
|
Tian F, Zhao Y, Wang Y, Xu H, Liu Y, Liu R, Li H, Ning R, Wang C, Gao X, Luo R, Jia S, Zhu L, Hao D. Magnesium-Based Composite Calcium Phosphate Cement Promotes Osteogenesis and Angiogenesis for Minipig Vertebral Defect Regeneration. ACS Biomater Sci Eng 2024; 10:7577-7593. [PMID: 39575879 DOI: 10.1021/acsbiomaterials.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Calcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC. The inclusion of magnesium-based PLGA fibers enhanced the compressive strength and degradation rate of CPC, with the degradation rate of the magnesium microspheres being controllable to allow for the sustained release of magnesium ions. In vitro experiments showed that magnesium-based CPC enhanced the proliferation and migration of MC3T3-E1 and HUVECs. Additionally, the magnesium-based composite CPC not only enhanced osteogenic differentiation of MC3T3-E1 cells but also promoted angiogenesis in HUVECs. In vivo experiments using a vertebral bone defect model in Bama miniature pigs showed that the magnesium-based composite CPC significantly increased new bone formation. Additionally, compared to the CPC group, this composite exhibited significantly higher levels of osteogenic and angiogenic markers, with no inflammation or necrosis observed in the heart, liver, or kidneys, indicating good biocompatibility. These results suggest that magnesium-based composite CPC, with its superior compressive strength, biodegradability, and ability to promote vascularized bone regeneration, holds promise as a minimally invasive injectable material for bone regeneration.
Collapse
Affiliation(s)
- Fang Tian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Ruojie Ning
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Chengwen Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| |
Collapse
|
2
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
3
|
Mao J, Bi J, Sun Z, Wang L. MgSiO 3 Fiber Membrane Scaffold with Triggered Drug Delivery for Osteosarcoma Synergetic Therapy and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34669-34683. [PMID: 38946103 DOI: 10.1021/acsami.4c05744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this research, a novel MgSiO3 fiber membrane (MSFM) loaded with indocyanine green (ICG) and doxorubicin (DOX) was prepared. Because of MgSiO3's unique lamellar structure composed of a silicon-oxygen tetrahedron, magnesium ion (Mg2+) moves easily and can be further replaced with other cations. Therefore, because of the positively charged functional group of ICG, MSFM has a rather high drug loading for ICG. In addition, there is electrostatic attraction between DOX (a cationic drug) and ICG (an anionic drug). Hence, after loading ICG, more DOX can be adsorbed into MSFM because of electrostatic interaction. The ICG endows the MSFM outstanding photothermal therapy (PTT) performance, and DOX as a chemotherapeutic drug can restrain tumor growth. On the one hand, H+ exchanged with the positively charged DOX based on the MgSiO3 special lamellar structure. On the other hand, the thermal effect could break the electrostatic interaction between ICG and DOX. Based on the above two points, both tumor acidic microenvironment and photothermal effect can trigger DOX release. What's more, in vitro and in vivo antiosteosarcoma therapy evaluations displayed a superior synergetic PTT-chemotherapy anticancer treatment and excellent biocompatibility of DOX&ICG-MSFM. Finally, the MSFM was proven to greatly promote cell proliferation, differentiation, and bone regeneration performance in vitro and in vivo. Therefore, MSFM provides a creative perspective in the design of multifunctional scaffolds and shows promising applications in controlled drug delivery, antitumor performance, and osteogenesis.
Collapse
Affiliation(s)
- Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P. R. China
- The First Clinical Medical School, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
4
|
Wang B, Zhao Y, Li Y, Tang C, He P, Liu X, Yao J, Chu C, Xu B. NIR-responsive injectable magnesium phosphate bone cement loaded with icariin promotes osteogenesis. J Mech Behav Biomed Mater 2024; 150:106256. [PMID: 38048713 DOI: 10.1016/j.jmbbm.2023.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
There were defects like limited osteogenesis and fast drug release in traditional magnesium phosphate bone cement (MPC). In this study, we loaded icariin in a mesoporous nano silica container modified by polydopamine and then added it and citric acid into MPC (IHP-CA MPCs). The results indicate that IHP-CA MPCs have a long curing time, almost neutral pH value, excellent injectability, and compressive strength. In vitro experiments have shown that IHP-CA MPCs have good biocompatibility and bone promoting ability. These improvements provide feasible solutions and references for the clinical application of MPCs as implants.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chengliang Tang
- Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Peng He
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaowei Liu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| | - Bin Xu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
5
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
6
|
Bravo M, Simón J, González-Recio I, Martinez-Cruz LA, Goikoetxea-Usandizaga N, Martínez-Chantar ML. Magnesium and Liver Metabolism Through the Lifespan. Adv Nutr 2023; 14:739-751. [PMID: 37207838 PMCID: PMC10334155 DOI: 10.1016/j.advnut.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Within the organism, the liver is the main organ responsible for metabolic homeostasis and xenobiotic transformation. To maintain an adequate liver weight-to-bodyweight ratio, this organ has an extraordinary regenerative capacity and is able to respond to an acute insult or partial hepatectomy. Maintenance of hepatic homeostasis is crucial for the proper functioning of the liver, and in this context, adequate nutrition with macro- and micronutrient intake is mandatory. Among all known macro-minerals, magnesium has a key role in energy metabolism and in metabolic and signaling pathways that maintain liver function and physiology throughout its life span. In the present review, the cation is reported as a potential key molecule during embryogenesis, liver regeneration, and aging. The exact role of the cation during liver formation and regeneration is not fully understood due to its unclear role in the activation and inhibition of those processes, and further research in a developmental context is needed. As individuals age, they may develop hypomagnesemia, a condition that aggravates the characteristic alterations. Additionally, risk of developing liver pathologies increases with age, and hypomagnesemia may be a contributing factor. Therefore, magnesium loss must be prevented by adequate intake of magnesium-rich foods such as seeds, nuts, spinach, or rice to prevent age-related hepatic alterations and contribute to the maintenance of hepatic homeostasis. Since magnesium-rich sources include a variety of foods, a varied and balanced diet can meet both macronutrient and micronutrient needs.
Collapse
Affiliation(s)
- Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Luis Alfonso Martinez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| |
Collapse
|
7
|
Xu J, Fahmy-Garcia S, Wesdorp MA, Kops N, Forte L, De Luca C, Misciagna MM, Dolcini L, Filardo G, Labberté M, Vancíková K, Kok J, van Rietbergen B, Nickel J, Farrell E, Brama PAJ, van Osch GJVM. Effectiveness of BMP-2 and PDGF-BB Adsorption onto a Collagen/Collagen-Magnesium-Hydroxyapatite Scaffold in Weight-Bearing and Non-Weight-Bearing Osteochondral Defect Bone Repair: In Vitro, Ex Vivo and In Vivo Evaluation. J Funct Biomater 2023; 14:jfb14020111. [PMID: 36826910 PMCID: PMC9961206 DOI: 10.3390/jfb14020111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.
Collapse
Affiliation(s)
- Jietao Xu
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Shorouk Fahmy-Garcia
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marinus A. Wesdorp
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lucia Forte
- Fin-Ceramica Faenza S.p.A, 48018 Faenza, Italy
| | | | | | | | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Margot Labberté
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Karin Vancíková
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Joachim Nickel
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pieter A. J. Brama
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Gerjo J. V. M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
- Correspondence: ; Tel.: +31-107043661
| |
Collapse
|
8
|
Wang Q, Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Macrophage-derived oncostatin M/bone morphogenetic protein 6 in response to Mg-based materials influences pro-osteogenic activity of human umbilical cord perivascular cells. Acta Biomater 2021; 133:268-279. [PMID: 33321219 DOI: 10.1016/j.actbio.2020.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
Macrophages are the central immune cell involved in the foreign body reaction to the implants. Furthermore, the magnesium-based materials could modulate macrophage functions, and subsequently influence bone formation via not clearly understood mechanisms. To analysis the roles of materials (magnesium and its gadolinium-based alloy; Mg and Mg-10Gd) on secretion of macrophages and their effects on pro-osteogenic activity, human mesenchymal stem cells (MSC) and macrophages were cocultured directly on the materials surface. Here, oncostatin M (OSM) - glycoprotein 130 (gp130) signaling complex as well as BMP6/SMAD were found to be involved in the Mg and Mg-10Gd multifactorial modulating osteogenic differentiation. Furthermore, materials upregulated the gene expression of bone morphogenetic protein 6 (BMP6) in macrophages, as well as its protein receptors and mothers against decapentaplegic homolog (SMAD) 1/4/5 in cocultured MSC. Besides, both materials could reduce the secretion of tumour necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) in macrophages and cocultures. These results collectively imply that Mg and Mg-10Gd could create a beneficial microenvironment for osteogenic differentiation and further support Mg-based biomaterial immunomodulatory properties by modulating the interactions of macrophages and MSC for bone regeneration. STATEMENT OF SIGNIFICANCE: Mg-activated macrophages could regulate the pro-osteogenic activity via OSM/gp130 and Smad-related signalling. The neutralisation assay was utilised to confirm the hypothesis of inductive osteoblastic differentiation of human MSC via OSM/gp130 signalling. Current study are essential to evidence that the coordinated communication between macrophages and MSC (OSM/gp130/BMP6/TNFα/IL1β), which could be utilised for improving magnesium-based bone biomaterials and therapeutic applications.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | | |
Collapse
|
9
|
Xiong A, He Y, Gao L, Li G, Liu S, Weng J, Wang D, Zeng H. The fabrication of a highly efficient hydrogel based on a functionalized double network loaded with magnesium ion and BMP2 for bone defect synergistic treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112347. [PMID: 34474897 DOI: 10.1016/j.msec.2021.112347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Although the use of bioactive ions and proteins are crucial for bone defect repair, delivering them in a stable and controlled manner remains challenging. To achieve controlled delivery of osteogenic active factor, we developed a novel double network (DN) hydrogel capable of co-delivering Mg2+ ions and BMP2 in a controlled localized manner. This DN hydrogel was composed of poly (acrylamide) and chitosan, in which the poly (acrylamide) was cross-linked via covalent bond and the chitosan was grafted using bisphosphonate (BP) to form metal coordination bonds with Mg2+ ions. Due to this dynamic dissociation and re-association of the "BP-Mg2+" coordination bond, it was possible to deliver Mg2+ ions in a stable and controlled manner. Additionally, the obtained DN hydrogel exhibited an effective tensile strength (0.62 MPa), perfect stretchability (973% fracture strain), and good creep and recovery properties due to the dynamic cross-linking effect of "BP-Mg2+". Additionally, the hydrogel could synergistically promote the proliferation and differentiation of mouse embryo osteoblast precursor cells (MC3T3-E1 cells) in vitro via the BMP2/Wnt pathway. In the skull defect rat model, this positive delivery government of Mg2+ ions and BMP2 synergistically accelerated bone regeneration. In conclusion, this dynamic cross-linked hydrogel containing Mg2+ ions established a new platform for the sustained release of osteogenesis factor and accelerated the bone regeneration process.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PR China
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg D-66421, Germany
| | - Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, PR China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China.
| |
Collapse
|
10
|
Shim NY, Heo JS. Performance of the Polydopamine-Graphene Oxide Composite Substrate in the Osteogenic Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms22147323. [PMID: 34298943 PMCID: PMC8303500 DOI: 10.3390/ijms22147323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.
Collapse
|
11
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
12
|
Gradual Replacement of Ca2+ with Mg2+ Ions in Brushite for the Production of Ca1−xMgxHPO4·nH2O Materials. MINERALS 2021. [DOI: 10.3390/min11030284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present study investigates the gradual replacement of Ca2+ with Mg2+ ions in brushite (CaHPO4·2H2O). To date, this approach has not been systematically explored and may prove beneficial for the production of Ca1−xMgxHPO4·nH2O materials with tailored properties which are suitable for environmental and medical applications. For their production, solutions of sodium dihydrogen orthophosphate dehydrate, NaH2PO4·2H2O, calcium nitrate tetrahydrate, Ca(NO3)2·4H2O, magnesium nitrate hexahydrate, Mg(NO3)2·6H2O and ammonium hydroxide solution, NH4OH, were used. At low Mg/Ca molar ratios (up to 0.25) in the starting solution, partial replacement of Ca with Mg takes place (Mg doping) but no struvite is produced as discrete phase. When the Mg/Ca molar ratio increases gradually to 1.5, in addition to Mg-doped brushite, struvite, NH4MgPO4·6H2O, precipitates. The microstructure of the materials produced for different degrees of Ca replacement with Mg has been analyzed in depth with the use of powdered XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), thermogravimetric (TG) analysis and SEM (scanning electron microscopy). The results of this study prove that the Mg/Ca ratio in the starting solution can be monitored in such a way that materials with tailored composition are obtained.
Collapse
|
13
|
Porous Zirconia/Magnesia Ceramics Support Osteogenic Potential In Vitro. MATERIALS 2021; 14:ma14041049. [PMID: 33672374 PMCID: PMC7926502 DOI: 10.3390/ma14041049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Porous zirconia (ZrO2), magnesia (MgO) and zirconia/magnesia (ZrO2/MgO) ceramics were synthesised by sintering and designated as ZrO2(100), ZrO2(75)MgO(25), ZrO2(50)MgO(50), ZrO2(25)MgO(75), MgO(100) based on their composition. The ceramic samples were characterised by means of scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic absorption spectrometry to explore the incorporation of Mg atoms into the zirconia lattice. The resulting porosity of the samples was calculated based on the composition and density. The final porosity of the cylinder-shaped ceramic samples ranged between 30 and 37%. The mechanical analysis exhibited that the Young modulus increased and the microstress decreased with increasing magnesia amount, with values ranging from 175 GPa for zirconia to 301 GPa for magnesia. The adhesion, viability, proliferation and osteogenic activity of MC3T3-E1 pre-osteoblastic cells cultured on the zirconia/magnesia ceramics was found to increase, with the magnesia-containing ceramics exhibiting higher values of calcium mineralisation. The results from the mechanical analysis, the ALP activity, the calcium and collagen production demonstrate that the zirconia/magnesia ceramics possess robust osteoinductive capacity, therefore holding great potential for bone tissue engineering.
Collapse
|
14
|
Lin Z, Shen D, Zhou W, Zheng Y, Kong T, Liu X, Wu S, Chu PK, Zhao Y, Wu J, Cheung KM, Yeung KW. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater 2021; 6:2315-2330. [PMID: 33553818 PMCID: PMC7840811 DOI: 10.1016/j.bioactmat.2021.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
The design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory,” in which the biomaterials are able to modulate the inflammatory response via macrophage polarization in a local immune microenvironment that favors osteogenesis and implant-to-bone osseointegration. Despite the well-known effects of bioactive metallic ions on osteogenesis, how extracellular metallic ions manipulate immune cells in bone tissue microenvironments toward osteogenesis and subsequent bone formation has rarely been studied. Herein, we investigate the osteoimmunomodulatory effect of an extracellular bioactive cation (Mg2+) in the bone tissue microenvironment using custom-made poly lactic-co-glycolic acid (PLGA)/MgO-alendronate microspheres that endow controllable release of magnesium ions. The results suggest that the Mg2+-controlled tissue microenvironment can effectively induce macrophage polarization from the M0 to M2 phenotype via the enhancement of anti-inflammatory (IL-10) and pro-osteogenic (BMP-2 and TGF-β1) cytokines production. It also generates a favorable osteoimmune microenvironment that facilitates the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. The in vivo results further verify that a large amount of bony tissue, with comparable bone mineral density and mechanical properties, has been generated at an early post-surgical stage in rat intramedullary bone defect models. This study demonstrates that the concept of in situ immunomodulated osteogenesis can be realized in a controlled magnesium tissue microenvironment. Controlled release of Mg2+ was achieved by the microfluidic electrosprayed PLGA/MgO-alendronate microspheres. PLGA/MgO-alendronate microspheres with satisfied osteoimmunomodulatory properties accelerated bone regeneration in vivo. Extracellular Mg2+ induced macrophage switch to M2 phenotype with enhanced expressions of IL-10, BMP-2 and TGF-β1. Osteoimmune microenvironment favourably upregulated the osteogenic expressions of BMSCs.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Corresponding author. College of Chemistry and Environmental Engineering, Shenzhen University, China.
| | - Danni Shen
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Weixiao Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ying Zhao
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Chen R, Chen HB, Xue PP, Yang WG, Luo LZ, Tong MQ, Zhong B, Xu HL, Zhao YZ, Yuan JD. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. J Mater Chem B 2021; 9:1107-1122. [PMID: 33427267 DOI: 10.1039/d0tb02553d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone repair and regeneration processes are markedly impaired in diabetes mellitus (DM). Intervening approaches similar to those developed for normal healing conditions have been adopted to combat DM-associated bone regeneration. However, limited outcomes were achieved for these approaches. Hence, together with osteoconductive hydroxyapatite (HA) nanocrystals, osteoinductive magnesium oxide (MgO) nanocrystals were uniformly mounted into the network matrix of an organic hydrogel composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hybrid and rough hydrogel scaffold. It was hypothesized that the HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold can significantly promote bone repair in DM rats via the controlled release of Mg2+. The HA/MgO-H scaffold exhibited a sponge-like morphology with porous 3D networks inside it and displayed higher mechanical strength than a PGA-Cys scaffold. Meanwhile, the HA/MgO-H scaffold gradually formed a tough hydrogel with G' of more than 1000 Pa after hydration, and its high hydration swelling ratio was still retained. Moreover, after the chemical degradation of the dispersed MgO nanocrystals, slow release of Mg2+ from the hydrogel matrix was achieved for up to 8 weeks because of the chelation between Mg2+ and the carboxyl groups of PGA-Cys. In vitro cell studies showed that the HA/MgO-H scaffold could not only effectively promote the migration and proliferation of BMSCs but could also induce osteogenic differentiation. Moreover, in the 8th week after implanting the HA/MgO-H scaffold into femur bone defect zones of DM rats, more effective bone repair was presented by micro-CT imaging. The bone mineral density (397.22 ± 16.36 mg cm-3), trabecular thickness (0.48 ± 0.07 mm), and bone tissue volume/total tissue volume (79.37 ± 7.96%) in the HA/MgO-H group were significantly higher than those in the other groups. Moreover, higher expression of COL-I and OCN after treatment with HA/MgO-H was also displayed. The bone repair mechanism of the HA/MgO-H scaffold was highly associated with reduced infiltration of pro-inflammatory macrophages (CD80+) and higher angiogenesis (CD31+). Collectively, the HA/MgO-H scaffold without the usage of bioactive factors may be a promising biomaterial to accelerate bone defect healing under diabetes mellitus.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Advances in the modification of injectable calcium-phosphate-based bone cements for clinical application. Chin Med J (Engl) 2020; 133:2610-2612. [PMID: 32960840 PMCID: PMC7722559 DOI: 10.1097/cm9.0000000000001092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Choi S, Kim KJ, Cheon S, Kim EM, Kim YA, Park C, Kim KK. Biochemical activity of magnesium ions on human osteoblast migration. Biochem Biophys Res Commun 2020; 531:588-594. [PMID: 32814632 DOI: 10.1016/j.bbrc.2020.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/12/2020] [Indexed: 12/19/2022]
Abstract
Magnesium is well known as a biodegradable biomaterial that has been reported to promote bone remodeling in several studies; however, the underlying biological mechanism remains unclear. In the present study, the role of magnesium ions in the migration of U-2 OS cells, which are osteoblast-like cell lines, was investigated. Magnesium treatment did not significantly alter the global transcriptome of U-2 OS cells, but increased the protein expression level of SNAI2, an epithelial-mesenchymal transition (EMT) marker. In addition, it was confirmed that the junctional site localization of Zona-occludens 1 (ZO-1), a representative tight junction protein, was destroyed by magnesium treatment; furthermore, it was determined that cytoplasmic localization increased, and alkaline phosphatase (ALP) activity increased. The obtained results on the mechanism by which magnesium is involved in osteoblast migration, which is important for fracture healing, will contribute to the understanding of the bone-formation process in patients with osteoporosis and musculoskeletal injury.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ki-Jung Kim
- Department of Smart Car Engineering, Doowon Technical University, Paju, Gyeonggi-do, 10838, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, GwangJu, 61186, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yong-An Kim
- Institute of Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, GwangJu, 61186, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
18
|
Shen J, Chen B, Zhai X, Qiao W, Wu S, Liu X, Zhao Y, Ruan C, Pan H, Chu PK, Cheung KM, Yeung KW. Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. Bioact Mater 2020; 6:503-519. [PMID: 32995676 PMCID: PMC7492774 DOI: 10.1016/j.bioactmat.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022] Open
Abstract
The fate of cells and subsequent bone regeneration is highly correlated with temporospatial coordination of chemical, biological, or physical cues within a local tissue microenvironment. Deeper understanding of how mammalian cells react to local tissue microenvironment is paramount important when designing next generation of biomaterials for tissue engineering. This study aims to investigate that the regulation of magnesium cationic (Mg2+) tissue microenvironment is able to convince early-stage bone regeneration and its mechanism undergoes intramembranous ossification. It was discovered that moderate Mg2+ content niche (~4.11 mM) led to superior bone regeneration, while Mg2+-free and strong Mg2+ content (~16.44 mM) discouraged cell adhesion, proliferation and osteogenic differentiation, thereby bone formation was rarely found. When magnesium ions diffused into free Mg zone from concentrated zone in late time point, new bone formation on free Mg zone became significant through intramembranous ossification. This study successfully demonstrates that magnesium cationic microenvironment serves as an effective biochemical cue and is able to modulate the process of bony tissue regeneration. The knowledge of how a Mg2+ cationic microenvironment intertwines with cells and subsequent bone formation gained from this study may provide a new insight to develop the next generation of tissue-repairing biomaterials. Regulation of Mg2+ concertation in tissue microenvironment can convince early-stage bone regeneration. Samples without and with strong Mg2+ microenvironments (16.44 mM) suppressed the osteogenic differentiation. When Mg2+ diffused into free Mg zone from concentrated zone over time, bone formation over free Mg zone becomes significant. Bone defect repair through intramembranous ossification was promoted by 3D-scaffold-created moderate Mg2+ microenvironment.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinyun Zhai
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Wei Qiao
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, China
| | - Ying Zhao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater 2020; 108:207-222. [PMID: 32251784 DOI: 10.1016/j.actbio.2020.03.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023]
Abstract
Biomaterial-based membranes represent a promising therapeutic option for periodontal diseases. Although conventional periodontal membranes function greatly in preventing the ingrowth of both fibroblasts and epithelial cells as well as connective tissues, they are not capable of promoting periodontal tissue regeneration. Here, we report a multifunctional periodontal membrane prepared by electrospinning biodegradable polymers with magnesium oxide nanoparticles (nMgO). nMgO is a light metal-based nanoparticle with high antibacterial capacity and can be fully resorbed in the body. Our results showed that incorporating nMgO into poly(L-lactic acid) (PLA)/gelatin significantly improved the overall properties of membranes, including elevated tensile strength to maintain structural stability and adjusted degradation rate to fit the time window of periodontal regeneration. Acidic degradation products of PLA were neutralized by alkaline ions from nMgO hydrolysis, ameliorating pH microenvironment beneficial for cell proliferation. In vitro studies demonstrated considerable antibacterial and osteogenic properties of nMgO-incorporated membranes that are highly valuable for periodontal regeneration. Further investigations in a rat periodontal defect model revealed that nMgO-incorporated membranes effectively guided periodontal tissue regeneration. Taken together, our data indicate that nMgO-incorporated membranes might be a promising therapeutic option for periodontal regeneration. STATEMENT OF SIGNIFICANCE: Traditional clinical treatments of periodontal diseases largely focus on the management of the pathologic processes, which cannot effectively regenerate the lost periodontal tissue. GTR, a classic method for periodontal regeneration, has shown promise in clinical practice. However, the current membranes might not fully fulfill the criteria of ideal membranes. Here, we report bioabsorbable nMgO-incorporated nanofibrous membranes prepared by electrospinning to provide an alternative for the clinical practice of GTR. The membranes not only function greatly as physical barriers but also exhibit high antibacterial and osteoinductive properties. We therefore believe that this study will inspire more practice work on the development of effective GTR membranes for periodontal regeneration.
Collapse
Affiliation(s)
- Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Hongsheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PR China
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
20
|
Qiu Y, Xu X, Guo W, Zhao Y, Su J, Chen J. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2323-2335. [PMID: 33455303 DOI: 10.1021/acsbiomaterials.9b01954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient delivery of bone morphogenetic protein-2 (BMP-2) with desirable bioactivity is still a great challenge in the field of bone regeneration. In this study, a silk fibroin/chitosan scaffold incorporated with BMP-2-loaded mesoporous hydroxyapatite nanoparticles (mHANPs) was prepared (SCH-L). BMP-2 was preloaded onto mHANPs with a high surface area before mixing with a silk fibroin/chitosan composite. Bare (without BMP-2) silk fibroin/chitosan/mHANP (SCH) scaffolds and SCH scaffolds with directly absorbed BMP-2 (SCH-D) were investigated in parallel for comparison. In vitro release kinetics indicated that BMP-2 released from the SCH-L scaffold showed a significantly lower initial burst release, followed by a more sustained release over time than the SCH-D scaffold. In vitro cell viability, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and the in vivo osteogenic effect of scaffolds in a rat calvarial defect were evaluated. The results showed that compared with bare SCH and SCH-D scaffolds, the SCH-L scaffold significantly promoted the osteogenic differentiation of BMSCs in vitro and induced more pronounced bone formation in vivo. Further studies demonstrated that the mHANP-mediated satisfactory conformational change and sustained release benefited the protection of the released BMP-2 bioactivity, as confirmed by alkaline phosphatase (ALP) activity and a mineralization deposition assay. More importantly, the interaction of BMP-2/mHANPs enhanced the binding ability of BMP-2 to cellular receptors, thereby maintaining its biological activity in osteogenic differentiation and osteoinductivity well, which contributed to the markedly promoted in vitro and in vivo osteogenic efficacy of the SCH-L scaffold. Taken together, these results provide strong evidence that mHANPs represent an attractive carrier for binding BMP-2 to scaffolds. The SCH-L scaffold shows promising potential for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Xiaodong Xu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Weizhong Guo
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Yong Zhao
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, China
| | - Jiehua Su
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| |
Collapse
|
21
|
Hidaka Y, Chiba-Ohkuma R, Karakida T, Onuma K, Yamamoto R, Fujii-Abe K, Saito MM, Yamakoshi Y, Kawahara H. Combined Effect of Midazolam and Bone Morphogenetic Protein-2 for Differentiation Induction from C2C12 Myoblast Cells to Osteoblasts. Pharmaceutics 2020; 12:pharmaceutics12030218. [PMID: 32131534 PMCID: PMC7150865 DOI: 10.3390/pharmaceutics12030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/01/2022] Open
Abstract
In drug repositioning research, a new concept in drug discovery and new therapeutic opportunities have been identified for existing drugs. Midazolam (MDZ) is an anesthetic inducer used for general anesthesia. Here, we demonstrate the combined effects of bone morphogenetic protein-2 (BMP-2) and MDZ on osteogenic differentiation. An immortalized mouse myoblast cell line (C2C12 cell) was cultured in the combination of BMP-2 and MDZ (BMP-2+MDZ). The differentiation and signal transduction of C2C12 cells into osteoblasts were investigated at biological, immunohistochemical, and genetic cell levels. Mineralized nodules formed in C2C12 cells were characterized at the crystal engineering level. BMP-2+MDZ treatment decreased the myotube cell formation of C2C12 cells, and enhanced alkaline phosphatase activity and expression levels of osteoblastic differentiation marker genes. The precipitated nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. BMP-2+MDZ treatment reduced the immunostaining for both α1 and γ2 subunits antigens on the gamma-aminobutyric acid type A (GABAA) receptor in C2C12 cells, but enhanced that for BMP signal transducers. Our investigation showed that BMP-2+MDZ has a strong ability to induce the differentiation of C2C12 cells into osteoblasts and has the potential for drug repositioning in bone regeneration.
Collapse
Affiliation(s)
- Yukihiko Hidaka
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Kazuo Onuma
- National Institute of Advanced Industrial Science & Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Keiko Fujii-Abe
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Mari M. Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
- Correspondence: ; Tel.: +81-45-580-8479; Fax: +81-45-573-9599
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| |
Collapse
|
22
|
A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 2019; 219:119372. [DOI: 10.1016/j.biomaterials.2019.119372] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
|
23
|
Feng T, Niu J, Pi B, Lu Y, Wang J, Zhang W, Li B, Yang H, Zhu X. Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro. J Mech Behav Biomed Mater 2019; 101:103451. [PMID: 31585350 DOI: 10.1016/j.jmbbm.2019.103451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revealed that SF-NAC/α-TCP could significantly increase the activity of exocrine ALP and up-regulated expression of bone-related genes. However, NAC up-regulated gene expression could be significantly suppressed by DKK1. We propose that NAC functioning as osteogenic factor by activating the Wnt/β-catenin signaling pathway may be the possible mechanism of up-regulation of osteogenic genes. Bone regeneration in vivo shown in a rat femur defect was enhanced by the addition of NAC in SF/α-TCP. In addition, the combination intensity of cement-bone interface was improved. The combination SF-NAC/α-TCP might be developed into a promising tool for bone tissue repair in the clinic.
Collapse
Affiliation(s)
- Tao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Junjie Niu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yingjie Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinning Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wen Zhang
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Bin Li
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
24
|
Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019; 85:294-309. [PMID: 30553873 DOI: 10.1016/j.actbio.2018.12.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20 wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9 ± 5.6% and 325.7 ± 20.2 mg/cm3, respectively, which were much higher than the values 8.1 ± 2.5% (BV/TV) and 124 ± 35.8 mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Collapse
Affiliation(s)
- Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Fuyu Chen
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
25
|
Lin Z, Wu J, Qiao W, Zhao Y, Wong KH, Chu PK, Bian L, Wu S, Zheng Y, Cheung KM, Leung F, Yeung KW. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018; 174:1-16. [DOI: 10.1016/j.biomaterials.2018.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
|
26
|
Koju N, Sikder P, Gaihre B, B Bhaduri S. Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1258. [PMID: 30037147 PMCID: PMC6073613 DOI: 10.3390/ma11071258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022]
Abstract
The present study is the first of its kind dealing with the development of a specific bioceramic which qualifies as a potential material in hard-tissue replacements. Specifically, we report the synthesis and evaluation of smart injectable calcium phosphate bone cement (CPC) which we believe will be suitable for various kinds of orthopedic and spinal-fusion applications. The smart nature of this next generation orthopedic implant is attained by incorporating piezoelectric barium titanate (BT) particles into monetite-based (dicalcium phosphate anhydrous, DCPA) CPC composition. The main goal is to take advantage of the piezoelectric properties of BT, as electromechanical effect plays a vital role in fracture healing at the defect site and bone integration with the implant. Furthermore, radiopacity of BT would help in easy detection of the CPC presence at the fracture site during surgery. Results reveal that BT addition favors important properties of bone cement such as good compressive strength, injectability, bioactivity, biocompatibility, and even washout resistance. Most importantly, the self-setting nature of the bone cements are not compromised with BT incorporation. The in vitro results confirm that the developed bone-cement abides by the standard orthopedic requirements making it apt for real-time prosthetic materials.
Collapse
Affiliation(s)
- Naresh Koju
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| | - Prabaha Sikder
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| | - Bipin Gaihre
- Department of Bioengineering, the University of Toledo, Toledo, OH 43606, USA.
| | - Sarit B Bhaduri
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
27
|
Zu H, Yi X, Zhao D. Transcriptome sequencing analysis reveals the effect of combinative treatment with low‑intensity pulsed ultrasound and magnesium ions on hFOB1.19 human osteoblast cells. Mol Med Rep 2018; 18:749-762. [PMID: 29767241 PMCID: PMC6059703 DOI: 10.3892/mmr.2018.9006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/29/2018] [Indexed: 11/13/2022] Open
Abstract
Biodegradable magnesium (Mg) materials are considered ideal as osteosynthesis implants. However, clinical application has proven complex. This is primarily associated with the issue of reducing the extent of implant degradation to a range acceptable for the human body, while simultaneously enhancing osteogenesis or osteoinduction. In the present study, a combination of Mg ions and low-intensity pulsed ultrasound (LIPUS) treatment was applied in hFOB 1.19 human osteoblast cells as a potential strategy to resolve this issue. A total of 7,314 differentially expressed genes (DEGs) and 826 shared DEGs in hFOB1.19 osteoblast cells were identified by microarray analysis following treatment with Mg and/or LIPUS. Gene Ontology analysis demonstrated that among cells treated with a combination of Mg and LIPUS, DEGs were significantly enriched in various functional annotations, including ‘wound healing’, ‘transforming growth factor beta receptor signaling pathway’, ‘transcription, DNA-templated’, ‘receptor complex’, ‘nucleus’, ‘SMAD protein complex’, ‘DNA binding’, ‘metal ion binding’ and ‘GTPase activator activity’. Notably, the transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were preferentially overrepresented in the Mg and LIPUS combination group, which was subsequently confirmed by reverse transcription-quantitative polymerase chain reaction. Furthermore, genes involved in osteoblast mineralization promotion, including bone morphogenetic protein 6, noggin, bone morphogenetic protein receptor (BMPR)1A, BMPR2 and SMAD 5/8, were significantly upregulated following combination treatment compared with the control group. Genes involved in the promotion of migration, including c-Jun N-terminal kinase, doublecortin, paxillin and Jun proto-oncogene AP-1 transcription factor subunit, were also upregulated in the combination treatment group compared with the control group. The DEG data were supported by morphological observations of the osteoblasts using alizarin red S staining and wound healing assays, which indicated that Mg and LIPUS combinative treatment had a synergistic effect on osteoblast mineralization and migration. Additionally, the combined treatment significantly upregulated metal transporter genes associated with Mg entry, including ATPase Na+/K+-transporting subunit α1, cyclin and CBS domain divalent metal cation transport mediator 2, K+ voltage-gated channel subfamily J member 14, transient receptor potential cation channel (TRP) subfamily M member 7 and TRP subfamily V member 2. In summary, the findings of the present study revealed that combined stimulation with Mg and LIPUS may exhibit a synergistic effect on human osteoblast bone formation through the TGF-β, MAPK and TNF signaling pathways, while also facilitating Mg influx. The present study demonstrated the potential of combinative LIPUS and Mg treatment as a novel therapeutic strategy for enhancing the osteoinduction, biocompatibility and biosafety of biodegradable Mg implants.
Collapse
Affiliation(s)
- Haiyue Zu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xueting Yi
- Department of Ultrasound, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
28
|
Kang MS, Lee NH, Singh RK, Mandakhbayar N, Perez RA, Lee JH, Kim HW. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials 2018; 162:183-199. [PMID: 29448144 DOI: 10.1016/j.biomaterials.2018.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
Biomedical cements are considered promising injectable materials for bone repair and regeneration. Calcium phosphate composition sized with tens of micrometers is currently one of the major powder forms. Here we report a unique cement form made from mesoporous bioactive glass nanoparticles (BGn). The nanopowder could harden in reaction with aqueous solution at powder-to-liquid ratios as low as 0.4-0.5 (vs. 2.0-3.0 for conventional calcium phosphate cement CPC). The cementation mechanism investigated from TEM, XRD, FT-IR, XPS, and NMR analyses was demonstrated to be the ionic (Si and Ca) dissolution and then reprecipitation to form Si-Ca-(P) based amorphous nano-islands that could network the particles. The nanopowder-derived nanocement exhibited high surface area (78.7 m2/g); approximately 9 times higher than conventional CPC. The immersion of nanocement in simulated body fluid produced apatite nanocrystallites with ultrafine size of 10 nm (vs. 55 nm in CPC). The ultrafine nanocement adsorbed protein molecules (particularly positive charged proteins) at substantial levels; approximately 160 times higher than CPC. The nanocement released Si and Ca ions continuously over the test period of 2 weeks; the Si release was unique in nanocement whereas the Ca release was in a similar range to that observed in CPC. The release of ions significantly stimulated the responses of cells studied (rMSCs and HUVECs). The viability and osteogenesis of rMSCs were significantly enhanced by the nanocement ionic extracts. Furthermore, the in vitro tubular networking of HUVECs was improved by the nanocement ionic extracts. The in vivo neo-blood vessel formation in CAM model was significantly higher by the nanocement implant when compared with the CPC counterpart, implying the Si ion release might play a significant role in pro-angiogenesis. Furthermore, the early bone forming response of the nanocement, based on the implantation in a rat calvarial bone defect, demonstrated a sign of osteoinductivity along with excellent osteocondution and bone matrix formation. Although more studies remain to confirm the potential of nanocement, some of the intriguing physico-chemical properties and the biological responses reported herein support the promise of the new 'nanopowder-based nanocement' for hard tissue repair and regeneration.
Collapse
Affiliation(s)
- Min Sil Kang
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Regenerative Medicine Research Institute, Universitat Internacional de Catalunya Barcelona 08017, Spain
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
29
|
Abstract
Bone diseases/injuries have been driving an urgent quest for bone substitutes for bone regeneration. Nanoscaled materials with bone-mimicking characteristics may create suitable microenvironments to guide effective bone regeneration. In this review, the natural hierarchical architecture of bone and its regeneration mechanisms are elucidated. Recent progress in the development of nanomaterials which can promote bone regeneration through bone-healing mimicry (e.g., compositional, nanocrystal formation, structural, and growth factor-related mimicking) is summarized. The nanoeffects of nanomaterials on the regulation of bone-related biological functions are highlighted. How to prepare nanomaterials with combinative bone-biomimicry features according to the bone healing process is prospected in order to achieve rapid bone regeneration in situ.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|