1
|
Liu Y, Zhang H, Li X. Technologies for depth scanning in miniature optical imaging systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:6542-6562. [PMID: 38420321 PMCID: PMC10898578 DOI: 10.1364/boe.507078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
Biomedical optical imaging has found numerous clinical and research applications. For achieving 3D imaging, depth scanning presents the most significant challenge, particularly in miniature imaging devices. This paper reviews the state-of-art technologies for depth scanning in miniature optical imaging systems, which include two general approaches: 1) physically shifting part of or the entire imaging device to allow imaging at different depths and 2) optically changing the focus of the imaging optics. We mainly focus on the second group of methods, introducing a wide variety of tunable microlenses, covering the underlying physics, actuation mechanisms, and imaging performance. Representative applications in clinical and neuroscience research are briefly presented. Major challenges and future perspectives of depth/focus scanning technologies for biomedical optical imaging are also discussed.
Collapse
Affiliation(s)
- Yuehan Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Haolin Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xingde Li
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Bounds HA, Sadahiro M, Hendricks WD, Gajowa M, Gopakumar K, Quintana D, Tasic B, Daigle TL, Zeng H, Oldenburg IA, Adesnik H. All-optical recreation of naturalistic neural activity with a multifunctional transgenic reporter mouse. Cell Rep 2023; 42:112909. [PMID: 37542722 PMCID: PMC10755854 DOI: 10.1016/j.celrep.2023.112909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
Determining which features of the neural code drive behavior requires the ability to simultaneously read out and write in neural activity patterns with high precision across many neurons. All-optical systems that combine two-photon calcium imaging and targeted photostimulation enable the activation of specific, functionally defined groups of neurons. However, these techniques are unable to test how patterns of activity across a population contribute to computation because of an inability to both read and write cell-specific firing rates. To overcome this challenge, we make two advances: first, we introduce a genetic line of mice for Cre-dependent co-expression of a calcium indicator and a potent soma-targeted microbial opsin. Second, using this line, we develop a method for read-out and write-in of precise population vectors of neural activity by calibrating the photostimulation to each cell. These advances offer a powerful and convenient platform for investigating the neural codes of computation and behavior.
Collapse
Affiliation(s)
- Hayley A Bounds
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Marta Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthika Gopakumar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Quintana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Schwarz M, Hamburger K. Modality Switching in Landmark-Based Wayfinding. Front Psychol 2022; 13:888871. [PMID: 35756240 PMCID: PMC9226452 DOI: 10.3389/fpsyg.2022.888871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigates switching costs in landmark-based wayfinding using olfactory and visual landmark information. It has already been demonstrated that there seem to be no switching costs, in terms of correct route decisions, when switching between acoustically and visually presented landmarks. Olfaction, on the other hand, is not extensively focused on in landmark-based wayfinding thus far, especially with respect to modality switching. The goal of this work is to empirically test and compare visual and olfactory landmark information with regard to their suitability for wayfinding including a modality switch. To investigate this, an experiment within a virtual environment was conducted in which participants were walked along a virtual route of 12 intersections. At each intersection, landmark information together with directional information was presented, which was to be memorized and recalled in the following phase, either in the same or in the other modality (i.e., visual or olfactory). The results of the study show that, in contrast to the no-switching costs between auditory and visual landmarks in previous studies, switching costs occur when switching modality from visual to olfactory and vice versa. This is indicated by both longer decision times and fewer correct decisions. This means that a modality switch involving olfactory landmark information is possible but could lead to poorer performance. Therefore, olfaction may still be valuable for landmark-based-wayfinding. We argue that the poorer performance in the switching-condition is possibly due to higher cognitive load and the separate initial processing of odors and images in different cognitive systems.
Collapse
Affiliation(s)
- Mira Schwarz
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Lieblig University, Gießen, Germany
| | - Kai Hamburger
- Department of Experimental Psychology and Cognitive Science, Faculty of Psychology and Sport Science, Justus Lieblig University, Gießen, Germany
| |
Collapse
|
4
|
Sridharan S, Gajowa MA, Ogando MB, Jagadisan UK, Abdeladim L, Sadahiro M, Bounds HA, Hendricks WD, Turney TS, Tayler I, Gopakumar K, Oldenburg IA, Brohawn SG, Adesnik H. High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron 2022; 110:1139-1155.e6. [PMID: 35120626 PMCID: PMC8989680 DOI: 10.1016/j.neuron.2022.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.
Collapse
Affiliation(s)
- Savitha Sridharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marta A Gajowa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mora B Ogando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Uday K Jagadisan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Masato Sadahiro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Toby S Turney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Tayler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthika Gopakumar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Adesnik H, Abdeladim L. Probing neural codes with two-photon holographic optogenetics. Nat Neurosci 2021; 24:1356-1366. [PMID: 34400843 PMCID: PMC9793863 DOI: 10.1038/s41593-021-00902-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Jiang H, Wang C, Wei B, Gan W, Cai D, Cui M. Long-range remote focusing by image-plane aberration correction. OPTICS EXPRESS 2020; 28:34008-34014. [PMID: 33182878 PMCID: PMC7679183 DOI: 10.1364/oe.409225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning plays an important role in a broad range of applications. Toward 3D aberration-free scanning, a remote focusing technique has been developed for high-speed imaging applications. However, the implementation of remote focusing often suffers from a limited axial scan range as a result of unknown aberration. Through simple analysis, we show that the sample-to-image path length conservation is crucially important to the remote focusing performance. To enhance the axial scan range, we propose and demonstrate an image-plane aberration correction method. Using a static correction, we can effectively improve the focus quality over a large defocusing range. Experimentally, we achieved ∼three times greater defocusing range than that of conventional methods. This technique can broadly benefit the implementations of high-speed large-volume 3D imaging.
Collapse
Affiliation(s)
- Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chenmao Wang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Bowen Wei
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Dawen Cai
- Department of Cell and Development Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Cheng Z, Jiang H, Gan W, Cui M. Pupil plane actuated remote focusing for rapid focal depth control. OPTICS EXPRESS 2020; 28:26407-26413. [PMID: 32906913 PMCID: PMC7679197 DOI: 10.1364/oe.402787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Laser scanning is widely employed in imaging and material processing. Common laser scanners are often fast for 2D transverse scanning. Rapid focal depth control is highly desired in many applications. Although remote focusing has been developed to achieve fast focal depth control, the implementation is limited by the laser damage to the actuator near laser focus. Here, we present a new method named pupil plane actuated remote focusing, which enables sub-millisecond response time while avoiding laser damage. We demonstrate its application by implementing a dual-plane two-photon laser scanning fluorescence microscope for in vivo recording of calcium transient of neurons in mouse neocortex.
Collapse
Affiliation(s)
- Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hehai Jiang
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Abstract
Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.
Collapse
Affiliation(s)
- Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Jinhan Ren
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
9
|
Sun S, Zhang G, Cheng Z, Gan W, Cui M. Large-scale femtosecond holography for near simultaneous optogenetic neural modulation. OPTICS EXPRESS 2019; 27:32228-32234. [PMID: 31684439 PMCID: PMC7045872 DOI: 10.1364/oe.27.032228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For better understanding of brain functions, optogenetic neural modulation has been widely employed in neural science research. For deep tissue in vivo applications, large-scale two-photon based near simultaneous 3D laser excitation is needed. Although 3D holographic laser excitation is nowadays common practice, the inherent short coherence length of the commonly used femtosecond pulses fundamentally restricts the achievable field-of-view. Here we report a technique for near simultaneous large-scale femtosecond holographic 3D excitation. Specifically, we achieved two-photon excitation over 1.3 mm field-of-view within 1.3 milliseconds, which is sufficiently fast even for spike timing recording. The method is scalable and compatible with the commonly used two-photon sources and imaging systems in neuroscience research.
Collapse
Affiliation(s)
- Shiyi Sun
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Guangle Zhang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Weisenburger S, Tejera F, Demas J, Chen B, Manley J, Sparks FT, Martínez Traub F, Daigle T, Zeng H, Losonczy A, Vaziri A. Volumetric Ca 2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy. Cell 2019; 177:1050-1066.e14. [PMID: 30982596 DOI: 10.1016/j.cell.2019.03.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.
Collapse
Affiliation(s)
- Siegfried Weisenburger
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Frank Tejera
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jeffrey Demas
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Chen
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Jason Manley
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA; Research Institute of Molecular Pathology, Vienna, Austria; The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Carmi I, De Battista M, Maddalena L, Carroll EC, Kienzler MA, Berlin S. Holographic two-photon activation for synthetic optogenetics. Nat Protoc 2019; 14:864-900. [PMID: 30804570 DOI: 10.1038/s41596-018-0118-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is ~3 weeks.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marco De Battista
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Laura Maddalena
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Elizabeth C Carroll
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | | | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg-Saxton Algorithm. Methods Protoc 2018; 2:mps2010002. [PMID: 31164587 PMCID: PMC6481074 DOI: 10.3390/mps2010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
The use of spatial light modulators to project computer generated holograms is a common strategy for optogenetic stimulation of multiple structures of interest within a three-dimensional volume. A common requirement when addressing multiple targets sparsely distributed in three dimensions is the generation of a points cloud, focusing excitation light in multiple diffraction-limited locations throughout the sample. Calculation of this type of holograms is most commonly performed with either the high-speed, low-performance random superposition algorithm, or the low-speed, high performance Gerchberg-Saxton algorithm. This paper presents a variation of the Gerchberg-Saxton algorithm that, by only performing iterations on a subset of the data, according to compressive sensing principles, is rendered significantly faster while maintaining high quality outputs. The algorithm is presented in high-efficiency and high-uniformity variants. All source code for the method implementation is available as Supplementary Materials and as open-source software. The method was tested computationally against existing algorithms, and the results were confirmed experimentally on a custom setup for in-vivo multiphoton optogenetics. The results clearly show that the proposed method can achieve computational speed performances close to the random superposition algorithm, while retaining the high performance of the Gerchberg-Saxton algorithm, with a minimal hologram quality loss.
Collapse
|
13
|
Weisenburger S, Vaziri A. A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity. Annu Rev Neurosci 2018; 41:431-452. [PMID: 29709208 PMCID: PMC6037565 DOI: 10.1146/annurev-neuro-072116-031458] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+ imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.
Collapse
Affiliation(s)
- Siegfried Weisenburger
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, New York 10065, USA
- Kavli Neural Systems Institute, The Rockefeller University, New York, New York 10065, USA
- Research Institute of Molecular Pathology, 1030 Vienna, Austria;
| |
Collapse
|
14
|
Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H. Precise multimodal optical control of neural ensemble activity. Nat Neurosci 2018; 21:881-893. [PMID: 29713079 PMCID: PMC5970968 DOI: 10.1038/s41593-018-0139-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Understanding brain function requires technologies that can control the activity of large populations of neurons with high fidelity in space and time. We developed a multiphoton holographic approach to activate or suppress the activity of ensembles of cortical neurons with cellular resolution and sub-millisecond precision. Since existing opsins were inadequate, we engineered new soma-targeted (ST) optogenetic tools, ST-ChroME and IRES-ST-eGtACR1, optimized for multiphoton activation and suppression. Employing a three-dimensional all-optical read-write interface, we demonstrate the ability to simultaneously photostimulate up to 50 neurons distributed in three dimensions in a 550 × 550 × 100-µm3 volume of brain tissue. This approach allows the synthesis and editing of complex neural activity patterns needed to gain insight into the principles of neural codes.
Collapse
Affiliation(s)
- Alan R Mardinly
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ian Antón Oldenburg
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicolas C Pégard
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Savitha Sridharan
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Evan H Lyall
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Kirill Chesnov
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Laura Waller
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Hillel Adesnik
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Durand-de Cuttoli R, Mondoloni S, Mourot A. [Optically dissecting brain nicotinic receptor function with photo-controllable designer receptors]. Biol Aujourdhui 2017; 211:173-188. [PMID: 29236669 DOI: 10.1051/jbio/2017022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely expressed in the central nervous system and the periphery. They play an important modulatory role in learning, memory and attention, and have been implicated in various diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia and addiction. These receptors are activated by the endogenous neurotransmitter acetylcholine, or by nicotine, the alkaloid found in tobacco leaves. Both molecules open the ion channel and cause the movement of cations across the membrane, which directly affects neuronal excitability and synaptic plasticity. nAChRs are very heterogeneous in their subunit composition (α2-10 et β2-4), in their brain distribution (cortex, midbrain, striatum…) and in their sub-cellular localization (pre- vs post-synaptic, axonal, dendritic…). This heterogeneity highly contributes to the very diverse roles these receptors have in health and disease. The ability to activate or block a specific nAChR subtype, at a defined time and space within the brain, would greatly help obtaining a clearer picture of these various functions. To this aim, we are developing novel optogenetic pharmacology strategies for optically controlling endogenous nAChR isoforms within the mouse brain. The idea is to tether a chemical photoswitch on the surface of a cysteine-modified nAChR, and use light for rapidly and reversibly turning that receptor mutant on and off. Here we will discuss the history of optogenetic pharmacology, and the recent advances for the optical control of brain nicotinic receptors in vivo.
Collapse
Affiliation(s)
- Romain Durand-de Cuttoli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
16
|
Shemesh OA, Tanese D, Zampini V, Linghu C, Piatkevich K, Ronzitti E, Papagiakoumou E, Boyden ES, Emiliani V. Temporally precise single-cell-resolution optogenetics. Nat Neurosci 2017; 20:1796-1806. [PMID: 29184208 PMCID: PMC5726564 DOI: 10.1038/s41593-017-0018-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Optogenetic control of individual neurons with high temporal precision within intact mammalian brain circuitry would enable powerful explorations of how neural circuits operate. Two-photon computer-generated holography enables precise sculpting of light and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high-efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in mouse cortical brain slices with single-cell resolution and <1-ms temporal precision. We used soCoChR to perform connectivity mapping on intact cortical circuits.
Collapse
Affiliation(s)
- Or A Shemesh
- Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Dimitrii Tanese
- Neurophotonics Laboratory, Wave Front Engineering Microscopy Group, CNRS UMR8250, Université Paris Descartes, Paris, France
| | - Valeria Zampini
- Neurophotonics Laboratory, Wave Front Engineering Microscopy Group, CNRS UMR8250, Université Paris Descartes, Paris, France
- Institut de la Vision, UM 80, UPMC, Paris, France
| | - Changyang Linghu
- Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Kiryl Piatkevich
- Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Emiliano Ronzitti
- Neurophotonics Laboratory, Wave Front Engineering Microscopy Group, CNRS UMR8250, Université Paris Descartes, Paris, France
- Institut de la Vision, UM 80, UPMC, Paris, France
| | - Eirini Papagiakoumou
- Neurophotonics Laboratory, Wave Front Engineering Microscopy Group, CNRS UMR8250, Université Paris Descartes, Paris, France
- Institut national de la santé et de la recherche médicale (Inserm), Paris, France
| | - Edward S Boyden
- Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| | - Valentina Emiliani
- Neurophotonics Laboratory, Wave Front Engineering Microscopy Group, CNRS UMR8250, Université Paris Descartes, Paris, France.
| |
Collapse
|
17
|
Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat Commun 2017; 8:1228. [PMID: 29089483 PMCID: PMC5663714 DOI: 10.1038/s41467-017-01031-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Optical methods capable of manipulating neural activity with cellular resolution and millisecond precision in three dimensions will accelerate the pace of neuroscience research. Existing approaches for targeting individual neurons, however, fall short of these requirements. Here we present a new multiphoton photo-excitation method, termed three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), which allows precise, simultaneous photo-activation of arbitrary sets of neurons anywhere within the addressable volume of a microscope. This technique uses point-cloud holography to place multiple copies of a temporally focused disc matching the dimensions of a neuron's cell body. Experiments in cultured cells, brain slices, and in living mice demonstrate single-neuron spatial resolution even when optically targeting randomly distributed groups of neurons in 3D. This approach opens new avenues for mapping and manipulating neural circuits, allowing a real-time, cellular resolution interface to the brain.
Collapse
|
18
|
Schedl DC, Bimber O. Compressive Volumetric Light-Field Excitation. Sci Rep 2017; 7:13981. [PMID: 29070847 PMCID: PMC5656577 DOI: 10.1038/s41598-017-13136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
We explain how volumetric light-field excitation can be converted to a process that entirely avoids 3D reconstruction, deconvolution, and calibration of optical elements while taking scattering in the probe better into account. For spatially static probes, this is achieved by an efficient (one-time) light-transport sampling and light-field factorization. Individual probe particles (and arbitrary combinations thereof) can subsequently be excited in a dynamically controlled way while still supporting volumetric reconstruction of the entire probe in real-time based on a single light-field recording.
Collapse
Affiliation(s)
- David C Schedl
- Faculty of Engineering and Natural Sciences, Johannes Kepler University, Linz, 4040, Austria
| | - Oliver Bimber
- Faculty of Engineering and Natural Sciences, Johannes Kepler University, Linz, 4040, Austria.
| |
Collapse
|
19
|
Repina NA, Rosenbloom A, Mukherjee A, Schaffer DV, Kane RS. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu Rev Chem Biomol Eng 2017; 8:13-39. [PMID: 28592174 PMCID: PMC5747958 DOI: 10.1146/annurev-chembioeng-060816-101254] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cells are bombarded by extrinsic signals that dynamically change in time and space. Such dynamic variations can exert profound effects on behaviors, including cellular signaling, organismal development, stem cell differentiation, normal tissue function, and disease processes such as cancer. Although classical genetic tools are well suited to introduce binary perturbations, new approaches have been necessary to investigate how dynamic signal variation may regulate cell behavior. This fundamental question is increasingly being addressed with optogenetics, a field focused on engineering and harnessing light-sensitive proteins to interface with cellular signaling pathways. Channelrhodopsins initially defined optogenetics; however, through recent use of light-responsive proteins with myriad spectral and functional properties, practical applications of optogenetics currently encompass cell signaling, subcellular localization, and gene regulation. Now, important questions regarding signal integration within branch points of signaling networks, asymmetric cell responses to spatially restricted signals, and effects of signal dosage versus duration can be addressed. This review summarizes emerging technologies and applications within the expanding field of optogenetics.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, California 94720;
| | - Alyssa Rosenbloom
- Department of Bioengineering, University of California, Berkeley, California 94720;
| | - Abhirup Mukherjee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720;
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| |
Collapse
|
20
|
dal Maschio M, Donovan JC, Helmbrecht TO, Baier H. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging. Neuron 2017; 94:774-789.e5. [DOI: 10.1016/j.neuron.2017.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
21
|
Lauterbach MA, Guillon M, Desnos C, Khamsing D, Jaffal Z, Darchen F, Emiliani V. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation. NEUROPHOTONICS 2016; 3:041806. [PMID: 27413766 PMCID: PMC4916265 DOI: 10.1117/1.nph.3.4.041806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.
Collapse
Affiliation(s)
- Marcel Andreas Lauterbach
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Marc Guillon
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Claire Desnos
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Dany Khamsing
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Zahra Jaffal
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - François Darchen
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Valentina Emiliani
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| |
Collapse
|
22
|
Abstract
We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported.
Collapse
|
23
|
Pulizzi R, Musumeci G, Van den Haute C, Van De Vijver S, Baekelandt V, Giugliano M. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Sci Rep 2016; 6:24701. [PMID: 27099182 PMCID: PMC4838830 DOI: 10.1038/srep24701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/04/2016] [Indexed: 01/18/2023] Open
Abstract
Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics.
Collapse
Affiliation(s)
- Rocco Pulizzi
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Gabriele Musumeci
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Chris Van den Haute
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Veerle Baekelandt
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michele Giugliano
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium.,Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK.,Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Abstract
The perturbation of neural activity is a powerful experimental approach for understanding brain function. Light-gated ion channels and pumps (optogenetics) can be used to control neural activity with high temporal and spatial precision in animal models. This optogenetic approach requires suitable methods for delivering light to the brain. In zebrafish, fiber optic stimulation of agarose-embedded larvae has successfully been used in several studies to control neural activity and behavior. This approach is easy to implement and cost-efficient. Here, a protocol for fiber optic-based photostimulation of larval zebrafish is provided.
Collapse
Affiliation(s)
- Aristides B Arrenberg
- Institute of Neurobiology, Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, Tübingen, 72076, Germany.
- Developmental Biology, Faculty of Biology, Institute Biology I, Hauptstrasse 1, Freiburg, Germany.
- BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 18, Freiburg, D-79104, Germany.
| |
Collapse
|
25
|
Farah N, Levinsky A, Brosh I, Kahn I, Shoham S. Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks. NEUROPHOTONICS 2015; 2:045002. [PMID: 26793741 PMCID: PMC4717229 DOI: 10.1117/1.nph.2.4.045002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2015] [Indexed: 05/08/2023]
Abstract
Optogenetic perturbation has become a fundamental tool in controlling activity in neurons. Used to control activity in cell cultures, slice preparations, anesthetized and awake behaving animals, optical control of cell-type specific activity enables the interrogation of complex systems. A remaining challenge in developing optical control tools is the ability to produce defined light patterns such that power-efficient, precise control of neuronal populations is obtained. Here, we describe a system for patterned stimulation that enables the generation of structured activity in neurons by transmitting optical patterns from computer-generated holograms through an optical fiber bundle. The system couples the optical system to versatile fiber bundle configurations, including coherent or incoherent bundles composed of hundreds of up to several meters long fibers. We describe the components of the system, a method for calibration, and a detailed power efficiency and spatial specificity quantification. Next, we use the system to precisely control single-cell activity as measured by extracellular electrophysiological recordings in ChR2-expressing cortical cell cultures. The described system complements recent descriptions of optical control systems, presenting a system suitable for high-resolution spatiotemporal optical control of wide-area neural networks in vitro and in vivo, yielding a tool for precise neural system interrogation.
Collapse
Affiliation(s)
- Nairouz Farah
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
- Bar Ilan University, Optometry Department, Ramat Gan 5290002, Israel
| | - Alexandra Levinsky
- Technion–Israel Institute of Technology, Technion Autonomous Systems Program, Haifa 3200003, Israel
| | - Inbar Brosh
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
| | - Itamar Kahn
- Technion–Israel Institute of Technology, Rappaport Faculty of Medicine and Institute, Haifa 3200003, Israel
| | - Shy Shoham
- Technion–Israel Institute of Technology, Faculty of Biomedical Engineering, Haifa 3200003, Israel
- Address all correspondence to: Shy Shoham, E-mail:
| |
Collapse
|
26
|
Pisanello M, Della Patria A, Sileo L, Sabatini BL, De Vittorio M, Pisanello F. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity. BIOMEDICAL OPTICS EXPRESS 2015; 6:4014-26. [PMID: 26504650 PMCID: PMC4605059 DOI: 10.1364/boe.6.004014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 05/14/2023]
Abstract
Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.
Collapse
Affiliation(s)
- Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti SNC, 73010 Arnesano (LE), Italy
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally to this work
| | - Andrea Della Patria
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti SNC, 73010 Arnesano (LE), Italy
- These authors contributed equally to this work
| | - Leonardo Sileo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti SNC, 73010 Arnesano (LE), Italy
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti SNC, 73010 Arnesano (LE), Italy
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti SNC, 73010 Arnesano (LE), Italy
| |
Collapse
|
27
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
28
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
29
|
Dugué GP, Tricoire L. [Principles and applications of optogenetics in neuroscience]. Med Sci (Paris) 2015; 31:291-303. [PMID: 25855283 DOI: 10.1051/medsci/20153103015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous achievements in biology have resulted from the evolution of biophotonics, a general term describing the use of light in the study of living systems. Over the last fifteen years, biophotonics has progressively blended with molecular genetics to give rise to optogenetics, a set of techniques enabling the functional study of genetically-defined cellular populations, compartments or processes with optical methods. In neuroscience, optogenetics allows real-time monitoring and control of the activity of specific neuronal populations in a wide range of animal models. This technical breakthrough provides a new level of sophistication in experimental approaches in the field of fundamental neuroscience, significantly enhancing our ability to understand the complexity of neuronal circuits.
Collapse
Affiliation(s)
- Guillaume P Dugué
- CNRS UMR 8197, Inserm U1024, IBENS S4.9, 46, rue d'Ulm, 75005 Paris, France
| | - Ludovic Tricoire
- CNRS UMR 8246, Inserm U1130, université Pierre et Marie Curie UM CR119, 9, quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
30
|
Mallory GW, Grahn PJ, Hachmann JT, Lujan JL, Lee KH. Optical stimulation for restoration of motor function after spinal cord injury. Mayo Clin Proc 2015; 90:300-7. [PMID: 25659246 PMCID: PMC4339262 DOI: 10.1016/j.mayocp.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Spinal cord injury can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. Although many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure, and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration after spinal cord injury.
Collapse
Affiliation(s)
- Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jan T Hachmann
- School of Medicine, Heidelberg University, Neuenheimer Feld, Bergheim, Germany
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|
31
|
Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Methods 2014; 241:66-77. [PMID: 25497065 DOI: 10.1016/j.jneumeth.2014.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Brain function relies on electrical signaling among ensembles of neurons. These signals are encoded in space - neurons are organized in complex three-dimensional networks - and in time-cells generate electrical signals on a millisecond scale. How the spatial and temporal structure of these signals controls higher brain functions is largely unknown. The recent advent of novel molecules that manipulate and monitor electrical activity in genetically identified cells provides, for the first time, the ability to causally test the contribution of specific cell subpopulations in these complex brain phenomena. However, most of the commonly used approaches are limited in their ability to illuminate brain tissue with high spatial and temporal precision. In this review article, we focus on one technique, patterned illumination through the phase modulation of light using liquid crystal spatial light modulators (LC-SLMs), which has the potential to overcome some of the major limitations of current experimental approaches.
Collapse
|
32
|
Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope. Neuron 2014; 84:1157-69. [DOI: 10.1016/j.neuron.2014.11.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 02/03/2023]
|
33
|
Rickgauer JP, Deisseroth K, Tank DW. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat Neurosci 2014; 17:1816-24. [PMID: 25402854 PMCID: PMC4459599 DOI: 10.1038/nn.3866] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Linking neural microcircuit function to emergent properties of the mammalian brain requires fine-scale manipulation and measurement of neural activity during behavior, where each neuron's coding and dynamics can be characterized. We developed an optical method for simultaneous cellular-resolution stimulation and large-scale recording of neuronal activity in behaving mice. Dual-wavelength two-photon excitation allowed largely independent functional imaging with a green fluorescent calcium sensor (GCaMP3, λ = 920 ± 6 nm) and single-neuron photostimulation with a red-shifted optogenetic probe (C1V1, λ = 1,064 ± 6 nm) in neurons coexpressing the two proteins. We manipulated task-modulated activity in individual hippocampal CA1 place cells during spatial navigation in a virtual reality environment, mimicking natural place-field activity, or 'biasing', to reveal subthreshold dynamics. Notably, manipulating single place-cell activity also affected activity in small groups of other place cells that were active around the same time in the task, suggesting a functional role for local place cell interactions in shaping firing fields.
Collapse
Affiliation(s)
- John Peter Rickgauer
- 1] Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA. [2] Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, New Jersey, USA. [3] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA. [4] Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Karl Deisseroth
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Stanford, California, USA. [3] Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. [4] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - David W Tank
- 1] Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA. [2] Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, New Jersey, USA. [3] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA. [4] Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
34
|
Sumbre G, de Polavieja GG. The world according to zebrafish: how neural circuits generate behavior. Front Neural Circuits 2014; 8:91. [PMID: 25126059 PMCID: PMC4115616 DOI: 10.3389/fncir.2014.00091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/11/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Germán Sumbre
- Ecole Normale Supérieure, Institut de Biologie de l'ENS Paris, France ; Inserm, U1024 Paris, France ; CNRS, UMR 8197 Paris, France
| | - Gonzalo G de Polavieja
- Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain ; Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown Lisbon, Portugal
| |
Collapse
|
35
|
Abstract
Optogenetics allows for the specific manipulation of the activity of genetically defined cell populations in the CNS. Yet, it requires effective gene delivery, light stimulation, and readout strategies. Here, we provide a roadmap aimed at guiding the experimenter in the process of establishing an optogenetic approach tailored to a given research hypothesis in the field of neuroscience.
Collapse
Affiliation(s)
- Consuelo Fois
- Focus Program Translational Neuroscience (FTN) and Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | | | | |
Collapse
|
36
|
A reorganized GABAergic circuit in a model of epilepsy: evidence from optogenetic labeling and stimulation of somatostatin interneurons. J Neurosci 2013; 33:14392-405. [PMID: 24005292 DOI: 10.1523/jneurosci.2045-13.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region.
Collapse
|
37
|
Li D, Agulhon C, Schmidt E, Oheim M, Ropert N. New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 2013; 7:193. [PMID: 24194698 PMCID: PMC3810613 DOI: 10.3389/fncel.2013.00193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
Gray matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+)-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated. Studying astrocytes in their natural environment is challenging because: (i) astrocytes are electrically silent; (ii) astrocytes and neurons express an overlapping repertoire of transmembrane receptors; (iii) the size of astrocyte processes in contact with synapses are below the resolution of confocal and two-photon microscopes (iv) bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity. In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs), light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: (i) the complexity of astrocyte Ca2+ signaling revealed by GECIs; (ii) new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signaling pathways in astrocytes; (iii) classical and new techniques to monitor vesicle fusion in cultured astrocytes; (iv) possible strategies to express specifically reporter genes in astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- Biophysics of Gliotransmitter Release Team, Laboratory of Neurophysiology and New Microscopies, INSERM U603, CNRS UMR 8154, University Paris Descartes Paris, France
| | | | | | | | | |
Collapse
|
38
|
Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR, Glaser JI, Amodei D, Stranges PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM, Boyden ES, Church GM, Kording KP. Physical principles for scalable neural recording. Front Comput Neurosci 2013; 7:137. [PMID: 24187539 PMCID: PMC3807567 DOI: 10.3389/fncom.2013.00137] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.
Collapse
Affiliation(s)
- Adam H. Marblestone
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
| | | | - Yael G. Maguire
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
- Plum Labs LLCCambridge, MA, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadena, CA, USA
| | | | - Joshua I. Glaser
- Interdepartmental Neuroscience Program, Northwestern UniversityChicago, IL, USA
| | - Dario Amodei
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Reza Kalhor
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - David A. Dalrymple
- Biophysics Program, Harvard UniversityBoston, MA, USA
- NemaloadSan Francisco, CA, USA
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Dongjin Seo
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Elad Alon
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Michel M. Maharbiz
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Jose M. Carmena
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California at BerkeleyBerkeley, CA, USA
| | - Jan M. Rabaey
- Department of Electrical Engineering and Computer Sciences, University of California at BerkeleyBerkeley, CA, USA
| | - Edward S. Boyden
- Media Laboratory, Massachusetts Institute of TechnologyCambridge, MA, USA
- Departments of Brain and Cognitive Sciences and Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - George M. Church
- Biophysics Program, Harvard UniversityBoston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBoston, MA, USA
- Department of Genetics, Harvard Medical SchoolBoston, MA, USA
| | - Konrad P. Kording
- Departments of Physical Medicine and Rehabilitation and of Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Sensory Motor Performance Program, The Rehabilitation Institute of ChicagoChicago, IL, USA
| |
Collapse
|
39
|
Schrödel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods 2013; 10:1013-20. [PMID: 24013820 DOI: 10.1038/nmeth.2637] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
|
40
|
Farah N, Zoubi A, Matar S, Golan L, Marom A, Butson CR, Brosh I, Shoham S. Holographically patterned activation using photo-absorber induced neural-thermal stimulation. J Neural Eng 2013; 10:056004. [PMID: 23902876 DOI: 10.1088/1741-2560/10/5/056004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Patterned photo-stimulation offers a promising path towards the effective control of distributed neuronal circuits. Here, we demonstrate the feasibility and governing principles of spatiotemporally patterned microscopic photo-absorber induced neural-thermal stimulation (PAINTS) based on light absorption by exogenous extracellular photo-absorbers. APPROACH We projected holographic light patterns from a green continuous-wave (CW) or an IR femtosecond laser onto exogenous photo-absorbing particles dispersed in the vicinity of cultured rat cortical cells. Experimental results are compared to predictions of a temperature-rate model (where membrane currents follow I ∝ dT/dt). MAIN RESULTS The induced microscopic photo-thermal transients have sub-millisecond thermal relaxation times and stimulate adjacent cells. PAINTS activation thresholds for different laser pulse durations (0.02 to 1 ms) follow the Lapicque strength-duration formula, but with different chronaxies and minimal threshold energy levels for the two excitation lasers (an order of magnitude lower for the IR system <50 nJ). Moreover, the empirical thresholds for the CW system are found to be in good agreement with detailed simulations of the temperature-rate model, but are generally lower for the IR system, suggesting an auxiliary excitation mechanism. SIGNIFICANCE Holographically patterned PAINTS could potentially provide a means for minimally intrusive control over neuronal dynamics with a high level of spatial and temporal selectivity.
Collapse
Affiliation(s)
- Nairouz Farah
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Papagiakoumou E. Optical developments for optogenetics. Biol Cell 2013; 105:443-64. [PMID: 23782010 DOI: 10.1111/boc.201200087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Brain intricacies and the difficulty that scientists encounter in revealing its function with standard approaches such as electrical stimulation of neurons have led to the exploration of new tools that enable the study of neural circuits in a remote and non-invasive way. To this end, optogenetics has initialised a revolution for neuroscience in the last decade by enabling simultaneous monitoring and stimulation of specific neuronal populations in intact brain preparations through genetically targeted expression of light sensitive proteins and molecular photoswitches. In addition to ongoing molecular probe development and optimisation, novel optical techniques hold immense potential to amplify and diversify the utility of optogenetic methods. Importantly, by improving the spatio-temporal resolution of light stimulation, neural circuits can be photoactivated in patterns mimicking endogenous physiological processes. The following synopsis addresses the possibilities and limitations of optical stimulation methods applied to and developed for activation of neuronal optogenetic tools.
Collapse
Affiliation(s)
- Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophysiology and New Microscopies Laboratory, CNRS UMR 8154, Inserm S603, Paris Descartes University, 75270 Paris Cedex 06, France
| |
Collapse
|
42
|
Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat Commun 2013; 4:1509. [PMID: 23443537 DOI: 10.1038/ncomms2500] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/15/2013] [Indexed: 01/28/2023] Open
Abstract
When natural photoreception is disrupted, as in outer-retinal degenerative diseases, artificial stimulation of surviving nerve cells offers a potential strategy for bypassing compromised neural circuits. Recently, light-sensitive proteins that photosensitize quiescent neurons have generated unprecedented opportunities for optogenetic neuronal control, inspiring early development of optical retinal prostheses. Selectively exciting large neural populations are essential for eliciting meaningful perceptions in the brain. Here we provide the first demonstration of holographic photo-stimulation strategies for bionic vision restoration. In blind retinas, we demonstrate reliable holographically patterned optogenetic stimulation of retinal ganglion cells with millisecond temporal precision and cellular resolution. Holographic excitation strategies could enable flexible control over distributed neuronal circuits, potentially paving the way towards high-acuity vision restoration devices and additional medical and scientific neuro-photonics applications.
Collapse
|
43
|
Wilson NR, Schummers J, Runyan CA, Yan SX, Chen RE, Deng Y, Sur M. Two-way communication with neural networks in vivo using focused light. Nat Protoc 2013; 8:1184-203. [PMID: 23702834 DOI: 10.1038/nprot.2013.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal networks process information in a distributed, spatially heterogeneous manner that transcends the layout of electrodes. In contrast, directed and steerable light offers the potential to engage specific cells on demand. We present a unified framework for adapting microscopes to use light for simultaneous in vivo stimulation and recording of cells at fine spatiotemporal resolutions. We use straightforward optics to lock onto networks in vivo, to steer light to activate circuit elements and to simultaneously record from other cells. We then actualize this 'free' augmentation on both an 'open' two-photon microscope and a leading commercial one. By following this protocol, setup of the system takes a few days, and the result is a noninvasive interface to brain dynamics based on directed light, at a network resolution that was not previously possible and which will further improve with the rapid advance in development of optical reporters and effectors. This protocol is for physiologists who are competent with computers and wish to extend hardware and software to interface more fluidly with neuronal networks.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mourot A, Tochitsky I, Kramer RH. Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches. Front Mol Neurosci 2013; 6:5. [PMID: 23518818 PMCID: PMC3604625 DOI: 10.3389/fnmol.2013.00005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/06/2013] [Indexed: 11/15/2022] Open
Abstract
Ion channels are transmembrane proteins that control the movement of ions across the cell membrane. They are the molecular machines that make neurons excitable by enabling the initiation and propagation of action potentials (APs). Rapid signaling within and between neurons requires complex molecular processes that couple the sensing of membrane voltage or neurotransmitter release to the fast opening and closing of the ion channel gate. Malfunction of an ion channel's sensing or gating module can have disastrous pathological consequences. However, linking molecular changes to the modulation of neural circuits and ultimately to a physiological or pathological state is not a straightforward task. It requires precise and sophisticated methods of controlling the function of ion channels in their native environment. To address this issue we have developed new photochemical tools that enable the remote control of neuronal ion channels with light. Due to its optical nature, our approach permits the manipulation of the nervous system with high spatial, temporal and molecular precision that will help us understand the link between ion channel function and physiology. In addition, this strategy may also be used in the clinic for the direct treatment of some neuronal disorders.
Collapse
Affiliation(s)
- Alexandre Mourot
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA ; Department of Neurobiology of Adaptive Processes, UMR7102 CNRS, Université Pierre et Marie Curie Paris, France
| | | | | |
Collapse
|
45
|
Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 2013; 9:1171-9. [PMID: 23169303 PMCID: PMC5734860 DOI: 10.1038/nmeth.2215] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022]
Abstract
Optogenetics with microbial opsin genes has enabled high-speed control of genetically specified cell populations in intact tissue. However, it remains a challenge to independently control subsets of cells within the genetically targeted population. Although spatially precise excitation of target molecules can be achieved using two-photon laser-scanning microscopy (TPLSM) hardware, the integration of two-photon excitation with optogenetics has thus far required specialized equipment or scanning and has not yet been widely adopted. Here we take a complementary approach, developing opsins with custom kinetic, expression and spectral properties uniquely suited to scan times typical of the raster approach that is ubiquitous in TPLSMlaboratories. We use a range of culture, slice and mammalian in vivo preparations to demonstrate the versatility of this toolbox, and we quantitatively map parameter space for fast excitation, inhibition and bistable control. Together these advances may help enable broad adoption of integrated optogenetic and TPLSMtechnologies across experimental fields and systems.
Collapse
|