1
|
Cai B, Fang J, Zhou S, Xie M, Zhang K, Li J, Yin G. Enzyme-crosslinked hyaluronic acid hydrogel scaffolds for BMSCs microenvironment and wound healing. Int J Biol Macromol 2025; 295:139566. [PMID: 39788243 DOI: 10.1016/j.ijbiomac.2025.139566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Tissue engineering utilizing hydrogel scaffolds in combination with exogenous stem cells holds significant potential for promoting wound regeneration. However, the microenvironment provided by existing skin tissue engineering scaffold materials is often inadequate. Herein, we demonstrate an enzyme-crosslinked hyaluronic acid hydrogel to provide a growth microenvironment for exogenous bone marrow mesenchymal stem cells and promote acute wound healing. This material is developed by grafting dopamine onto hyaluronic acid, followed by enzyme crosslinking using horseradish peroxidase and hydrogen peroxide, which creates a loose, porous structure. The hydrogel possesses adhesive and self-healing properties, offering a microenvironment with excellent cell compatibility for exogenous BMSCs. In vivo studies showed that this hydrogel significantly accelerated the healing of acute full-thickness skin wounds, resulting in the formation of appendages such as hair follicles and minimal scarring. This study not only presents a novel skin tissue engineering scaffold but also offers a promising clinical strategy for achieving scar-minimized wound healing.
Collapse
Affiliation(s)
- Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jiaao Fang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
2
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
3
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
4
|
Heidari F, Raoufi Z, Abdollahi S, Chamchangi MA, Asl HZ. Evaluation of sodium alginate sponge infused bromelain spray and Helichrysum italicum nanoemulsion to accelerate wound healing. Int J Biol Macromol 2024; 283:137799. [PMID: 39577514 DOI: 10.1016/j.ijbiomac.2024.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This research introduces a pioneering porous sponge composed of sodium alginate/gellan gum polymers manufactured via the freeze-drying method. Bromelain was encapsulated in H. italicum nanoemulsion and sprayed using a spray device containing a glass gun with a 0.2 μm nozzle. Physicochemical properties, including swelling capacity (1570.48 ± 54.2), porosity (88.860 ± 5.7), biodegradability (98.21 ± 8), shape memory, FTIR, and SEM analyses were performed. Blood absorption (1465 ± 82 %), anti-inflammatory, and antibacterial activity against various pathogens (35 mm S. aureus, 23 mm E. coli, 21 mm P. aeruginosa) also were investigated. SA/GG/BR/NEHro sponge showed excellent anti-inflammatory (89.34 ± 4.2) and demonstrated effective antibacterial properties, which can help safeguard the wound against bacterial infection. FTIR analysis correctly confirms the presence of bromelain and oil nanoemulsion and SEM micrograph analysis showed high porosity of sponges containing H. italicum oil nanoemulsion. SA/GG/BR/NEHro exhibited remarkable compressive flexibility, mechanical stability, and shape memory properties. The results also show that bromelain helped reduce inflammation, promote tissue repair, and accelerate wound closure. In vitro and in vivo wound healing studies revealed that the sponges exhibited excellent homeostasis. Notably, the SA/GG/BR/NEHro sponge achieved complete closure of full-thickness wounds (100 %), underscoring its exceptional performance in wound repair and regeneration.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Arab Chamchangi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
5
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
6
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
7
|
Khodaei A, Johari N, Jahanmard F, Cecotto L, Khosravimelal S, Madaah Hosseini HR, Bagheri R, Samadikuchaksaraei A, Amin Yavari S. Particulate 3D Hydrogels of Silk Fibroin-Pluronic to Deliver Curcumin for Infection-Free Wound Healing. Biomimetics (Basel) 2024; 9:483. [PMID: 39194462 DOI: 10.3390/biomimetics9080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Skin is the largest protective tissue of the body and is at risk of damage. Hence, the design and development of wound dressing materials is key for tissue repair and regeneration. Although silk fibroin is a known biopolymer in tissue engineering, its degradation rate is not correlated with wound closure rate. To address this disadvantage, we mimicked the hierarchical structure of skin and also provided antibacterial properties; a hydrogel with globular structure consisting of silk fibroin, pluronic F127, and curcumin was developed. In this regard, the effect of pluronic and curcumin on the structural and mechanical properties of the hydrogel was studied. The results showed that curcumin affected the particle size, crystallinity, and ultimate elongation of the hydrogels. In vitro assays confirmed that the hydrogel containing curcumin is not cytotoxic while the diffused curcumin and pluronic provided a considerable bactericidal property against Methicillin-resistant Staphylococcus aureus. Interestingly, presence of pluronic caused more than a 99% reduction in planktonic and adherent bacteria in the curcumin-free hydrogel groups. Moreover, curcumin improved this number further and inhibited bacteria adhesion to prevent biofilm formation. Overall, the developed hydrogel showed the potential to be used for skin tissue regeneration.
Collapse
Affiliation(s)
- Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Narges Johari
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - Fatemeh Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leonardo Cecotto
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Reza Bagheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
8
|
Li Z, Tan G, Xie H, Lu S. The Application of Regenerated Silk Fibroin in Tissue Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3924. [PMID: 39203101 PMCID: PMC11355482 DOI: 10.3390/ma17163924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Silk fibroin (SF) extracted from silk is non-toxic and has excellent biocompatibility and biodegradability, making it an excellent biomedical material. SF-based soft materials, including porous scaffolds and hydrogels, play an important role in accurately delivering drugs to wounds, creating microenvironments for the adhesion and proliferation of support cells, and in tissue remodeling, repair, and wound healing. This article focuses on the study of SF protein-based soft materials, summarizing their preparation methods and basic applications, as well as their regenerative effects, such as drug delivery carriers in various aspects of tissue engineering such as bone, blood vessels, nerves, and skin in recent years, as well as their promoting effects on wound healing and repair processes. The authors expect SF soft materials to play an important role in the field of tissue repair.
Collapse
Affiliation(s)
| | | | | | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.L.); (G.T.); (H.X.)
| |
Collapse
|
9
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
10
|
Feng Y, Niu L, Gao Z, Zhu L, Li M, Zhang Q, You R. Mild preparation of hyaluronic acid/silk fibroin sponges by modified crosslinking method. Int J Biol Macromol 2024; 272:132805. [PMID: 38825261 DOI: 10.1016/j.ijbiomac.2024.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.
Collapse
Affiliation(s)
- Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Zixin Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Lin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| |
Collapse
|
11
|
Xiao M, Yao J, Shao Z, Chen X. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2827-2840. [PMID: 38690985 DOI: 10.1021/acsbiomaterials.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.
Collapse
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
12
|
Sabarees G, Velmurugan V, Gouthaman S, Solomon VR, Kandhasamy S. Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study. Pharmaceutics 2024; 16:462. [PMID: 38675123 PMCID: PMC11054860 DOI: 10.3390/pharmaceutics16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional motifs (QFM) embedded in silk fibroin (SF)-spun fibers (SF-QFM) for preclinical skin repair therapies. The verification of the novel QFM structural arrangement was characterized using ATR-FTIR, NMR, and ESI-MS spectroscopy analysis. Extensive characterization of the spun SF-QFM fibrous mats revealed their excellent antibacterial and antioxidant properties, biocompatibility, biodegradability, and remarkable mechanical and controlled drug release capabilities. SF-QFM mats were studied for drug release in pH 7.4 PBS over 72 h. The QFM-controlled release is mainly driven by diffusion and follows Fickian's law. Significant QFM release (40%) occurred within the first 6 h, with a total release of 79% at the end of 72 h, which is considered beneficial in effectively reducing bacterial load and helping expedite the healing process. Interestingly, the SF-QFM-spun mat demonstrated significantly improved NIH 3T3 cell proliferation and migration compared to the pure SF mat, as evidenced by the complete migration of NIH 3T3 cells within 24 h in the scratch assay. Furthermore, the in vivo outcome of SF-QFM was demonstrated by the regeneration of fresh fibroblasts and the realignment of collagen fibers deposition at 9 days post-operation in a preclinical rat full-thickness skin defect model. Our findings collectively indicate that the SF-QFM electrospun nanofiber scaffolds hold significant capability as a cost-effective and efficient bioactive spun architecture for use in wound healing applications.
Collapse
Affiliation(s)
- Govindaraj Sabarees
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Vadivel Velmurugan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Siddan Gouthaman
- Organic Material Laboratory, Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India;
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Gr. Hyderabad, Sangareddy 502294, India;
| | - Subramani Kandhasamy
- School of Mechanical and Electrical Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China
| |
Collapse
|
13
|
Liu T, Wang Y, Liu J, Han X, Zou Y, Wang P, Xu R, Tong L, Liu J, Liang J, Sun Y, Fan Y, Zhang X. An injectable photocuring silk fibroin-based hydrogel for constructing an antioxidant microenvironment for skin repair. J Mater Chem B 2024; 12:2282-2293. [PMID: 38323909 DOI: 10.1039/d3tb02214e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.
Collapse
Affiliation(s)
- Tangjinhai Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Jingyi Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Ruiling Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Junli Liu
- Department of Orthopedics, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, P. R. China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China.
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
14
|
Xiao J, Ji Y, Gao Z, Dai Y, Li X, Feng Y, You R. Silk nanofibrous scaffolds assembled by natural polysaccharide konjac glucomannan. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.54981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractNatural silk fibroin nanofibers (SNF) have recently attracted great attention in the field of biomaterials due to their excellent biocompatibility, outstanding mechanical properties, and biomimetic nanostructures. However, the poor structural stability of SNF assembly in aqueous conditions remains a major obstacle to their biomedical application. In this work, SNF scaffolds with extracellular matrix‐mimicking architecture and tunable properties were developed by using a small amount of konjac glucomannan (KGM) as a physical adhesive. Fourier transform infrared spectroscopy (FTIR) results revealed that KGM facilitated the formation of hydrogen bond networks between SNF as well as nanofibers/polysaccharide molecules, thereby reinforcing the interconnectivity between SNF. The water stability test showed that SNF scaffolds exhibited good structural stability in water when the mass ratio of KGM/SNF reached 2.5/100. Raising KGM content significantly enhanced the compression strength, modulus, and swelling ratio of the porous scaffold. Whereas, the nanofibrous morphology and porosity of the scaffolds were significantly sacrificed as KGM content exceeded 10% as evidenced by scanning electron microscopy (SEM) results. In vitro, cytocompatibility results also demonstrated the excellent biocompatibility of the biomimetic nanofibrous scaffolds, and the high porosity significantly enhanced cell viability. These results suggest that KGM‐reinforced SNF scaffolds may serve as promising candidates for biomaterial applications.
Collapse
Affiliation(s)
- Jiahui Xiao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Yueyang Ji
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Zixin Gao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Yunfeng Dai
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University Wuhan China
| | - Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies School of Textile Science and Engineering, Wuhan Textile University Wuhan China
| |
Collapse
|
15
|
Chen Y, Qian H, Peng D, Jiang Y, Liu Q, Tan Y, Feng L, Cheng B, Li G. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid healing of infected wounds. Front Bioeng Biotechnol 2024; 11:1338172. [PMID: 38283168 PMCID: PMC10811172 DOI: 10.3389/fbioe.2023.1338172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Wound infection is a major problem faced during wound healing. Therefore, it is necessary to develop wound dressings with excellent antimicrobial properties. Here, a smart response system of PVA-TPE/HA-AMP/SF/ALG wound dressing was prepared by a combination of chemical cross-linking and freeze-drying methods. We grafted AMP onto HA to endow the wound dressing with bacterial resistance and slow release of AMP. At the same time, the system detects bacterial activity in real time for precise antimicrobial activity (through the use of PVA-TPE) and modulates inflammation to reduce bacterial infection (through the use of AMP). In addition, the PVA-TPE/HA-AMP/SF/ALG wound dressing has a good three-dimensional mesh structure, which promotes cell proliferation, enhances collagen deposition and angiogenesis, and thus effectively promotes rapid healing of infected wounds. Moreover, it can induce the expression of inflammatory factors such as VEGF, TNF-α, IFN-γ, IL-4 and TGF-β1 in infected wounds through the Wnt/CAMK/p-PKC signaling pathway, inhibit inflammatory responses, promote wound healing and reduce scar formation. Therefore, the PVA-TPE/HA-AMP/SF/ALG wound dressing smart response system shows great promise in infected wound healing.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hongjin Qian
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Dandan Peng
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Jiang
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Qiaolin Liu
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Tan
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Jinan University, Guangzhou, China
| | - Biao Cheng
- Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Guilan Li
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
16
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
17
|
Manjit M, Kumar M, Kumar K, Dhondale MR, Jha A, Bharti K, Rain Z, Prakash P, Mishra B. Fabrication of dual drug-loaded polycaprolactone-gelatin composite nanofibers for full thickness diabetic wound healing. Ther Deliv 2023. [PMID: 38124684 DOI: 10.4155/tde-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
Collapse
Affiliation(s)
- Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madhukiran R Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Zinnu Rain
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Pradyot Prakash
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
18
|
Wu J, Yao H, Yu L, Li H, Zuo Y, Liu W, Zhang C, Fu C, Liu M. A novel 3D printed type II silk fibroin/polycaprolactone mesh for the treatment of pelvic organ prolapse. Biomater Sci 2023; 11:7203-7215. [PMID: 37750690 DOI: 10.1039/d3bm01158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pelvic organ prolapse (POP) is one of the common diseases in middle-aged and elderly women, caused by weakened pelvic floor muscle ligament tissue support. Pelvic floor reconstruction with mesh implantation has been proven to be an effective treatment for POP. However, traditional non-degradable and inflexible pelvic floor implantation meshes have been associated with pain, vaginal infections, and the need for additional surgeries. In this study, novel meshes with pre-designed structures were fabricated with solution-based electrohydrodynamic printing (EHDP) technology, using a series of polycaprolactone/silk fibroin composites as bioinks. The PCL/SF mesh mechanical performances were particularly enhanced with the addition of silk II, leading it to obtain higher adaptability with soft tissue repair. The mesh containing SF showed more robust degradation performance in the in vitro degradation assay. Furthermore, biocompatibility tests conducted on mouse embryonic fibroblasts (NIH/3T3) revealed enhanced cell affinity. Finally, the biocompatibility and tissue repair properties of PCL/SF mesh were verified through the implantation of meshes in the muscle defect site of mice. The results demonstrated that the 3D printed PCL/SF mesh prepared by EHDP exhibits superior mechanical properties, biocompatibility, biodegradability, as well as ligament and muscle fiber repair ability. The novel implantable meshes are promising for curing POP.
Collapse
Affiliation(s)
- Jingya Wu
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Hai Yao
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Lili Yu
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Huawen Li
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Yan Zuo
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, China
| | - Chunye Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Caili Fu
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, China.
| | - Mubiao Liu
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519050, China.
| |
Collapse
|
19
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
20
|
Wang H, Chen L, Xu F, Zhang Y, Fan H. ZnSe@NPSC core-shell nanorods for super sodium ion storage induced from an organic polymer derived N, P, S tri-doped carbon framework. Chem Commun (Camb) 2023; 59:10757-10760. [PMID: 37585187 DOI: 10.1039/d3cc02966b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this work, core-shell structured ZnSe@NPSC nanorods were prepared with a N, P, S hetero-doped carbon shell. The design of the core-shell structure is conducive to facilitating the transport of electrons and buffering the volume expansion during charge/discharge processes, which is favourable for improving the sodium ion storage properties of ZnSe@NPSC. Therefore, it can deliver capacities of 376.67 mA h g-1 after 150 cycles at 0.5 A g-1 and 359.1 mA h g-1 after cycling for 350 cycles at 1.0 A g-1, respectively.
Collapse
Affiliation(s)
- Haibin Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Lantao Chen
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Feng Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yufei Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
22
|
Ilić-Stojanović S, Nikolić L, Cakić S. A Review of Patents and Innovative Biopolymer-Based Hydrogels. Gels 2023; 9:556. [PMID: 37504436 PMCID: PMC10378757 DOI: 10.3390/gels9070556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Biopolymers represent a great resource for the development and utilization of new functional materials due to their particular advantages such as biocompatibility, biodegradability and non-toxicity. "Intelligent gels" sensitive to different stimuli (temperature, pH, ionic strength) have different applications in many industries (e.g., pharmacy, biomedicine, food). This review summarizes the research efforts presented in the patent and non-patent literature. A discussion was conducted regarding biopolymer-based hydrogels such as natural proteins (i.e., fibrin, silk fibroin, collagen, keratin, gelatin) and polysaccharides (i.e., chitosan, hyaluronic acid, cellulose, carrageenan, alginate). In this analysis, the latest advances in the modification and characterization of advanced biopolymeric formulations and their state-of-the-art administration in drug delivery, wound healing, tissue engineering and regenerative medicine were addressed.
Collapse
Affiliation(s)
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Suzana Cakić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
23
|
Dou Z, Qiu T, Ren Y, Wang X, Wen Q, Shen Y, Wu L, Han L, Jiang T, Xia X. Bilayer Silk Fibroin/Sodium Alginate Scaffold Delivered hUC-MSCs to Enhance Skin Scarless Healing and Hair Follicle Regeneration with the IRE1/XBP1 Pathway Inhibition. ACS Biomater Sci Eng 2023. [PMID: 37256923 DOI: 10.1021/acsbiomaterials.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Efficient local delivery of mesenchymal stem cells (MSCs) is a decisive factor for their application in regeneration processes. Here, we prepared a biomimetic bilayer silk fibroin/sodium alginate (SF/SA) scaffold to deliver human umbilical mesenchymal stem cells (hUC-MSCs) for wound healing. An SA membrane was prepared by the casting method on the upper layer of the scaffold to simulate the dense epidermal structure. On the lower layer, porous materials simulating the loose structure of the dermis were formed by the freeze-drying method. In vitro, the scaffold was proven to have a high-density pore structure, good swelling property, and suitable degradation rate. The hUC-MSCs could survive on the scaffold for up to 14 days and maintain cell stemness for at least 7 days. In vivo, SF/SA scaffolds loaded with hUC-MSCs (M-SF/SA) were applied to full-thickness defect wounds and compared with the local injection of hUC-MSCs. The M-SF/SA group showed excellent therapeutic efficacy, characterized by induction of macrophage polarization, regulation of TGF-β expression and collagen components, and enhancement of vascular regeneration, thereby preventing scar formation and promoting hair follicle regeneration. Furthermore, the expression of endoplasmic reticulum stress markers IRE1, XBP1, and CHOP was inhibited significantly in M-SF/SA treatment. In conclusion, the bilayer SF/SA scaffold is an ideal delivery platform for hUC-MSCs, and the M-SF/SA system could locally promote scarless skin healing and hair follicle regeneration by alleviating the IRE1/XBP1 signal pathway.
Collapse
Affiliation(s)
- Zhaona Dou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yimeng Ren
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Quan Wen
- Yinfeng Academy of Life Science, Yichang Laboratory of Hematopoietic Stem Cells, 1109 Gangxing Sanlu, Jinan, Shandong Province 250100, China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Lin Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Lei Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Tao Jiang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xinke Xia
- Institute of Life Science, Yinfeng Biological Group, High-tech Zone, Jinan, Shandong Province 250100, China
| |
Collapse
|
24
|
Jiang M, Li S, Ming P, Guo Y, Yuan L, Jiang X, Liu Y, Chen J, Xia D, He Y, Tao G. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int J Biol Macromol 2023; 237:123944. [PMID: 36898466 DOI: 10.1016/j.ijbiomac.2023.123944] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
An ideal wound dressing should have excellent antimicrobial properties and provide a suitable microenvironment for regenerating damaged skin tissue. In this study, we utilized sericin to biosynthesize silver nanoparticles in situ and introduced curcumin to obtain Sericin-AgNPs/Curcumin (Se-Ag/Cur) antimicrobial agent. The hybrid antimicrobial agent was then encapsulated in a physically double cross-linking 3D structure network (Sodium alginate-Chitosan, SC) to obtain the SC/Se-Ag/Cur composite sponge. The 3D structural networks were constructed through electrostatic interactions between sodium alginate and chitosan and ionic interactions between sodium alginate and calcium ions. The prepared composite sponges have excellent hygroscopicity (contact angle 51.3° ± 5.6°), moisture retention ability, porosity (67.32 % ± 3.37 %), and mechanical properties (>0.7 MPa) and exhibit good antibacterial ability against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). In addition, in vivo experiments have shown that the composite sponge promotes epithelial regeneration and collagen deposition in wounds infected with S. aureus or P. aeruginosa. Tissue immunofluorescence staining analysis confirmed that the SC/Se-Ag/Cur complex sponge stimulated upregulated expression of CD31 to promote angiogenesis while downregulating TNF-α expression to reduce inflammation. These advantages make it an ideal candidate for infectious wound repair materials, providing an effective repair strategy for clinical skin trauma infections.
Collapse
Affiliation(s)
- Min Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Silei Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Piaoye Ming
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lingling Yuan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yunfei Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Delin Xia
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yun He
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; School of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
25
|
Zhou S, Xiao J, Ji Y, Feng Y, Yan S, Li X, Zhang Q, You R. Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds. Int J Biol Macromol 2023; 237:124223. [PMID: 36996961 DOI: 10.1016/j.ijbiomac.2023.124223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Protein nanofibers offer great promise for tissue engineering scaffolds owing to biomimetic architecture and exceptional biocompatibility. Natural silk nanofibrils (SNFs) are promising but unexplored protein nanofibers for biomedical applications. In this study, the SNF-assembled aerogel scaffolds with ECM-mimicking architecture and ultra-high porosity are developed based on a polysaccharides-assisted strategy. The SNFs exfoliated from silkworm silks can be utilized as building blocks to construct 3D nanofibrous scaffolds with tunable densities and desirable shapes on a large scale. We demonstrate that the natural polysaccharides can regulate SNF assembly through multiple binding modes, endowing the scaffolds with structural stability in water and tunable mechanical properties. As a proof of concept, the biocompatibility and biofunctionality of the chitosan-assembled SNF aerogels were investigated. The nanofibrous aerogels have excellent biocompatibility, and their biomimetic structure, ultra-high porosity, and large specific surface area endow the scaffolds with enhanced cell viability to mesenchymal stem cells. The nanofibrous aerogels were further functionalized by SNF-mediated biomineralization, demonstrating their potential as a bone-mimicking scaffold. Our results show the potential of natural nanostructured silks in the field of biomaterials and provide a feasible strategy to construct protein nanofiber scaffolds.
Collapse
|
26
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
27
|
Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023; 9:gels9020100. [PMID: 36826270 PMCID: PMC9957409 DOI: 10.3390/gels9020100] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Tissue damage and organ failure are major problems that many people face worldwide. Most of them benefit from treatment related to modern technology's tissue regeneration process. Tissue engineering is one of the booming fields widely used to replace damaged tissue. Scaffold is a base material in which cells and growth factors are embedded to construct a substitute tissue. Various materials have been used to develop scaffolds. Bio-based natural materials are biocompatible, safe, and do not release toxic compounds during biodegradation. Therefore, it is highly recommendable to fabricate scaffolds using such materials. To date, there have been no singular materials that fulfill all the features of the scaffold. Hence, combining two or more materials is encouraged to obtain the desired characteristics. To design a reliable scaffold by combining different materials, there is a need to choose a good fabrication technique. In this review article, the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed. It is envisaged to gain explicit knowledge of developing scaffolds from bio-based natural materials for tissue regeneration applications.
Collapse
|
28
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
29
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Yang M, Yu S, Zhao P, Shi G, Guo Y, Xie L, Lyu G, Yu J. Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous to accelerate the treatment efficiency of wound repair. Int Wound J 2022; 20:687-698. [PMID: 36480641 PMCID: PMC9927904 DOI: 10.1111/iwj.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
A triple-layer matrix Collagen/Silk fibroin/Bioactive glass composited Nanofibrous was fabricated by linking electrospinning and freeze-drying systems, this typical three layered composite with a nanofibrous fragment as the key (top) layer, middle portion as inferior, and a spongy porous fragment as the third (bottom) deposit to develop the synergistic effect of composite materials resultant to physical and biological performances. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy were used to assess the final material's physicochemical properties (SEM). The triple-layer matrix had a nanofibrous and porous structure, which has qualities including high porosity, swelling, and stability, which are important in soft-tissue engineering. NIH 3 T3 fibroblast and humanoid keratinocyte (HaCaT) cell lines were also used to investigate the matrix's in vitro biological and fluorescent capabilities, which showed excellent cell adherence and proliferation across the composite layers. The synergistic arrangement of nanofibrous substantial deposition onto collagenous with silk fibroin candidates has therefore proven effective in the construction of a tri-layer matrix for skin-tissue-engineering applications.
Collapse
Affiliation(s)
- Minlie Yang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Shun Yu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Peng Zhao
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Gaofeng Shi
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Yun Guo
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Longwei Xie
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Guozhong Lyu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| | - Junjie Yu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiPeople's Republic of China
| |
Collapse
|
31
|
Gong W, Huang HB, Wang XC, He WY, Hou YY, Hu JN. Construction of a sustained-release hydrogel using gallic acid and lysozyme with antimicrobial properties for wound treatment. Biomater Sci 2022; 10:6836-6849. [PMID: 36321606 DOI: 10.1039/d2bm00658h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The purpose of this study is to provide a new strategy for constructing a temperature-controlled hydrogel as a promising agent for wound healing using natural products through physical co-assembly. Herein, the temperature-controlled physically assembled hydrogel consisting of gallic acid and lysozyme (GL) could be co-assembled into a regular fibrous structure accompanied by strong blue fluorescence with three-dimensional networks at micron levels through hydrophobic interactions, π-π interactions and hydrogen bonding. This GL hydrogel has excellent temperature sensitivity and self-healing properties, as proved by cycle high-low temperature tests. In addition, it possesses stable rheological properties, great sustained release ability, and could realize the spatiotemporal delivery of gallic acid and lysozyme. Biocompatibility and antibacterial tests proved that this well-assembled GL hydrogel has no cytotoxicity but excellent antibacterial activity. Both in vitro and in vivo experiments demonstrated that the GL hydrogel has excellent anti-inflammation efficiency and promotes the healing of chronic wounds by suppressing the expression of pro-inflammatory related genes. Tests using an E. coli-infected wound model confirmed that the GL hydrogel could terminate the inflammatory phase early and ultimately promote the healing of wounds infected by E. coli. This study provides a promising strategy for the effective treatment of wounds through a physical self-assembled hydrogel.
Collapse
Affiliation(s)
- Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hai-Bo Huang
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Yi-Yang Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
32
|
Tunning the Microstructure and Mechanical Properties of Lyophilized Silk Scaffolds by Pre-freezing Treatment of Silk Hydrogel and Silk Solution. J Colloid Interface Sci 2022; 631:46-55. [DOI: 10.1016/j.jcis.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
33
|
Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration. Acta Biomater 2022; 153:68-84. [PMID: 36113722 DOI: 10.1016/j.actbio.2022.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Silk fibroin (SF) is a promising biomaterial due to its good biocompatibility, easy availability, and high mechanical properties. Compared with mulberry silk fibroin (MSF), nonmulberry silk fibroin (NSF) isolated from typical nonmulberry silkworm silk exhibits unique arginine-glycine-aspartic acid (RGD) sequences with favorable cell adhesion enhancing effect. This inherent property probably makes the NSF more suitable for cell culture and tissue regeneration-related applications. Accordingly, various types of NSF-based biomaterials, such as particles, films, fiber mats, and 3D scaffolds, are constructed and their application potential in different biomedical fields is extensively investigated. Based on these promising NSF biomaterials, this review firstly makes a systematical comparison between the molecular structure and properties of MSF and typical NSF and highlights the unique properties of NSF. In addition, we summarize the effective fabrication strategies from degummed nonmulberry silk fibers to regenerated NSF-based biomaterials with controllable formats and their recent application progresses in cell behavior regulation and tissue regeneration. Finally, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials are discussed. Related research and perspectives may provide valuable references for designing and modifying effective NSF-based and other natural biomaterials. STATEMENT OF SIGNIFICANCE: There exist many reviews about mulberry silk fibroin (MSF) biomaterials and their biomedical applications, while that about nonmulberry silk fibroin (NSF) biomaterials is scarce. Compared with MSF, NSF exhibits unique arginine-glycine-aspartic acid sequences with promising cell adhesion enhancing effect, which makes NSF more suitable for cell culture and tissue regeneration related applications. Focusing on these advanced NSF biomaterials, this review has systematically compared the structure and properties of MSF and NSF, and emphasized the unique properties of NSF. Following that, the effective construction strategies for NSF-based biomaterials are summarized, and their recent applications in cell behavior regulations and tissue regenerations are highlighted. Furthermore, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials were discussed.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rui L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
34
|
Huang X, Zheng C, Ding K, Li M, Zhang S, Wu B, Wei Q, Lei Y, Wang Y. Hyaluronic Acid-Grafted Bioprosthetic Heart Valves Achieved by Copolymerization Exhibited Improved Anticalcification and Antithrombogenicity. ACS Biomater Sci Eng 2022; 8:3399-3410. [PMID: 35839344 DOI: 10.1021/acsbiomaterials.2c00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioprosthetic heart valves (BHVs) are widely used in clinic, but they still have problems of calcification, thrombogenicity, and cytotoxicity. The reported techniques based on glutaraldehyde (Glut) crosslinking have difficulty in solving these problems simultaneously. In this study, we grafted Glut-crosslinked porcine pericardium (GA) with hyaluronic acid (HA) by radical copolymerization to improve its anticalcification and antithrombotic properties. Partially methacrylated poly-ε-lysine was used to introduce methacryl groups into GA. Then, HA-grafted porcine pericardium (GA-HA) was obtained by radical copolymerization. Rat's subcutaneous implantation results showed that the calcium content of GA-HA was significantly lower than that of GA (37 ± 29 μg/mg vs 188 ± 7 μg/mg), and the platelets adhering to the surface of GA-HA decreased by approximately 41% compared with GA. In conclusion, grafting porcine pericardium with HA by copolymerization might be feasible to improve the anticalcification and antithrombotic properties of BHVs.
Collapse
Affiliation(s)
- Xueyu Huang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Shumang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Binggang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.,Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041 P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
35
|
Eco-Friendly Bio-Hydrogels Based on Antheraea Pernyi Silk Gland Protein for Cell and Drug Delivery. Gels 2022; 8:gels8070398. [PMID: 35877483 PMCID: PMC9321860 DOI: 10.3390/gels8070398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications.
Collapse
|
36
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
37
|
Schäfer S, Smeets R, Köpf M, Drinic A, Kopp A, Kröger N, Hartjen P, Assaf AT, Aavani F, Beikler T, Peters U, Fiedler I, Busse B, Stürmer EK, Vollkommer T, Gosau M, Fuest S. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery. BIOMATERIALS ADVANCES 2022; 135:212740. [PMID: 35929202 DOI: 10.1016/j.bioadv.2022.212740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Oral wounds are among the most troublesome injuries which easily affect the patients' quality of life. To date, the development of functional antibacterial dressings for oral wound healing remains a challenge. In this regard, we investigated antibacterial silk protein-based membranes for the application as wound dressings in oral and maxillofacial surgery. The present study includes five variants of casted membranes, i.e., i) membranes-silver nanoparticles (CM-Ag), ii) membranes-gentamicin (CM-G), iii) membranes-control (without functionalization) (CM-C), iv) membranes-silk sericin control (CM-SSC), and v) membranes-silk fibroin/silk sericin (CM-SF/SS), and three variants of nonwovens, i.e., i) silver nanoparticles (NW-Ag), ii) gentamicin (NW-G), iii) control (without functionalization) (NW-C). The surface structure of the samples was visualized with scanning electron microscopy. In addition, antibacterial testing was accomplished using agar diffusion assay, colony forming unit (CFU) analysis, and qrt-PCR. Following antibacterial assays, biocompatibility was evaluated by cell proliferation assay (XTT), cytotoxicity assay (LDH), and live-dead assay on L929 mouse fibroblasts. Findings indicated significantly lower bacterial colony growth and DNA counts for CM-Ag with a reduction of bacterial counts by 3log levels (99.9% reduction) in CFU and qrt-PCR assay compared to untreated control membranes (CM-C and CM-SSC) and membranes functionalized with gentamicin (CM-G and NW-G) (p < 0.001). Similarly, NW-G yielded significantly lower DNA and colony growth counts compared to NW-Ag and NW-C (p < 0.001). In conclusion, CM-Ag represented 1log level better antibacterial activity compared to NW-G, whereas NW-G showed better cytocompatibility for L929 cells. As data suggest, these two membranes have the potential of application in the field of bacteria-free oral wound healing. However, provided that loading strategy and cytocompatibility are adjusted according to the antibacterial agents' characteristic and fabrication technique of the membranes.
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | | | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Alexandre Thomas Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
38
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
39
|
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Mini‐review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela Roberta Alves Costa
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Emerson Oliveira Silva
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| |
Collapse
|
40
|
Ai X, Lu S, Xie A, Zhang H, Zhao J, Wang T, Chen G, Lu S, Xing T. Fabrication of flexible conductive silk fibroin/polythiophene membrane and its properties. E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Silk fibroin (SF) film is an insulating material, which can be combined with polythiophene derivatives with electrical conductivity to obtain a flexible conductive material. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT) was used to graft a silk protein film. The hydroxyl radical is formed by activation and oxidation of the silk protein film polymerized with the PEDOT radical formed by oxidation of 3,4-ethylenedioxythiophene to obtain a conductive silk film. The SF/PEDOT film, when tested, showed excellent electrical conductivity with resistance up to 63 Ω·cm−2, good flexibility, mechanical properties, fastness, and biocompatibility.
Collapse
Affiliation(s)
- Xin Ai
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Shuqing Lu
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Ailing Xie
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Haoran Zhang
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Juntao Zhao
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Tianjiao Wang
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| |
Collapse
|