1
|
Camacho-Toledano C, Machín-Díaz I, Lebrón-Galán R, González-Mayorga A, Palomares FJ, Serrano MC, Clemente D. Graphene oxide films as a novel tool for the modulation of myeloid-derived suppressor cell activity in the context of multiple sclerosis. NANOSCALE 2024; 16:7515-7531. [PMID: 38498071 DOI: 10.1039/d3nr05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071- Toledo, Spain
| | - Francisco J Palomares
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071-Toledo, Spain
| |
Collapse
|
2
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Uzhviyuk SV, Khramtsov PV, Raev MB, Timganova VP, Bochkova MS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Zamorina SA. Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System. Bull Exp Biol Med 2023:10.1007/s10517-023-05830-1. [PMID: 37338769 DOI: 10.1007/s10517-023-05830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 06/21/2023]
Abstract
The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles, peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral blood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.
Collapse
Affiliation(s)
- S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M B Raev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - O G Khaziakhmatova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | | | - L S Litvinova
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
4
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
5
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
6
|
Salustri A, De Maio F, Palmieri V, Santarelli G, Palucci I, Mercedes Bianco D, Marchionni F, Bellesi S, Ciasca G, Perini G, Sanguinetti M, Sali M, Papi M, De Spirito M, Delogu G. Evaluation of the Toxic Activity of the Graphene Oxide in the Ex Vivo Model of Human PBMC Infection with Mycobacterium tuberculosis. Microorganisms 2023; 11:microorganisms11030554. [PMID: 36985128 PMCID: PMC10059016 DOI: 10.3390/microorganisms11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.
Collapse
Affiliation(s)
- Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Delia Mercedes Bianco
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (M.P.); (M.D.S.)
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (M.P.); (M.D.S.)
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
| |
Collapse
|
7
|
Charles Kunene S, Lin KS, Weng MT, Janina Carrera Espinoza M, Lin YS, Lin YT. Design of biomimetic targeting nanoclusters for enhanced doxorubicin delivery to liver cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Dabrowski B, Zuchowska A, Brzozka Z. Graphene oxide internalization into mammalian cells – a review. Colloids Surf B Biointerfaces 2022; 221:112998. [DOI: 10.1016/j.colsurfb.2022.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
|
9
|
Fan M, Zhao F, Peng S, Dai Q, Liu Y, Yin S, Zhang Z. Biocompatibility of Zinc Matrix Biodegradable Composites Reinforced by Graphene Nanosheets. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186481. [PMID: 36143793 PMCID: PMC9502503 DOI: 10.3390/ma15186481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
As a new type of biodegradable implant material, zinc matrix composites have excellent potential in the application of biodegradable implants because of their better corrosion resistance than magnesium matrix materials. Our previous studies have shown that graphene nanosheet reinforced zinc matrix composites (Zn-GNS) prepared by spark plasma sintering (SPS) have good mechanical properties and suitable degradation rate. However, the biocompatibility of zinc matrix composites is still a problem of concern. The cytocompatibility and blood compatibility of pure zinc and Zn-GNS composites in vitro were studied. The results showed that Zn-GNS composites had acceptable toxicity to MG-63 human osteosarcoma cells. In addition, the hemolysis rate of pure zinc and its composites were less than 3%, which has no adverse effect on adhered platelets, and has good antithrombotic and antiadhesion platelets properties. In conclusion, the addition of GNS did not adversely affect the biocompatibility of Zn-GNS composites, which indicated that Zn-GNS composites are a promising candidate for bone implantation.
Collapse
Affiliation(s)
- Mei Fan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Fei Zhao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
- Correspondence: (F.Z.); (Z.Z.)
| | - Shanshan Peng
- Hospital of Guizhou University, Guiyang 550025, China
| | - Qianfei Dai
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Yuan Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Sheng Yin
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Key Laboratory for Materials Structure and Strength of Guizhou Province, Guiyang 550025, China
| | - Zongkui Zhang
- Hospital of Guizhou University, Guiyang 550025, China
- Correspondence: (F.Z.); (Z.Z.)
| |
Collapse
|
10
|
The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study. NANOMATERIALS 2022; 12:nano12121978. [PMID: 35745317 PMCID: PMC9229803 DOI: 10.3390/nano12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Graphene-based nanomaterials received attention from scientists due to their unique properties: they are highly conductive, mechanically resistant and elastic. These materials can be used in different sectors of society from electronic energy storage in industry to biomedical applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was evaluated in an animal model using histopathological examination. We analyzed two types of GP administration: intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of GPs in vitro; the concentration above 50 μg/mL increased the cytotoxicity significantly. The real-time analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time period resulted in a decrease in cell index which indicated lower cell viability. Histopathological examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after intratracheal exposure. Peroral administration did not reveal any morphological changes. This study showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and in vivo models.
Collapse
|
11
|
Structure-Activity Relationship of Graphene-Based Materials: Impact of the Surface Chemistry, Surface Specific Area and Lateral Size on Their In Vitro Toxicity. NANOMATERIALS 2021; 11:nano11112963. [PMID: 34835726 PMCID: PMC8619174 DOI: 10.3390/nano11112963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Predictive toxicity and structure–activity relationships (SARs) are raising interest since the number of nanomaterials has become unmanageable to assess their toxicity with a classical case-by-case approach. Graphene-based materials (GBMs) are among the most promising nanomaterials of this decade and their application might lead to several innovations. However, their toxicity impact needs to be thoroughly assessed. In this regard, we conducted a study on 22 GBMs to investigate their potential SARs by performing a complete physicochemical characterization and in vitro toxicity assessment (on RAW264.7 cells). We used GBMs of variable lateral size (0.5–38 µm), specific surface area (SSA, 30–880 m²/g), and surface oxidation (2–17%). We observed that reduced graphene oxides (RGOs) were more reactive than graphene nanoplatelets (GNPs), potentially highlighting the role of GBM’s surface chemistry and surface defects density in their biological impact. We also observed that for GNPs, a smaller lateral size caused higher cytotoxicity. Lastly, GBMs showing a SSA higher than 200 m²/g were found to induce a higher ROS production. Mechanistic explanations are proposed in the discussion. In conclusion, pairing a full physicochemical characterization with a standardized toxicity assessment of a large set of samples allowed us to clarify SARs and provide an additional step toward safe-by-design GBMs.
Collapse
|
12
|
Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. NANOMATERIALS 2021; 11:nano11102510. [PMID: 34684950 PMCID: PMC8537728 DOI: 10.3390/nano11102510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023]
Abstract
The evaluation of carbon-based nanomaterials' (C-BNMs') interactions with the immune system, notably their ability to cause inflammation, is a critical step in C-BNM health risk assessment. Particular attention should be given to those C-BNMs that do not cause direct cytotoxicity or inflammation on their own. However, the intracellular presence of these non-biodegradable nanomaterials could dysregulate additional cell functions. This is even more crucial in the case of phagocytes, which are the main mediators of defensive inflammation towards pathogens. Hence, our study was focused on multi-walled carbon nanotubes (MWCNTs) and two different types of graphene platelets (GPs) and whether their intracellular presence modulates a proinflammatory response from human primary monocytes towards common pathogens. Firstly, we confirmed that all tested C-BNMs caused neither direct cytotoxicity nor the release of tumour necrosis factor α (TNF-α), interleukin (IL)-6 or IL-10. However, such pre-exposed monocytes showed increased responsiveness to additional bacterial stimuli. In response to several types of bacteria, monocytes pre-treated with GP1 produced a significantly higher quantity of TNF-α, IL-6 and IL-10. Monocytes pre-treated with MWCNTs produced increased levels of IL-10. All the tested C-BNMs enhanced monocyte phagocytosis and accelerated their differentiation towards macrophages. This study confirms the immunomodulatory potential of C-BNMs.
Collapse
|
13
|
Song B, Zhao H, Yang H, Wang S. Efficacy of graphene oxide-loaded cationic antimicrobial peptide AWRK6 on the neutralization of endotoxin activity and in the treatment of sepsis. Aging (Albany NY) 2021; 13:19867-19877. [PMID: 34388113 PMCID: PMC8386569 DOI: 10.18632/aging.203397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Objective: This study is to assess the therapeutic effect of graphene oxide (GO) loaded with AWRK6 on endotoxin-induced sepsis. Method: AWRK6/GO was prepared by GO loaded AWRK6, with the structure characterization of AWRK6/GO conducted by atomic force microscope (AFM) and ultraviolet spectrophotometer, the sustained release rate of AWRK6/GO detected by high performance liquid chromatography (HPLC), and the neutralization ability of AWRK6/GO to lipopolysaccharide (LPS) tested by in vitro experiments. The levels of IL-8 and TNF-α in mouse cells after drug intervention were detected by ELISA; a LPS mouse model was established to observe the effects of drug intervention on the survival cycle and survival rate of mice. Results: The sustained drug release rate of AWRK6/GO reached 85% within 24 hours observed under in vitro conditions, with an efficient neutralization effect to LPS (P < 0.01); Compared with the control group, the intervention of LPS succeeded in remarkably elevating the levels of IL-8 and TNF-α in the whole blood and macrophages of the mice (P < 0.01), whose survival cycle and survival rate consequently observed an obvious decline (P < 0.01); The intervention with AWRK6 or AWRK6/GO predominantly brought down the levels of IL-8 and TNF-α in the whole blood and macrophages of mice given LPS (P < 0.01), resulting in an elevation of the survival rate and survival time (P < 0.01). Conclusion: GO loaded with cationic antimicrobial peptide AWRK6 exerts a rosy neutralization effect on endotoxin activity, with no obvious side effects on mice observed, which is of certain application value in the treatment of sepsis.
Collapse
Affiliation(s)
- Bo Song
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hongli Zhao
- Department of Senile Diseases, Dongying City Shengli Hospital, Dongying, Shandong Province, China
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Shengji Wang
- Department of Emergency, Linyi People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
14
|
Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch Immunol Ther Exp (Warsz) 2021; 69:20. [PMID: 34327598 DOI: 10.1007/s00005-021-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Sole nanomaterials or nanomaterials bound to specific biomolecules have been proposed to regulate the immune system. These materials have now emerged as new tools for eliciting immune-based therapies to treat various cancers. Graphene, graphene oxide (GO) and reduced GO (rGO) are the latest nanomaterials among other carbon nanotubes that have attracted wide interest among medical industry players due to their extraordinary properties, inert-state, non-toxic and stable dispersion in a various solvent. Currently, GO and rGO are utilized in various biomedical application including cancer immunotherapy. This review will highlight studies that have been carried out in elucidating the stimulation of GO and rGO on selected innate and adaptive immune cells and their effect on cancer progression to shed some insights for researchers in the development of various GO- and rGO-based immune therapies against various cancers.
Collapse
|
15
|
Iron Hydroxide/Oxide-Reduced Graphene Oxide Nanocomposite for Dual-Modality Photodynamic and Photothermal Therapy In Vitro and In Vivo. NANOMATERIALS 2021; 11:nano11081947. [PMID: 34443776 PMCID: PMC8402170 DOI: 10.3390/nano11081947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Minimal invasive phototherapy utilising near-infrared (NIR) laser to generate local reactive oxygen species (ROS) and heat has few associated side effects and is a precise treatment in cancer therapy. However, high-efficiency and safe phototherapeutic tumour agents still need developing. The application of iron hydroxide/oxide immobilised on reduced graphene oxide (FeOxH–rGO) nanocomposites as a therapeutic agent in integration photodynamic cancer therapy (PDT) and photothermal cancer therapy (PTT) was discussed. Under 808 nm NIR irradiation, FeOxH–rGO offers a high ROS generation and light-to-heat conversion efficiency because of its strong NIR absorption. These phototherapeutic effects lead to irreversible damage in FeOxH–rGO-treated T47D cells. Using a tumour-bearing mouse model, NIR ablated the breast tumour effectively in the presence of FeOxH–rGO. The tumour treatment response was evaluated to be 100%. We integrated PDT and PTT into a single nanodevice to facilitate effective cancer therapy. Our FeOxH–rGO, which integrates the merits of FeOxH and rGO, displays an outstanding tumoricidal capacity, suggesting the utilization of this nanocomposites in future medical applications.
Collapse
|
16
|
Martínez-Álvarez I, Le Menach K, Devier MH, Barbarin I, Tomovska R, Cajaraville MP, Budzinski H, Orbea A. Uptake and effects of graphene oxide nanomaterials alone and in combination with polycyclic aromatic hydrocarbons in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145669. [PMID: 33618313 DOI: 10.1016/j.scitotenv.2021.145669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Because of its surface characteristics, once in the aquatic environment, graphene could act as a carrier of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), to aquatic organisms. In this study we aimed to (1) assess the capacity of graphene oxide (GO) to sorb PAHs and (2) to evaluate the toxicity of GO alone and in combination with PAHs on zebrafish embryos and adults. GO showed a high sorption capacity for benzo(a)pyrene (B(a)P) (98% of B(a)P sorbed from a nominal concentration of 100 μg/L) and for other PAHs of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil, depending on their log Kow (95.7% of phenanthrene, 84.4% of fluorene and 51.5% of acenaphthene). In embryos exposed to different GO nanomaterials alone and with PAHs, no significant mortality was recorded for any treatment. Nevertheless, malformation rate increased significantly in embryos exposed to the highest concentrations (5 or 10 mg/L) of GO and reduced GO (rGO) alone and with sorbed B(a)P (GO-B(a)P). On the other hand, adults were exposed for 21 days to 2 mg/L of GO, GO-B(a)P and GO co-exposed with WAF (GO + WAF) and to 100 μg/L B(a)P. Fish exposed to GO presented GO in the intestine lumen and liver vacuolisation. Transcription level of genes related to cell cycle regulation and oxidative stress was not altered, but the slight up-regulation of cyp1a measured in fish exposed to B(a)P for 3 days resulted in a significantly increased EROD activity. Fish exposed to GO-B(a)P and to B(a)P for 3 days and to GO + WAF for 21 days showed significantly higher catalase activity in the gills than control fish. Significantly lower acetylcholinesterase activity, indicating neurotoxic effects, was also observed in all fish treated for 21 days. Results demonstrated the capacity of GO to carry PAHs and to exert sublethal effects in zebrafish.
Collapse
Affiliation(s)
- Ignacio Martínez-Álvarez
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France; CBET research group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Karyn Le Menach
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Marie-Hélène Devier
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Iranzu Barbarin
- POLYMAT and University of the Basque Country UPV/EHU, Joxe Mari Korta Center - Avda. Tolosa, 72, 20018 San Sebastian, Spain
| | - Radmila Tomovska
- POLYMAT and University of the Basque Country UPV/EHU, Joxe Mari Korta Center - Avda. Tolosa, 72, 20018 San Sebastian, Spain; IKERBASQUE, Basque Foundation of Science, Plaza Euskadi, 5, Bilbao 48009, Spain
| | - Miren P Cajaraville
- CBET research group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Hélène Budzinski
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Amaia Orbea
- CBET research group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| |
Collapse
|
17
|
Da Silva GH, Franqui LS, Petry R, Maia MT, Fonseca LC, Fazzio A, Alves OL, Martinez DST. Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. Front Immunol 2021; 12:689519. [PMID: 34149731 PMCID: PMC8210669 DOI: 10.3389/fimmu.2021.689519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023] Open
Abstract
Two-dimensional (2D) materials have emerged as an important class of nanomaterials for technological innovation due to their remarkable physicochemical properties, including sheet-like morphology and minimal thickness, high surface area, tuneable chemical composition, and surface functionalization. These materials are being proposed for new applications in energy, health, and the environment; these are all strategic society sectors toward sustainable development. Specifically, 2D materials for nano-imaging have shown exciting opportunities in in vitro and in vivo models, providing novel molecular imaging techniques such as computed tomography, magnetic resonance imaging, fluorescence and luminescence optical imaging and others. Therefore, given the growing interest in 2D materials, it is mandatory to evaluate their impact on the immune system in a broader sense, because it is responsible for detecting and eliminating foreign agents in living organisms. This mini-review presents an overview on the frontier of research involving 2D materials applications, nano-imaging and their immunosafety aspects. Finally, we highlight the importance of nanoinformatics approaches and computational modeling for a deeper understanding of the links between nanomaterial physicochemical properties and biological responses (immunotoxicity/biocompatibility) towards enabling immunosafety-by-design 2D materials.
Collapse
Affiliation(s)
- Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Lidiane S. Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| | - Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Marcella T. Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leandro C. Fonseca
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Brazil
| | - Oswaldo L. Alves
- NanoBioss Laboratory and Solid State Chemistry Laboratory (LQES), Institute of Chemistry, University of Campinas (Unicamp), Campinas, Brazil
| | - Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- School of Technology, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
18
|
Magne TM, de Oliveira Vieira T, Costa B, Alencar LMR, Ricci-Junior E, Hu R, Qu J, Zamora-Ledezma C, Alexis F, Santos-Oliveira R. Factors affecting the biological response of Graphene. Colloids Surf B Biointerfaces 2021; 203:111767. [PMID: 33878553 DOI: 10.1016/j.colsurfb.2021.111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Thamires de Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Bianca Costa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, Laboratory of Nanomedicine, Av. Carlos Chagas Filho, 373, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-170, Brazil
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Group. UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Av Manuel caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000, Brazil.
| |
Collapse
|
19
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
20
|
Zhou K, Yu P, Shi X, Ling T, Zeng W, Chen A, Yang W, Zhou Z. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS NANO 2019; 13:9595-9606. [PMID: 31381856 DOI: 10.1021/acsnano.9b04723] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA), the traditional bone tissue replacement material was widely used in the clinical treatment of bone defects because of its excellent biocompatibility. However, the processing difficulty and poor osteoinductive ability greatly limit the application of HA. Although many strategies have been reported to improve the machinability and osteointegration ability, the performance including mechanical strength, porosity, cell adhesion, etc. of material still can not meet the requirements. In this work, a soft template method was developed and a porous scaffold with hierarchical pore structure, nano surface morphology, suitable porosity and pore size, and good biomechanical strength was successfully prepared. The hierarchical pore structure is beneficial for cell adhesion, fluid transfer, and cell ingrowth. Moreover, the loaded reduced graphene oxide (rGO) can improve the adhesion and promote the proliferation and spontaneous osteogenic differentiation bone marrow mesenchymal stem cells. The scaffold is then crushed, degraded and wrapped by the newly formed bone and the newly formed bone gradually replaces the scaffold. The degradation rate of the scaffold well matches the rate of the new bone formation. The hierarchical porous HA/rGO composite scaffolds can greatly accelerate the bone ingrowth in the scaffold and bone repair in critical bone defects, thus providing a clinical potential candidate for large segment bone tissue engineering.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Peng Yu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Xiaojun Shi
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxian Ling
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Weinan Zeng
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Anjing Chen
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Zongke Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
21
|
Yang X, Yang Q, Zheng G, Han S, Zhao F, Hu Q, Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2019; 34:415-423. [PMID: 30549182 DOI: 10.1002/tox.22695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has emerged as the worldwide promising candidate for biomedical application, such as for drug delivery, bio-sensing and anti-cancer therapy. This study was focused on the zebrafish and RAW264.7 cell line as in vivo and in vitro models to assess the potential developmental neurotoxicity and immunotoxicity of GO. No obvious acute developmental toxicity was observed upon treatments with 0.01, 0.1, and 1 μg/mL GO for five consecutive days. However, decreased hatching rate, increased malformation rate, heart beat rate and hypoactivity of locomotor behavior were detected when exposed to 10 μg/mL GO. Also, RT-PCR analysis revealed that expressions of genes related to the nervous system were up-regulated. The potential risk of GO for developmental neurotoxicity may be ascribed to the high level of oxidative stress induced by high concentration of GO. Most importantly, the mRNA levels of immune response associated genes, such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNFα), interferon-γ (IFN-γ) were significantly increased under environmental concentration exposure. The activation of pro-inflammatory immune response was also observed in macrophage cell line. Taken together, our results demonstrated that immunotoxicity is a sensitive indicator for assessment of bio-compatibility of GO.
Collapse
Affiliation(s)
- Xiaole Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiaolei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Guiwen Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuhong Han
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
22
|
Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. NANOSCALE HORIZONS 2019; 4:273-290. [PMID: 32254085 DOI: 10.1039/c8nh00318a] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxide is the hot topic in biomedical and pharmaceutical research of the current decade. However, its complex interactions with human blood components complicate the transition from the promising in vitro results to clinical settings. Even though graphene oxide is made with the same atoms as our organs, tissues and cells, its bi-dimensional nature causes unique interactions with blood proteins and biological membranes and can lead to severe effects like thrombogenicity and immune cell activation. In this review, we will describe the journey of graphene oxide after injection into the bloodstream, from the initial interactions with plasma proteins to the formation of the "biomolecular corona", and biodistribution. We will consider the link between the chemical properties of graphene oxide (and its functionalized/reduced derivatives), protein binding and in vivo response. We will also summarize data on biodistribution and toxicity in view of the current knowledge of the influence of the biomolecular corona on these processes. Our aim is to shed light on the unsolved problems regarding the graphene oxide corona to build the groundwork for the future development of drug delivery technology.
Collapse
Affiliation(s)
- V Palmieri
- Fondazione Policlinico A. Gemelli IRCSS-Università Cattolica Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.
| | | | | | | |
Collapse
|
23
|
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int J Mol Sci 2019; 20:E247. [PMID: 30634552 PMCID: PMC6359521 DOI: 10.3390/ijms20020247] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Graphene and its derivatives are emerging as attractive materials for biomedical applications, including antibacterial, gene delivery, contrast imaging, and anticancer therapy applications. It is of fundamental importance to study the cytotoxicity and biocompatibility of these materials as well as how they interact with the immune system. The present study was conducted to assess the immunotoxicity of graphene oxide (GO) and vanillin-functionalized GO (V-rGO) on THP-1 cells, a human acute monocytic leukemia cell line. The synthesized GO and V-rGO were characterized by using various analytical techniques. Various concentrations of GO and V-rGO showed toxic effects on THP-1 cells such as the loss of cell viability and proliferation in a dose-dependent manner. Cytotoxicity was further demonstrated as an increased level of lactate dehydrogenase (LDH), loss of mitochondrial membrane potential (MMP), decreased level of ATP content, and cell death. Increased levels of reactive oxygen species (ROS) and lipid peroxidation caused redox imbalance in THP-1 cells, leading to increased levels of malondialdehyde (MDA) and decreased levels of anti-oxidants such as glutathione (GSH), glutathione peroxidase (GPX), super oxide dismutase (SOD), and catalase (CAT). Increased generation of ROS and reduced MMP with simultaneous increases in the expression of pro-apoptotic genes and downregulation of anti-apoptotic genes suggest that the mitochondria-mediated pathway is involved in GO and V-rGO-induced apoptosis. Apoptosis was induced consistently with the significant DNA damage caused by increased levels of 8-oxo-dG and upregulation of various key DNA-regulating genes in THP-1 cells, indicating that GO and V-rGO induce cell death through oxidative stress. As a result of these events, GO and V-rGO stimulated the secretion of various cytokines and chemokines, indicating that the graphene materials induced potent inflammatory responses to THP-1 cells. The harshness of V-rGO in all assays tested occurred because of better charge transfer, various carbon to oxygen ratios, and chemical compositions in the rGO. Overall, these findings suggest that it is essential to better understand the parameters governing GO and functionalized GO in immunotoxicity and inflammation. Rational design of safe GO-based formulations for various applications, including nanomedicine, may result in the development of risk management methods for people exposed to graphene and graphene family materials, as these nanoparticles can be used as delivery agents in various biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
24
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Plasma induced cytocompatibility of stabilized poly-L-lactic acid doped with graphene nanoplatelets. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Pelin M, Sosa S, Prato M, Tubaro A. Occupational exposure to graphene based nanomaterials: risk assessment. NANOSCALE 2018; 10:15894-15903. [PMID: 30132494 DOI: 10.1039/c8nr04950e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Graphene-based materials (GBMs) are a family of novel materials including graphene, few layer graphene (FLG), graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNP). Currently, the risk posed by them to human health is associated mainly with the occupational exposure during their industrial and small-scale production or waste discharge. The most significant occupational exposure routes are inhalation, oral, cutaneous and ocular, inhalation being the majorly involved and most studied one. This manuscript presents a critical up-to-date review of the available in vivo toxicity data of the most significant GBMs, after using these exposure routes. The few in vivo inhalation toxicity studies (limited to 5-days of repeated exposure and only one to 5 days per week for 4 weeks) indicate inflammatory/fibrotic effects at the pulmonary level, not always reversible after 14/90 days. More limited in vivo data are available for the oral and ocular exposure routes, whereas the studies on cutaneous toxicity are at the initial stage. A long persistence of GBMs in rodents is recorded, while contradictory genotoxic data are reported. Data gap identification is also provided. Based on the available data, the occupational exposure limit cannot be determined. More experimental toxicity studies according to specific guidelines (tentatively validated for nanomaterials) and more information on the actual occupational exposure level to GBMs are needed. Furthermore, ADME (Absorption, Distribution, Metabolism, Excretion), genotoxicity, developmental and reproductive toxicity data related to the occupational exposure to GBMs have to be implemented. In addition, sub-chronic and/or chronic studies are still needed to completely exclude other toxic effects and/or carcinogenicity.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
27
|
Wu Y, Wang F, Wang S, Ma J, Xu M, Gao M, Liu R, Chen W, Liu S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. NANOSCALE 2018; 10:14637-14650. [PMID: 30028471 DOI: 10.1039/c8nr02798f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) and its derivatives (e.g., reduced graphene oxide, RGO) have shown great promise in biomedicine. Although many studies have been conducted to understand the relative cyto-compatibility between GO and RGO materials, the results are inconclusive and controversial. In this study, we compared the biocompatibility aspects (e.g. cytotoxicity, pro-inflammatory effects and impairment of cellular morphology) between parental and reduced GOs towards macrophages using primary bone marrow-derived macrophages (BMDMs) and J774A.1 cell line. Two RGOs (RGO1 and RGO2) with differential reduction levels relative to the parental GO were prepared. Intriguingly, besides loss of oxygen-containing functional groups, significant morphological alteration of GO occurred, from the sheet-like structure to a polygonal curled shape for RGO, without significant aggregation in biological medium. Cytotoxicity assessment unveiled that the RGOs were more toxic than pristine GO to both types of cells. It was surprising to find for the first time (to our knowledge) that GO and RGOs elicited different effects on the morphological changes of BMDMs, as reflected by elongated protrusions from GO treatment and shortened protrusions from the RGOs. Furthermore, RGOs induced greater pro-inflammatory responses than GO, especially in BMDMs. Compromised cyto-compatibility of RGOs was attributable (at least partially) to their greater oxidative stress in macrophages. Mechanistically, these differences in bio-reactivities between GO and RGO should be boiled down to (at least in part) the synergistic effects from the variation of oxygen-containing functional groups and the distinct morphology in between. This study unearthed the crucial contribution of reduction-mediated detrimental cellular effects between GO and RGO towards macrophages.
Collapse
Affiliation(s)
- Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pelin M, Fusco L, Martín C, Sosa S, Frontiñán-Rubio J, González-Domínguez JM, Durán-Prado M, Vázquez E, Prato M, Tubaro A. Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. NANOSCALE 2018; 10:11820-11830. [PMID: 29920573 DOI: 10.1039/c8nr02933d] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The extraordinary physicochemical properties of graphene-based nanomaterials (GBNs) make them promising tools in nanotechnology and biomedicine. Considering the skin contact as one of the most feasible exposure routes to GBNs, the mechanism of toxicity of two GBNs (few-layer-graphene, FLG, and graphene oxide, GO) towards human HaCaT skin keratinocytes was investigated. Both materials induced a significant mitochondrial membrane depolarization: 72 h cell exposure to 100 μg mL-1 FLG or GO increased mitochondrial depolarization by 44% and 56%, respectively, while the positive control valinomycin (0.1 μg mL-1) increased mitochondrial depolarization by 48%. Since the effect was not prevented by cyclosporine-A, it appears to be unrelated to mitochondrial transition pore opening. By contrast, it seems to be mediated by reactive oxygen species (ROS) production: FLG and GO induced time- and concentration-dependent cellular ROS production, significant already at the concentration of 0.4 μg mL-1 after 24 h exposure. Among a panel of specific inhibitors of the major ROS-producing enzymes, diphenyliodonium, rotenone and allopurinol significantly reverted or even abolished FLG- or GO-induced ROS production. Intriguingly, the same inhibitors also significantly reduced FLG- or GO-induced mitochondrial depolarization and cytotoxicity. This study shows that FLG and GO induce a cytotoxic effect due to a sustained mitochondrial depolarization. This seems to be mediated by a significant cellular ROS production, caused by the activation of flavoprotein-based oxidative enzymes, such as NADH dehydrogenase and xanthine oxidase.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Effects of Graphene Oxide Nanoparticles on the Immune System Biomarkers Produced by RAW 264.7 and Human Whole Blood Cell Cultures. NANOMATERIALS 2018; 8:nano8020125. [PMID: 29495255 PMCID: PMC5853756 DOI: 10.3390/nano8020125] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Graphene oxide nanoparticles (GONPs) have attracted a lot of attention due to their many applications. These applications include batteries, super capacitors, drug delivery and biosensing. However, few studies have investigated the effects of these nanoparticles on the immune system. In this study, the in vitro effects of GONPs on the immune system was evaluated by exposing murine macrophages, RAW 264.7 cells and human whole blood cell cultures (to GONPs. The effects of GONPs on RAW cells were monitored under basal conditions. The whole blood cell cultures were exposed to GONPs in the presence or absence of the mitogens lipopolysaccharide (LPS) and phytohaemmagglutinin (PHA). A number of parameters were monitored for both RAW and whole blood cell cultures, these included cytotoxicity, inflammatory biomarkers, cytokines of the acquired immune system and a proteome profile analysis. The GONPs were cytotoxic to both RAW and whole blood cell cultures at 500 μg/mL. In the absence of LPS, GONPs elicited an inflammatory response from the murine macrophage, RAW and whole blood cell cultures at 15.6 and 5 μg/mL respectively. This activation was further corroborated by proteome profile analysis of both experimental cultures. GONPs inhibited LPS induced interleukin 6 (IL-6) synthesis and PHA induced interferon gamma (IFNγ) synthesis by whole blood cell cultures in a dose dependent manner. In the absence of mitogens, GONPs stimulated IL-10 synthesis by whole blood cell cultures. The current study shows that GONPs modulate immune system biomarkers and that these may pose a health risk to individuals exposed to this type of nanoparticle.
Collapse
|
30
|
Coexpression Analysis of Transcriptome on AIDS and Other Human Disease Pathways by Canonical Correlation Analysis. Int J Genomics 2017; 2017:9163719. [PMID: 28695125 PMCID: PMC5488239 DOI: 10.1155/2017/9163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022] Open
Abstract
Acquired immune deficiency syndrome is a severe disease in humans caused by human immunodeficiency virus. Several human genes were characterized as host genetic factors that impact the processes of AIDS disease. Recent studies on AIDS patients revealed a series disease is complicating with AIDS. To resolve gene interaction between AIDS and complicating diseases, a canonical correlation analysis was used to identify the global correlation between AIDS and other disease pathway genes expression. The results showed that HLA-B, HLA-A, MH9, ZNED1, IRF1, TLR8, TSG101, NCOR2, and GML are the key AIDS-restricted genes highly correlated with other disease pathway genes. Furthermore, pathway genes in several diseases such as asthma, autoimmune thyroid disease, and malaria were globally correlated with ARGs. It suggests that these diseases are a high risk in AIDS patients as complicating diseases.
Collapse
|