1
|
Vita A, Barlati S, Cavallaro R, Mucci A, Riva MA, Rocca P, Rossi A, Galderisi S. Definition, assessment and treatment of cognitive impairment associated with schizophrenia: expert opinion and practical recommendations. Front Psychiatry 2024; 15:1451832. [PMID: 39371908 PMCID: PMC11450451 DOI: 10.3389/fpsyt.2024.1451832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
A considerable proportion of patients with schizophrenia perform below population norms on standardized neuropsychological tests, and the performance of those performing within normal range is lower than predicted based on parental education. Cognitive impairment predates the onset of psychosis, is observed during symptom remission and in non-affected first-degree relatives of patients. At the present time, cognitive deficits are regarded as key features of schizophrenia, important determinants of poor psychosocial outcome and targets for both pharmacological and non-pharmacological treatment strategies. A group of eight key opinion leaders reviewed and discussed latest advances in scientific research and current good clinical practices on assessment, management, and treatment of CIAS. In the present paper they summarize the current evidence, identify main gaps between current knowledge and mental health services clinical practice, and provide practical recommendations to reduce the gap.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Stefano Barlati
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Mental Health and Addiction Services, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili of, Brescia, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Armida Mucci
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, L’Aquila, Italy
| | - Silvana Galderisi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
2
|
Wang S, Tang H, Himeno R, Solé-Casals J, Caiafa CF, Han S, Aoki S, Sun Z. Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108419. [PMID: 39293231 DOI: 10.1016/j.cmpb.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND OBJECTIVE The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions. METHODS This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model's predictions are both accurate and comprehensible. RESULTS The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively. CONCLUSION Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
Collapse
Affiliation(s)
- Shurun Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China; School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| | - Hao Tang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Industrial Automation Engineering Technology Research Center of Anhui Province, Hefei, 230009, China
| | - Ryutaro Himeno
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Department of Psychiatry, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Cesar F Caiafa
- Instituto Argentino de Radioastronomía-CONICET CCT La Plata/CIC-PBA/UNLP, V. Elisa, 1894, Argentina
| | - Shuning Han
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN, Wako-Shi, Saitama, 351-0198, Japan
| | - Shigeki Aoki
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Zhe Sun
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| |
Collapse
|
3
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2024:sbae148. [PMID: 39209793 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Alazzawı A, Aljumaili S, Duru AD, Uçan ON, Bayat O, Coelho PJ, Pires IM. Schizophrenia diagnosis based on diverse epoch size resting-state EEG using machine learning. PeerJ Comput Sci 2024; 10:e2170. [PMID: 39314693 PMCID: PMC11419632 DOI: 10.7717/peerj-cs.2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024]
Abstract
Schizophrenia is a severe mental disorder that impairs a person's mental, social, and emotional faculties gradually. Detection in the early stages with an accurate diagnosis is crucial to remedying the patients. This study proposed a new method to classify schizophrenia disease in the rest state based on neurologic signals achieved from the brain by electroencephalography (EEG). The datasets used consisted of 28 subjects, 14 for each group, which are schizophrenia and healthy control. The data was collected from the scalps with 19 EEG channels using a 250 Hz frequency. Due to the brain signal variation, we have decomposed the EEG signals into five sub-bands using a band-pass filter, ensuring the best signal clarity and eliminating artifacts. This work was performed with several scenarios: First, traditional techniques were applied. Secondly, augmented data (additive white Gaussian noise and stretched signals) were utilized. Additionally, we assessed Minimum Redundancy Maximum Relevance (MRMR) as the features reduction method. All these data scenarios are applied with three different window sizes (epochs): 1, 2, and 5 s, utilizing six algorithms to extract features: Fast Fourier Transform (FFT), Approximate Entropy (ApEn), Log Energy entropy (LogEn), Shannon Entropy (ShnEn), and kurtosis. The L2-normalization method was applied to the derived features, positively affecting the results. In terms of classification, we applied four algorithms: K-nearest neighbor (KNN), support vector machine (SVM), quadratic discriminant analysis (QDA), and ensemble classifier (EC). From all the scenarios, our evaluation showed that SVM had remarkable results in all evaluation metrics with LogEn features utilizing a 1-s window size, impacting the diagnosis of Schizophrenia disease. This indicates that an accurate diagnosis of schizophrenia can be achieved through the right features and classification model selection. Finally, we contrasted our results to recently published works using the same and a different dataset, where our method showed a notable improvement.
Collapse
Affiliation(s)
- Athar Alazzawı
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Saif Aljumaili
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Adil Deniz Duru
- Neuroscience and Psychology Research in Sports Lab, Faculty of Sport Science, Marmara University Istanbul, Istanbul, Turkey
| | - Osman Nuri Uçan
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Oğuz Bayat
- Electrical and Computer Engineering, School of Engineering and Natural Sciences, Altinbaş University, Istanbul, Turkey
| | - Paulo Jorge Coelho
- Polytechnic Institute of Leiria, Leiria, Portugal
- Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
| | - Ivan Miguel Pires
- Instituto de Telecomunicações, Escola Superior de Tecnologia e Gestão de Águeda, Universidade de Aveiro, Águeda, Portugal
| |
Collapse
|
5
|
Sun H, Liu N, Qiu C, Tao B, Yang C, Tang B, Li H, Zhan K, Cai C, Zhang W, Lui S. Applications of MRI in Schizophrenia: Current Progress in Establishing Clinical Utility. J Magn Reson Imaging 2024. [PMID: 38946400 DOI: 10.1002/jmri.29470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia is a severe mental illness that significantly impacts the lives of affected individuals and with increasing mortality rates. Early detection and intervention are crucial for improving outcomes but the lack of validated biomarkers poses great challenges in such efforts. The use of magnetic resonance imaging (MRI) in schizophrenia enables the investigation of the disorder's etiological and neuropathological substrates in vivo. After decades of research, promising findings of MRI have been shown to aid in screening high-risk individuals and predicting illness onset, and predicting symptoms and treatment outcomes of schizophrenia. The integration of machine learning and deep learning techniques makes it possible to develop intelligent diagnostic and prognostic tools with extracted or selected imaging features. In this review, we aimed to provide an overview of current progress and prospects in establishing clinical utility of MRI in schizophrenia. We first provided an overview of MRI findings of brain abnormalities that might underpin the symptoms or treatment response process in schizophrenia patients. Then, we summarized the ongoing efforts in the computer-aided utility of MRI in schizophrenia and discussed the gap between MRI research findings and real-world applications. Finally, promising pathways to promote clinical translation were provided. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Kongcai Zhan
- Department of Radiology, Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong, China
| | - Chunxian Cai
- Department of Radiology, the Second People's Hospital of Neijiang, Neijiang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
6
|
Wang G, Jiang N, Ma Y, Chen D, Wu J, Li G, Liang D, Yan T. Connectional-style-guided contextual representation learning for brain disease diagnosis. Neural Netw 2024; 175:106296. [PMID: 38653077 DOI: 10.1016/j.neunet.2024.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Dong Liang
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
7
|
Weng T, Zheng Y, Xie Y, Qin W, Guo L. Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation. Brain Res 2024; 1833:148876. [PMID: 38513996 DOI: 10.1016/j.brainres.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Collapse
Affiliation(s)
- Tingting Weng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yuemei Zheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Shandong 100038, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
8
|
Wang M, Zhao SW, Wu D, Zhang YH, Han YK, Zhao K, Qi T, Liu Y, Cui LB, Wei Y. Transcriptomic and neuroimaging data integration enhances machine learning classification of schizophrenia. PSYCHORADIOLOGY 2024; 4:kkae005. [PMID: 38694267 PMCID: PMC11061866 DOI: 10.1093/psyrad/kkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024]
Abstract
Background Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76-0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.
Collapse
Affiliation(s)
- Mengya Wang
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shu-Wan Zhao
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Schizophrenia Imaging Lab, Xijing 986 Hospital, Fourth Military Medical University, Xi'an, 710054, China
| | - Di Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710075, China
| | - Yan-Kun Han
- Schizophrenia Imaging Lab, Xijing 986 Hospital, Fourth Military Medical University, Xi'an, 710054, China
| | - Kun Zhao
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ting Qi
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, 94143, California
| | - Yong Liu
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Long-Biao Cui
- Schizophrenia Imaging Lab, Xijing 986 Hospital, Fourth Military Medical University, Xi'an, 710054, China
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongbin Wei
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| |
Collapse
|
9
|
Rahul J, Sharma D, Sharma LD, Nanda U, Sarkar AK. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci 2024; 18:1347082. [PMID: 38419961 PMCID: PMC10899326 DOI: 10.3389/fnhum.2024.1347082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
The electroencephalogram (EEG) serves as an essential tool in exploring brain activity and holds particular importance in the field of mental health research. This review paper examines the application of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), for classifying schizophrenia (SCZ) through EEG. It includes a thorough literature review that addresses the difficulties, methodologies, and discoveries in this field. ML approaches utilize conventional models like Support Vector Machines and Decision Trees, which are interpretable and effective with smaller data sets. In contrast, DL techniques, which use neural networks such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), are more adaptable to intricate EEG patterns but require significant data and computational power. Both ML and DL face challenges concerning data quality and ethical issues. This paper underscores the importance of integrating various techniques to enhance schizophrenia diagnosis and highlights AI's potential role in this process. It also acknowledges the necessity for collaborative and ethically informed approaches in the automated classification of SCZ using AI.
Collapse
Affiliation(s)
- Jagdeep Rahul
- Department of Electronics and Communication Engineering, Rajiv Gandhi University, Arunachal Pradesh, India
| | - Diksha Sharma
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| | - Lakhan Dev Sharma
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Umakanta Nanda
- School of Electronics Engineering, VIT-AP University, Amrawati, India
| | - Achintya Kumar Sarkar
- Department of Electronics and Communication, Indian Institute of Information Technology, Sri City, India
| |
Collapse
|
10
|
Koc E, Kalkan H, Bilgen S. Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images. AUTISM RESEARCH AND TREATMENT 2023; 2023:4136087. [PMID: 38152612 PMCID: PMC10752691 DOI: 10.1155/2023/4136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
This study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and identify important brain connectivity features. The 2D f-MRI images were converted into 3D s-MRI images, and datasets were preprocessed using the Montreal Neurological Institute (MNI) atlas. The data were then denoised to remove any confounding factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation, hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). The proposed model classifies subjects as autistic or not according to how functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule (ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the methods used in previous studies.
Collapse
Affiliation(s)
- Emel Koc
- Istanbul Okan University, Istanbul, Türkiye
| | | | | |
Collapse
|
11
|
Shoeibi A, Ghassemi N, Khodatars M, Moridian P, Khosravi A, Zare A, Gorriz JM, Chale-Chale AH, Khadem A, Rajendra Acharya U. Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression. Cogn Neurodyn 2023; 17:1501-1523. [PMID: 37974583 PMCID: PMC10640504 DOI: 10.1007/s11571-022-09897-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.
Collapse
Affiliation(s)
- Afshin Shoeibi
- FPGA Lab, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Navid Ghassemi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Juan M. Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Granada, Spain
| | | | - Ali Khadem
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, 599489 Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
12
|
Jiang H, Chen P, Sun Z, Liang C, Xue R, Zhao L, Wang Q, Li X, Deng W, Gao Z, Huang F, Huang S, Zhang Y, Li T. Assisting schizophrenia diagnosis using clinical electroencephalography and interpretable graph neural networks: a real-world and cross-site study. Neuropsychopharmacology 2023; 48:1920-1930. [PMID: 37491671 PMCID: PMC10584957 DOI: 10.1038/s41386-023-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Schizophrenia (SCZ) is a chronic and serious mental disorder with a high mortality rate. At present, there is a lack of objective, cost-effective and widely disseminated diagnosis tools to address this mental health crisis globally. Clinical electroencephalogram (EEG) is a noninvasive technique to measure brain activity with high temporal resolution, and accumulating evidence demonstrates that clinical EEG is capable of capturing abnormal SCZ neuropathology. Although EEG-based automated diagnostic tools have obtained impressive performance on individual datasets, the transportability of potential EEG biomarkers in cross-site real-world application is still an open question. To address the challenges of small sample sizes and population heterogeneity, we develop an advanced interpretable deep learning model using multimodal clinical EEG features and demographic information as inputs to graph neural networks, and further propose different transfer learning strategies to adapt to different clinical scenarios. Taking the disease discrimination of health control (HC) and SCZ with 1030 participants as a use case, our model is trained on a small clinical dataset (N = 188, Chinese) and enhanced using a large-scale public dataset (N = 508, American) of adult participants. Cross-site validation from an independent dataset of adult participants (N = 157, Chinese) produced stable performance, with AUCs of 0.793-0.852 and accuracies of 0.786-0.858 for different SCZ prevalence, respectively. In addition, cross-site validation from another dataset of adolescent boys (N = 84, Russian) yielded an AUC of 0.702 and an accuracy of 0.690. Moreover, feature visualization further revealed that the ranking of feature importance varied significantly among different datasets, and that EEG theta and alpha band power appeared to be the most significant and translational biomarkers of SCZ pathology. Overall, our promising results demonstrate the feasibility of SCZ discrimination using EEG biomarkers in multiple clinical settings.
Collapse
Affiliation(s)
- Haiteng Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Peiyin Chen
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zhaohong Sun
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengqian Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongke Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Fei Huang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
| | - Songfang Huang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China
| | - Yaoyun Zhang
- Alibaba Damo Academy, 969 West Wen Yi Road, Yu Hang District, Hangzhou, Zhejiang, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Kim S, Cha J, Kim D, Park E. Understanding Mental Health Issues in Different Subdomains of Social Networking Services: Computational Analysis of Text-Based Reddit Posts. J Med Internet Res 2023; 25:e49074. [PMID: 38032730 PMCID: PMC10722371 DOI: 10.2196/49074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Users increasingly use social networking services (SNSs) to share their feelings and emotions. For those with mental disorders, SNSs can also be used to seek advice on mental health issues. One available SNS is Reddit, in which users can freely discuss such matters on relevant health diagnostic subreddits. OBJECTIVE In this study, we analyzed the distinctive linguistic characteristics in users' posts on specific mental disorder subreddits (depression, anxiety, bipolar disorder, borderline personality disorder, schizophrenia, autism, and mental health) and further validated their distinctiveness externally by comparing them with posts of subreddits not related to mental illness. We also confirmed that these differences in linguistic formulations can be learned through a machine learning process. METHODS Reddit posts uploaded by users were collected for our research. We used various statistical analysis methods in Linguistic Inquiry and Word Count (LIWC) software, including 1-way ANOVA and subsequent post hoc tests, to see sentiment differences in various lexical features within mental health-related subreddits and against unrelated ones. We also applied 3 supervised and unsupervised clustering methods for both cases after extracting textual features from posts on each subreddit using bidirectional encoder representations from transformers (BERT) to ensure that our data set is suitable for further machine learning or deep learning tasks. RESULTS We collected 3,133,509 posts of 919,722 Reddit users. The results using the data indicated that there are notable linguistic differences among the subreddits, consistent with the findings of prior research. The findings from LIWC analyses revealed that patients with each mental health issue show significantly different lexical and semantic patterns, such as word count or emotion, throughout their online social networking activities, with P<.001 for all cases. Furthermore, distinctive features of each subreddit group were successfully identified through supervised and unsupervised clustering methods, using the BERT embeddings extracted from textual posts. This distinctiveness was reflected in the Davies-Bouldin scores ranging from 0.222 to 0.397 and the silhouette scores ranging from 0.639 to 0.803 in the former case, with scores of 1.638 and 0.729, respectively, in the latter case. CONCLUSIONS By taking a multifaceted approach, analyzing textual posts related to mental health issues using statistical, natural language processing, and machine learning techniques, our approach provides insights into aspects of recent lexical usage and information about the linguistic characteristics of patients with specific mental health issues, which can inform clinicians about patients' mental health in diagnostic terms to aid online intervention. Our findings can further promote research areas involving linguistic analysis and machine learning approaches for patients with mental health issues by identifying and detecting mentally vulnerable groups of people online.
Collapse
Affiliation(s)
- Seoyun Kim
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Junyeop Cha
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dongjae Kim
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunil Park
- Department of Applied Artificial Intelligence, Sungkyunkwan University, Seoul, Republic of Korea
- Teach Company, Seoul, Republic of Korea
| |
Collapse
|
14
|
Jafari M, Shoeibi A, Khodatars M, Bagherzadeh S, Shalbaf A, García DL, Gorriz JM, Acharya UR. Emotion recognition in EEG signals using deep learning methods: A review. Comput Biol Med 2023; 165:107450. [PMID: 37708717 DOI: 10.1016/j.compbiomed.2023.107450] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Sara Bagherzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - David López García
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
15
|
Okagbue HI, Ijezie OA, Ugwoke PO, Adeyemi-Kayode TM, Jonathan O. Single-label machine learning classification revealed some hidden but inter-related causes of five psychotic disorder diseases. Heliyon 2023; 9:e19422. [PMID: 37674848 PMCID: PMC10477489 DOI: 10.1016/j.heliyon.2023.e19422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Psychotic disorder diseases (PDD) or mental illnesses are group of illnesses that affect the minds and impair the cognitive ability, retard emotional ability and obstruct the process of communication and relationship with others and are characterized by delusions, hallucinations and disoriented or disordered pattern of thinking. Prognosis of PDD is not sufficient because of the nature of the diseases and as such adequate form of diagnosis is required to detect, manage and treat the illness. This paper applied the single-label classification (SLC) machine learning approach in mining of electronic health records of people with PDD in Nigeria using eleven independent (demographic) variables and five PDD as target variables. The five PDDs are Insomnia, Schizophrenia, Minimal Brain dysfunction (MBD), which is also known as Attention-Deficit/Hyperactivity Disorder (ADHD), Vascular Dementia (VD) and Bipolar Disorder (BD). The aim of using SLC is that it would be easier to detect some PDDs that are related to each other without the loss of information, which is a plus over multi-label classification (MLC). ReliefF algorithm was used at each experiment to precipitate the order of importance of the independent variables and redundant variables were excluded from the analysis. The order of the variables in feature selection was matched with feature importance after the classifications and quantified using the Spearman rank correlation coefficient. The data was divided into: 70% for training and 30% for testing. Four new performance metrics adapted from the root mean square (RMSE) were proposed and used to measure the differences between the performance results of the 10 Machine learning models in terms of the training and testing and secondly, feature and without feature selection. The new metrics are close to zero which is an indication that the use of feature selection and cross validation may not greatly affects the accuracy of the SLC. When the PDDs are included as predictors for classifying others, there was a tremendous improvement as revealed by the four new metrics for classification accuracy (CA), precision and recall. Analysis of variance showed the four different metrics differs significantly for classification accuracy (CA) and precision. However, there were no significant difference between the CA and precision when the duo are compared together across the four evaluation metrics at p value less than 0.05.
Collapse
Affiliation(s)
| | - Ogochukwu A. Ijezie
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK
| | - Paulinus O. Ugwoke
- Department of Computer Science, University of Nigeria, Nsukka, Nigeria
- Digital Bridge Institute, International Centre for Information & Communications Technology Studies, Abuja, Nigeria
| | | | - Oluranti Jonathan
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
16
|
Li Y, An S, Zhou T, Su C, Zhang S, Li C, Jiang J, Mu Y, Yao N, Huang ZG. Triple-network analysis of Alzheimer's disease based on the energy landscape. Front Neurosci 2023; 17:1171549. [PMID: 37287802 PMCID: PMC10242117 DOI: 10.3389/fnins.2023.1171549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Research on the brain activity during resting state has found that brain activation is centered around three networks, including the default mode network (DMN), the salient network (SN), and the central executive network (CEN), and switches between multiple modes. As a common disease in the elderly, Alzheimer's disease (AD) affects the state transitions of functional networks in the resting state. Methods Energy landscape, as a new method, can intuitively and quickly grasp the statistical distribution of system states and information related to state transition mechanisms. Therefore, this study mainly uses the energy landscape method to study the changes of the triple-network brain dynamics in AD patients in the resting state. Results AD brain activity patterns are in an abnormal state, and the dynamics of patients with AD tend to be unstable, with an unusually high flexibility in switching between states. Also , the subjects' dynamic features are correlated with clinical index. Discussion The atypical balance of large-scale brain systems in patients with AD is associated with abnormally active brain dynamics. Our study are helpful for further understanding the intrinsic dynamic characteristics and pathological mechanism of the resting-state brain in AD patients.
Collapse
Affiliation(s)
- Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simeng An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tianlin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Junjie Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunfeng Mu
- Department of Gynecological Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Nan Yao
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Applied Physics, Xi'an University of Technology, Xi'an, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- The State Key Laboratory of Congnitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | |
Collapse
|
17
|
Adamu MJ, Qiang L, Nyatega CO, Younis A, Kawuwa HB, Jabire AH, Saminu S. Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies. Front Psychiatry 2023; 14:1188603. [PMID: 37275974 PMCID: PMC10236951 DOI: 10.3389/fpsyt.2023.1188603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Background Schizophrenia affects about 1% of the global population. In addition to the complex etiology, linking this illness to genetic, environmental, and neurobiological factors, the dynamic experiences associated with this disease, such as experiences of delusions, hallucinations, disorganized thinking, and abnormal behaviors, limit neurological consensuses regarding mechanisms underlying this disease. Methods In this study, we recruited 72 patients with schizophrenia and 74 healthy individuals matched by age and sex to investigate the structural brain changes that may serve as prognostic biomarkers, indicating evidence of neural dysfunction underlying schizophrenia and subsequent cognitive and behavioral deficits. We used voxel-based morphometry (VBM) to determine these changes in the three tissue structures: the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). For both image processing and statistical analysis, we used statistical parametric mapping (SPM). Results Our results show that patients with schizophrenia exhibited a significant volume reduction in both GM and WM. In particular, GM volume reductions were more evident in the frontal, temporal, limbic, and parietal lobe, similarly the WM volume reductions were predominantly in the frontal, temporal, and limbic lobe. In addition, patients with schizophrenia demonstrated a significant increase in the CSF volume in the left third and lateral ventricle regions. Conclusion This VBM study supports existing research showing that schizophrenia is associated with alterations in brain structure, including gray and white matter, and cerebrospinal fluid volume. These findings provide insights into the neurobiology of schizophrenia and may inform the development of more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
- Department of Computer Science, Yobe State University, Damaturu, Nigeria
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Charles Okanda Nyatega
- Department of Information and Communication Engineering, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering and Scientific Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo, Nigeria
| | - Sani Saminu
- Department of Biomedical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
18
|
Meng X, Iraji A, Fu Z, Kochunov P, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson G, Potkin SG, Preda A, Turner J, van Erp TGM, Sui J, Calhoun VD. Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study. Neuroimage Clin 2023; 38:103434. [PMID: 37209635 PMCID: PMC10209454 DOI: 10.1016/j.nicl.2023.103434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development.
Collapse
Affiliation(s)
- Xing Meng
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Judy M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| | - Sara McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale University, School of Medicine, New Haven, CT, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jessica Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA; Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory University, Atlanta, GA, USA; Department of Psychology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Jafari M, Shoeibi A, Khodatars M, Ghassemi N, Moridian P, Alizadehsani R, Khosravi A, Ling SH, Delfan N, Zhang YD, Wang SH, Gorriz JM, Alinejad-Rokny H, Acharya UR. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review. Comput Biol Med 2023; 160:106998. [PMID: 37182422 DOI: 10.1016/j.compbiomed.2023.106998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Afshin Shoeibi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Navid Ghassemi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Parisa Moridian
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Australia
| | - Niloufar Delfan
- Faculty of Computer Engineering, Dept. of Artificial Intelligence Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; UNSW Data Science Hub, The University of New South Wales, Sydney, NSW, 2052, Australia; Health Data Analytics Program, Centre for Applied Artificial Intelligence, Macquarie University, Sydney, 2109, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Baygin M, Barua PD, Chakraborty S, Tuncer I, Dogan S, Palmer E, Tuncer T, Kamath AP, Ciaccio EJ, Acharya UR. CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol Meas 2023; 44. [PMID: 36599170 DOI: 10.1088/1361-6579/acb03c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals.Approach.In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels.Main results.The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier.Significance.Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.
Collapse
Affiliation(s)
- Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Australia.,Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.,Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ilknur Tuncer
- Elazig Governorship, Interior Ministry, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Elizabeth Palmer
- Centre of Clinical Genetics, Sydney Children's Hospitals Network, Randwick 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick 2031, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Aditya P Kamath
- Biomedical Engineering, Brown University, Providence, RI, United States of America
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Irving Medical Center, United States of America
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, S599489, Singapore.,Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
21
|
Khare SK, Bajaj V, Acharya UR. SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals. Physiol Meas 2023; 44. [PMID: 36787641 DOI: 10.1088/1361-6579/acbc06] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Objective.Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information from the EEG signals is challenging.Approach.The time-frequency domain is crucial for the automatic detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau-Hill time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.Results.The SchizoNET model is developed using three different validation techniques, including holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%, and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZ and 14 HC subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six performance parameters and the area under the curve to evaluate the performance of our developed model.Significance.The SchizoNET is robust, effective, and accurate, as it performed better than the state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help neurologists detect the SZ in various scenarios.
Collapse
Affiliation(s)
- Smith K Khare
- Electrical and Computer Engineering Department, Aarhus University, Denmark
| | - Varun Bajaj
- Discipline of Electronics and Communication Engineering, Indian Institute of Information Technology, Design, and Manufacturing (IIITDM) Jabalpur, India
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, Australia.,Department of Biomedical Engineering, School of Science and Technology, University of Social Sciences, Singapore.,Department of Biomedical Informatics and Medical Engineering, Asia University, Taiwan.,Distinguished Professor, Kumamoto University, Japan.,Adjunct Professor, University of Malaya, Malaysia
| |
Collapse
|
22
|
Identification of Clinical Features Associated with Mortality in COVID-19 Patients. OPERATIONS RESEARCH FORUM 2023. [PMCID: PMC9984757 DOI: 10.1007/s43069-022-00191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractUnderstanding clinical features and risk factors associated with COVID-19 mortality is needed to early identify critically ill patients, initiate treatments and prevent mortality. A retrospective study on COVID-19 patients referred to a tertiary hospital in Iran between March and November 2020 was conducted. COVID-19-related mortality and its association with clinical features including headache, chest pain, symptoms on computerized tomography (CT), hospitalization, time to infection, history of neurological disorders, having a single or multiple risk factors, fever, myalgia, dizziness, seizure, abdominal pain, nausea, vomiting, diarrhoea and anorexia were investigated. Based on the investigation outcome, decision tree and dimension reduction algorithms were used to identify the aforementioned risk factors. Of the 3008 patients (mean age 59.3 ± 18.7 years, 44% women) with COVID-19, 373 died. There was a significant association between COVID-19 mortality and old age, headache, chest pain, low respiratory rate, oxygen saturation < 93%, need for a mechanical ventilator, having symptoms on CT, hospitalization, time to infection, neurological disorders, cardiovascular diseases and having a risk factor or multiple risk factors. In contrast, there was no significant association between mortality and gender, fever, myalgia, dizziness, seizure, abdominal pain, nausea, vomiting, diarrhoea and anorexia. Our results might help identify early symptoms related to COVID-19 and better manage patients according to the extracted decision tree. The proposed ML models identified a number of clinical features and risk factors associated with mortality in COVID-19 patients. These models if implemented in a clinical setting might help to early identify patients needing medical attention and care. However, more studies are needed to confirm these findings.
Collapse
|
23
|
Ay Ş, Ekinci E, Garip Z. A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases. THE JOURNAL OF SUPERCOMPUTING 2023; 79:11797-11826. [PMID: 37304052 PMCID: PMC9983547 DOI: 10.1007/s11227-023-05132-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.
Collapse
Affiliation(s)
- Şevket Ay
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| | - Ekin Ekinci
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| | - Zeynep Garip
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| |
Collapse
|
24
|
Goel T, Varaprasad SA, Tanveer M, Pilli R. Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry. Brain Sci 2023; 13:brainsci13020267. [PMID: 36831810 PMCID: PMC9954172 DOI: 10.3390/brainsci13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating mental condition with significant negative consequences for patients, making correct and prompt diagnosis crucial. The purpose of this study is to use structural magnetic resonance image (MRI) to better classify individuals with SCZ from control normals (CN) and to locate a region of the brain that represents abnormalities associated with SCZ. Deep learning (DL), which is based on the nervous system, could be a very useful tool for doctors to accurately predict, diagnose, and treat SCZ. Gray Matter (GM), Cerebrospinal Fluid (CSF), and White Matter (WM) brain regions are extracted from 99 MRI images obtained from the open-source OpenNeuro database to demonstrate SCZ's regional relationship. In this paper, we use a pretrained ResNet-50 deep network to extract features from MRI images and an ensemble deep random vector functional link (edRVFL) network to classify those features. By examining the results obtained, the edRVFL deep model provides the highest classification accuracy of 96.5% with WM and is identified as the best-performing algorithm compared to the traditional algorithms. Furthermore, we examined the GM, WM, and CSF tissue volumes in CN subjects and SCZ patients using voxel-based morphometry (VBM), and the results show 1363 significant voxels, 6.90 T-value, and 6.21 Z-value in the WM region of SCZ patients. In SCZ patients, WM is most closely linked to structural alterations, as evidenced by VBM analysis and the DL model.
Collapse
Affiliation(s)
- Tripti Goel
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
- Correspondence: (T.G.); (M.T.)
| | - Sirigineedi A. Varaprasad
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | - M. Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
- Correspondence: (T.G.); (M.T.)
| | - Raveendra Pilli
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| |
Collapse
|
25
|
CTIFI: Clinical-experience-guided three-vision images features integration for diagnosis of cervical lesions. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
27
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson's Disease: Past Studies and Future Perspectives. Diagnostics (Basel) 2022; 12:2708. [PMID: 36359550 PMCID: PMC9689408 DOI: 10.3390/diagnostics12112708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
According to the World Health Organization (WHO), Parkinson's disease (PD) is a neurodegenerative disease of the brain that causes motor symptoms including slower movement, rigidity, tremor, and imbalance in addition to other problems like Alzheimer's disease (AD), psychiatric problems, insomnia, anxiety, and sensory abnormalities. Techniques including artificial intelligence (AI), machine learning (ML), and deep learning (DL) have been established for the classification of PD and normal controls (NC) with similar therapeutic appearances in order to address these problems and improve the diagnostic procedure for PD. In this article, we examine a literature survey of research articles published up to September 2022 in order to present an in-depth analysis of the use of datasets, various modalities, experimental setups, and architectures that have been applied in the diagnosis of subjective disease. This analysis includes a total of 217 research publications with a list of the various datasets, methodologies, and features. These findings suggest that ML/DL methods and novel biomarkers hold promising results for application in medical decision-making, leading to a more methodical and thorough detection of PD. Finally, we highlight the challenges and provide appropriate recommendations on selecting approaches that might be used for subgrouping and connection analysis with structural magnetic resonance imaging (sMRI), DaTSCAN, and single-photon emission computerized tomography (SPECT) data for future Parkinson's research.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, Uttarakhand, India
- Department of Computer Science & Engineering, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| |
Collapse
|
28
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
29
|
Tiwary T, Mahapatra RP. An accurate generation of image captions for blind people using extended convolutional atom neural network. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:3801-3830. [PMID: 35855372 PMCID: PMC9283099 DOI: 10.1007/s11042-022-13443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Recently, the progress on image understanding and AIC (Automatic Image Captioning) has attracted lots of researchers to make use of AI (Artificial Intelligence) models to assist the blind people. AIC integrates the principle of both computer vision and NLP (Natural Language Processing) to generate automatic language descriptions in relation to the image observed. This work presents a new assistive technology based on deep learning which helps the blind people to distinguish the food items in online grocery shopping. The proposed AIC model involves the following steps such as Data Collection, Non-captioned image selection, Extraction of appearance, texture features and Generation of automatic image captions. Initially, the data is collected from two public sources and the selection of non-captioned images are done using the ARO (Adaptive Rain Optimization). Next, the appearance feature is extracted using SDM (Spatial Derivative and Multi-scale) approach and WPLBP (Weighted Patch Local Binary Pattern) is used in the extraction of texture features. Finally, the captions are automatically generated using ECANN (Extended Convolutional Atom Neural Network). ECANN model combines the CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory) architectures to perform the caption reusable system to select the most accurate caption. The loss in the ECANN architecture is minimized using AAS (Adaptive Atom Search) Optimization algorithm. The implementation tool used is PYTHON and the dataset used for the analysis are Grocery datasets (Freiburg Groceries and Grocery Store Dataset). The proposed ECANN model acquired accuracy (99.46%) on Grocery Store Dataset and (99.32%) accuracy on Freiburg Groceries dataset. Thus, the performance of the proposed ECANN model is compared with other existing models to verify the supremacy of the proposed work over the other existing works.
Collapse
Affiliation(s)
- Tejal Tiwary
- Department of Computer Science and Engineering, SRMIST, NCR Campus, Ghaziabad, India
| | | |
Collapse
|
30
|
Nayak G, Padhy N, Mishra TK. 2D-DOST for seizure identification from brain MRI during pregnancy using KRVFL. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Wen Y, Zhou C, Chen L, Deng Y, Cleusix M, Jenni R, Conus P, Do KQ, Xin L. Bridging structural MRI with cognitive function for individual level classification of early psychosis via deep learning. Front Psychiatry 2022; 13:1075564. [PMID: 36704734 PMCID: PMC9871589 DOI: 10.3389/fpsyt.2022.1075564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Recent efforts have been made to apply machine learning and deep learning approaches to the automated classification of schizophrenia using structural magnetic resonance imaging (sMRI) at the individual level. However, these approaches are less accurate on early psychosis (EP) since there are mild structural brain changes at early stage. As cognitive impairments is one main feature in psychosis, in this study we apply a multi-task deep learning framework using sMRI with inclusion of cognitive assessment to facilitate the classification of patients with EP from healthy individuals. METHOD Unlike previous studies, we used sMRI as the direct input to perform EP classifications and cognitive estimations. The proposed deep learning model does not require time-consuming volumetric or surface based analysis and can provide additionally cognition predictions. Experiments were conducted on an in-house data set with 77 subjects and a public ABCD HCP-EP data set with 164 subjects. RESULTS We achieved 74.9 ± 4.3% five-fold cross-validated accuracy and an area under the curve of 71.1 ± 4.1% on EP classification with the inclusion of cognitive estimations. DISCUSSION We reveal the feasibility of automated cognitive estimation using sMRI by deep learning models, and also demonstrate the implicit adoption of cognitive measures as additional information to facilitate EP classifications from healthy controls.
Collapse
Affiliation(s)
- Yang Wen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chuan Zhou
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Leiting Chen
- Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China
| | - Yu Deng
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Martine Cleusix
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|