1
|
Li A, Arrieta M, Levine B, Rosenbaum RS. Impoverished recall of sensory details along infrequently travelled routes in aphantasia. Memory 2025:1-13. [PMID: 40425187 DOI: 10.1080/09658211.2025.2507948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Visual imagery is important for recalling environmental details, but individuals with aphantasia are reported to show intact spatial memory. We investigated spatial memories of previously experienced environments in individuals with and without aphantasia using self-report and route description tasks. Aphantasic participants (n = 113) and controls (n = 110) completed questionnaires on spatial navigation, memory, anxiety, and mood. A subgroup (aphantasic: n = 65, control: n = 72) completed a route description task assessing memory for details along frequently and infrequently travelled routes. Aphantasic participants did not differ significantly from controls on self-reported navigation ability or strategies. Both groups recalled similar numbers of spatial, entity, and sensory details when describing frequently travelled routes. However, aphantasic participants recalled fewer sensory details for infrequently travelled routes. This finding was corroborated by nominally lower ratings on self-reported memory for object locations and new routes. Findings suggest that spatial memory, including sensory content, remains intact in aphantasia for frequent routes. Impoverished sensory details for infrequent routes indicates that individuals with aphantasia may rely on compensatory strategies, like semanticization, for frequently experienced environments. This suggests that spatial memory for real-world environments involve dissociable processes, some of which are independent of imagery.
Collapse
Affiliation(s)
- Adrienne Li
- Department of Psychology, York University, Toronto, Canada
| | - Maria Arrieta
- Department of Psychology, York University, Toronto, Canada
| | - Brian Levine
- Rotman Research Institute, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - R Shayna Rosenbaum
- Department of Psychology, York University, Toronto, Canada
- Rotman Research Institute, Toronto, Canada
| |
Collapse
|
2
|
Sandikci V, Ebert A, Marzina A, Platten M, Szabo K, Hoyer C. Hippocampal contributions to semantic memory retrieval: Strategy-specific impairments in transient global amnesia. J Neuropsychol 2025. [PMID: 40317702 DOI: 10.1111/jnp.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Transient global amnesia (TGA), a transient memory disorder in clinical neurology, is a unique clinical model for the study of hippocampal dysfunction and its implications for memory processes. While data are rather unequivocal concerning the relevance of the hippocampus for episodic memory, there is considerable dispute about its role for semantic memory. This study aimed at exploring how hippocampal impairment, which underlies the clinical presentation of TGA, affects semantic memory retrieval, particularly with regard to different retrieval strategies. Data from the acute and post-acute phase of 17 TGA patients and 17 healthy controls matched on socio-demographic factors were collected. Categorical word fluency tasks were differentiated into three retrieval strategies: first, with activation of episodic-spatial memory content; second, with novel and flexible linking of semantic memory content and third, with activation of overlearned semantic memory content. We find that hippocampal impairment during TGA significantly restricts semantic word fluency performance, with the degree of impairment depending on the retrieval strategy used and most pronounced when flexible relinking of semantic content is required. Our results suggest an important hippocampal contribution to semantic retrieval, especially in connection with novel and flexible linking of semantic content. They may furthermore be practically relevant for the early differential diagnosis and therapy of memory disorders.
Collapse
Affiliation(s)
- Vesile Sandikci
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Anne Ebert
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Annika Marzina
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Kristina Szabo
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Carolin Hoyer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
4
|
Scholz S, Kissler J. Hemispheric alpha asymmetry differentiates within-participants social power states: high social power increases and low social power decreases left frontal cortical activity. Soc Neurosci 2025; 20:25-36. [PMID: 40059410 DOI: 10.1080/17470919.2025.2474401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/10/2025] [Indexed: 03/30/2025]
Abstract
Social power is linked to approach and withdrawal motivational systems, with frontal alpha asymmetry (FAA) in the electroencephalogram (EEG) potentially reflecting these tendencies. Higher left-frontal activity suggests approach, while lower levels indicate withdrawal. In this study, we used a novel within-subject design to explore how social power affects FAA. Twenty-five participants completed an episodic recall task inducing high or low social power, or a neutral condition, in random order. EEG alpha power (8-12 hz) was measured to calculate FAA indices for frontal and parietal-occipital regions and compared to resting-state asymmetry. Results showed a significant increase in left-hemispheric activity during high social power recall, affecting both frontal and non-frontal regions, compared to low power and control conditions. Low social power was associated with the least left hemispheric activity. These findings highlight strong effects of social power on brain systems related to approach and avoidance but challenge the notion that FAA is confined to frontal regions. The study enhances understanding of the neural mechanisms behind social power and underscores the value of within-subject designs and baseline measurements in studying neural activity related alpha asymmetry and social power.
Collapse
Affiliation(s)
- Sebastian Scholz
- Department of Psychology,Bielefeld University, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology,Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Kumar M, Kumar S, Khusboo, Maqbool M, Singh VK, Soni AK. Domain-Specific Memory Impairments in Bipolar Mania: Insights from a Tertiary Care Hospital. Indian J Psychol Med 2025:02537176241312646. [PMID: 39897717 PMCID: PMC11783417 DOI: 10.1177/02537176241312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background Cognitive deficits in bipolar affective disorder (BPAD), particularly during manic episodes, are well-documented. However, research on domain-specific memory impairments in bipolar mania is limited, especially in the Indian subcontinent. This study aimed to assess memory impairments in individuals with bipolar disorder using the Postgraduate Institute Memory (PGI-Memory) scale and to highlight domain-specific deficits compared to healthy controls. Methods This cross-sectional study was conducted at a tertiary care center in North India. Twenty subjects diagnosed with bipolar mania and 20 age, sex, and education-matched healthy controls between the ages of 18 and 40 were recruited. Memory functions were assessed using the PGI-Memory scale. Mental control and working memory were also evaluated. Results Both groups were matched in terms of age, sex, and education. Individuals with bipolar disorder demonstrated significant deficits in various memory domains, including immediate (d = 1.47), recent (d = 0.93), remote (d = 1.58), long-term (d = 2.37), and associative memory (similar pairs: d = 1.4, dissimilar pairs: d = 1.84,), as well as in visual reproduction (d = 2.3) and recognition tasks (d = 1.54). In contrast, their working memory performance was comparable to that of the control group. The largest deficits were observed in long-term memory, visual reproduction, and associative memory. Conclusions Bipolar mania is associated with widespread memory impairments, particularly in long-term and associative memory, which may contribute to difficulties in emotional regulation and daily functioning. These findings emphasize the importance of considering memory impairments in the diagnosis and management of BPAD. Further studies are required to investigate the neurobiological foundations of these impairments and to develop specific interventions.
Collapse
Affiliation(s)
- Mohit Kumar
- Dept. of Psychiatry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sanjay Kumar
- Dept. of Psychiatry, Institute of Mental Health Amritsar, Amritsar, Punjab, India
| | - Khusboo
- Dept. of Clinical Psychology, Gwalior Mansik Aarogyashala, Gwalior, Madhya Pradesh, India
| | - Masood Maqbool
- Dept. of Psychiatry, Institute of Mental Health and Neurosciences-Kashmir, GMC, Srinagar, India
| | - Vinit Kumar Singh
- Dept. of Psychology, Government MLB Girls PG College, Kila Bhawan, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Amit Kumar Soni
- Dept. of Psychology, Government Maharaja Bhoj Prime Minister College of Excellence, Dhar, Madhya Pradesh, India
| |
Collapse
|
6
|
Hong B, Tran MA, Cheng H, Arenas Rodriguez B, Li KE, Barense MD. The influence of event similarity on the detailed recall of autobiographical memories. Memory 2024:1-13. [PMID: 39321317 DOI: 10.1080/09658211.2024.2406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Memories for life events are thought to be organised based on their relationships with one another, affecting the order in which events are recalled such that similar events tend to be recalled together. However, less is known about how detailed recall for a given event is affected by its associations to other events. Here, we used a cued autobiographical memory recall task where participants verbally recalled events corresponding to personal photographs. Importantly, we characterised the temporal, spatial, and semantic associations between each event to assess how similarity between adjacently cued events affected detailed recall. We found that participants provided more non-episodic details for cued events when the preceding event was both semantically similar and either temporally or spatially dissimilar. However, similarity along time, space, or semantics between adjacent events did not affect the episodic details recalled. We interpret this by considering organisation at the level of a life narrative, rather than individual events. When recalling a stream of personal events, we may feel obligated to justify seeming discrepancies between adjacent events that are semantically similar, yet simultaneously temporally or spatially dissimilar - to do so, we provide additional supplementary detail to help maintain global coherence across the events in our lives.
Collapse
Affiliation(s)
- Bryan Hong
- Department of Psychology, University of Toronto, Toronto, Canada
| | - My An Tran
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Heidi Cheng
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Kristen E Li
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
7
|
Barr J, Vangel R, Kanel P, Roytman S, Pongmala C, Albin RL, Scott PJH, Bohnen NI. Topography of Cholinergic Nerve Terminal Vulnerability and Balance Self-Efficacy in Parkinson's Disease. J Integr Neurosci 2024; 23:178. [PMID: 39344233 PMCID: PMC12084976 DOI: 10.31083/j.jin2309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Postural instability and gait disturbances (PIGD) represent a significant cause of disability in Parkinson's disease (PD). Cholinergic system dysfunction has been implicated in falls in PD. The occurrence of falls typically results in fear of falling (FoF) that in turn may lead to poorer balance self-efficacy. Balance self-efficacy refers to one's level of confidence in their ability to balance while completing activities of daily living like getting dressed, bathing, and walking. Lower self-efficacy, or greater FoF during these activities is a function of motor, cognitive, and emotional impairments and may impact quality of life in PD. Unlike known cholinergic reduction, especially in the right lateral geniculate and caudate nuclei, little is known about the role of cholinergic transporters in FoF or mobility self-efficacy in PD. METHODS [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) studies were conducted to assess vesicular acetylcholine transporter (VAChT) expression in 126 patients with PD (male (m) = 95, female (f) = 31). Participants had a mean age of 67.3 years (standard deviation (SD) = 7.1) and median Hoehn Yahr stage of 2.5. Patients also completed the Short Falls Efficacy Scale (sFES-I) as a survey measure of concerns about falling. [18F]FEOBV data were processed in Statistical Parametric Mapping (SPM) using a voxel-wise regression model with sFES-I scores as the outcome measure. RESULTS Reduced [18F]FEOBV binding in tectum, metathalamic (lateral more than medial geniculate nuclei), thalamus proper, bilateral mesiotemporal (hippocampal, parahippocampal, fusiform gyri and fimbriae), and right cerebellar lobule VI significantly associated with higher sFES-I scores (p < 0.05, family-wise error (FWE) correction after Threshold-Free Cluster Enhancement (TFCE)). CONCLUSIONS Unlike the more limited involvement of the brainstem-thalamic complex and caudate nuclei cholinergic topography associated with falls in PD, cholinergic reductions in the extended connectivity between the thalamic complex and the temporal limbic system via the fimbriae associates with FoF. Additional cholinergic changes were seen in the cerebellum. The temporal limbic system plays a role not only in episodic memory but also in spatial navigation, scene and contextual (e.g., emotional) processing. Findings may augur novel therapeutic approaches to treat poor mobility self-efficacy in PD. CLINICAL TRIAL REGISTRATION No: NCT02458430. Registered 18 March, 2015, https://www. CLINICALTRIALS gov/study/NCT02458430; No: NCT05459753. Registered 01 July, 2022, https://www. CLINICALTRIALS gov/study/NCT05459753.
Collapse
Affiliation(s)
- Jaimie Barr
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Chatkaew Pongmala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Roger L. Albin
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, MI 48105, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, MI 48105, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Sabharwal-Siddiqi S, Grilli MD, Thayer SC, Garren JD, Diaw S, Yonelinas A, Ekstrom AD. The hippocampus supports precise memory for public events regardless of their remoteness. Neuropsychologia 2024; 199:108902. [PMID: 38723890 DOI: 10.1016/j.neuropsychologia.2024.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The necessity of the human hippocampus and surrounding medial temporal lobe structures to semantic memory remains contentious. Impaired semantic memory following hippocampal lesions could arise either due to partially intertwined episodic memories and/or retrograde/anterograde effects. In this study, we tested amnesic individuals with lesions in hippocampus and surrounding medial temporal lobe (n = 7) and age-matched controls (n = 14) on their ability to precisely recall the dates of famous public events that occurred either before (i.e., pre-lifetime) or after participants' birth date (lifetime). We show that deficits in dating precision are greatest for recent lifetime events, consistent with the notion that recent event memory may be particularly intertwined with episodic memory. At the same time, individuals with medial temporal lobe lesions showed more subtle impairments in their ability to date pre-birth and remote lifetime events precisely. Together, these findings suggest that the hippocampus and surrounding medial temporal lobe structures are important for representational precision of semantic memories regardless of their remoteness.
Collapse
Affiliation(s)
| | - Matthew D Grilli
- Psychology Department, University of Arizona, Tucson, AZ, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Sean C Thayer
- Psychology Department, University of Arizona, Tucson, AZ, USA
| | - Joshua D Garren
- Psychology Department, University of Arizona, Tucson, AZ, USA
| | - Serigne Diaw
- Psychology Department, University of California, Davis, CA, USA
| | - Andrew Yonelinas
- Psychology Department, University of California, Davis, CA, USA; Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Psychology Department, University of Arizona, Tucson, AZ, USA; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Honma M, Terao Y. Modulation of time in Parkinson's disease: a review and perspective on cognitive rehabilitation. Front Psychiatry 2024; 15:1379496. [PMID: 38686125 PMCID: PMC11056500 DOI: 10.3389/fpsyt.2024.1379496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Time cognition is an essential function of human life, and the impairment affects a variety of behavioral patterns. Neuropsychological approaches have been widely demonstrated that Parkinson's disease (PD) impairs time cognitive processing. Many researchers believe that time cognitive deficits are due to the basal ganglia, including the striatum or subthalamic nucleus, which is the pathomechanism of PD, and are considered to produce only transient recovery due to medication effects. In this perspective, we focus on a compensatory property of brain function based on the improved time cognition independent of basal ganglia recovery and an overlapping structure on the neural network based on an improved inhibitory system by time cognitive training, in patients with PD. This perspective may lead to restoring multiple functions through single function training.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University of School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Jia Y, Woltering S, Deutz NEP, Engelen MPKJ, Coyle KS, Maio MR, Husain M, Liu ZX. Working Memory Precision and Associative Binding in Mild Cognitive Impairment. Exp Aging Res 2024; 50:206-224. [PMID: 36755482 DOI: 10.1080/0361073x.2023.2172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
To better understand working memory (WM) deficits in Mild Cognitive Impairment (MCI), we examined information precision and associative binding in WM in 21 participants with MCI, compared to 16 healthy controls, using an item-location delayed reproduction task. WM, along with other executive functions (i.e. Trail Making Task (TMT) and Stroop task), were measured before and after a 2-h nap. The napping manipulation was intended as an exploratory element to this study exploring potential impacts of napping on executive functions.Compared to healthy participants, participants with MCI exhibited inferior performance not only in identifying encoded WM items but also on item-location associative binding and location precision even when only one item was involved. We also found changes on TMT and Stroop tasks in MCI, reflecting inferior attention and inhibitory control. Post-napping performance improved in most of these WM and other executive measures, both in MCI and their healthy peers.Our study shows that associative binding and WM precision can reliably differentiate MCIs from their healthy peers. Additionally, most measures showed no differential effect of group pre- and post-napping. These findings may contribute to better understanding cognitive deficits in MCI therefore improving the diagnosis of MCI.
Collapse
Affiliation(s)
- Yajun Jia
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
- School of Social Work, Columbia University, New York City, New York, USA
| | - Steven Woltering
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Kimberly S Coyle
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Maria R Maio
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
11
|
Xu S, Wang H, Li S, Ouyang G. Neural manifestation of L2 novel concept acquisition from multi-contexts via both episodic memory and semantic memory systems. Front Psychol 2024; 15:1320675. [PMID: 38384355 PMCID: PMC10879312 DOI: 10.3389/fpsyg.2024.1320675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
This study aims to examine the process of L2 novel word learning through the combination of episodic and semantic memory, and how the process differs between the formation of thematic and taxonomic relations. The major approach adopted was observing the neural effects of word learning, which is manifested in the N400 from event-related potentials (ERPs). Eighty-eight participants were recruited for the experiment. In the learning session, L2 contextual discourses related to novel words were learned by participants. In the testing session, discourses embedded with incongruous and congruous novel words in the final position were used for participants to judge the congruency which affected the N400 neural activity. The results showed that both recurrent and new-theme discourses elicited significant N400 effects, while taxonomic sentences did not. These results confirmed the formation of episodic and semantic memory during L2 new word learning, in which semantic memory was mainly supported by thematic relations.
Collapse
Affiliation(s)
- Shuang Xu
- Faculty of Education, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hailing Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Shouxin Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Guang Ouyang
- Faculty of Education, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
12
|
Malykhin N, Pietrasik W, Hoang KN, Huang Y. Contributions of hippocampal subfields and subregions to episodic memory performance in healthy cognitive aging. Neurobiol Aging 2024; 133:51-66. [PMID: 37913626 DOI: 10.1016/j.neurobiolaging.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
In the present study we investigated whether hippocampal subfield (cornu ammonis 1-3, dentate gyrus, and subiculum) and anteroposterior hippocampal subregion (head,body, and tail) volumes can predict episodic memory function using high-field high resolution structural magnetic resonance imaging (MRI). We recruited 126 healthy participants (18-85 years). MRI datasets were collected on a 4.7 T system. Participants were administered the Wechsler Memory Scale (WMS-IV) to evaluate episodic memory function. Structural equation modeling was used to test the relationship between studied variables. We found that the volume of the dentate gyrus subfield and posterior hippocampus (body) showed a significant direct effect on visuospatial memory performance; additionally, an indirect effect of age on visuospatial memory mediated through these hippocampal subfield/subregion was significant. Logical and verbal memory were not significantly associated with hippocampal subfield or subregion volumes.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Wojciech Pietrasik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kim Ngan Hoang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Gardette J, Cousin E, Hot P. The anterior medial hippocampus contributes to both recall and familiarity-based memory for scenes. Neurobiol Learn Mem 2023; 206:107859. [PMID: 37944634 DOI: 10.1016/j.nlm.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The hippocampus is usually associated with recall memory, whereas its contribution to familiarity-based memory is debated. Growing evidence support the idea that this structure participates to any cognitive process performed on scene representations. In parallel, differences in functional specialisation and cortical connectivity were found across the longitudinal and transverse axes of the hippocampus. Here we reanalysed functional MRI data from 51 participants showing stronger engagement of the hippocampus in recall, familiarity-based recognition and rejection, and visual discrimination, of scenes compared to single objects. A conjunction analysis between these four tasks revealed a set of occipital, medial temporal, posterior cingulate, and parietal regions, matching the scene construction network described in the literature. Crucially, we found that the anterior medial part of the hippocampus was consistently involved in all tasks investigated for scene stimuli. These findings support that the hippocampus can contribute to both recall and familiarity-based memory, depending on stimulus type. More generally, this bolsters the recent proposal that circumscribed regions within the hippocampus may underpin specific cognitive mechanisms.
Collapse
Affiliation(s)
- J Gardette
- LPNC, CNRS URM 5105, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000 Grenoble, France
| | - E Cousin
- LPNC, CNRS URM 5105, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000 Grenoble, France
| | - P Hot
- LPNC, CNRS URM 5105, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000 Grenoble, France; Institut universitaire de France, France.
| |
Collapse
|
14
|
Grilli MD, Sabharwal-Siddiqi S, Thayer SC, Rapcsak SZ, Ekstrom AD. Evidence of Impaired Remote Experience-near Semantic Memory in Medial Temporal Lobe Amnesia. J Cogn Neurosci 2023; 35:2002-2013. [PMID: 37713665 PMCID: PMC10824049 DOI: 10.1162/jocn_a_02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Neuropsychological research suggests that "experience-near" semantic memory, meaning knowledge attached to a spatiotemporal or event context, is commonly impaired in individuals who have medial temporal lobe amnesia. It is not known if this impairment extends to remotely acquired experience-near knowledge, which is a question relevant to understanding hippocampal/medial temporal lobe functioning. In the present study, we administered a novel semantic memory task designed to target knowledge associated with remote, "dormant" concepts, in addition to knowledge associated with active concepts, to four individuals with medial temporal lobe amnesia and eight matched controls. We found that the individuals with medial temporal lobe amnesia generated significantly fewer experience-near semantic memories for both remote concepts and active concepts. In comparison, the generation of abstract or "experience-far" knowledge was largely spared in the individuals with medial temporal lobe amnesia, regardless of whether the targets for retrieval were remote or active concepts. We interpret these findings as evidence that the medial temporal lobes may have a sustained role in the retrieval of semantic memories associated with spatiotemporal and event contexts, which are cognitive features often ascribed to episodic memory. These results align with recent theoretical models proposing that the hippocampus/medial temporal lobes support cognitive processes that are involved in, but not exclusive to, episodic memory.
Collapse
Affiliation(s)
| | | | | | - Steven Z Rapcsak
- University of Arizona, Tucson AZ
- Banner Alzheimer's Institute, Tucson, AZ
| | | |
Collapse
|
15
|
Tsalouchidou PE, Müller CJ, Belke M, Zahnert F, Menzler K, Trinka E, Knake S, Thomschewski A. Verbal memory depends on structural hippocampal subfield volume. Front Neurol 2023; 14:1209941. [PMID: 37900611 PMCID: PMC10613087 DOI: 10.3389/fneur.2023.1209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To investigate correlates in hippocampal subfield volume and verbal and visual memory function in patients with temporal lobe epilepsy (TLE), mild amnestic cognitive impairment (MCI) and heathy participants (HP). Methods 50 right-handed participants were included in this study; 11 patients with temporal lobe epilepsy (TLE), 18 patients with mild amnestic cognitive impairment (MCI) and 21 healthy participants (HP). Verbal memory performance was evaluated via the verbal memory test (VLMT) and visual memory performance via the diagnosticum for cerebral damage (DCM). Hippocampal subfield volumes of T1-weighted Magnetic Resonance Imaging (MRI) scans were computed with FreeSurfer version 7.1. Stepwise correlation analyses were performed between the left hippocampal subfield volumes and learning, free recall, consolidation and recognition performance scores of the VLMT as well as between right hippocampal subfield volumes and visual memory performance. Results The volume of the left subicular complex was highly correlated to learning performance (β = 0.284; p = 0.042) and free recall performance in the VLMT (β = 0.434; p = 0.001). The volume of the left CA3 subfield showed a significant correlation to the consolidation performance in the VLMT (β = 0.378; p = 0.006) and recognition performance in the VLMT (β = 0.290; p = 0.037). There was no significant correlation identified between the right hippocampal subfields and the visual memory performance. Conclusion The results of this study show verbal memory correlates with hippocampal subfields and support the role of left subiculum and left CA2/CA3 in verbal memory performance.
Collapse
Affiliation(s)
| | - Christina-Julia Müller
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Felix Zahnert
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Aljoscha Thomschewski
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
16
|
Reggin LD, Gómez Franco LE, Horchak OV, Labrecque D, Lana N, Rio L, Vigliocco G. Consensus Paper: Situated and Embodied Language Acquisition. J Cogn 2023; 6:63. [PMID: 37841673 PMCID: PMC10573584 DOI: 10.5334/joc.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Theories of embodied cognition postulate that perceptual, sensorimotor, and affective properties of concepts support language learning and processing. In this paper, we argue that language acquisition, as well as processing, is situated in addition to being embodied. In particular, first, it is the situated nature of initial language development that affords for the developing system to become embodied. Second, the situated nature of language use changes across development and adulthood. We provide evidence from empirical studies for embodied effects of perception, action, and valence as they apply to both embodied cognition and situated cognition across developmental stages. Although the evidence is limited, we urge researchers to consider differentiating embodied cognition within situated context, in order to better understand how these separate mechanisms interact for learning to occur. This delineation also provides further clarity to the study of classroom-based applications and the role of embodied and situated cognition in the study of developmental disorders. We argue that theories of language acquisition need to address for the complex situated context of real-world learning by completing a "circular notion": observing experimental paradigms in real-world settings and taking these observations to later refine lab-based experiments.
Collapse
Affiliation(s)
| | | | | | | | - Nadia Lana
- McMaster University, Hamilton, ON, Canada
| | - Laura Rio
- Universitàdi Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Eva L, Brehar FM, Florian IA, Covache-Busuioc RA, Costin HP, Dumitrascu DI, Bratu BG, Glavan LA, Ciurea AV. Neuropsychiatric and Neuropsychological Aspects of Alcohol-Related Cognitive Disorders: An In-Depth Review of Wernicke's Encephalopathy and Korsakoff's Syndrome. J Clin Med 2023; 12:6101. [PMID: 37763040 PMCID: PMC10532206 DOI: 10.3390/jcm12186101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alcohol-related cognitive disorders have long been an area of study, yet they continue to pose challenges in the diagnosis, treatment, and understanding of underlying neuropsychiatric mechanisms. The present article offers a comprehensive review of Wernicke's Encephalopathy and Korsakoff's Syndrome, two conditions often seen on a continuum of alcohol-related brain damage. Drawing on current medical literature, neuroimaging studies, and clinical case reports, we explore the neuropsychiatric and neuropsychological profiles, symptomatology, and differential diagnoses of these disorders. We delve into the biochemical pathways implicated in the development of WE and KS, notably thiamine deficiency and its impact on neurotransmitter systems and neural networks. The article also addresses the challenges in early diagnosis, often complicated by non-specific symptoms and co-occurring psychiatric conditions. Furthermore, we review the current state of treatment protocols, including pharmacological and non-pharmacological interventions. Finally, the article highlights gaps in current knowledge and suggests directions for future research to improve diagnosis, treatment, and patient outcomes. Understanding the nuanced interplay between the neuropsychiatric and neuropsychological aspects of WE and KS is crucial for both clinicians and researchers alike, in order to provide effective treatment and to advance our understanding of these complex conditions.
Collapse
Affiliation(s)
- Lucian Eva
- Faculty of Medicine, Dunarea de Jos University, 800010 Galati, Romania;
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
18
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
19
|
Patt VM, Hunsberger R, Jones DA, Verfaellie M. The Hippocampus Contributes to Temporal Discounting When Delays and Rewards Are Experienced in the Moment. J Neurosci 2023; 43:5710-5722. [PMID: 37463727 PMCID: PMC10401634 DOI: 10.1523/jneurosci.2250-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Temporal discounting (TD) represents the mental devaluation of rewards that are available after a delay. Whether the hippocampus is critical for TD remains unclear, with marked discrepancies between animal and human studies: although animals with discrete hippocampal lesions display impaired TD, human participants with similar lesions show intact performance on classic intertemporal choice tasks. A candidate explanation for this discrepancy is that delays and rewards are experienced in the moment in animal studies but tend to be hypothetical in human studies. We tested this hypothesis by examining the performance of amnesic participants with hippocampal lesions (one female, six males) on a novel experiential intertemporal choice task that used interesting photographs occluded by thick lines as rewards (Patt et al., 2021). Using a logistic function to model indifference points data, we compared performance to that on a classic intertemporal choice task with hypothetical outcomes. Participants with hippocampal lesions displayed impaired patterns of choices in the experiential task but not in the hypothetical task. Specifically, hippocampal lesions were associated with decreased amplitude of the delay-reward trade-off, with persistent choice of the delayed option despite delay increase. These results help explain previous discrepancies across animal and human studies, indicating that the hippocampus plays a critical role in temporal discounting when the outcomes of decisions are experienced in the moment, but not necessarily when they are hypothetical.SIGNIFICANCE STATEMENT Impaired temporal discounting (TD) has been related to maladaptive behaviors, including substance dependence and nonadherence to medical treatment. There is consensus that TD recruits the brain valuation network but whether the hippocampal memory system is additionally recruited remains unclear. This study examined TD in hippocampal amnesia, providing a unique opportunity to explore the role of the hippocampus in cognition. Whereas most human studies have used hypothetical outcomes, this study used a novel experiential task with real-time delays and rewards. Results demonstrated hippocampal involvement in the experiential task, but not in a classic hypothetical task administered for comparison. These findings elucidate previous discrepancies between animal and human TD studies. This reconciliation is critical as animals serve as models of human neurocognition.
Collapse
Affiliation(s)
- Virginie M Patt
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130
| | - Renee Hunsberger
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130
| | - Dominoe A Jones
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130
| | - Mieke Verfaellie
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130
- Department of Psychiatry, Boston University, Boston, Massachusetts 02118
| |
Collapse
|
20
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
21
|
Yang C, Naya Y. Sequential involvements of the perirhinal cortex and hippocampus in the recall of item-location associative memory in macaques. PLoS Biol 2023; 21:e3002145. [PMID: 37289802 DOI: 10.1371/journal.pbio.3002145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
The standard consolidation theory suggests that the hippocampus (HPC) is critically involved in acquiring new memory, while storage and recall gradually become independent of it. Converging studies have shown separate involvements of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in item and spatial processes, whereas HPC relates the item to a spatial context. These 2 strands of literature raise the following question; which brain region is involved in the recall process of item-location associative memory? To solve this question, this study applied an item-location associative (ILA) paradigm in a single-unit study of nonhuman primates. We trained 2 macaques to associate 4 visual item pairs with 4 locations on a background map in an allocentric manner before the recording sessions. In each trial, 1 visual item and the map image at a tilt (-90° to 90°) were sequentially presented as the item-cue and the context-cue, respectively. The macaques chose the item-cue location relative to the context-cue by positioning their gaze. Neurons in the PRC, PHC, and HPC, but not area TE, exhibited item-cue responses which signaled retrieval of item-location associative memory. This retrieval signal first appeared in the PRC, followed by the HPC and PHC. We examined whether neural representations of the retrieved locations were related to the external space that the macaques viewed. A positive representation similarity was found in the HPC and PHC, but not in the PRC, thus suggesting a contribution of the HPC to relate the retrieved location from the PRC with a first-person perspective of the subjects and provide the self-referenced retrieved location to the PHC. These results imply distinct but complementary contributions of the PRC and HPC to recall of item-location associative memory that can be used across multiple spatial contexts.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
22
|
de Flores R, Demeilliez-Servouin S, Kuhn E, Chauveau L, Landeau B, Delcroix N, Gonneaud J, Vivien D, Chételat G. Respective influence of beta-amyloid and APOE ε4 genotype on medial temporal lobe subregions in cognitively unimpaired older adults. Neurobiol Dis 2023; 181:106127. [PMID: 37061167 DOI: 10.1016/j.nbd.2023.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aβ) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aβ + (n = 24) and Aβ- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aβ and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aβ to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.
Collapse
Affiliation(s)
- Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France.
| | - Solène Demeilliez-Servouin
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Elizabeth Kuhn
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Léa Chauveau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Brigitte Landeau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Julie Gonneaud
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Denis Vivien
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Gaël Chételat
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| |
Collapse
|
23
|
Ekstrom AD, Hill PF. Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron 2023; 111:1037-1049. [PMID: 37023709 PMCID: PMC10083890 DOI: 10.1016/j.neuron.2023.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
Spatial navigation and memory are often seen as heavily intertwined at the cognitive and neural levels of analysis. We review models that hypothesize a central role for the medial temporal lobes, including the hippocampus, in both navigation and aspects of memory, particularly allocentric navigation and episodic memory. While these models have explanatory power in instances in which they overlap, they are limited in explaining functional and neuroanatomical differences. Focusing on human cognition, we explore the idea of navigation as a dynamically acquired skill and memory as an internally driven process, which may better account for the differences between the two. We also review network models of navigation and memory, which place a greater emphasis on connections rather than the functions of focal brain regions. These models, in turn, may have greater explanatory power for the differences between navigation and memory and the differing effects of brain lesions and age.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| | - Paul F Hill
- Department of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| |
Collapse
|
24
|
Savarimuthu A, Ponniah RJ. Episodic Events as Spatiotemporal Memory: The Sequence of Information in the Episodic Buffer of Working Memory for Language Comprehension. Integr Psychol Behav Sci 2023; 57:174-188. [PMID: 35804259 DOI: 10.1007/s12124-022-09710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 01/13/2023]
Abstract
Memory and language are the two higher-order cognitive abilities intertwined for communication and other cognitive skills. Memory is the storage capacity of all the information we perceive. Where the sensory memory perceives the stimuli, the working memory actively stores the information and passes it to the long-term memory. However, there is a question that how is the continuous perception of stimuli transformed into meaningful information and organized for proper execution and retrieval from the memory? This paper focuses on the episodic memory that perceives information that is spatial and temporal based on our everyday experiences. Though the spatiotemporal information we receive is continuous; the episodic memory arranges the information as to episodes in the working memory before the information is stored for a longer period. The episodic buffer is one of the components of the working memory model which holds the episodic memory that is organized concerning time. To this point, the paper tries to understand the working of the episodic buffer in maintaining the episodic memory and also about the process of episodic events into meaningful units. Further, the paper also concentrates on the hippocampus which is considered to be the location of the episodic buffer.
Collapse
Affiliation(s)
- Anisha Savarimuthu
- National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.,Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
25
|
Esteves IM, Chang H, Neumann AR, McNaughton BL. Consolidation of cellular memory representations in superficial neocortex. iScience 2023; 26:105970. [PMID: 36756366 PMCID: PMC9900505 DOI: 10.1016/j.isci.2023.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Systems-level memory consolidation, a key concept in memory research, involves the conversion of memories that depend on the hippocampus for their formation into efficient hippocampus-independent forms, presumably encoded by cortico-cortical connections. Yet, little is understood about the nature of consolidated neural codes at the cellular ensemble level. Mice require an intact hippocampus for "virtual" spatial learning and to develop neocortical representations of the corresponding experiences. We find that, whereas a novel virtual environment is neither learned nor represented in superficial cortex following severe damage to hippocampus, pre-operatively learned memories and their corresponding sparse and widespread neural ensemble representations in cortical layers II-III are preserved, a sine qua non of memory consolidation. These findings provide a new window for future study of the cellular mechanisms of memory consolidation.
Collapse
Affiliation(s)
- Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - HaoRan Chang
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Adam R Neumann
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Maxim P, Brown TI. Toward an Understanding of Cognitive Mapping Ability Through Manipulations and Measurement of Schemas and Stress. Top Cogn Sci 2023; 15:75-101. [PMID: 34612588 DOI: 10.1111/tops.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023]
Abstract
Daily function depends on an ability to mentally map our environment. Environmental factors such as visibility and layout, and internal factors such as psychological stress, can challenge spatial memory and efficient navigation. Importantly, people vary dramatically in their ability to navigate flexibly and overcome such challenges. In this paper, we present an overview of "schema theory" and our view of its relevance to navigational memory research. We review several studies from our group and others, that integrate manipulations of environmental complexity and affective state in order to gain a richer understanding of the mechanisms that underlie individual differences in navigational memory. Our most recent data explicitly link such individual differences to ideas rooted in schema theory, and we discuss the potential for this work to advance our understanding of cognitive decline with aging. The data from this body of work highlight the powerful impacts of individual cognitive traits and affective states on the way people take advantage of environmental features and adopt navigational strategies.
Collapse
Affiliation(s)
- Paulina Maxim
- School of Psychology, Georgia Institute of Technology
| | | |
Collapse
|
27
|
Hippocampal activity during memory and visual perception: The role of representational content. Cortex 2022; 157:14-29. [PMID: 36272329 DOI: 10.1016/j.cortex.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
The functional organisation of the medial temporal lobe (MTL) has long been described on the basis of cognitive processes such as recollection or familiarity. However, this view has recently been challenged, and researchers have proposed decomposing cognitive phenomena into representations and operations. According to the representational view, representations, such as scenes for the hippocampus and objects for the perirhinal cortex, are critical in understanding the role of MTL regions in cognition. In the present study, 51 healthy young participants underwent functional magnetic resonance imaging (fMRI) while completing a visual-discrimination task. Subsequently, half of the participants performed a patch-cue recognition procedure in which "Rec" responses are believed to reflect the operation of pattern completion, whereas the other half performed a whole-item remember/know procedure. We replicated the previously-reported demonstration that hippocampal involvement in pattern completion is preferential for scenes as compared with objects. In contrast, the perirhinal cortex was more recruited for object processing than for scene processing. We further extended these results to the operations of strength-signal memory and visual discrimination. Finally, the modulation of hippocampal engagement in pattern completion by representational content was found to be specific to its anterior segment. This observation is consistent with the proposal that this segment would process broad/global representations, whereas the posterior hippocampus would perform sharp/local representations. Taken together, these results favour the representational view of MTL functional organisation, but support that this specialisation differs along the hippocampal long-axis.
Collapse
|
28
|
Millar PR, Balota DA. Wakeful Rest Benefits Recall, but Not Recognition, of Incidentally Encoded Memory Stimuli in Younger and Older Adults. Brain Sci 2022; 12:brainsci12121609. [PMID: 36552069 PMCID: PMC9775546 DOI: 10.3390/brainsci12121609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Older adults exhibit deficits in episodic memory tasks, which have often been attributed to encoding or retrieval deficits, with little attention to consolidation mechanisms. More recently, researchers have attempted to measure consolidation in the context of a behavioral experiment using the wakeful rest paradigm (i.e., a brief, quiet period of minimal stimulation, which facilitates memory performance, compared to a distractor task). Critically, older adults might not produce this effect, given established age differences in other episodic memory processes and mind-wandering. In three experiments, we directly compared younger and older adults in modified versions of the wakeful rest paradigm. Critically, we utilized incidental encoding procedures (all experiments) and abstract shape stimuli (in Experiment 3) to limit the possibility of retrieval practice or maintenance rehearsal as potential confounding mechanisms in producing the wakeful rest effect. Wakeful rest reliably and equally benefited recall of incidentally encoded words in both younger and older adults. In contrast, wakeful rest had no benefit for standard accuracy measures of recognition performance in verbal stimuli, although there was an effect in response latencies for non-verbal stimuli. Overall, these results suggest that the benefits of wakeful rest on episodic retrieval are preserved across age groups, and hence support age-independence in potential consolidation mechanisms as measured by wakeful rest. Further, these benefits do not appear to be dependent on the intentionality of encoding or variations in distractor task types. Finally, the lack of wakeful rest benefits on recognition performance might be driven by theoretical constraints on the effect or methodological limitations of recognition memory testing in the current paradigm.
Collapse
Affiliation(s)
- Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence:
| | - David A. Balota
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
29
|
Caputi A, Liu X, Fuchs EC, Liu YC, Monyer H. Medial entorhinal cortex commissural input regulates the activity of spatially and object-tuned cells contributing to episodic memory. Neuron 2022; 110:3389-3405.e7. [PMID: 36084654 DOI: 10.1016/j.neuron.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
Extensive interhemispheric projections connect many homotopic brain regions, including the hippocampal formation, but little is known as to how information transfer affects the functions supported by the target area. Here, we studied whether the commissural projections connecting the medial entorhinal cortices contribute to spatial coding, object coding, and memory. We demonstrate that input from the contralateral medial entorhinal cortex targets all major cell types in the superficial medial entorhinal cortex, modulating their firing rate. Notably, a fraction of responsive cells displayed object tuning and exhibited a reduction in their firing rate upon the inhibition of commissural input. In line with this finding are behavioral results that revealed the contribution of commissural input to episodic-like memory retrieval.
Collapse
Affiliation(s)
- Antonio Caputi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xinghua Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elke C Fuchs
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Abstract
Humans have the remarkable ability to continually store new memories, while maintaining old memories for a lifetime. How the brain avoids catastrophic forgetting of memories due to interference between encoded memories is an open problem in computational neuroscience. Here we present a model for continual learning in a recurrent neural network combining Hebbian learning, synaptic decay and a novel memory consolidation mechanism: memories undergo stochastic rehearsals with rates proportional to the memory's basin of attraction, causing self-amplified consolidation. This mechanism gives rise to memory lifetimes that extend much longer than the synaptic decay time, and retrieval probability of memories that gracefully decays with their age. The number of retrievable memories is proportional to a power of the number of neurons. Perturbations to the circuit model cause temporally-graded retrograde and anterograde deficits, mimicking observed memory impairments following neurological trauma.
Collapse
|
31
|
Dixsaut L, Gräff J. Brain-wide screen of prelimbic cortex inputs reveals a functional shift during early fear memory consolidation. eLife 2022; 11:78542. [PMID: 35838139 PMCID: PMC9286739 DOI: 10.7554/elife.78542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Memory formation and storage rely on multiple interconnected brain areas, the contribution of which varies during memory consolidation. The medial prefrontal cortex, in particular the prelimbic cortex (PL), was traditionally found to be involved in remote memory storage, but recent evidence points toward its implication in early consolidation as well. Nevertheless, the inputs to the PL governing these dynamics remain unknown. Here, we first performed a brain-wide, rabies-based retrograde tracing screen of PL engram cells activated during contextual fear memory formation in male mice to identify relevant PL input regions. Next, we assessed the specific activity pattern of these inputs across different phases of memory consolidation, from fear memory encoding to recent and remote memory recall. Using projection-specific chemogenetic inhibition, we then tested their functional role in memory consolidation, which revealed a hitherto unknown contribution of claustrum to PL inputs at encoding, and of insular cortex to PL inputs at recent memory recall. Both of these inputs further impacted how PL engram cells were reactivated at memory recall, testifying to their relevance for establishing a memory trace in the PL. Collectively, these data identify a spatiotemporal shift in PL inputs important for early memory consolidation, and thereby help to refine the working model of memory formation.
Collapse
Affiliation(s)
- Lucie Dixsaut
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Honma M, Saito S, Atsumi T, Tokushige SI, Inomata-Terada S, Chiba A, Terao Y. Inducing Cortical Plasticity to Manipulate and Consolidate Subjective Time Interval Production. Neuromodulation 2022; 25:511-519. [PMID: 35667769 DOI: 10.1111/ner.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Time awareness may change depending on the mental state or disease conditions, although each individual perceives his/her own sense of time as stable and accurate. Nevertheless, the processes that consolidate altered duration production remain unclear. The present study aimed to manipulate the subjective duration production via memory consolidation through the modulation of neural plasticity. MATERIALS AND METHODS We first performed false feedback training of duration or length production and examined the period required for natural recovery from the altered production. Next, persistent neural plasticity was promoted by quadripulse transcranial magnetic stimulation (QPS) over the right dorsolateral prefrontal cortex (DLPFC), temporoparietal junction (TPJ), and primary motor cortex (M1). We conducted the same feedback training in the individual and studied how the time course of false learning changed. RESULTS We observed that altered duration production after false feedback returned to baseline within two hours. Next, immediate exposure to false feedback during neural plasticity enhancement revealed that in individuals who received QPS over the right DLPFC, but not over TPJ or M1, false duration production was maintained for four hours; furthermore, the efficacy persisted for at least one week. CONCLUSION These findings suggest that, while learned altered duration production decays over several hours, QPS over the right DLPFC enables the consolidation of newly learned duration production.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan.
| | - Shoko Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Atsumi
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | - Satomi Inomata-Terada
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Atsuro Chiba
- Department of Neurology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Miller TD, Butler CR. Acute-onset amnesia: transient global amnesia and other causes. Pract Neurol 2022; 22:201-208. [PMID: 35504698 DOI: 10.1136/practneurol-2020-002826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Acute-onset amnesia is a dramatic neurological presentation that can cause considerable concern to both patient and clinician. The patient typically presents with an inability not only to retain new memories but also to access previously acquired memories, suggesting disturbance of hippocampal function. Transient global amnesia (TGA) is the most common cause of acute-onset amnesia, and is characterised by a profound anterograde and retrograde amnesia that typically lasts for up to 24 hours. Although TGA has a strikingly stereotypical presentation, it can be challenging to distinguish from other causes of acute-onset amnesia, including posterior circulation strokes, transient epileptic amnesia, psychogenic amnesia, post-traumatic amnesia, and toxic/drug-related amnesia. Here, we describe the general approach to the patient with acute amnesia; summarise the clinical and neuropsychological differences between the potential causes; and, provide practical recommendations to aid diagnosis and management of acute amnesia. Regardless of cause and the dramatic presentation, non-ischaemic acute-onset amnesia generally has a favourable prognosis.
Collapse
Affiliation(s)
- Thomas D Miller
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK .,National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
34
|
Zorzo C, Arias JL, Méndez M. Functional neuroanatomy of allocentric remote spatial memory in rodents. Neurosci Biobehav Rev 2022; 136:104609. [PMID: 35278596 DOI: 10.1016/j.neubiorev.2022.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022]
Abstract
Successful spatial cognition involves learning, consolidation, storage, and later retrieval of a spatial memory trace. The functional contributions of specific brain areas and their interactions during retrieval of past spatial events are unclear. This systematic review collects studies about allocentric remote spatial retrieval assessed at least two weeks post-acquisition in rodents. Results including non-invasive interventions, brain lesion and inactivation experiments, pharmacological treatments, chemical agent administration, and genetic manipulations revealed that there is a normal forgetting when time-periods are close to or exceed one month. Moreover, changes in the morphology and functionality of neocortical areas, hippocampus, and other subcortical structures, such as the thalamus, have been extensively observed as a result of spatial memory retrieval. In conclusion, apart from an increasingly neocortical recruitment in remote spatial retrieval, the hippocampus seems to participate in the retrieval of fine spatial details. These results help to better understand the timing of memory maintenance and normal forgetting, outlining the underlying brain areas implicated.
Collapse
Affiliation(s)
- Candela Zorzo
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| | - Jorge L Arias
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| | - Marta Méndez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, 33003 Oviedo, Asturias, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA).
| |
Collapse
|
35
|
Toor B, van den Berg NH, Fang Z, Pozzobon A, Ray LB, Fogel SM. Age-related differences in problem-solving skills: Reduced benefit of sleep for memory trace consolidation. Neurobiol Aging 2022; 116:55-66. [DOI: 10.1016/j.neurobiolaging.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
36
|
Banjac S, Roger E, Cousin E, Mosca C, Minotti L, Krainik A, Kahane P, Baciu M. Mapping of Language-and-Memory Networks in Patients With Temporal Lobe Epilepsy by Using the GE2REC Protocol. Front Hum Neurosci 2022; 15:752138. [PMID: 35069148 PMCID: PMC8772037 DOI: 10.3389/fnhum.2021.752138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Preoperative mapping of language and declarative memory functions in temporal lobe epilepsy (TLE) patients is essential since they frequently encounter deterioration of these functions and show variable degrees of cerebral reorganization. Due to growing evidence on language and declarative memory interdependence at a neural and neuropsychological level, we propose the GE2REC protocol for interactive language-and-memory network (LMN) mapping. GE2REC consists of three inter-related tasks, sentence generation with implicit encoding (GE) and two recollection (2REC) memory tasks: recognition and recall. This protocol has previously been validated in healthy participants, and in this study, we showed that it also maps the LMN in the left TLE (N = 18). Compared to healthy controls (N = 19), left TLE (LTLE) showed widespread inter- and intra-hemispheric reorganization of the LMN through reduced activity of regions engaged in the integration and the coordination of this meta-network. We also illustrated how this protocol could be implemented in clinical practice individually by presenting two case studies of LTLE patients who underwent efficient surgery and became seizure-free but showed different cognitive outcomes. This protocol can be advantageous for clinical practice because it (a) is short and easy to perform; (b) allows brain mapping of essential cognitive functions, even at an individual level; (c) engages language-and-memory interaction allowing to evaluate the integrative processes within the LMN; (d) provides a more comprehensive assessment by including both verbal and visual modalities, as well as various language and memory processes. Based on the available postsurgical data, we presented preliminary results obtained with this protocol in LTLE patients that could potentially inform the clinical practice. This implies the necessity to further validate the potential of GE2REC for neurosurgical planning, along with two directions, guiding resection and describing LMN neuroplasticity at an individual level.
Collapse
Affiliation(s)
- Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Elise Roger
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| | - Emilie Cousin
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Chrystèle Mosca
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Lorella Minotti
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Alexandre Krainik
- Université Grenoble Alpes, UMS IRMaGe CHU Grenoble, Grenoble, France
| | - Philippe Kahane
- Université Grenoble Alpes, Grenoble Institute of Neuroscience ‘Synchronisation et modulation des réseaux neuronaux dans l’épilepsie’ & Neurology Department, Grenoble, France
| | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble, France
| |
Collapse
|
37
|
Abstract
Since the first description of the case of H.M. in the mid-1950s, the debate over the contribution of the mesial temporal lobe (MTL) to human memory functioning has not ceased to stimulate new experimental work and the development of new theoretical models. The early demonstration that despite their devastating memory loss patients with hippocampal damage are still able to learn a number of visuo-motor and visuo-perceptual skills at a normal rate and to be normally primed by verbal and visual material suggested that the term "memory" is actually an umbrella concept that includes very different brain plasticity phenomena and that MTL damage actually impairs only one of these. Subsequent research, which capitalized on a detailed anatomical description of MTL structures and on the close analysis of memory-related phenomena, tried to define the unique role of the MTL structures in brain plasticity and in the government of human behavior. A first hypothesis identified this role in the conscious forms of memory as opposed to implicit ones. In the last two decades, the emphasis has moved to the relational role of the hippocampus in binding together different pieces of unimodal information to provide unitary, multimodal representations of personal experiences.
Collapse
Affiliation(s)
- Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Clinical and Behavioral Neurology Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
38
|
Missing links: The functional unification of language and memory (L∪M). Neurosci Biobehav Rev 2021; 133:104489. [PMID: 34929226 DOI: 10.1016/j.neubiorev.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The field of neurocognition is currently undergoing a significant change of perspective. Traditional neurocognitive models evolved into an integrative and dynamic vision of cognitive functioning. Dynamic integration assumes an interaction between cognitive domains traditionally considered to be distinct. Language and declarative memory are regarded as separate functions supported by different neural systems. However, they also share anatomical structures (notably, the inferior frontal gyrus, the supplementary motor area, the superior and middle temporal gyrus, and the hippocampal complex) and cognitive processes (such as semantic and working memory) that merge to endorse our quintessential daily lives. We propose a new model, "L∪M" (i.e., Language/union/Memory), that considers these two functions interactively. We fractionated language and declarative memory into three fundamental dimensions or systems ("Receiver-Transmitter", "Controller-Manager" and "Transformer-Associative" Systems), that communicate reciprocally. We formalized their interactions at the brain level with a connectivity-based approach. This new taxonomy overcomes the modular view of cognitive functioning and reconciles functional specialization with plasticity in neurological disorders.
Collapse
|
39
|
The Medial Prefrontal Cortex and Fear Memory: Dynamics, Connectivity, and Engrams. Int J Mol Sci 2021; 22:ijms222212113. [PMID: 34830009 PMCID: PMC8619965 DOI: 10.3390/ijms222212113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
It is becoming increasingly apparent that long-term memory formation relies on a distributed network of brain areas. While the hippocampus has been at the center of attention for decades, it is now clear that other regions, in particular the medial prefrontal cortex (mPFC), are taking an active part as well. Recent evidence suggests that the mPFC-traditionally implicated in the long-term storage of memories-is already critical for the early phases of memory formation such as encoding. In this review, we summarize these findings, relate them to the functional importance of the mPFC connectivity, and discuss the role of the mPFC during memory consolidation with respect to the different theories of memory storage. Owing to its high functional connectivity to other brain areas subserving memory formation and storage, the mPFC emerges as a central hub across the lifetime of a memory, although much still remains to be discovered.
Collapse
|
40
|
Marian V, Hayakawa S, Schroeder SR. Memory after visual search: Overlapping phonology, shared meaning, and bilingual experience influence what we remember. BRAIN AND LANGUAGE 2021; 222:105012. [PMID: 34464828 PMCID: PMC8554070 DOI: 10.1016/j.bandl.2021.105012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
How we remember the things that we see can be shaped by our prior experiences. Here, we examine how linguistic and sensory experiences interact to influence visual memory. Objects in a visual search that shared phonology (cat-cast) or semantics (dog-fox) with a target were later remembered better than unrelated items. Phonological overlap had a greater influence on memory when targets were cued by spoken words, while semantic overlap had a greater effect when targets were cued by characteristic sounds. The influence of overlap on memory varied as a function of individual differences in language experience -- greater bilingual experience was associated with decreased impact of overlap on memory. We conclude that phonological and semantic features of objects influence memory differently depending on individual differences in language experience, guiding not only what we initially look at, but also what we later remember.
Collapse
Affiliation(s)
- Viorica Marian
- Department of Communication Sciences and Disorders, Northwestern University, 2240 North Campus Drive, Evanston, IL 60208, United States
| | - Sayuri Hayakawa
- Department of Communication Sciences and Disorders, Northwestern University, 2240 North Campus Drive, Evanston, IL 60208, United States.
| | - Scott R Schroeder
- Department of Speech, Language, Hearing Sciences, Hofstra University, 110, Hempstead, NY 11549, United States
| |
Collapse
|
41
|
Shepherd EH, Fournier NM, Sutherland RJ, Lehmann H. Distributed learning episodes create a context fear memory outside the hippocampus that depends on perirhinal and anterior cingulate cortices. Learn Mem 2021; 28:405-413. [PMID: 34663693 PMCID: PMC8525424 DOI: 10.1101/lm.053396.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Damage to the hippocampus (HPC) typically causes retrograde amnesia for contextual fear conditioning. Repeating the conditioning over several sessions, however, can eliminate the retrograde amnesic effects. This form of reinstatement thus permits modifications to networks that can support context memory retrieval in the absence of the HPC. The present study aims to identify cortical regions that support the nonHPC context memory. Specifically, the contribution of the perirhinal cortex (PRH) and the anterior cingulate cortex (ACC) were examined because of their established importance to context memory. The findings show that context memories established through distributed reinstatement survive damage limited only to the HPC, PRH, or ACC. Combined lesions of the HPC and PRH, as well as the HPC and ACC, caused retrograde amnesia, suggesting that network modifications in the PRH and ACC enable context fear memories to become resistant to HPC damage.
Collapse
Affiliation(s)
| | - Neil M Fournier
- Psychology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, The University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hugo Lehmann
- Psychology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
42
|
Mair A, Poirier M, Conway MA. Age effects in autobiographical memory depend on the measure. PLoS One 2021; 16:e0259279. [PMID: 34714869 PMCID: PMC8555790 DOI: 10.1371/journal.pone.0259279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Studies examining age effects in autobiographical memory have produced inconsistent results. This study examined whether a set of typical autobiographical memory measures produced equivalent results in a single participant sample. Five memory tests (everyday memory, autobiographical memory from the past year, autobiographical memory from age 11-17, word-cued autobiographical memory, and word-list recall) were administered in a single sample of young and older adults. There was significant variance in the tests' sensitivity to age: word-cued autobiographical memory produced the largest deficit in older adults, similar in magnitude to word-list recall. In contrast, older adults performed comparatively well on the other measures. The pattern of findings was broadly consistent with the results of previous investigations, suggesting that (1) the results of the different AM tasks are reliable, and (2) variable age effects in the autobiographical memory literature are at least partly due to the use of different tasks, which cannot be considered interchangeable measures of autobiographical memory ability. The results are also consistent with recent work dissociating measures of specificity and detail in autobiographical memory, and suggest that specificity is particularly sensitive to ageing. In contrast, detail is less sensitive to ageing, but is influenced by retention interval and event type. The extent to which retention interval and event type interact with age remains unclear; further research using specially designed autobiographical memory tasks could resolve this issue.
Collapse
Affiliation(s)
- Ali Mair
- Department of Psychology, City, University of London, Northampton Square, London, United Kingdom
- Department of Psychology and Sport Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Department of Psychology, University of York, Heslington, York, United Kingdom
- * E-mail:
| | - Marie Poirier
- Department of Psychology, City, University of London, Northampton Square, London, United Kingdom
| | - Martin A. Conway
- Department of Psychology, City, University of London, Northampton Square, London, United Kingdom
| |
Collapse
|
43
|
Torres ML, Wanionok NE, McCarthy AD, Morel GR, Fernández JM. Systemic oxidative stress in old rats is associated with both osteoporosis and cognitive impairment. Exp Gerontol 2021; 156:111596. [PMID: 34678425 DOI: 10.1016/j.exger.2021.111596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated both with an increase in memory loss and with comorbidities such as Osteoporosis, which could be causatively linked. In the present study, a deleterious effect on bone is demonstrated for the first time in a model of aged rats with impaired memory. We show that bone marrow progenitor cells obtained from rats with memory deficit have a decrease in their osteogenic capacity, and an increase both in their osteoclastogenic profile and adipogenic capacity, when compared to aged rats with preserved memory. Rats with impaired (versus preserved) memory also show alterations in long-bone micro-architecture (decreased trabecular bone and osteocyte density, increased TRAP-positive osteoclasts), lower bone quality (decreased trabecular bone mineral content and density) and an increase in bone marrow adiposity. Interestingly, the development of bone alterations and memory deficit in old rats is associated with significantly higher levels of serum oxidative stress (versus unaffected aged rats). In conclusion, we have found for the first time in an aged rat model, a relationship between alterations in bone quality and memory impairment, with increased systemic oxidative stress as a possible unifying mechanism.
Collapse
Affiliation(s)
- María Luz Torres
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Nahuel Ezequiel Wanionok
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Antonio Desmond McCarthy
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Gustavo Ramón Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan Manuel Fernández
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
44
|
Forno G, Lladó A, Hornberger M. Going round in circles-The Papez circuit in Alzheimer's disease. Eur J Neurosci 2021; 54:7668-7687. [PMID: 34656073 DOI: 10.1111/ejn.15494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
The hippocampus is regarded as the pivotal structure for episodic memory symptoms associated with Alzheimer's disease (AD) pathophysiology. However, what is often overlooked is that the hippocampus is 'only' one part of a network of memory critical regions, the Papez circuit. Other Papez circuit regions are often regarded as less relevant for AD as they are thought to sit 'downstream' of the hippocampus. However, this notion is oversimplistic, and increasing evidence suggests that other Papez regions might be affected before or concurrently with the hippocampus. In addition, AD research has mostly focused on episodic memory deficits, whereas spatial navigation processes are also subserved by the Papez circuit with increasing evidence supporting its valuable potential as a diagnostic measure of incipient AD pathophysiology. In the current review, we take a step forward analysing recent evidence on the structural and functional integrity of the Papez circuit across AD disease stages. Specifically, we will review the integrity of specific Papez regions from at-genetic-risk (APOE4 carriers), to mild cognitive impairment (MCI), to dementia stage of sporadic AD and autosomal dominant AD (ADAD). We related those changes to episodic memory and spatial navigation/orientation deficits in AD. Finally, we provide an overview of how the Papez circuit is affected in AD diseases and their specific symptomology contributions. This overview strengthened the need for moving away from a hippocampal-centric view to a network approach on how the whole Papez circuit is affected in AD and contributes to its symptomology, informing future research and clinical approaches.
Collapse
Affiliation(s)
- Gonzalo Forno
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,School of Psychology, Universidad de los Andes, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
45
|
Quian Quiroga R. Still challenging the pattern separation dogma: 'quiero retruco'. Trends Cogn Sci 2021; 25:923-924. [PMID: 34598878 DOI: 10.1016/j.tics.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
|
46
|
Tidmore A, Dutta SM, Fesshaye AS, Russell WK, Duncan VD, Britten RA. Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System. Int J Mol Sci 2021; 22:ijms22147713. [PMID: 34299332 PMCID: PMC8304141 DOI: 10.3390/ijms22147713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.
Collapse
Affiliation(s)
- Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Sucharita M. Dutta
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Arriyam S. Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Vania D. Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence:
| |
Collapse
|
47
|
Sandikci V, Ebert A, Hoyer C, Platten M, Szabo K. Impaired semantic memory during acute transient global amnesia. J Neuropsychol 2021; 16:149-160. [PMID: 34021536 DOI: 10.1111/jnp.12251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/15/2021] [Indexed: 11/27/2022]
Abstract
As a clinical model of hippocampal dysfunction, transient global amnesia (TGA) causes reversible memory disturbance. While episodic memory deficits in TGA patients have been extensively described, data regarding semantic memory involvement are sparse and contradictory. We report impaired semantic fluency performance in 16 patients with hippocampal lesions on MRI during acute TGA compared to their performance one day later and to that of 20 healthy subjects. Our findings support the involvement of the hippocampus in semantic retrieval.
Collapse
Affiliation(s)
- Vesile Sandikci
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Anne Ebert
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Carolin Hoyer
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| | - Kristina Szabo
- Department of Neurology, Medical Faculty Mannheim and Mannheim Center for Translational Neurosciences (MCTN), Heidelberg University, Mannheim, Germany
| |
Collapse
|
48
|
Vetere G, Xia F, Ramsaran AI, Tran LM, Josselyn SA, Frankland PW. An inhibitory hippocampal-thalamic pathway modulates remote memory retrieval. Nat Neurosci 2021; 24:685-693. [PMID: 33782621 PMCID: PMC8715645 DOI: 10.1038/s41593-021-00819-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2021] [Indexed: 01/30/2023]
Abstract
Memories are supported by distributed hippocampal-thalamic-cortical networks, but the brain regions that contribute to network activity may vary with memory age. This process of reorganization is referred to as systems consolidation, and previous studies have examined the relationship between the activation of different hippocampal, thalamic, and cortical brain regions and memory age at the time of recall. While the activation of some brain regions increases with memory age, other regions become less active. In mice, here we show that the active disengagement of one such brain region, the anterodorsal thalamic nucleus, is necessary for recall at remote time-points and, in addition, which projection(s) mediate such inhibition. Specifically, we identified a sparse inhibitory projection from CA3 to the anterodorsal thalamic nucleus that becomes more active during systems consolidation, such that it is necessary for contextual fear memory retrieval at remote, but not recent, time-points post-learning.
Collapse
Affiliation(s)
- Gisella Vetere
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Team Cerebral Codes and Circuits Connectivity (C4), Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Frances Xia
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Adam I. Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lina M. Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada,Correspondence and requests for materials should be addressed to P.W.F.
| |
Collapse
|
49
|
Binge drinking is associated with altered resting state functional connectivity of reward-salience and top down control networks. Brain Imaging Behav 2021; 14:1731-1746. [PMID: 31073695 DOI: 10.1007/s11682-019-00107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms. Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of long-term excessive drinking may be mediated by network-level disruptions. The present study examined RSFC in young adult binge (BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus accumbens and caudate nucleus), salience (anterior cingulate cortex, ACC), and executive control (inferior frontal cortex, IFC). BDs exhibited enhanced connectivity between the striatal reward areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies and may be indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower connectivity between the IFC and hippocampus which was associated with higher craving. This may indicate impaired ability to suppress unwanted thoughts and a failure to employ memory of the harmful consequences of heavy drinking in prospective plans and intentions. The observed greater connectivity of the reward/salience network and the lower prefrontal-hippocampal connectivity were associated with hazardous drinking levels indicating that dysregulation of neurofunctional networks may underlie binge drinking patterns.
Collapse
|
50
|
Neural Concomitants of Remote Memory in a Comedian with Exceptional Verbal Memory. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractMost studies exploring how remote memory is represented in the brain are based on strong episodic self-related components. Because of methodological reasons, much less is known about how the information concerning the semantic part of autobiographical memory is retrieved, and whether the brain correlates differ according to the autobiographical moment of the memory formation. In the present study, we explored the neural concomitants of the retrieval of texts learnt at different periods of life, in a comedian with exceptional verbal memory skills. This 49-year-old comedian was instructed to recite aloud a total of 30 texts he learnt during three different epochs: before the age of 15 years (E1), between the age of 15 and 25 years (E2), and after the age of 25 years (E3). The most salient activation was observed for memory from the farthest period, with a preponderance of the medial rostral prefrontal cortex (PFC) and of the precuneus. There was no hippocampal activation during text retrieval by comparison to a control condition, whatever the learning period. This study supports the assumption that the recall of remote semantic memories can occur without hippocampal activation. We discussed the activation of the rostral PFC during retrieval of the oldest (and best consolidated) memories as the possible involvement of control meta-memory processes rather than memory processes per se.
Collapse
|